
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ENHANCING ROBUSTNESS OF DEEP LEARNING
VIA UNIFIED LATENT REPRESENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Adversarial examples and Out-of-Distribution (OoD) inputs constitute major
problematic instances for the image classifiers based on Deep Neural Networks
(DNNs). In particular, DNNs tend to be overconfident with their predictions, as-
signing a different category with a high probability. In this work, we suggest a
combined solution to tackle both input types based on the Variational Autoen-
coder (VAE). First, we scrutinize the recent successful results in detecting OoDs
utilizing Bayesian epistemic uncertainty estimation over weights of VAEs. Sur-
prisingly, contrary to the previous claims in the literature, we discover that we
can obtain comparable detection performance utilizing a standard procedure of
importance sampling with the classical formulation of VAE. Second, we dissect
the marginal likelihood approximation, analyzing the primary source of variation
responsible for distinguishing inliers versus outliers, and establish a link with the
recent promising results in detecting outliers using latent holes. Finally, we iden-
tify that adversarial examples and OoD inputs have similar latent representations.
This insight allows us to develop separate methods to automatically distinguish
between them by considering their non-similarities in the input space. The sug-
gested approach enables pre-training a VAE model on specific input data, allowing
it to act as a gatekeeper. This achieves two major goals: defending the DNN clas-
sifier against potential attacks and flagging OoDs. Once pre-trained, VAE can be
plugged as a filter into any DNN image classifier of arbitrary architecture trained
on the same data inputs without the need for its retraining or accessing the layers
and weights of the DNN.

1 INTRODUCTION

Deep Neural Networks (DNNs) are applied to a rather diverse set of safety-critical tasks ranging
from autonomous car driving to automatically-assisted medical diagnosis. However, the thorough
theoretical foundation of deep learning is still lacking. It results in a limited understanding of
how deep neural networks generalize. Such a situation led to the discovery of the following facts:
(i) there is a possibility to mislead the DNN classification with specifically forged inputs that, while
preserving the semantics from the point of view of human observers, result in a wrong classifica-
tion category by a DNN, i.e., the adversarial examples (Szegedy et al., 2013; Biggio et al., 2013;
Goodfellow et al., 2014; Carlini & Wagner, 2016), and (ii) the inability of the DNN to infer the fact
that the provided input does not adhere to the data distribution they have been previously trained on,
i.e., the overconfidence of DNN predictions with OoD inputs 1 (Nguyen et al., 2015; Hendrycks &
Gimpel, 2016; Nalisnick et al., 2018).

The discriminative nature of the supervised image DNN classifiers implies learning a mapping from
the input pixel space to the target labels. This mapping is usually considered to represent a cat-
egorical distribution over labels y given the particular input x: p(y|x). However, in practice, the
categorical distribution is based on the softmax activation function. As it has been recently formally
proved, the softmax does not provide the desirable properties of categorical distribution and oper-
ates in a way similar to the k-means clustering, i.e., it partitions the transformed input space into
several cones where every cone represents a different category (Hess et al., 2020). It may explain

1These inputs are commonly called outliers or Out-of-Distribution (OoD) inputs in the literature. Please
note that we will use these terms interchangeably and consider them as synonyms.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

why DNNs struggle with both adversarial examples and OoD: on one hand, it is feasible to find an
adversarial direction from one category to another while attempting to preserve as little modification
to the input as possible, especially for the examples that lie far from the cluster centroids, and on an-
other hand when a new unseen data input arrives, the k-means clustering would necessarily cluster it
into one of the categories resulting in overconfident predictions of OoD as in-distribution examples.

Recently, many different solutions have been proposed to address either the issue with adversarial
examples (Zhang & Wang, 2019; Hu et al., 2019; Samangouei et al., 2018; Meng & Chen, 2017;
Hwang et al., 2019) or the issue with OoD inputs (Daxberger & Hernández-Lobato, 2019; Ren
et al., 2019; Hendrycks et al., 2018; Lee et al., 2017). The works, though, that solve both problems
simultaneously within the same framework are few (Lee et al., 2018; Ahuja et al., 2019). These
works are based on learning the DNN class-conditional weight uncertainties, which imply access to
the model architecture, its weights, and output categories. Such an approach is closely interlinked
with the DNN model under the protection, and it also introduces the unnecessary inductive bias by
class conditioning. It makes the suggested methods non-modularizable and non-transferrable in a
plug-and-play manner to other DNN architectures that require the same functionality of protection
against adversarial attacks or OoD detection and that have been trained on the same input data.

Conversely, we apply an unsupervised Deep Generative Modeling (DGM) to tackle both of the
problems, i.e., instead of learning discriminative mapping p(y|x) and subsequently attempting to
estimate the uncertainty of the weights under different inputs, DGM allows learning the approxima-
tion of a true distribution over the training data: p(x) which in theory should assign a low density to
the OoD and adversarial inputs. However, recent research revealed that such estimations are prone
to errors, often providing higher likelihood values to both OoD and adversarial examples than to
in-distribution data (Nalisnick et al., 2018).

To overcome this problem, we apply two recently suggested methods based on model parameter
sensitivity analysis. (1) We use a Bayesian DGM, namely, VAE, that learns the weights uncertainty
during training yielding the following posterior distribution: p(θ|D) for the training data D over the
model weights θ. It allows us to get an ensemble of the approximations of a true data distribution
where each sample from the posterior θ ∼ p(θ|D) gives a separate instance of the model in the
ensemble. Based on sampling from the posterior distribution, we estimate the likelihood of the
input instance, however, instead of the usual calculation of the expected likelihood, we calculate the
recently suggested scores of variance of the likelihoods between the different instance models in the
ensemble (Glazunov & Zarras, 2022). The high degree of model/epistemic uncertainty is captured
by the high values of the variance score. (2) We use recently suggested scores based on detecting
if the corresponding latent code is in the hole or not (Glazunov & Zarras, 2023). We apply a single
instance of classic VAE. Moreover, we enforce both compactness and continuity constraints on the
latent representation and the corresponding encoder map. Overall, we suggest a single DGM based
on VAE to detect both the OoD and adversarial inputs simultaneously, and we empirically evaluate
the suggested approach based on the several datasets achieving promising results.

