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Abstract

Rights provisioned within data protection regulations, permit patients to request that
knowledge about their information be eliminated by data holders. With the advent of
AI learned on data, one can imagine that such rights can extent to requests for forgetting
knowledge of patient’s data within AI models. This is motivated by recent findings that
AI models can memorise information about data and have been shown to be vulnerable
to methods that can aim to uncover specific and private information from a model. For-
getting patients’ imaging data from AI models, is still an under-explored problem. In this
paper, we study the influence of patient data on model performance and formulate two
hypotheses for a patient’s data: either they are common and similar to other patients or
form edge cases, i.e. unique and rare cases. This shows that it is not possible to easily
forget patient data. We propose a targeted forgetting approach to perform patient-wise
forgetting. Extensive experiments on the benchmark Automated Cardiac Diagnosis Chal-
lenge (ACDC) dataset, a medical dataset composed of cardiac MRI images, showcase the
improved forgetting performance of the proposed targeted forgetting approach as opposed
to a state-of-the-art method.
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1. Introduction

Apart from solely improving algorithm performance, developing trusted deep learning algo-
rithms that respect data privacy has now become of crucial importance (Abadi et al., 2016;
Liu and Tsaftaris, 2020). It is now known that deep models can memorise a user’s sensitive
information (Arpit et al., 2017). Several attack types (Truex et al., 2019) including simple
reverse engineering (Fredrikson et al., 2015) can reveal private information. For example,
using the attacks discussed in (Wu et al., 2020), by looking at the output and weights of
a model, sensitive patient information such as gender, age, BMI etc. can be extracted. It
is then without surprise why a user (e.g. a patient) may require that private information is
not only deleted from databases but that any such information is forgotten by AI models
trained on such databases.

A naive solution to forget a patient’s information is to re-train the model without the
concerning data. However, re-training is extremely time-consuming and sometimes impos-
sible (Shintre et al., 2019). For example, in a federated learning scheme (McMahan et al.,
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Figure 1: (a) Visualisation of the scrubbing and targeted forgetting methods. Dr andDf are
the retaining data and the forgetting data. (b) Illustration of the two hypotheses.
Blue contour delineates a big sub-population of similar samples within a common
cluster ; red contours denote several small sub-populations of distinct samples in
edge cases. X and X are examples of samples to be forgotten.

2017), the data are not centrally aggregated but retained in servers (e.g. distributed in
different hospitals) which may not be available anymore to participate in re-training.

Machine unlearning/forgetting aims to remove private information of concerning data
without re-training the model. This involves post-processing to the trained model to make
it act like a re-trained one that has never seen the concerning data. Several studies have pre-
viously explored forgetting/unlearning/deleting data and made remarkable progress (Cao
and Yang, 2015; Ginart et al., 2019; Golatkar et al., 2020; Nguyen et al., 2020; Sekhari
et al., 2021). When the concept of machine unlearning/forgetting was first developed by
Cao and Yang (2015), they discussed forgetting in statistical query learning (Kearns, 1998).
Ginart et al. (2019) specifically deal with data deletion in k-means clustering with excel-
lent deleting efficiency. Another approach is to rely on variational inference and Bayesian
models (Nguyen et al., 2020). Recently, Sekhari et al. (2021) provide a data deleting algo-
rithm by expanding the forgetting limit whilst considering the model’s generalization ability.
Golatkar et al. (2020) address machine unlearning on deep networks to forget a subset of
training data (e.g. one class of CIFAR-10 (Krizhevsky et al., 2009)). Their scrubbing ap-
proach, shown in Fig. 1(a), adds weighted noise to model weights which are uninformative
to the remaining data (training data excluding the concerning data) to achieve a weaker
form of differential privacy (Dwork et al., 2014).

