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ABSTRACT

Adversarial examples and [Out-of-Distribution (OoD)| inputs constitute major
problematic instances for the image classifiers based on [Deep Neural Networks|
In particular, tend to be overconfident with their predictions, as-
signing a different category with a high probability. In this work, we suggest a
combined solution to tackle both input types based on the [Variational Autoen-
First, we scrutinize the recent successful results in detecting [OoDs
utilizing Bayesian epistemic uncertainty estimation over weights of [VAEs| Sur-
prisingly, contrary to the previous claims in the literature, we discover that we
can obtain comparable detection performance utilizing a standard procedure of
importance sampling with the classical formulation of Second, we dissect
the marginal likelihood approximation, analyzing the primary source of variation
responsible for distinguishing inliers versus outliers, and establish a link with the
recent promising results in detecting outliers using latent holes. Finally, we iden-
tify that adversarial examples and [OoD]inputs have similar latent representations.
This insight allows us to develop separate methods to automatically distinguish
between them by considering their non-similarities in the input space. The sug-
gested approach enables pre-training a[VAE|model on specific input data, allowing
it to act as a gatekeeper. This achieves two major goals: defending the[DNN]clas-
sifier against potential attacks and flagging Once pre-trained, [VAE|can be
plugged as a filter into any image classifier of arbitrary architecture trained
on the same data inputs without the need for its retraining or accessing the layers

and weights of the

1 INTRODUCTION

[Deep Neural Networks (DNNs)| are applied to a rather diverse set of safety-critical tasks ranging
from autonomous car driving to automatically-assisted medical diagnosis. However, the thorough
theoretical foundation of deep learning is still lacking. It results in a limited understanding of
how deep neural networks generalize. Such a situation led to the discovery of the following facts:
(i) there is a possibility to mislead theclassiﬁcation with specifically forged inputs that, while
preserving the semantics from the point of view of human observers, result in a wrong classifica-
tion category by a[DNN] i.e., the adversarial examples (Szegedy et al., 2013; Biggio et al., 2013}
Goodfellow et al.| 2014;|Carlini & Wagner,[2016)), and (#¢) the inability of theto infer the fact
that the provided input does not adhere to the data distribution they have been previously trained on,
i.e., the overconfidence of predictions with inputs |'| (Nguyen et al.| 2015 [Hendrycks &
Gimpel, 2016} [Nalisnick et al., 2018)).

The discriminative nature of the supervised image[DNN|classifiers implies learning a mapping from
the input pixel space to the target labels. This mapping is usually considered to represent a cat-
egorical distribution over labels y given the particular input x: p(y|x). However, in practice, the
categorical distribution is based on the softmax activation function. As it has been recently formally
proved, the softmax does not provide the desirable properties of categorical distribution and oper-
ates in a way similar to the k-means clustering, i.e., it partitions the transformed input space into
several cones where every cone represents a different category (Hess et al., 2020). It may explain

!These inputs are commonly called outliers or [Out-of-Distribution (OoD)|inputs in the literature. Please
note that we will use these terms interchangeably and consider them as synonyms.
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why struggle with both adversarial examples and [OoD} on one hand, it is feasible to find an
adversarial direction from one category to another while attempting to preserve as little modification
to the input as possible, especially for the examples that lie far from the cluster centroids, and on an-
other hand when a new unseen data input arrives, the k-means clustering would necessarily cluster it
into one of the categories resulting in overconfident predictions of as in-distribution examples.

Recently, many different solutions have been proposed to address either the issue with adversarial
examples (Zhang & Wang| 2019; [Hu et al., 2019} Samangouei et al., 2018} Meng & Chen), 2017}
Hwang et al.l [2019) or the issue with inputs (Daxberger & Hernandez-Lobato, 2019; Ren
et al.,|2019; Hendrycks et al.| 2018 [Lee et al., 2017). The works, though, that solve both problems
simultaneously within the same framework are few (Lee et al) 2018} |Ahuja et al., 2019). These
works are based on learning the class-conditional weight uncertainties, which imply access to
the model architecture, its weights, and output categories. Such an approach is closely interlinked
with the DNN|model under the protection, and it also introduces the unnecessary inductive bias by
class conditioning. It makes the suggested methods non-modularizable and non-transferrable in a
plug-and-play manner to other[DNN]architectures that require the same functionality of protection
against adversarial attacks or[OoD]detection and that have been trained on the same input data.

Conversely, we apply an unsupervised |[Deep Generative Modeling (DGM)| to tackle both of the
problems, i.e., instead of learning discriminative mapping p(y|x) and subsequently attempting to
estimate the uncertainty of the weights under different inputs, allows learning the approxima-
tion of a true distribution over the training data: p(x) which in theory should assign a low density to
the and adversarial inputs. However, recent research revealed that such estimations are prone
to errors, often providing higher likelihood values to both and adversarial examples than to
in-distribution data (Nalisnick et al., 2018)).