2 PROBLEM STATEMENT

2.1 ADVERSARIAL ATTACKS

There are two different perspectives on adversarial examples that give rise to two different defini-
tions: one from the perspective of the generalization properties of the DNN and the other from the
attacker’s perspective. From the generalization perspective, an adversarial example (Szegedy et al.,
2013) is a technique in which the input for the DNN image classier is intentionally modified to look
almost the same as the original image to the human eye. Yet, it is perceived as something completely
different by DNN. DNNs incorrectly classify such adversarial examples from the human perspec-
tive. On the other hand, the attacker perspective does not necessarily demand the part that relates to
the imperceptibility of the difference (Biggio et al., 2013). On the contrary, if the miscreants want
their attack’s outcome to succeed, they should not constrain themselves to the superfluous imper-
ceptibility demands. In this paper, we concentrate on the imperceptible examples. In addition, we
analyze both alternatives from the perspective of their internal representation.

Furthermore, we conduct the experiments with both the adversarial examples generated for the dis-
criminative model under attack and the adversarial examples generated to attack our defending VAE

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

filter. Specifically, for the former case, we consider three types of such attacks: Fast Gradient Sign
Method (FGSM (FGSM) (Goodfellow et al., 2014), Carlini-Wagner (CW) attack (Carlini & Wagner,
2016), and Jacobian-based Saliency Map Attack (JSMA) (Papernot et al., 2016). For the latter case,
we evaluate attacks on the encoder in the same vein as in Kuzina et al. (2024).

2.1.1 FAST GRADIENT SIGN METHOD

The FGSM attacks DNNs by leveraging their learning process based on gradients (Goodfellow et al.,
2014). FGSM can be described by the following formula:

x′ = x+ λ · sgn(∇xℓ(hθ(x), ys)),x
′ ∈ [0, 1]n

Here ▽xℓ is the gradient of the loss function w.r.t. the original input pixel vector x, ys is the true or
source label for x, and θ stands for the model parameters that are constant.

Gradient w.r.t. x is easier to calculate with backpropagation than for θ which allows the fast genera-
tion of adversarial examples. FGSM exploits gradient ascent to increase the loss. Subsequently, the
sign applies a max-norm constraint on the gradient value, and λ represents a small magnitude of the
step in the direction of increasing the loss. It represents the untargeted type of adversarial attacks.

FGSM can be converted into a targeted attack by substituting the source label with a target one yt
and doing gradient descent instead of ascent, namely:

x′ = x− λ · sgn(∇xℓ(hθ(x), yt)),x
′ ∈ [0, 1]n

However, due to the fact that FGSM is designed to be fast rather than optimal, it is not necessarily
guaranteed to produce the targeted adversarial examples of minimal perturbations.

2.1.2 CARLINI-WAGNER

Carlini-Wagner (CW) attack (Carlini & Wagner, 2016) aims at optimality in contrast with FGSM,
i.e., it attempts to generate as little pixel noise as possible to succeed in the attack. It poses the
following optimization objective:

minimize ||ε||p subj. to hθ(x+ ε) = yt, x+ ε ∈ [0, 1]n

where x ∈ [0, 1]n represents an image, ε ∈ [0, 1]n is added noise to the image, and yt is a target
class label of the image under attack. The noise level is calculated in terms of Lp norms. Authors
consider several norms; in this work, we concentrate on L2-norm. This attack is one of the strongest
known adversarial attacks.

2.1.3 JACOBIAN-BASED SALIENCY MAP ATTACK

JSMA (Papernot et al., 2016) leverages the saliency maps to devise an adversarial input. Namely,
it computes the forward derivative of the whole DNN (Jacobian) w.r.t. the input, and based on
this derivative, it constructs the saliency map. Large absolute values of the saliency map reveal the
features that have a significant impact on the final output. The JSMA takes the maximum absolute
value and perturbs it by a hyperparameter θ and repeats the process. The stopping criteria are either
a successful attack with misclassification or reaching the total perturbation threshold of Υ.

2.1.4 ATTACK ON ENCODER

This attack aims at maximization of the symmetric KL-divergence between the latent code of the
reference input and the latent code of the reference input with the added perturbation:

ε = arg max
∥ε∥p≤δ

SKL [q(z|x+ ε), q(z|x)] (1)

where SKL is the symmetric KL-divergence, δ is the maximum amount of noise, and q(z|x) is the
encoder under attack. The resulting adversarial perturbation is denoted as ε.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 TRANSFERABILITY

It has been discovered that different architectures of DNNs trained to tackle the same classification
problem on similar datasets tend to have similar fairly piece-wise linear decision boundaries that
separate categories in the input data domain (Goodfellow et al., 2014). This property is called
transferability. Transferability is especially dangerous since it allows to devise an adversarial attack
that universally targets all DNNs with a similar final objective in a black-box manner (Papernot
et al., 2016). Moreover, since we utilize a generative approach, we explore if there is transferability
from the adversarial examples generated for a discriminative model to a generative one.

2.3 OUT-OF-DISTRIBUTION

Deploying a successful classifier requires from the system the ability to detect input data that are
statistically anomalous or significantly different from those used in training. This is especially im-
portant for DNN classifiers since DNNs with the softmax classifier tend to produce overconfident
predictions even for such Out-of-Distribution (OoD) inputs (Lee et al., 2018). The lack of reliability
of DNN classifiers when faced with OoDs was recently addressed by various methods (Hendrycks
& Gimpel, 2016; Hendrycks et al., 2018; Liang et al., 2017). According to recent research, the
softmax activation function does not model a categorical distribution but represents a k-means clus-
tering (Hess et al., 2020). That is why it seems logical to seek another approach. We decided to
consider using unsupervised DGMs for that purpose. In our case, we apply the same VAE model to
detect the OoDs based on the sensitivity analysis.