Patient-wise forgetting Different from previous works, here we specifically consider the
scenario of patient-wise forgetting, where instead of forgetting a selected random cohort of
data, the data to be forgotten originate from a single patient. To address this problem,
we take inspiration by the scrubbing procedure of Golatkar et al. (2020). However, our
experiments illustrate that performance varies between different patients: from adequate
forgetting performance to unacceptable performance (either in forgetting or generalisation
to test data). We show that this is due to assumptions made by Golatkar et al. (2020) on how
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data are distributed. Hence, simple translation of existing machine unlearning/forgetting
methods to patient-wise forgetting is not straightforward.
A tale of two hypotheses We hypothesise (and show experimentally) that in a medical
dataset, a patient’s data can either be similar to other data (and form clusters) or form edge
cases as we depict in Fig. 1(b). These hypotheses are aligned with recent studies on long-
tail learning (Buda et al., 2018; Liu et al., 2019), where different sub-populations within
a class can exist with some being in the so-called long tail.1 Subsequently, we will refer
to these cases as common cluster and edge case hypotheses. For patients under the two
different hypotheses, forgetting and generalisation performance obtained after scrubbing
(Golatkar et al., 2020) vary as detailed in Section 3. For the scrubbing method, it removes
information not highly related to most of the remaining data to maintain good generalisation
after forgetting. When forgetting a patient under common cluster hypothesis, scrubbing has
to sacrifice model generalisation to forget this patient. Because by forgetting this patient’s
data will necessitate that a whole cluster in the remaining data should also be forgotten.
When forgetting an edge-case patient, the scrubbing method does not remove specifically the
edge-case patient’s information but noise will be introduced to model weights corresponding
to most of the edge cases in the remaining dataset. Hence, the overall model performance
will be negatively affected.
The proposed targeted forgetting To achieve patient-wise forgetting, we propose tar-
geted forgetting, which only adds weighted noise to highly informative (i.e. targeted) model
weights of a forgetting patient. Here, we follow Golatkar et al. (2020) to measure the in-
formativeness of model weights with Fisher Information Matrix (FIM), which determines
the strength of noise to be added to different model weights. With our proposed targeted
forgetting, we can precisely forget data of patients within edge case hypothesis and maintain
good model generalisation performance. For data of patients falling under the common clus-
ter hypothesis, the algorithm can forget the corresponding information though the model
performance on the whole cluster will be affected.2 Contributions:

1. We introduce the problem of patient-wise forgetting.

2. We observe variable performance in patient-wise forgetting with the method in Go-
latkar et al. (2020) and formulate two hypotheses that explain this behaviour.

3. We propose a new targeted forgetting method and perform extensive experiments on a
medical benchmark dataset to showcase improved patient-wise forgetting performance.

Our work we hope will inspire future research to consider how different data affect forgetting
methods especially in a patient-wise forgetting setting.

2. Method

We adopt the notation of Golatkar et al. (2020). Given a training dataset D, a forgetting
subset Df ⊂ D contains the images we desire to be removed from a model trained on D.

1. There is a connection between edge cases and active learning (Settles, 2009), where one aims to actively
label diverse data to bring more information to the model and achieve better accuracy.

2. This implies that for some patients especially within the common cluster hypothesis, it is not easy
(probably impossible) to forget the corresponding information without negatively affecting the model.
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The retaining dataset is the complement Dr=D \ Df , and thus Dr ∩ Df = ∅. We denote
the test data as Dtest. For patient-wise forgetting, we set Df to be all the images of one
patient. Let w be the weights of a model A(D), which is trained on D using any stochastic
learning algorithm A(·). Let S(w) denote the operations applied to model weights to forget
Df in the model. We define the golden standard model as A(Dr).

2.1. The scrubbing method

Assuming that A(D) andDr are accessible, Golatkar et al. (2020) propose a robust scrubbing
procedure modifying model A(D), to brings the model closer to a golden standard model
A(Dr). They use the Fisher Information Matrix (FIM) to approximate the hessian of the
loss on Dr, where higher values in FIM (see Appendix B for the calculation) denote higher
correlation between corresponding model weights and Dr. With the FIM, they introduce
different noise strength to model weights to remove information not highly informative to
Dr, and thus forget information corresponding to Df . The scrubbing function is defined as:

S(w) = w +
(
λσ2

h

) 1
4 FDr(w)−1/4, (1)

where FDr(w) denotes the FIM computed for w on Dr. Scrubbing is controlled by two
hyperparameters: λ decides the scale of noise introduced to w therefore it controls the
model accuracy on Df ; σh is a normal distributed error term which simulates the error of
the stochastic algorithm, ensuring a continuous gradient flow after the scrubbing procedure.
Practically during experiments, the product of the two hyperparameters is tuned as a whole.
What happens during patient-wise forgetting? The FIM (FDr(w)) for a medical
dataset is derived by summing up the FIM of each patient’s data. Weights highly related
to the cluster’s features show high values in FIM because several cluster patients within Dr

are correlated to these weights. Whereas for edge cases, no other patients are correlated
with the same weights as of these edge cases; thus, the aggregated values in FIM for these
weights corresponding to all edge cases are relatively small. When forgetting a common
cluster case, scrubbing by trying to preserve model performance on Dr sacrifices forgetting
performance. When forgetting an edge case, the model performance on edge cases in Dr

will be negatively affected.