To overcome this problem, we apply two recently suggested methods based on model parameter
sensitivity analysis. (1) We use a Bayesian namely, that learns the weights uncertainty
during training yielding the following posterior distribution: p(8|D) for the training data D over the
model weights 6. It allows us to get an ensemble of the approximations of a true data distribution
where each sample from the posterior 8 ~ p(0|D) gives a separate instance of the model in the
ensemble. Based on sampling from the posterior distribution, we estimate the likelihood of the
input instance, however, instead of the usual calculation of the expected likelihood, we calculate the
recently suggested scores of variance of the likelihoods between the different instance models in the
ensemble (Glazunov & Zarras, 2022)). The high degree of model/epistemic uncertainty is captured
by the high values of the variance score. (2) We use recently suggested scores based on detecting
if the corresponding latent code is in the hole or not (Glazunov & Zarras, [2023). We apply a single
instance of classic Moreover, we enforce both compactness and continuity constraints on the
latent representation and the corresponding encoder map. Overall, we suggest a single DGM]based
on[VAE to detect both the and adversarial inputs simultaneously, and we empirically evaluate
the suggested approach based on the several datasets achieving promising results.

2 PROBLEM STATEMENT

2.1 ADVERSARIAL ATTACKS

There are two different perspectives on adversarial examples that give rise to two different defini-
tions: one from the perspective of the generalization properties of the and the other from the
attacker’s perspective. From the generalization perspective, an adversarial example (Szegedy et al.,
2013) is a technique in which the input for the|DNN|image classier is intentionally modified to look
almost the same as the original image to the human eye. Yet, it is perceived as something completely
different by incorrectly classify such adversarial examples from the human perspec-
tive. On the other hand, the attacker perspective does not necessarily demand the part that relates to
the imperceptibility of the difference (Biggio et al.,|2013). On the contrary, if the miscreants want
their attack’s outcome to succeed, they should not constrain themselves to the superfluous imper-
ceptibility demands. In this paper, we concentrate on the imperceptible examples. In addition, we
analyze both alternatives from the perspective of their internal representation.

Furthermore, we conduct the experiments with both the adversarial examples generated for the dis-
criminative model under attack and the adversarial examples generated to attack our defending
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filter. Specifically, for the former case, we consider three types of such attacks: [Fast Gradient Sign|
Method (FGSM (FGSM)| (Goodfellow et al.}[2014)), [Carlini-Wagner (CW)| attack (Carlini & Wagner,
2016)), and Jacobian-based Saliency Map Attack JSMA)|(Papernot et al.,2016)). For the latter case,
we evaluate attacks on the encoder in the same vein as in |Kuzina et al.| (2024)).

2.1.1 FAST GRADIENT SIGN METHOD

The[FGSM]attacks[DNNs|by leveraging their learning process based on gradients (Goodfellow et al.}
2014). can be described by the following formula:

x' = x+ A - sgn(Vl(ha(x), 1)), %' € [0,1]"

Here 7/ is the gradient of the loss function w.r.t. the original input pixel vector x, y, is the true or
source label for x, and 6 stands for the model parameters that are constant.

Gradient w.r.t. x is easier to calculate with backpropagation than for € which allows the fast genera-
tion of adversarial examples. exploits gradient ascent to increase the loss. Subsequently, the
sign applies a max-norm constraint on the gradient value, and A represents a small magnitude of the
step in the direction of increasing the loss. It represents the untargeted type of adversarial attacks.

can be converted into a targeted attack by substituting the source label with a target one y;
and doing gradient descent instead of ascent, namely:

x'=x— X-sgn(Vyil(he(x),y:)),x € [0,1]"

However, due to the fact that[FGSM|is designed to be fast rather than optimal, it is not necessarily
guaranteed to produce the targeted adversarial examples of minimal perturbations.

2.1.2 CARLINI-WAGNER

Carlini-Wagner (CW)] attack (Carlini & Wagner| [2016) aims at optimality in contrast with [FGSM}
i.e., it attempts to generate as little pixel noise as possible to succeed in the attack. It poses the

following optimization objective:

minimize ||e||, subj.to he(x+¢) =y, x+¢e€[0,1]"

where x € [0, 1]™ represents an image, ¢ € [0,1]" is added noise to the image, and y; is a target
class label of the image under attack. The noise level is calculated in terms of L, norms. Authors
consider several norms; in this work, we concentrate on Lo-norm. This attack is one of the strongest
known adversarial attacks.

2.1.3 JACOBIAN-BASED SALIENCY MAP ATTACK

(Papernot et al.l [2016)) leverages the saliency maps to devise an adversarial input. Namely,
it computes the forward derivative of the whole (Jacobian) w.r.t. the input, and based on
this derivative, it constructs the saliency map. Large absolute values of the saliency map reveal the
features that have a significant impact on the final output. The JSMA]takes the maximum absolute
value and perturbs it by a hyperparameter 6 and repeats the process. The stopping criteria are either
a successful attack with misclassification or reaching the total perturbation threshold of Y.