3 METHODOLOGY

We employ an approach based on the sensitivity analysis of the model parameter w.r.t. the different
inputs. Namely, we test the level of stability of our model when dealing with OoDs versus IDs.
There are two possible ways to achieve this goal. The first one is to utilize epistemic uncertainty
estimation that would allow us to sample model parameters to be subsequently used for sensitivity
analysis. The second one is to employ the learned posterior distribution over the latent codes in VAE
and sample posterior for different latent codes. This approach does not change the parameters of
DNNs used in the model, however, it allows conducting sensitivity analysis w.r.t. different sampled
hypotheses from the latent posterior.

3.1 EPISTEMIC UNCERTAINTY IN OOD AND IN ADVERSARIAL ATTACKS

It has been shown that DGMs do not produce valid estimations of p(x) when it comes to distin-
guishing between OoD and in-distribution (Nalisnick et al., 2018). Most of the results reveal DGMs
being overconfident when dealing with OoD data. Another work dedicated to adversarial defense
(Song et al., 2017) showed that it is possible to statistically differentiate between adversarial vs non-
adversarial input data using DGMs. In this work, we first estimate the weight uncertainty to address
this issue utilizing Bayesian and, in particular, variational inference.

3.2 ESTIMATION OF THE MARGINAL LIKELIHOOD

As suggested by Rezende et al. (2014), as soon as the VAE is trained, it is possible to estimate the
likelihood of the input under the generative model using importance sampling w.r.t to the approxi-
mated posterior, namely:

pθ(x) ≃
1

N

N∑
i=1

pθ(x, z (i))

qϕ(z (i)|x)
, where z (i) ∼ qϕ(z|x) (2)

However, as Nalisnick et al. (2018) discovered, we cannot rely directly on the likelihood estimations
produced by a single DGM. This discovery is not surprising taking into consideration the fact that
DGMs obtain the optimal parameters θ∗ under the Maximum Likelihood Estimation (MLE) for the
p(D|θ), where D represents the training data, resulting in a point estimate. Since in modern DNNs
|θ| ≫ |D|, it is possible that there may be several models θ that generated D. Hence, it is impossible
to estimate the epistemic uncertainty with a point estimate, which results in the inability of the model
to provide a robust estimation of the likelihood for OoD and adversarial examples.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2.1 WEIGHT UNCERTAINTY: BAYES BY BACKPROPAGATION

Since we use variational inference to approximate our VAE posterior based on the assumption of the
model with latent variables, we have chosen to apply the same variational approach to the weight
uncertainty estimation instead of a point MLE estimate. Namely, we approximate the posterior
distribution of the DGM parameters given the training data p(θ|D) based on the method suggested
by Blundell et al. (2015). This method initially was applied to the supervised learning, however,
nothing prevents us from using it in the unsupervised setting. The ELBO objective is formulated in
the following way:

Lθ(D, λ) =

∫
q(θ|λ)log(p(θ)p(D|θ)

q(θ|λ)
)dθ (3)

The approximation of the negative ELBO is obtained by:

−L̂θ(D, λ) =
1

N

N∑
i=1

[
log q(θ(i)|λ)− log p(θ(i))− log p(D|θ(i))

]
(4)

where θ(i) is sampled from the posterior q(θ(i)|λ).
We assume a diagonal Gaussian distribution for the variational posterior with parameters µ and σ.
To make σ to be always non-negative, we apply the same reparametrization as it was suggested
by Blundell et al. (2015), namely σ = log(1 + exp(ρ)), yielding the following posterior parameters
λ = (µ, ρ). For the prior, we also use the suggested scale mixture of two Gaussians:

p(θ) = πN (θ|0, σ2
1) + (1− π)N (θ|0, σ2

2), where π = 0.5 (5)
By adding weight uncertainty to the VAE, we are implementing a Bayesian VAE.

3.2.2 SCORES USED FOR PROBLEMATIC INPUTS DETECTION

After we approximated the variational posterior over the weights, the usual practice is to estimate
the expected likelihood, the exact form of which can be formulated like this:

p(x|D) =

∫
p(x|θ)p(θ|D)dθ (6)

The unbiased estimate of which can be obtained in the following way:

Ep(θ|D)[p(x|θ)] ≃
1

N

N∑
i=1

p(x|θi); where θ ∼ p(θ|D) (7)

p(x|θi) is computed by importance sampling as in (2). As soon as the expected likelihood is esti-
mated, one can apply some threshold that would distinguish if the considered input adheres to the
in-distribution sample or not.

In this work, however, we aim to estimate the model parameter sensitivity. Hence, we calculate
the sample standard deviation of the marginal log-likelihoods returned by the models within the
ensemble:

ΣΘ[x] =

√
1

N − 1

∑
θ∈Θ

(log p(x|θ)− log p(x|θ))2 (8)

It measures the variation within the log-likelihoods, so if there is a different level of sensitivity
between the inliers and problematic inputs, then the standard deviation will capture this difference:
the higher the value, the more uncertainty there is between the models about a particular input.

Furthermore, in the case of a single VAE, we instead apply the hole indicator. For this score we
sample the approximated posterior qϕ(z|x) with several latent codes z under a particular input x
and compute the sample standard deviation of the log-likelihoods log p(x|z):

Σz[x] =

√
1

N − 1

∑
z

(
log p(x|z)− log p(x|z)

)2

(9)

The higher the score, the farther the input is from the IDs.

Both of these scores allow for measuring the level of stability of the model w.r.t. different parame-
ters. We can detect our problematic inputs based on the difference in this stability level.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2.3 SCORE FOR DISTINGUISHING BETWEEN ADVERSARIAL AND OOD INPUTS

Note that utilizing the same score for both outliers and adversarial examples does not allow us to
distinguish between them. To address this issue, we devise a simple algorithm for such a distinction.