2.2. The targeted forgetting method

Based on the idea of scrubbing model weights, and the connection between the hessian of
a loss on a set of data of a model and the extent to which the weights are informative
about these data, we develop the targeted forgetting procedure. We assume access to the
forgetting data Df instead of Dr. We believe that even in a real patient-wise forgetting
scenario, temporary access to patient data is permissible until forgetting is achieved.

We compute FIM for w on Df instead of Dr to approximate the noise added to model
weights. Instead of keeping the most informative model weights corresponding to Dr as in
Golatkar et al. (2020), our targeted forgetting can be considered as precisely introducing
noise to model weights highly informative about Df (see Fig. 1(a)). Our proposed targeted
forgetting is defined as:

ST(w) = w +
(
λTσ

2
hT

) 1
4 FDf

(w)1/4, (2)
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Figure 2: Example images of ACDC dataset. DCM: dilated cardiomyopathy. HCM: hyper-
trophic cardiomyopathy. MINF: myocardial infarction. NOR: normal subjects.
RV: abnormal right ventricle.

where λT and σhT
are analogous parameters to those defined as λ and σh in Eq 1.

Performance on the two hypotheses We briefly discuss the expectations of targeted
forgetting performance here in anticipation of the detailed results and discussion of Section
3. Common cluster hypothesis: Targeted forgetting will add noise to the most informative
model weights corresponding toDf so it will reduce model performance on the corresponding
cluster in Dr and Dtest. Edge case hypothesis: Targeted forgetting will precisely remove
information of one edge case and maintain good model performance.

3. Experiments

We first explore why the scrubbing method works well on computer vision datasets but shows
poorer performance on patient-wise medical data forgetting. We conduct an experiment to
demonstrate the intrinsic dataset biases of CIFAR-10 and ACDC (Bernard et al., 2018).
Then, we compare the forgetting and model performance after forgetting achieved using the
scrubbing and our targeted forgetting methods.

Datasets: CIFAR-10 has 60,000 images (size 32× 32) of 10-class objects. The Automated
Cardiac Diagnosis Challenge (ACDC) dataset contains 4D cardiac data from 100 patients
with four pathologies classes and a normal group. We split the 100 patients into training
and testing subsets. Overall, by preprocess the patient data into 224x224 2D images, there
are 14,724 images from 90 patients in the training set D, and 1,464 images from 10 patients
in the testing set Dtest. Patients in both sets are equally distributed across the five classes.
Example images from the ACDC dataset are shown in Fig. 2. When conducting experiments
under the patient-wise forgetting scenario, we only select one patient to be forgotten devising
the forgetting set composed of all the images of the same patient.

Implementation details: For CIFAR-10, we follow the implementation steps in Golatkar
et al. (2020). When training the ACDC classifier, the model has a VGG-like architecture
as in Thermos et al. (2021). We use Cross Entropy as the loss function and use Adam
optimizer (Kingma and Ba, 2015) with β1 = 0.5, β2 = 0.999. During training we use data
augmentation including random rotation, Gaussian blur, horizontal and vertical flip. We
train all classifiers with a learning rate of 0.0001 for 13 epochs. The original model trained
with all 90 patients has 0.00 error on Dr and Df , and 0.19 error on Dtest.
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Figure 3: Histograms of re-training experiments. The y-axis refers to the total number of
patients/sets whose golden standard lies within an interval(i.e. [95,100]) of x-axis.