2.1.4 ATTACK ON ENCODER
This attack aims at maximization of the symmetric KL-divergence between the latent code of the

reference input and the latent code of the reference input with the added perturbation:

€= arg Hnlt‘lai((s SKL [¢(z|x + €), q(z]x)] (D

where SK L is the symmetric KL-divergence, § is the maximum amount of noise, and ¢(z|x) is the
encoder under attack. The resulting adversarial perturbation is denoted as €.
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2.2 TRANSFERABILITY

It has been discovered that different architectures of trained to tackle the same classification
problem on similar datasets tend to have similar fairly piece-wise linear decision boundaries that
separate categories in the input data domain (Goodfellow et al) [2014). This property is called
transferability. Transferability is especially dangerous since it allows to devise an adversarial attack
that universally targets all with a similar final objective in a black-box manner (Papernot
et al.| 2016). Moreover, since we utilize a generative approach, we explore if there is transferability
from the adversarial examples generated for a discriminative model to a generative one.

2.3 OUT-OF-DISTRIBUTION

Deploying a successful classifier requires from the system the ability to detect input data that are
statistically anomalous or significantly different from those used in training. This is especially im-
portant for [DNN] classifiers since DNNs| with the softmax classifier tend to produce overconfident
predictions even for such|Out-of-Distribution (OoD)|inputs (Lee et al.,|2018)). The lack of reliability
of classifiers when faced with [OoDs| was recently addressed by various methods (Hendrycks
& Gimpel, 2016; Hendrycks et al., 2018} |[Liang et al.l [2017). According to recent research, the
softmax activation function does not model a categorical distribution but represents a k-means clus-
tering (Hess et al., [2020). That is why it seems logical to seek another approach. We decided to
consider using unsupervised for that purpose. In our case, we apply the same model to
detect the[OoDs| based on the sensitivity analysis.

3 METHODOLOGY

We employ an approach based on the sensitivity analysis of the model parameter w.r.t. the different
inputs. Namely, we test the level of stability of our model when dealing with versus
There are two possible ways to achieve this goal. The first one is to utilize epistemic uncertainty
estimation that would allow us to sample model parameters to be subsequently used for sensitivity
analysis. The second one is to employ the learned posterior distribution over the latent codes in
and sample posterior for different latent codes. This approach does not change the parameters of
[DNNs|used in the model, however, it allows conducting sensitivity analysis w.r.t. different sampled
hypotheses from the latent posterior.

3.1 EPISTEMIC UNCERTAINTY IN OOD AND IN ADVERSARIAL ATTACKS

It has been shown that [DGMs| m do not produce valid estimations of p(x) when it comes to distin-
guishing between [OoD|and in-distribution (Nalisnick et al.,[2018). Most of the results reveal DGMs|
being overconfident when dealing with [OoD|data. Another work dedicated to adversarial defense
(Song et al.| [2017) showed that it is possible to statistically differentiate between adversarial vs non-
adversarial input data using[DGMs| In this work, we first estimate the weight uncertainty to address
this issue utilizing Bayesian and, in particular, variational inference.

3.2 ESTIMATION OF THE MARGINAL LIKELIHOOD

As suggested by |Rezende et al.| (2014), as soon as the is trained, it is possible to estimate the
likelihood of the input under the generative model using importance sampling w.r.t to the approxi-
mated posterior, namely:

p@ X, Z(l)
— q4g(z %)’

However, as|Nalisnick et al.|(2018) discovered, we cannot rely directly on the likelihood estimations
produced by a single[DGM| This discovery is not surprising taking into consideration the fact that
obtain the optimal parameters 8* under the[Maximum Likelihood Estimation (MLE)| for the
p(D|0), where D represents the training data, resulting in a point estimate. Since in modern [DNNs
, it is possible that there may be several models 0 that generated D. Hence, it is impossible
to estimate the epistemic uncertainty with a point estimate, which results in the inability of the model
to provide a robust estimation of the likelihood for[OoD|and adversarial examples.

where  z ;) ~ g (2|x) (2)
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3.2.1 WEIGHT UNCERTAINTY: BAYES BY BACKPROPAGATION

Since we use variational inference to approximate our[VAE| posterior based on the assumption of the
model with latent variables, we have chosen to apply the same variational approach to the weight
uncertainty estimation instead of a point estimate. Namely, we approximate the posterior
distribution of the parameters given the training data p(0|D) based on the method suggested
by Blundell et al.[ (2015). This method initially was applied to the supervised learning, however,
nothing prevents us from using it in the unsupervised setting. The objective is formulated in
the following way:

p(6)p(D|0)
Lo(D, A :/ O\ M)log(————)do 3)
The approximation of the negative|[ELBO|is obtained by:
~Lo(D, ) Z [10g g(6)]) — logp(6”)) — log p(DI6")| @

where 8 is sampled from the posterior ¢(8()|)).