Algorithm 1 Active Defense Algorithm
Require: x, M , θ, ∅(·), hENC(·), hDEC(·), HMC(·), MSSSIM(·, ·)
Ensure: Decision on whether x is an attack, an outlier, or an inlier
1: {Get a reconstruction and a latent code}
2: z← hENC(x)
3: x′ ← hDEC(z)
4: {Check if z is in the hole}
5: if ∅(z) then
6: {Run active defense with M steps}
7: for i = 1 to M do
8: {One step of HMC}
9: z← HMC(z)
10: end for
11: xHMC ← hDEC(z)
12: γHMC ← MSSSIM(x,xHMC)
13: γNO HMC ← MSSSIM(x,x′)
14: {Check MSSSIM gain with a threshold θ}
15: if |γHMC − γNO HMC| > θ then
16:
17: return “Attack”
18: else
19:
20: return “Outlier”
21: end if
22: else
23:
24: return “Inlier”
25: end if

Leveraging the intuition that adversarial ex-
amples also tend to land on the latent holes,
it makes it possible to utilize the recently in-
troduced approach for utilizing Hamiltonian
Monte Carlo (HMC) to reevaluate the current
latent code (Kuzina et al., 2024). If the gener-
ated image of the reevaluated latent code from
the region close to the mean of the posterior
is similar to the one that has been provided
as the input, then it is highly likely to assume
that there is an ongoing attack on the DNN.
This similarity is based on Multi-Scale Struc-
tural Similarity (MSSSIM). This method repre-
sents an active defense approach.

The starting point is to identify if the corre-
sponding latent code for the current input is lo-
cated in the hole utilizing a hole indicator. If
it is not in the hole, then we can immediately
classify it as in-distribution input. Otherwise,
the distinguishing between OoD and adversar-
ial attack is implemented based on the restored
latent code via HMC. The insight is that the
resulting distance in the input space should be

much closer for the adversarial inputs than for the OoDs (see Algorithm 1). As a result, we im-
plement the robust VAE model against both outliers and adversarial examples with two levels of
defense, allowing us to identify if we are being attacked or not.

3.2.4 ENFORCED CONTROLLED CONTINUITY AND COMPACTNESS BY LIPSCHITZ
CONTINUITY

To further increase robustness, we enforce a predefined Lipschitz constant on the encoder map of
the VAE. First, it reduces the ability of the attacker to gain substantial benefits while generating
adversarial examples with VAEs that possess encoding maps with great Lipschitz constants. Second,
it allows the control of the properties of compactness of the mapped image to the latent space, which
is beneficial for outlier detections utilizing latent holes. To that end, we employ the GroupSort
activation function and enforce the corresponding Lipschitz constant (Anil et al., 2018).

3.3 DISENTANGLING THE VARIATION AND THE BAYESIAN INFERENCE

We identify the source of the variation observed with Bayesian VAEs. The general procedure of the
marginal likelihood estimation follows these steps:

1. Sampling the weights from the estimated posterior: θ ∼ p(θ|D).
2. Estimating the marginal likelihood for separate sampled models (Equation 2).
3. Computing a single value based on the separate estimated marginal likelihoods.

As it can be seen, there are two possible sources of variation, namely, variation from Step 1 and
variation from Step 2. It was hypothesized by Daxberger & Hernández-Lobato (2019) that the
Bayesian inference over the DNN parameters is responsible for the observed variation of the results.
In our work, we test if it is indeed the case by eliminating the first step and estimating the variation in
the case of a simple classical VAE; namely, instead of sampling from p(θ|D), we use a single VAE
model that is used for marginal likelihood estimation several times. In such a case, all the variation
comes only from the importance sampling. We apply the same scores for the Bayesian VAEs to
identify if the variation persists for the classical VAEs.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.3.1 DISSECTING THE SOURCE OF VARIATION

By taking the log of both sides of the Equation 2 and by factoring the joint probability pθ(x, z), we
can obtain the following equation for the importance sampling:

log pθ(x) ≃
1

N

N∑
i=1

[
log pθ(x|z (i)) + log p(z (i))− log qϕ(z (i)|x)

]
(10)

All the scores that we have considered so far are measuring the variation of the left-hand side. To
better understand where the variation comes from, we also consider the separate constituents of the
right-hand side; namely, we measure standard deviations of all three terms separately, which allows
us to identify the most uncertain term in the case of OoD detection.

3.4 ANALYZING LATENT REPRESENTATION

Our experiments confirm that adversarial examples can be identified using the same scores success-
fully applied to outliers. It implies that adversarial examples occupy latent holes similar to the OoDs.
The difference is that it is possible to control the strength of the adversarial attack. Hence, we can
visualize the dynamics of the attack strength w.r.t. the learned data representation in the latent space.
To that end, we employ the learning procedure suggested by Jiang et al. (2017) to mold the latent
data manifold into a mixture of Gaussians, the so-called Variational Deep Embeddings (VADEs).
Such an approach allows us to calculate distances to the centroids of the learned clusters that can
be visually inspected. In addition, no Lipschitz constraints are used for these experiments, so no
restraints are applied for the adversarial locations.

4 EXPERIMENTS AND RESULTS

Our experiments have been conducted on several datasets widely used for validation of OoD and
adversarial attacks, namely: MNIST(LeCun & Cortes, 2010), FashionMNIST(Xiao et al., 2017),
SVHN(Netzer et al., 2011) and CIFAR10(Krizhevsky et al., 2010).

First, we estimated the impact of the number of dimensions of the latent space on the loss function.
The dimensionality is closely connected with the dataset on which the model is trained. MNIST
and FashionMNIST results reveal no particular need to exceed 10 latent dimensions since the loss
function didn’t significantly decrease after that value. For SVHN, we experimented with the number
of latent dimensions up to 50, and the most optimal results were achieved with dimensionality equal
to 20.

For our tests, we used two different architectures: for grayscale images, we applied a multilayer
perceptron for both the encoder and decoder with two fully connected hidden layers. For RGBs
images, we applied a Convolutional Neural Network (CNN) with two convolutional layers of 32
and 64 filters. For epistemic uncertainty estimation, all layers that contain parameters have been
enhanced with the BBB, namely, convolutional 2D, fully connected, and convolutional 2D transpose.
All the rest, such as reshape and flatten, are used with their default implementations as provided
by the Tensorflow Keras (Chollet et al., 2015) framework. For a single VAE, we used the same
architectures without the BBB. Moreover, the continuity of the encoder map is controlled via the
specifically predefined Lipschitz constant calculated in the same way as in Glazunov & Zarras (2023)
for the cases where the hole indicator is used.