3.1. The hardness of patient-wise forgetting

Here we want to show that some patient data are hard to learn and consequently make
patient-wise forgetting hard. We compare between CIFAR-10 and ACDC. Given 90 patients
in the training set of ACDC, we remove one patient’s data and fully re-train a model on
the remaining 89 i.e. the golden standard model. We then measure the golden model error
on the deleted patient. We repeat this for all 90 patients. For CIFAR-10, we select 10
non-overlapping sets from its training set, each with 100 images from the same class, to be
the deleting candidates and repeat the same process as in ACDC. If data are hard, error of
the golden model will be high and thus should be harder to forget
Results and discussion: Fig. 3 collects the findings of this experiment as histograms and
shows the differences between the two datasets. Overall, for ACDC, the 90 individually
measured results of golden standard error on Df vary from 0% to 100%, whereas in CIFAR-
10, the 10 experimental results only vary from 10% to 25%. High golden model error on a
Df means that the model is unable to generalise to this patient’s data; thus, this patient
is not similar to any other patients in the training set, and must belong to the edge case
hypothesis. By considering a threshold of 50% on the error of the golden model, we find
that > 60% of patients in ACDC can be considered to belong to the edge case
hypothesis. Appendix A (Fig. 4) showcases some examples. This is markedly different
in CIFAR-10: golden model results concentrate at low error indicating that few edge cases
exist. In addition, as we discussed in the introduction, scrubbing multiple weights that are
informative about different edge cases in Dr will degrade model generalisation on both Dr

and Dtest. This will explain the results of the scrubbing method: under-performance in
ACDC because many patients fall under the edge case hypothesis.

3.2. Forgetting performance with respect to golden standard models

We assess forgetting performance by comparing against golden standard models. A method
has good forgetting performance by coming as close to the performance of the golden stan-
dard model on Df . For simplicity we focus on four representative patients using the analysis
in Section 3.1 (for more patients’ results see Appendix C): patients 94 and 5 that fall under
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Table 1: Forgetting results for four patients. We report Error = 1−Accuracy on the re-
taining (Dr), forgetting (Df ) and test (Dtest) sets respectively. Scrubbing Method
refers to the method of Golatkar et al. (2020) whereas Targeted Forgetting refers to
the method in Section 2.2. Red and blue denote upper and lower bounds for each
row respectively, with performance being better when it is closer to the bounds.

Df Patient ID Error on Golden Standard Scrubbing Method Targeted Forgetting

94
Dr

Df

Dtest

0.00
1.00
0.24

0.46
1.00
0.56

0.23
1.00
0.30

5
Dr

Df

Dtest

0.00
0.81
0.25

0.35
0.82
0.46

0.24
0.83
0.38

13
Dr

Df

Dtest

0.00
0.20
0.19

0.08
0.20
0.30

0.21
0.20
0.37

9
Dr

Df

Dtest

0.00
0.01
0.23

0.01
0.01
0.23

0.06
0.01
0.32

the edge case hypothesis; and patients 13 and 9, that fall under a common cluster hypothe-
sis. We adjust the hyperparameters of both methods to make them achieve the same error
on Df as the golden standard. Then we compare model error on Dr and Dtest.

Results and discussion: Table 1 shows the results of forgetting Df . For patient 94,
the golden standard has an error of 1.00. Both methods match this error. However, the
scrubbing method’s error on Dr (0.46) is very high indicating that to achieve such forgetting,
training performance suffers. Meanwhile, generalisation performance also degrades (0.56 vs
0.24 of the golden standard). Targeted forgetting achieves good forgetting (1.00 error on
Df ), and good generalisation performance (0.30 on Dtest). Similar observations hold also
for another edge case such as patient 5. For patients 13 and 9, the golden standard errors
are relatively very low, 0.20 and 0.01. Scrubbing overall matches the forgetting performance
of targeted forgetting. Targeted forgetting though shows worse generalisation performance.

3.3. Patient-wise forgetting performance without golden standard model

Here we consider a more stringent scenario: the re-trained golden standard model is not
available for deciding level of noise to be added during scrubbing or forgetting. We adjust
noise strength (low, medium and high) by modulating the hyperparameter λ in both meth-
ods to achieve different levels of forgetting. Additional implementation details are in the
Appendix D. We show the results of the same four representative patients in Table 2.3

Results and discussion: The two forgetting methods vary in performance for patients
under the different hypotheses. With targeted forgetting, we show better model generali-
sation on Dtest for patient 94 at all noise levels compared with the scrubbing method (0.22

3. Note that some values within Table 2 are different from Table 1. This is because without any knowledge of
forgetting, we have to add noise to a fixed number of weights. When obtaining Table 1 this is adjustable:
prior knowledge of how much to forget is available via the golden standard.
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Table 2: Forgetting results for four patients. We report Error = 1−Accuracy on the retain-
ing (Dr), forgetting (Df ) and test (Dtest) sets respectively. With respect to error
on Df High noise level refers to the noise strength when a method reaches 1.00
error; Medium: 0.85±0.05 error; and Low: 0.14±0.05 error.