We assume a diagonal Gaussian distribution for the variational posterior with parameters p and o.
To make o to be always non-negative, we apply the same reparametrization as it was suggested
by Blundell et al.| (2015)), namely o = log(1 + exp(p)), yielding the following posterior parameters
A = (u, p). For the prior, we also use the suggested scale mixture of two Gaussians:

p(0) = TN(0]0,02) + (1 — 1)N'(6]0,03), where m=0.5 (5)
By adding weight uncertainty to the|VAE| we are implementing a Bayesian

3.2.2 SCORES USED FOR PROBLEMATIC INPUTS DETECTION

After we approximated the variational posterior over the weights, the usual practice is to estimate
the expected likelihood, the exact form of which can be formulated like this:

p(x|D) = / p(x|0)p(6]D)do ©)

The unbiased estimate of which can be obtained in the following way:
1N
Epoip) [p(x]0)] = Z:p(X\Bi); where 6 ~ p(6|D) @)

p(x]0;) is computed by importance sampling as in . As soon as the expected likelihood is esti-
mated, one can apply some threshold that would distinguish if the considered input adheres to the
in-distribution sample or not.

In this work, however, we aim to estimate the model parameter sensitivity. Hence, we calculate
the sample standard deviation of the marginal log-likelihoods returned by the models within the
ensemble:

Yelx] Z (log p(x|6) — log p(x]0))? (8)
eee
It measures the variation within the log-likelihoods, so if there is a different level of sensitivity
between the inliers and problematic inputs, then the standard deviation will capture this difference:
the higher the value, the more uncertainty there is between the models about a particular input.

Furthermore, in the case of a single we instead apply the hole indicator. For this score we
sample the approximated posterior ¢e(z|x) with several latent codes z under a particular input x
and compute the sample standard deviation of the log-likelihoods log p(x|z):

= \/Nl—l Z <logp(x|z) — 10gp(x|z))2 9

The higher the score, the farther the input is from the

Both of these scores allow for measuring the level of stability of the model w.r.t. different parame-
ters. We can detect our problematic inputs based on the difference in this stability level.
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3.2.3 SCORE FOR DISTINGUISHING BETWEEN ADVERSARIAL AND OOD INPUTS

Note that utilizing the same score for both outliers and adversarial examples does not allow us to
distinguish between them. To address this issue, we devise a simple algorithm for such a distinction.

Leveraging the intuition that adversarial ex-
amples also tend to land on the latent holes,
Require: x, M, 8, &(-), h™(-), h”*°(-), nmMc(+), MSSSIM(-, -) it makes it possible to utilize the recently in-
Ensure: Decision on whether x is an attack, an outlier, or an inlier troduced approach for utilizing
1:

{Get a reconstruction and a latent code }

Algorithm 1 Active Defense Algorithm

2: 7+ h™(x) Monte Carlo (HMC)| to reevaluate the current
31 x' = hP(z) latent code (Kuzina et al., [2024). If the gener-
4: {Check if z is in the hole} di £ th 1 dl de fi
if &(z) then ate Image o the reevaluated latent code rom
{Run active defense with M steps} the region close to the mean of the posterior
fori = 1to M do is similar to the one that has been provided
{One step of HMC} . s 1 .
2 + nMc(z) as the input, then it is highly likely to assume
endfor that there is an ongoing attack on the [DNN]
;‘“MC = ;L/ISS(Szli\/l(x Xec) This similarity is based on [Multi-Scale Struc-|
w::iw — MSSSIM'(XT;LL') [tural Similarity (MSSSIM)| This method repre-
{Check MSSSIM gain with a threshold 6} sents an active defense approach.

if [yume — Ynome| > € then
The starting point is to identify if the corre-
return “Attack” . . .
else sponding latent code for the current input is lo-
cated in the hole utilizing a hole indicator. If

return “Outlier it is not in the hole, then we can immediately

end if

ST 0N NG Y 16 J S g ey S S i S S e
N N T A

: else classify it as in-distribution input. Otherwise,
_ the distinguishing between and adversar-

24 return “Inlier” . T .
75 end if ial attack is implemented based on the restored

latent code via The insight is that the
resulting distance in the input space should be
much closer for the adversarial inputs than for the (see Algorithm [I). As a result, we im-
plement the robust model against both outliers and adversarial examples with two levels of
defense, allowing us to identify if we are being attacked or not.

3.2.4 ENFORCED CONTROLLED CONTINUITY AND COMPACTNESS BY LIPSCHITZ
CONTINUITY

To further increase robustness, we enforce a predefined Lipschitz constant on the encoder map of
the First, it reduces the ability of the attacker to gain substantial benefits while generating
adversarial examples with[VAEs|that possess encoding maps with great Lipschitz constants. Second,
it allows the control of the properties of compactness of the mapped image to the latent space, which
is beneficial for outlier detections utilizing latent holes. To that end, we employ the GroupSort
activation function and enforce the corresponding Lipschitz constant (Anil et al., [2018)).

3.3 DISENTANGLING THE VARIATION AND THE BAYESIAN INFERENCE

We identify the source of the variation observed with Bayesian The general procedure of the
marginal likelihood estimation follows these steps:

1. Sampling the weights from the estimated posterior: 8 ~ p(0|D).
2. Estimating the marginal likelihood for separate sampled models (Equation [2).
3. Computing a single value based on the separate estimated marginal likelihoods.