All models have been trained for 1000 epochs. To evaluate the inputs, we sampled 100 different
models for our ensemble. Since we have a doubly stochastic nature of the results, one due to the
sampling from the latent posterior and the second one due to the sampling from the weights posterior,
we ran the experiments 10 times each and averaged the final results.

For our implementation of BBB we noticed that random Normal initializer of the DNNs weights
suggested as a prior in the original paper (Blundell et al., 2015) resulted in very slow convergence.
So, to speed up the process, we also experimented with the following parameters: random Normal
initializer with 0 mean and 0.1 standard deviation for µ and constant initializer for ρ = −3, which
improved the training speed.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

ID OoD
0
10
20
30
40

S
td
s

ID OoD
0
1
2
3
4
5
6
7

S
td
s

ID OoD
0

0.5
1

1.5
2

2.5
3

S
td
s

Figure 1: Standard deviations of the separate components of the ELBO within the importance
samples for Fashion-MNIST as in-distribution (blue) vs MNIST as out-of-distribution (orange).
Left: variation of the log-likelihood of the decoder log p(x|z) Middle: variation of the encoder
log q(z|x). Right: variation of the latent prior log p(z).

Table 1: OoD detection results with Bayesian
VAE based on Stds of LLs

Metric MNIST vs FashionMNIST CIFAR10 vs SVHN
ROC AUC↑ 99.76 90.88
AUPRC↑ 99.77 89.64
FPR80↓ 0.00 11.72

The metrics that we used to validate both OoD
are the area under Receiver operating charac-
teristic (ROC) curve (ROC AUC), the area un-
der the precision-recall curve (AUPRC), and
the false-positive rate at 80% of true-positive
rate (FPR80). We used two OoD bench-
marks (i) MNIST as in-distribution vs. Fash-
ionMNIST as OoD and (ii) CIFAR10 as in-
distribution vs. SVHN as OoD. As it can be observed from the results of Stds of LLs in Table 1,
they are comparable with the state-of-the-art in the field (Daxberger & Hernández-Lobato, 2019).

Table 2: OoD detection results with classical VAE
based on Stds of LLs

Metric MNIST vs FashionMNIST CIFAR10 vs SVHN
ROC AUC↑ 99.81 93.07
AUPRC↑ 99.82 91.23
FPR80↓ 0.00 11.36

Subsequently, we performed experiments uti-
lizing a single classical VAE testing if the previ-
ously observed variation persists. The obtained
results demonstrate that variation that comes
from the importance sampling is sufficient for
the detection of the OoD inputs (see Table 2).
It allows us to disentangle the variation from
the Bayesian inference over the weights and di-
rectly use latent posterior sampling with a clas-
sical VAE.

In addition, we calculate the sample standard deviation of the separate terms on the right-hand side
of Equation 10. The obtained values reveal the fact that most of the observed variance results from
the likelihood term log pθ(x|z (i)) that is parameterized by the decoder DNN. The boxplots of the
standard deviations for all three terms (in the case of the classical VAE trained on the Fashion-
MNIST dataset and tested on the MNIST as OoD) are plotted in Figure 1. As it can be seen, the
variance obtained by the variational inference over the latent variable qϕ(z|x) does not result in high
values as one may have expected, which denotes that most of the responsibility for the variation is
laid on the decoder which is more sensitive to the OoD inputs versus IDs. Such sensitivity has been
observed for all of the considered datasets and models, which strongly supports the usage of the
recently introduced hole indicator for the OoD input detection.

For the generation of the adversarial inputs, we used the Cleverhans framework (Papernot et al.,
2018). We use the default discriminative DNN architecture for our victim classifier provided within
this framework. We benchmark our model on three common attacks: FGSM, CW and JSMA (see
Section 2.1 for more details). For FGSM, we used ϵ = 3, for CW we used attack under L2-
norm, and we applied 128 attack iterations with 0.2 learning rate, and, finally, for JSMA we used
θ = 1 and γ = 0.1. For CW and JSMA we generated targeted attacks per each of 10 categories
available in MNIST and FashionMNIST, for SVHN we applied an untargeted attack. In the case
of FGSM, all inputs implemented an untargeted attack. Consequently, as Bayesian inference over
DNN weights proves to be unnecessary, we employ a single VAE model, evaluating the results using
a hole indicator (refer to Eq. 9).

Results of the experiments convincingly demonstrate that there is indeed transferability between
discriminative and generative models. The adversarial examples generated for the classifier can
be detected by the VAE, which is trained on the same dataset in an unsupervised manner (see Ta-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Discriminative adversarial results:
MNIST

Metric MNIST vs FGSM MNIST vs CW MNIST vs JSMA
ROC AUC↑ 100.00 92.24 93.01
AUPRC↑ 100.00 92.55 90.13
FPR80↓ 0.00 11.72 10.16

Table 4: Discriminative adversarial results: Fash-
ionMNIST

Metric FMNIST vs FGSM FMNIST vs CW FMNIST vs JSMA
ROC AUC↑ 96.49 95.01 83.97
AUPRC↑ 96.52 92.36 78.38
FPR80↓ 5.47 10.94 16.66

Table 7: MNIST: Multi-Scale Structural Similar-
ity (MSSSIM)

No HMC HMC MSSSIM Gain
Discriminative Adversarial Examples

MNIST FGSM ε = 0.1 0.43 0.34 0.09
MNIST FGSM ε = 0.3 0.26 0.27 0.01
MNIST CW 0.18 0.20 0.02

Generative Adversarial Examples
MNIST ε = 0.1 0.43 0.85 0.42
MNIST ε = 0.2 0.30 0.67 0.37
MNIST ε = 0.3 0.25 0.64 0.39

Outliers
MNIST vs FMNIST 0.03 0.09 0.06
MNIST vs KMNIST 0.21 0.16 0.05
MNIST vs All White 0.03 0.10 0.07