Patient
ID

Error on
Golden
Standard

Noise level
Low Medium High

Scrubbing
Targeted
Forgetting

Scrubbing
Targeted
Forgetting

Scrubbing
Targeted
Forgetting

94
Dr

Df

Dtest

0.00
1.00
0.24

0.29
0.15
0.67

0.03
0.17
0.22

0.60
0.86
0.74

0.14
0.83
0.29

0.76
1.00
0.75

0.26
1.00
0.31

5
Dr

Df

Dtest

0.00
0.81
0.25

0.04
0.13
0.39

0.04
0.11
0.27

0.25
0.85
0.62

0.27
0.86
0.41

0.40
1.00
0.70

0.44
1.00
0.51

13
Dr

Df

Dtest

0.00
0.20
0.19

0.02
0.11
0.36

0.15
0.09
0.34

0.21
0.87
0.59

0.48
0.85
0.52

0.36
1.00
0.69

0.61
1.00
0.60

9
Dr

Df

Dtest

0.00
0.01
0.23

0.04
0.18
0.40

0.25
0.15
0.44

0.25
0.89
0.64

0.60
0.86
0.61

0.40
1.00
0.70

0.68
1.00
0.66

vs 0.67 at low, 0.29 vs 0.74 at medium, 0.31 vs 0.75 at high). Similar results hold also for
patient 5. This showcases the ability of targeted forgetting in maintaining model generali-
sation when forgetting edge cases. For patient 9 (a common cluster case), the model error
on Dr is better with the scrubbing method at all levels than with the targeted forgetting
(low: 0.04 vs 0.25, medium: 0.25 vs 0.60, and high: 0.40 vs 0.68). However, the model’s
generalisation performance on Dtest with the two methods, which is with more concern, has
been very close all the time, with at low (0.40 and 0.44), medium (0.64 and 0.61) and high
(0.70 and 0.66). Moreover, the error becomes relatively high especially at medium and high
noise levels. Investigating the model performance on another common cluster patient 13, we
also observe unsatisfactory performance on Dtest at medium and high noise level, meaning
that both methods sacrifice the model’s generalisation to forget more about a patient under
common cluster hypothesis, when not knowing how much to forget from a golden standard.

4. Conclusion

We consider patient-wise forgetting in deep learning models. Our experiments reveal that
forgetting a patient’s medical image data is harder than other vision domains. We found that
this is due to data falling on two hypotheses: common cluster and edge case. We identified
limitations of an existing state-of-the-art scrubbing method and proposed a new targeted
forgetting approach. Experiments highlight the different roles of these two hypotheses and
the importance of considering the dataset bias. We perform experiments on cardiac MRI
data but our approach is data-agnostic, which we plan to apply on different medical datasets
in the future. In addition, future research on patient-wise forgetting should focus on better
ways of detecting which hypothesis the data of patients belong to and how to measure
patient-wise forgetting performance with considering the two hypotheses.
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Appendix A. Visual examples of images in two hypotheses

Figure 4: Visualisation of images in the ACDC dataset (a) Three patients fall under com-
mon cluster hypothesis (b) Three edge case examples.

Appendix B. Calculation of the Fisher Information Matrix

The Fisher Information Matrix F of a distribution Px,y(w) w.r.t. w defined in Golatkar
et al. (2020) is:

F = Ex∼D,y∼p(y|x)
[
∇w log pw(y | x)∇w log pw(y | x)T

]
(3)

During implementation, to save computational memory, only the diagonal values for
FIM are computed and stored. The trace of FIM is calculated by taking the expectation of
the outer product of the gradient of a deep learning model. Note that in our experiment,
since we treat the medical dataset at patient-level, we take an extra normalisation step for
each patient and take the expectation at patient-level, instead of taking the expectation
over all data.