As it can be seen, there are two possible sources of variation, namely, variation from Step I and
variation from Step 2. It was hypothesized by Daxberger & Hernandez-Lobato| (2019) that the
Bayesian inference over the[DNN| parameters is responsible for the observed variation of the results.
In our work, we test if it is indeed the case by eliminating the first step and estimating the variation in
the case of a simple classical namely, instead of sampling from p(8|D), we use a single
model that is used for marginal likelihood estimation several times. In such a case, all the variation
comes only from the importance sampling. We apply the same scores for the Bayesian to
identify if the variation persists for the classical
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3.3.1 DISSECTING THE SOURCE OF VARIATION

By taking the log of both sides of the Equation 2|and by factoring the joint probability pg(x, z), we
can obtain the following equation for the importance sampling:

N
1
logpe(x) =~ + > [logpe(x|z(i)) + log p(z (1)) — log q¢(z [x) (10)

i=1

All the scores that we have considered so far are measuring the variation of the left-hand side. To
better understand where the variation comes from, we also consider the separate constituents of the
right-hand side; namely, we measure standard deviations of all three terms separately, which allows
us to identify the most uncertain term in the case of detection.

3.4 ANALYZING LATENT REPRESENTATION

Our experiments confirm that adversarial examples can be identified using the same scores success-
fully applied to outliers. It implies that adversarial examples occupy latent holes similar to the{OoDs|
The difference is that it is possible to control the strength of the adversarial attack. Hence, we can
visualize the dynamics of the attack strength w.r.t. the learned data representation in the latent space.
To that end, we employ the learning procedure suggested by [Jiang et al.| (2017) to mold the latent
data manifold into a mixture of Gaussians, the so-called [Variational Deep Embeddings (VADEs)|
Such an approach allows us to calculate distances to the centroids of the learned clusters that can
be visually inspected. In addition, no Lipschitz constraints are used for these experiments, so no
restraints are applied for the adversarial locations.

4 EXPERIMENTS AND RESULTS

Our experiments have been conducted on several datasets widely used for validation of and
adversarial attacks, namely: MNIST(LeCun & Cortes} 2010), FashionMNIST(Xiao et al., [2017),
SVHN(Netzer et al., 2011) and CIFAR10(Krizhevsky et al.,|2010).

First, we estimated the impact of the number of dimensions of the latent space on the loss function.
The dimensionality is closely connected with the dataset on which the model is trained. MNIST
and FashionMNIST results reveal no particular need to exceed 10 latent dimensions since the loss
function didn’t significantly decrease after that value. For SVHN, we experimented with the number
of latent dimensions up to 50, and the most optimal results were achieved with dimensionality equal
to 20.

For our tests, we used two different architectures: for grayscale images, we applied a multilayer
perceptron for both the encoder and decoder with two fully connected hidden layers. For
images, we applied a [Convolutional Neural Network (CNN)| with two convolutional layers of 32
and 64 filters. For epistemic uncertainty estimation, all layers that contain parameters have been
enhanced with the[BBB] namely, convolutional 2D, fully connected, and convolutional 2D transpose.
All the rest, such as reshape and flatten, are used with their default implementations as provided
by the Tensorflow Keras (Chollet et al., [2015) framework. For a single we used the same
architectures without the Moreover, the continuity of the encoder map is controlled via the
specifically predefined Lipschitz constant calculated in the same way as in|Glazunov & Zarras|(2023))
for the cases where the hole indicator is used.

All models have been trained for 1000 epochs. To evaluate the inputs, we sampled 100 different
models for our ensemble. Since we have a doubly stochastic nature of the results, one due to the
sampling from the latent posterior and the second one due to the sampling from the weights posterior,
we ran the experiments 10 times each and averaged the final results.

For our implementation of we noticed that random Normal initializer of the weights
suggested as a prior in the original paper (Blundell et al.| |2015) resulted in very slow convergence.
So, to speed up the process, we also experimented with the following parameters: random Normal
initializer with 0 mean and 0.1 standard deviation for x4 and constant initializer for p = —3, which
improved the training speed.
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Figure 1: Standard deviations of the separate components of the within the importance
samples for Fashion-MNIST as in-distribution (blue) vs MNIST as out-of-distribution (orange).
Left: variation of the log-likelihood of the decoder log p(x|z) Middle: variation of the encoder
log q(z|x). Right: variation of the latent prior log p(z).

The metrics that we used to validate both[OoD| Table 1: detection results with Bayesian

are the area under [Receiver operating charac-| based on
curve (ROC AUC), the area un-

der the precision-recall curve (AUPRC), and Mewic MNIST vs FashionMNIST  CIFAR10 vs SVHN
the false-positive rate at 80% of true-positive  "roc auct 99.76 90.88
rate (FPR80). We used two [OoD| bench-  AUPRCt 99.77 89.64

( ) [OoD] FPR80. 0.00 11.72

marks (7) MNIST as in-distribution vs. Fash-
ionMNIST as [OoD| and (ii) CIFAR10 as in-
distribution vs. SVHN as As it can be observed from the results of in Table[l]
they are comparable with the state-of-the-art in the field (Daxberger & Hernandez-Lobato, 2019).