Table 8: FMNIST: Multi-Scale Structural Simi-
larity (MSSSIM)

No HMC HMC MSSSIM Gain
Discriminative Adversarial Examples

FMNIST FGSM ε = 0.1 0.28 0.17 0.11
FMNIST FGSM ε = 0.3 0.19 0.24 0.05
FMNIST CW 0.33 0.26 0.07

Generative Adversarial Examples
FMNIST ε = 0.1 0.41 0.60 0.19
FMNIST ε = 0.2 0.25 0.45 0.20
FMNIST ε = 0.3 0.19 0.38 0.19

Outliers
FMNIST vs MNIST 0.18 0.23 0.05
FMNIST vs KMNIST 0.20 0.19 0.01
FMNIST vs All White 0.21 0.17 0.04

bles 3 – 5). It is reproduced across a wide range of adversarial attacks and datasets. It is especially
remarkable that they also tend to land to the holes in the VAE latent representation since they are
detected based on the results of the hole indicator. Such a phenomenon may be explained by the
similarity of internal representation within DNNs that are trained on the same datasets.

Table 5: Discriminative adversarial results: SVHN

Metric SVHN vs FGSM SVHN vs CW SVHN vs JSMA
ROC AUC↑ 86.74 77.35 82.75
AUPRC↑ 77.76 71.40 78.19
FPR80↓ 24.13 56.21 17.28

As can be observed from the results, the best
values are achieved for the FGSM adversar-
ial inputs, which result in a higher standard
deviation of the log-likelihoods, leading to
better detection. It seems not surprising,
considering that FGSM does not aim at an
optimal attack but the fastest one. CW, on
the contrary, represents the least uncertainty,
which also can be explained by the fact that this attack exploits the optimization procedure with the
appropriate objective of as few modifications as possible to the input. JSMA is located somewhere
in-between FGSM and CW.

Table 6: Generative adversarial examples

Metric Lipschitz MNIST:
MNIST vs Adversarial

Lipschitz FMNIST:
FMNIST vs Adversarial

Lipschitz MNIST heldout:
MNIST 01 vs Adversarial

ROC AUC↑ 97.89 93.40 99.98
AUPRC↑ 98.70 94.51 99.98
FPR80↓ 9.06 9.10 0.00

We evaluate the robustness of
the proposed VAE filter by
subjecting it to adversarial at-
tacks designed explicitly for this
model. We put under test a sin-
gle VAE. The model is enforced
with a controlled continuity on
the encoder map considering ap-
propriate properties of compactness of the latent image. As it can be seen from Table 6, the hole
indicator successfully detects attacks on VAEs. It allows using only one score to detect both outliers
and adversarial examples, including discriminative and generative ones.

Following this, we apply our algorithm based on active defense to distinguish between the outliers
and both types of adversarial examples. Since the major value responsible for this distinguishing
is based on MSSSIM gain, we register the corresponding values in Tables 7 and 8. It can be ob-
served that generative adversarial examples can be easily discerned from the rest of the categories of
problematic inputs. However, there is no possibility to delimit outlier and discriminative adversarial
attacks relying only on the MSSSIM gain.

Finally, we visualize how the different attack strengths influence the location of adversarial latent
codes within the learned data representation. This location is calculated w.r.t. the closest centroid of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Distance to the closest centroid

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

De
ns

ity

Inliers
Outliers
Adversarials
Whites
Blacks

0 2 4 6 8
Distance to the closest centroid

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

De
ns

ity

Inliers
Outliers
Adversarials
Whites
Blacks

0 2 4 6 8 10
Distance to the closest centroid

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

De
ns

ity

Inliers
Outliers
Adversarials
Whites
Blacks

(a) ε = 0.1 (b) ε = 0.3 (c) ε = 0.5

Figure 2: From left to right: The strength of FGSM attack, expressed by the magnitude of pertur-
bations. Top: Distances to the closest centroid within the latent manifold for various categories of
inputs. Bottom: Examples of a particular FashionMNIST instance that undergoes the correspond-
ing strength of an attack.

the cluster to the corresponding adversarial latent code. As Figure 2 shows, the stronger the attack,
the farther the corresponding latent codes drift away from the inlier manifold. Note that a weak
adversarial attack is akin to the near-OoD instance, and a strong attack is akin to the far-OoD input.

5 DISCUSSION

The hole indicator confirms that transferability extends from discriminative to generative models,
indicating a similar learned representation between those two approaches. Even though adversarial
examples from the discriminative model end up in the latent holes of the VAE, the active defense
through HMC cannot return to the regions with high probability. This suggests that despite some
commonalities, differences still exist between discriminative and generative settings. Adversarial
attacks on the VAE’s latent space can be effectively distinguished from OoD inputs using active
defense strategies. Furthermore, the internal latent representations of near- and far-OoD instances
are similar to those of weak and strong adversarial attacks, respectively. Finally, contrary to common
belief, Bayesian inference over DNN parameters is not essential for sensitivity analysis. We observe
different levels of model stability w.r.t. inliers versus outliers, related to the differences in log-
likelihood variances, revealing a connection with the recently introduced score of the hole indicator.

6 CONCLUSION

We explore two common types of problematic inputs in DNN classifiers: OoDs and adversarial
attacks. Our proposed solution uses a variational autoencoder (VAE) to address both problems si-
multaneously. We initially evaluate the effectiveness of using Bayesian estimation of epistemic
uncertainty from VAE weights to detect OoD inputs and discover that comparable results can be
achieved by importance sampling with classical VAE formulations without resorting to Bayesian
inference over weights. This result indicates that latent codes possess all the necessary information
for measuring a model’s sensitivity. Furthermore, we introduce a simple algorithm that distinguishes
generative adversarial examples from both outliers and discriminative adversarial attacks using ac-
tive defense. It enables identifying if the VAE model is currently being under attack. In addition, this
algorithm allows for detecting both types of adversarial attacks: one is based on the imperceptible
perturbations of the input image to the classifier, and it is based on the transferability of the adversar-
ial examples from discriminative to generative models, while another is based on the attacks aimed
at the encoder of the VAE. Finally, our approach allows a VAE model to be pretrained on specific
datasets so that it functions as a filter, serving the purpose of protecting the DNN classifier from
potential attacks and OoD inputs. This pre-trained VAE can be easily integrated as a filter with any
DNN classifier, regardless of its architecture, trained on the same dataset, eliminating the need for
further training or modification of DNN configurations.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Nilesh A. Ahuja, Ibrahima Ndiour, Trushant Kalyanpur, and Omesh Tickoo. Probabilistic modeling
of deep features for out-of-distribution and adversarial detection, 2019.