Because the FIM is computed to approximate the hessian matrix of model loss on a
set D, a value within FIM reflects to what extent the change to its corresponding weights
would influence the model’s classification process on this set. Hence, if a model weight is
correlated with multiple data and thus considered to be important in classifying these data,
its corresponding value in FIM would be relatively high, and vice versa.

Appendix C. More results for Table 1

Here we report more results with the same experimental settings in Section 3.2. The
experiments include 10 patients with different golden standard errors in total. Four typical
patients are included in Table 1 and here we show the results for the rest six patients in
Table 3 .

It is worth noticing that for patient 26 and 40, with the scrubbing method we are unable
to achieve the required level of forgetting even when the model generalisation on Dr and
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Table 3: Same experiment as Table 1 with more patients. The patients are selected with
different golden standard error on Df , from 0.12 for patient 59, up to 0.91 for
patient 88.

Patient ID Error on Golden Standard Scrubbing Method Targeted Forgetting

88
Dr

Df

Dtest

0.00
0.91
0.27

0.39
0.90
0.49

0.37
0.90
0.38

65
Dr

Df

Dtest

0.01
0.74
0.26

0.36
0.75
0.47

0.33
0.75
0.44

77
Dr

Df

Dtest

0.00
0.56
0.32

0.50
0.57
0.59

0.46
0.57
0.51

26
Dr

Df

Dtest

0.00
0.42
0.19

0.79
0.00
0.75

0.39
0.42
0.57

40
Dr

Df

Dtest

0.00
0.33
0.32

0.58
0.08
0.61

0.36
0.32
0.40

59
Dr

Df

Dtest

0.00
0.12
0.22

0.67
0.09
0.61

0.22
0.11
0.38
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Why patient data cannot be easily forgotten?

Dtest is seriously influenced. This means that the information scrubbed can hardly influ-
ence model’s classification results, making these patients hard to forget with the scrubbing
method. This further supports that these patients fall under the common cluster hypothesis.
Overall, from Table 3, and in combination with our observations from Table 1, we conclude
that the targeted forgetting can forget all patients, no matter one’s data fall under edge
case hypothesis so require more forgetting, or they belong to a cluster and are extremely
hard to forget. Although sometimes our targeted forgetting brings relatively high error on
Dtest, such as patient 77 (0.51) and patient 26 (0.57), there is still a small improvement
compared with the scrubbing method: 0.59 for patient 77 and 0.75 for patient 26.

Appendix D. Implementation of patient-wise forgetting without golden
standard model

Recall that our method adds noise to model weights highly informative to the forgetting
data. During implementation, we are able to decide how many informative weights we
would like to introduce noise to i.e. 1% most informative weights. When knowing a golden
standard of forgetting, we usually affect less weights when forgetting an edge case patient to
maintain good model generalisation error on Dtest, and affect more weights when forgetting
a patient under the common cluster hypothesis to achieve the required level of forgetting.

For experiments in Section 3.3, without any prior knowledge of how much to forget and
which hypotheses a patient falls from a golden standard, when implementing our method we
cannot adapt the total number of weights being influenced for different cases. Therefore,
we fix the number to 1% of total weights when applying the targeted forgetting. Note
that 1% is a reasonable value selected based on extensive experiments. Here in Table 4 we
additionally reported the value of the High level noise (defined in Table 2).

Table 4: The average noise value added to weights at High(1.00 error on Df )

Patient ID Error on Golden Standard
High Noise level

Scrubbing Method Targeted Forgetting

94
Dr

Df

Dtest

0.00
1.00
0.24

2.33E-05 3.00E-06

5
Dr

Df

Dtest

0.00
0.81
0.25

1.65E-05 4.50E-06

13
Dr

Df

Dtest

0.00
0.20
0.19

1.60E-05 8.66E-06

9
Dr

Df

Dtest

0.00
0.01
0.23

1.43E-05 1.20E-05

From Table 4 we observe that to achieve the same forgetting on a patient, the scrubbing
method requires adding more noise to model weights. This further explains why forgetting
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with the scrubbing method in edge case particularly degrades the model generalisation
on Dtest compared with targeted forgetting: besides highly related weights, the scrubbing
method also introduces large scale of noise to model weights that are with low relevance to
the forgetting patient.
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