Subsequently, we performed experiments uti-

lizing a single classical[VAE]testing if the previ-  Table 2: [OoDldetection results with classical

ously observed variation persists. The obtained paged on
results demonstrate that variation that comes

from the Importance Samp_hng is sufficient for "y MNIST vs FashionMNIST ~ CIFAR10 vs SVHN
the detection of the inputs (see Table ). rocauct 99.81 93.07
It allows us to disentangle the variation from  AUPRCt 99.82 91.23

the Bayesian inference over the weights and di- ~_FPR8% 0.00 11.36

rectly use latent posterior sampling with a clas-

sical VAEl

In addition, we calculate the sample standard deviation of the separate terms on the right-hand side
of Equation The obtained values reveal the fact that most of the observed variance results from
the likelihood term log pg(x|z (;) that is parameterized by the decod The boxplots of the
standard deviations for all three terms (in the case of the classical trained on the Fashion-
MNIST dataset and tested on the MNIST as are plotted in Figure[I] As it can be seen, the
variance obtained by the variational inference over the latent variable g4(z|x) does not result in high
values as one may have expected, which denotes that most of the responsibility for the variation is
laid on the decoder which is more sensitive to the inputs versus Such sensitivity has been
observed for all of the considered datasets and models, which strongly supports the usage of the
recently introduced hole indicator for the input detection.

For the generation of the adversarial inputs, we used the Cleverhans framework (Papernot et al.,
2018). We use the default discriminative [DNN]architecture for our victim classifier provided within
this framework. We benchmark our model on three common attacks: [CW] and (see
Section for more details). For we used ¢ = 3, for we used attack under Lo-
norm, and we applied 128 attack iterations with 0.2 learning rate, and, finally, for [SMA|we used
6 = 1and v = 0.1. For[CW]and we generated targeted attacks per each of 10 categories
available in MNIST and FashionMNIST, for SVHN we applied an untargeted attack. In the case
of all inputs implemented an untargeted attack. Consequently, as Bayesian inference over
[DNN] weights proves to be unnecessary, we employ a single[VAE|model, evaluating the results using
a hole indicator (refer to Eq.[9).

Results of the experiments convincingly demonstrate that there is indeed transferability between
discriminative and generative models. The adversarial examples generated for the classifier can
be detected by the [VAE] which is trained on the same dataset in an unsupervised manner (see Ta-
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Table 3: Discriminative adversarial results: Table 4: Discriminative adversarial results: Fash-
MNIST ionMNIST
Metric MNIST vs FGSM  MNIST vs CW  MNIST vs JSMA Metric FMNIST vs FGSM  FMNIST vs CW  FMNIST vs JSMA
ROC AUCT 100.00 92.24 93.01 ROC AUCT 96.49 95.01 83.97
AUPRCY 100.00 92.55 90.13 AUPRCt 96.52 9236 78.38
FPRS0 0.00 11.72 10.16 FPR8O0, 547 10.94 16.66

Table 7: MNIST: [Multi-Scale Structural Similar| Table 8: FMNIST: [Multi-Scale Structural Simi]

1ty (MSSSIM

farity (MSSSIM)

No HMC HMC MSSSIM Gain

No HMC HMC MSSSIM Gain

Discriminative Adversarial Examples

Discriminative Adversarial Examples

MNIST FGSM ¢ = 0.1 0.43 0.34 0.09 FMNIST FGSM ¢ = 0.1 0.28 0.17 0.11
MNIST FGSM € = 0.3 0.26 0.27 0.01 FMNIST FGSM ¢ = 0.3 0.19 0.24 0.05
MNIST CW 0.18 0.20 0.02 FMNIST CW 0.33 0.26 0.07
Generative Adversarial Examples Generative Adversarial Examples
MNIST e = 0.1 0.43 0.85 0.42 FMNIST ¢ = 0.1 0.41 0.60 0.19
MNIST € = 0.2 0.30 0.67 0.37 FMNIST ¢ = 0.2 0.25 0.45 0.20
MNIST e = 0.3 0.25 0.64 0.39 FMNIST ¢ = 0.3 0.19 0.38 0.19
Outliers Outliers
MNIST vs FMNIST 0.03 0.09 0.06 FMNIST vs MNIST 0.18 0.23 0.05
MNIST vs KMNIST 0.21 0.16 0.05 FMNIST vs KMNIST 0.20 0.19 0.01
MNIST vs All White 0.03 0.10 0.07 FMNIST vs All White 0.21 0.17 0.04

bles[3]-[5). It is reproduced across a wide range of adversarial attacks and datasets. It is especially
remarkable that they also tend to land to the holes in the [VAE] latent representation since they are
detected based on the results of the hole indicator. Such a phenomenon may be explained by the
similarity of internal representation within[DNNGF]that are trained on the same datasets.