Cem Anil, James Lucas, and Roger Grosse. Sorting out lipschitz function approximation, 2018.
URL https://arxiv.org/abs/1811.05381.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Gior-
gio Giacinto, and Fabio Roli. Evasion Attacks Against Machine Learning at Test Time. In
Machine Learning and Knowledge Discovery in Databases, 2013.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in
neural network. In International conference on machine learning, pp. 1613–1622. PMLR, 2015.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks, 2016.

François Chollet et al. Keras. https://keras.io, 2015.

Erik Daxberger and José Miguel Hernández-Lobato. Bayesian variational autoencoders for unsu-
pervised out-of-distribution detection. arXiv preprint arXiv:1912.05651, 2019.

Misha Glazunov and Apostolis Zarras. Do Bayesian Variational Autoencoders Know What They
Don’t Know? In Conference on Uncertainty in Artificial Intelligence (UAI), 2022.

Misha Glazunov and Apostolis Zarras. Vacant Holes for Unsupervised Detection of the Outliers in
Compact Latent Representation. In Uncertainty in Artificial Intelligence (UAI), 2023.

Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples, 2014.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. arXiv preprint arXiv:1812.04606, 2018.

Sibylle Hess, Wouter Duivesteijn, and Decebal Mocanu. Softmax-based classification is k-means
clustering: Formal proof, consequences for adversarial attacks, and improvement through centroid
based tailoring, 2020.

Shengyuan Hu, Tao Yu, Chuan Guo, Wei-Lun Chao, and Kilian Q Weinberger. A new defense
against adversarial images: Turning a weakness into a strength. In Advances in Neural Informa-
tion Processing Systems, pp. 1635–1646, 2019.

Uiwon Hwang, Jaewoo Park, Hyemi Jang, Sungroh Yoon, and Nam Ik Cho. Puvae: A variational
autoencoder to purify adversarial examples, 2019.

Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou. Variational deep em-
bedding: An unsupervised and generative approach to clustering. In Proceedings of the Twenty-
Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, pp. 1965–1972, 2017.
doi: 10.24963/ijcai.2017/273.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
search). http://www.cs.toronto.edu/kriz/cifar.html, 2010.

Anna Kuzina, Max Welling, and Jakub M. Tomczak. Alleviating adversarial attacks on variational
autoencoders with mcmc. In Proceedings of the 36th International Conference on Neural Infor-
mation Processing Systems, NIPS 22, Red Hook, NY, USA, 2024. Curran Associates Inc. ISBN
9781713871088.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. http://yann.lecun.
com/exdb/mnist/, 2010.

11

https://arxiv.org/abs/1811.05381
https://keras.io
http://www.cs.toronto.edu/kriz/cifar.html
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kimin Lee, Honglak Lee, Kibok Lee, and Jinwoo Shin. Training confidence-calibrated classifiers
for detecting out-of-distribution samples, 2017.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. Advances in neural information processing
systems, 31, 2018.

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. Enhancing the reliability of out-of-distribution
image detection in neural networks. arXiv preprint arXiv:1706.02690, 2017.

Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversarial examples. CoRR,
abs/1705.09064, 2017. URL http://arxiv.org/abs/1705.09064.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan. Do
deep generative models know what they don’t know? arXiv preprint arXiv:1810.09136, 2018.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. In Advances in neural information
processing systems (NIPS), 2011.

Anh Nguyen, Jason Yosinski, and Jeff Clune. Deep neural networks are easily fooled: High confi-
dence predictions for unrecognizable images. In IEEE conference on computer vision and pattern
recognition, pp. 427–436, 2015.

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami. The limitations
of deep learning in adversarial settings. In 2016 IEEE European Symposium on Security and
Privacy (EuroS P), pp. 372–387, 2016.

Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z. Berkay Celik, and Ananthram
Swami. Practical black-box attacks against machine learning, 2016.

Nicolas Papernot, Fartash Faghri, Nicholas Carlini, Ian Goodfellow, Reuben Feinman, Alexey Ku-
rakin, Cihang Xie, Yash Sharma, Tom Brown, Aurko Roy, Alexander Matyasko, Vahid Behzadan,
Karen Hambardzumyan, Zhishuai Zhang, Yi-Lin Juang, Zhi Li, Ryan Sheatsley, Abhibhav Garg,
Jonathan Uesato, Willi Gierke, Yinpeng Dong, David Berthelot, Paul Hendricks, Jonas Rauber,
and Rujun Long. Technical report on the cleverhans v2.1.0 adversarial examples library. arXiv
preprint arXiv:1610.00768, 2018.

Jie Ren, Peter J Liu, Emily Fertig, Jasper Snoek, Ryan Poplin, Mark Depristo, Joshua Dillon, and
Balaji Lakshminarayanan. Likelihood ratios for out-of-distribution detection. Advances in neural
information processing systems, 32, 2019.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and ap-
proximate inference in deep generative models. In International conference on machine learning,
pp. 1278–1286. PMLR, 2014.

Pouya Samangouei, Maya Kabkab, and Rama Chellappa. Defense-gan: Protecting classifiers against
adversarial attacks using generative models. CoRR, abs/1805.06605, 2018. URL http://
arxiv.org/abs/1805.06605.

Yang Song, Taesup Kim, Sebastian Nowozin, Stefano Ermon, and Nate Kushman. Pixeldefend:
Leveraging generative models to understand and defend against adversarial examples, 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks, 2013.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Haichao Zhang and Jianyu Wang. Defense against adversarial attacks using feature scattering-based
adversarial training. In Advances in Neural Information Processing Systems, pp. 1831–1841,
2019.