As can be observed from the results, the best
values are achieved for the adversar-
ial inputs, which result in a higher standard
deviation of the log-likelihoods, leading to

Table 5: Discriminative adversarial results: SVHN

. Jc Metric SVHN vs FGSM  SVHN vs CW  SVHN vs JSMA
bette.r d@tectlon. It seems not SUIprising,  “roc auct 36.74 7735 3275
considering that [FGSM] does not aim at an  AUPRCY 77.76 71.40 78.19
FPR80, 24.13 56.21 17.28

optimal attack but the fastest one. [CW] on
the contrary, represents the least uncertainty,
which also can be explained by the fact that this attack exploits the optimization procedure with the
appropriate objective of as few modifications as possible to the input. is located somewhere
in-between and

We evaluate the robustness of

the proposed [VAE filter by
subjecting it to adversarial at-

tacks designed explicitly for this

Table 6: Generative adversarial examples

Metri Lipschitz MNIST: Lipschitz FMNIST: Lipschitz MNIST heldout:

model. We put under test a sin- etrie MNIST vs Adversarial FMNIST vs Adversarial MNIST 01 vs Adversarial
: ROC AUCT 97.89 93.40 99.98
gle [VAE] The model is enforced  ipcy 98.70 9451 99.98
with a controlled continuity on  FPRrso} 9.06 9.10 0.00

the encoder map considering ap-

propriate properties of compactness of the latent image. As it can be seen from Table [6] the hole
indicator successfully detects attacks on[VAEs| It allows using only one score to detect both outliers
and adversarial examples, including discriminative and generative ones.

Following this, we apply our algorithm based on active defense to distinguish between the outliers
and both types of adversarial examples. Since the major value responsible for this distinguishing
is based on [MSSSIM] gain, we register the corresponding values in Tables [7]and [8] It can be ob-
served that generative adversarial examples can be easily discerned from the rest of the categories of
problematic inputs. However, there is no possibility to delimit outlier and discriminative adversarial

attacks relying only on the [MSSSIM] gain.

Finally, we visualize how the different attack strengths influence the location of adversarial latent
codes within the learned data representation. This location is calculated w.r.t. the closest centroid of
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Figure 2: From left to right: The strength of FGSM attack, expressed by the magnitude of pertur-
bations. Top: Distances to the closest centroid within the latent manifold for various categories of
inputs. Bottom: Examples of a particular FashionMNIST instance that undergoes the correspond-
ing strength of an attack.

the cluster to the corresponding adversarial latent code. As Figure [2]shows, the stronger the attack,
the farther the corresponding latent codes drift away from the inlier manifold. Note that a weak
adversarial attack is akin to the near{fOoD|instance, and a strong attack is akin to the far{OoD|input.

5 DISCUSSION

The hole indicator confirms that transferability extends from discriminative to generative models,
indicating a similar learned representation between those two approaches. Even though adversarial
examples from the discriminative model end up in the latent holes of the [VAE] the active defense
through cannot return to the regions with high probability. This suggests that despite some
commonalities, differences still exist between discriminative and generative settings. Adversarial
attacks on the [VAE]'s latent space can be effectively distinguished from [OoD] inputs using active
defense strategies. Furthermore, the internal latent representations of near- and far{OoD] instances
are similar to those of weak and strong adversarial attacks, respectively. Finally, contrary to common
belief, Bayesian inference over[DNN|parameters is not essential for sensitivity analysis. We observe
different levels of model stability w.r.t. inliers versus outliers, related to the differences in log-
likelihood variances, revealing a connection with the recently introduced score of the hole indicator.

6 CONCLUSION

We explore two common types of problematic inputs in [DNN] classifiers: and adversarial
attacks. Our proposed solution uses a variational autoencoder (VAE) to address both problems si-
multaneously. We initially evaluate the effectiveness of using Bayesian estimation of epistemic
uncertainty from [VAE| weights to detect [OoD] inputs and discover that comparable results can be
achieved by importance sampling with classical [VAE] formulations without resorting to Bayesian
inference over weights. This result indicates that latent codes possess all the necessary information
for measuring a model’s sensitivity. Furthermore, we introduce a simple algorithm that distinguishes
generative adversarial examples from both outliers and discriminative adversarial attacks using ac-
tive defense. It enables identifying if the[VAE]model is currently being under attack. In addition, this
algorithm allows for detecting both types of adversarial attacks: one is based on the imperceptible
perturbations of the input image to the classifier, and it is based on the transferability of the adversar-
ial examples from discriminative to generative models, while another is based on the attacks aimed
at the encoder of the [VAE] Finally, our approach allows a[VAE] model to be pretrained on specific
datasets so that it functions as a filter, serving the purpose of protecting the classifier from
potential attacks and [DoD]inputs. This pre-trained [VAE] can be easily integrated as a filter with any
DNN]classifier, regardless of its architecture, trained on the same dataset, eliminating the need for
further training or modification of configurations.
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A APPENDIX