12

http://arxiv.org/abs/1705.09064
http://arxiv.org/abs/1805.06605
http://arxiv.org/abs/1805.06605

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 CLASSICAL VAE’S OVERCONFIDENCE

As it was demonstrated by Nalisnick et al. in Nalisnick et al. (2018), all of the DGMs suffer from
the overconfidence while trying to estimate the density of the out-of-distribution data assigning a
higher density to the OoD inputs in comparison with ID data. We observed such an overconfidence
during our experiments as well. A couple of examples of the overconfidence of the classical VAEs
in our experimental setup can be seen in Figure 3.

80 70 60 50 40
log p(x)

0.00

0.02

0.04

0.06

0.08

0.10

MNIST
Corrupted MNIST

70 60 50 40 30
log p(x)

0.00

0.05

0.10

0.15

0.20

MNIST
MNIST FGSM

Figure 3: Left: Log-likelihoods for MNIST as in-distribution (blue) vs Corrupted MNIST as out-of-
distribution (orange). Right: Log-likelihoods for MNIST as in-distribution (blue) vs MNIST FGSM
attacks as out-of-distribution (orange).

A.2 Bayesian VAES VARIATION SCORING FOR THE REST OF OUR EXPERIMENTS

We ran out experiments also for MNIST as in-distrubtion vs Fashion-MNIST as OoD and for SVHN
as in-distribution and CIFAR-10 as OoD. The results can be seen in Table 9 and Table 10.

Table 9: Scoring values across all types of Bayesian VAEs trained on MNIST data and tested on
Fashion-MNIST as OoD

MNIST vs. Fashion-MNIST
BBB SGHMC SWAG

ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓
Expected LL 99.98 99.98 0.00 99.93 99.92 0.04 96.83 96.20 5.18
WAIC 99.99 99.99 0.00 99.94 99.94 0.02 80.37 76.25 33.56
Disagreement score 98.95 99.01 0.23 97.32 97.70 1.37 94.88 93.97 8.99
Entropy (ours) 99.42 99.47 0.02 98.50 98.75 0.29 95.72 95.20 8.37
Stds of LLs (ours) 99.99 99.99 0.00 99.91 99.91 0.00 80.37 82.78 39.12

Table 10: Scoring values across all types of Bayesian VAEs trained on SVHN data and tested on
CIFAR-10 as OoD

SVHN vs. CIFAR-10
BBB SGHMC SWAG

ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓
Expected LL 58.65 61.79 77.72 57.09 60.56 80.18 58.98 62.06 76.52
WAIC 64.46 66.01 68.39 62.17 64.38 72.45 62.84 68.42 75.25
Disagreement score 85.20 88.35 30.26 85.31 88.52 28.66 77.58 80.36 45.60
Entropy (ours) 87.80 90.63 20.77 87.89 90.76 19.91 80.01 83.24 41.58
Stds of LLs (ours) 93.29 91.51 10.99 94.70 93.95 8.67 59.31 53.36 61.78

A.3 HAMILTONIAN MONTE CARLO ALGORITHM

We employ the same approach as suggested in Kuzina et al. (2024).

In the Hamiltonian Monte Carlo (HMC) framework, the target distribution is given by the product
of p(x|z) and p(z). The Hamiltonian represents the energy of the combined distribution of z and
the auxiliary variable p, defined as follows:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

H(z,p) = U(z) +K(p),

where

U(z) = − log pθ(x|z)− log p(z),

and

K(p) = −1

2
pTp.

For the corresponding pseudocode for restoring the latent code, please see following Aglorithm 1.

Algorithm 1: A single iteration of HMC
Input: z, η, L
// Sample the auxiliary variable
p ∼ N (0, I)
z(0) := z,p(0) := p

// Make L steps of leapfrog
for l = 1 to L do

p(l) := p(l−1) − η
2∇zU(z(l−1))

z(l) := z(l−1) + η∇pK(p(l))

p(l) := p(l) − η
2∇zU(z(l))

// Accept new point with probability α

α := min
(
1, exp

(
−H(z(L),p(L)) +H(z(0),p(0))

))
z :=

{
z(L) with probability α,

z(0) otherwise.
return z

A.4 CLASSICAL VAES VARIATION SCORING FOR THE REST OF OUR EXPERIMENTS

Table 11: Scoring values for the classical VAEs trained on MNIST and Fashion-MNIST data

Classical VAE
MNIST vs. Fashion-MNIST Fashion-MNIST vs. MNIST

ROC AUC↑ AUPRC↑ FPR80↓ ROC AUC↑ AUPRC↑ FPR80↓

Expected LL 99.97 99.97 0.00 46.72 51.54 92.57
WAIC 99.96 99.96 0.00 64.07 64.43 66.98
Disagreement score 97.86 98.09 1.11 96.83 97.56 0.84
Entropy (ours) 98.67 98.84 0.38 98.18 98.63 0.08
Stds of LLs (ours) 99.81 99.82 0.00 99.68 99.64 0.36

14

	Introduction
	Problem statement
	Adversarial attacks
	Fast gradient sign method
	Carlini-Wagner
	Jacobian-based Saliency Map Attack
	Attack on Encoder

	Transferability
	Out-of-distribution

	Methodology
	Epistemic uncertainty in OoD and in adversarial attacks
	Estimation of the marginal likelihood
	Weight uncertainty: Bayes by backpropagation
	Scores used for Problematic Inputs Detection
	Score for distinguishing between Adversarial and OoD Inputs
	Enforced Controlled Continuity and Compactness by Lipschitz continuity

	Disentangling the variation and the Bayesian inference
	Dissecting the source of variation

	Analyzing Latent Representation

	Experiments and results
	Discussion
	Conclusion
	Appendix
	Classical VAE's overconfidence
	Bayesian VAEs variation scoring for the rest of our experiments
	Hamiltonian Monte Carlo Algorithm
	Classical VAEs variation scoring for the rest of our experiments