A.1 CLASSICAL VAE’S OVERCONFIDENCE

As it was demonstrated by Nalisnick et al. inNalisnick et al.| (2018), all of the suffer from
the overconfidence while trying to estimate the density of the out-of-distribution data assigning a
higher density to the inputs in comparison with |ID[data. We observed such an overconfidence
during our experiments as well. A couple of examples of the overconfidence of the classical
in our experimental setup can be seen in Figure 3]

MNIST MNIST
Corrupted MNIST MNIST FGSM
0.20
0.10
0.08 045
pellin
y \ 0.10
/
0.04 /
0.05 / \
002 A N
y i N

-80 -70 -60 -50 -40 -70 ) -60 -50
log p(x) log p(x)

Figure 3: Left: Log-likelihoods for MNIST as in-distribution (blue) vs Corrupted MNIST as out-of-
distribution (orange). Right: Log-likelihoods for MNIST as in-distribution (blue) vs MNIST|FGSM
attacks as out-of-distribution (orange).

A.2 Bayesian VAES VARIATION SCORING FOR THE REST OF OUR EXPERIMENTS

We ran out experiments also for MNIST as in-distrubtion vs Fashion-MNIST as[OoD]and for SVHN
as in-distribution and CIFAR-10 as The results can be seen in Table [0]and Table

Table 9: Scoring values across all types of Bayesian VAEs trained on MNIST data and tested on
Fashion-MNIST as OoD

MNIST vs. Fashion-MNIST

BBB SGHMC SWAG
ROC AUCt AUPRCtT FPR80, ROCAUCt AUPRCt FPR80, ROCAUCt AUPRCt FPRS80|
Expected LL 99.98 99.98 0.00 99.93 99.92 0.04 96.83 96.20 5.18
WAIC 99.99 99.99 0.00 99.94 99.94 0.02 80.37 76.25 33.56
Disagreement score 98.95 99.01 0.23 97.32 97.70 1.37 94.88 93.97 8.99
Entropy (ours) 99.42 99.47 0.02 98.50 98.75 0.29 95.72 95.20 8.37
Stds of LLs (ours) 99.99 99.99 0.00 99.91 99.91 0.00 80.37 82.78 39.12

Table 10: Scoring values across all types of Bayesian VAEs trained on SVHN data and tested on
CIFAR-10 as OoD

SVHN vs. CIFAR-10

BBB SGHMC SWAG
ROC AUCT AUPRCT FPR80, ROCAUCtT AUPRCtT FPR80, ROCAUCt AUPRCt FPRS80|
Expected LL 58.65 61.79 77.72 57.09 60.56 80.18 58.98 62.06 76.52
WAIC 64.46 66.01 68.39 62.17 64.38 72.45 62.84 68.42 75.25
Disagreement score 85.20 88.35 30.26 85.31 88.52 28.66 77.58 80.36 45.60
Entropy (ours) 87.80 90.63 20.77 87.89 90.76 19.91 80.01 83.24 41.58
Stds of LLs (ours) 93.29 91.51 10.99 94.70 93.95 8.67 59.31 53.36 61.78

A.3 HAMILTONIAN MONTE CARLO ALGORITHM

We employ the same approach as suggested in [Kuzina et al.|(2024)).

In the Hamiltonian Monte Carlo (HMC) framework, the target distribution is given by the product
of p(x|z) and p(z). The Hamiltonian represents the energy of the combined distribution of z and
the auxiliary variable p, defined as follows:
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H(va) =U(z) + K(p)7

where

U(z) = —log pe(x|z) — log p(z),

and

For the corresponding pseudocode for restoring the latent code, please see following Aglorithm|I]

Algorithm 1: A single iteration of HMC

Input: z,n, L
// Sample the auxiliary variable
P~ N(O7 ]I)
Z(O) = Z’ p(O) = p
// Make L steps of leapfrog
for/ =1to L do
p® = pl-b — gsz(Z(l—l))
Z(l) = Z(l_l) + nvpK(p(l))
p® = p® — gsz(Z(l))

// Accept new point with probability «
o :=min (1,exp (—H (2P, p)) + H(z®,p®)))

S z(L) with probability «,
T 129 otherwise.
return z

A.4 CLASSICAL VAES VARIATION SCORING FOR THE REST OF OUR EXPERIMENTS

Table 11: Scoring values for the classical VAEs trained on MNIST and Fashion-MNIST data

Classical VAE
MNIST vs. Fashion-MNIST Fashion-MNIST vs. MNIST
ROC AUCtT AUPRCT FPR80), ROCAUCtT AUPRCT FPRS80,
Expected LL 99.97 99.97 0.00 46.72 51.54 92.57
WAIC 99.96 99.96 0.00 64.07 64.43 66.98
Disagreement score 97.86 98.09 1.11 96.83 97.56 0.84
Entropy (ours) 98.67 98.84 0.38 98.18 98.63 0.08
Stds of LLs (ours) 99.81 99.82 0.00 99.68 99.64 0.36
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