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Str-GCL: Structural Commonsense Driven Graph Contrastive
Learning

Anonymous Author(s)∗

Abstract
Graph Contrastive Learning (GCL) is a widely adopted approach
in unsupervised representation learning, utilizing representational
constraints to derive effective embeddings. However, current GCL
methods primarily focus on capturing implicit semantic relation-
ships, often overlooking the structural commonsense embedded
within the graph’s structure and attributes. This structural common-
sense is crucial for effective representation learning. Identifying and
integrating such structural commonsense in GCL poses a significant
challenge. To address this gap, we propose a novel framework called
Structural Commonsense Unveiling in Graph Contrastive Learning
(Str-GCL). Str-GCL leverages first-order symbolic logic rules to
represent structural commonsense and explicitly integrates these
rules into the GCL framework. Specifically, we introduce structural
commonsense from both topological and attribute rule perspec-
tives, processing these rules independently without modifying the
original graph. Additionally, we design a representation alignment
mechanism that guides the encoder to effectively capture this struc-
tural commonsense. To the best of our knowledge, this is the first
attempt to directly incorporate structural commonsense into GCL
in a rule-based manner. Extensive experiments demonstrate that
Str-GCL significantly outperforms existing GCL methods, provid-
ing a new perspective on leveraging structural commonsense in
graph representation learning.

CCS Concepts
• Mathematics of computing→ Graph algorithms.

Keywords
Graph Neural Networks, Graph Contrastive Learning, Structural
Commonsense
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1 Introduction
Graph Representation Learning (GRL) has emerged as a power-
ful strategy for analyzing graph-structured data over the past few
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Figure 1: Two basic structural commonsense in graph data
based on topology and attributes. Topologically, nodes with
high-degree neighbors exhibit high stability during training,
while nodes with fewer neighbors show lower stability. In
terms of attributes, 𝑖𝑡ℎ node possesses features that are sig-
nificantly aligned with its label, making it easy to classify,
whereas 𝑗𝑡ℎ node has features that are too similar to the glob-
als, rendering its label-aligned features ambiguous.

years. By using Graph Neural Networks (GNNs) [1], GRL has gar-
nered significant attention, aiming to transform nodes into effective
low-dimensional embeddings. However, most GNN models train
under supervised or semi-supervised scenarios, which requires a
large number of labels. These methods are intricate and expensive
in a growing explosion of graph-structured data. In contrast, graph
self-supervised learning (GSSL), such as the representative Graph
Contrastive Learning (GCL) methods [2, 3], does not require labels
to acquire node embeddings. These methods have achieved per-
formance comparable to their supervised counterparts for most
graph representation learning tasks, such as node classification
[4–6], graph classification [7–9] etc.

Existing GCL methods [3, 10, 11] commonly utilize the InfoNCE
principle to generate effective node representation, which encour-
ages the model to maximize the similarities between positive sam-
ples and minimize the similarities between negative samples during
training. These samples are typically established through two views
generated by graph augmentations, such as edge removal and fea-
ture masking. Some researchers refine the optimization strategy of
InfoNCE by exploring various strategies, such as leveraging nega-
tive samples [11] or considering graph homophily [12]. Additionally,
some approaches [13–15] employ two independent encoders, with
one encoder designed to learn the node representation from the
other. Furthermore, some studies [16–18] explore GCL from the
perspective of homophily and heterophily.

Despite the significant advancements in GCL, current GCL meth-
ods often operate as black boxes with limited explainability, making
it difficult to understand or trust their decision-making processes
and fully assess their learning capabilities. Our observations reveal
that a significant proportion of nodes are consistently misclassified
across multiple experiments with existing GCL models, such as
GRACE [3] (as detailed in Section 2). Relying solely on learning
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implicit relationships proves insufficient for adequately training
the encoder, preventing the model from capturing more complex
or nuanced patterns of the graph. This limitation represents a fun-
damental performance bottleneck that existing methods cannot ad-
dress. Through a detailed analysis of these misclassified nodes, we
find that many of them can be correctly classified only with the aid
of expert knowledge, which led us to a key question: Could there be
structural commonsense embedded within graph structures that we
are overlooking? Furthermore, could we develop an interpretable
GCL approach that explicitly incorporates structural commonsense
to improve both model performance and interpretability?

However, integrating these intuitive structural commonsense
into GCL models presents significant challenges. First, how can we
discover these intuitive structural commonsense? Unlike knowl-
edge graphs [19, 20], which contain abundant triples that offer clear
guidance, general graph data lacks such explicit information. In an
unsupervised setting without labels, these rules are even harder to
detect and interpret. Second, how can we represent and incorporate
them into the model? Even if we manage to identify these intuitive
structural commonsense, effectively encoding them and enabling
GCL models to recognize and leverage them appropriately remains
a complex technical obstacle.

To address these challenges, we propose a novel GCL model
called Structural commonsense DrivenGraphContrastive Learning
(Str-GCL), which explicitly integrates structural commonsense
into the learning process to enhance effectiveness and interpretabil-
ity. Specifically, we introduce structural commonsense from both
topological and attribute perspectives (as illustrated in Figure 1),
formulating two representative basic rules expressed using first-
order logic. Even in unsupervised settings without labels, these
rules can capture structural patterns that are intuitively percep-
tible to humans. Furthermore, Str-GCL independently generates
rule-based representations and employs a representation alignment
mechanism to effectively integrate these rule-based and node-based
representations. By embedding structural commonsense into the
model using first-order logic rules, our approach enables the en-
coder to perceive and leverage additional structural knowledge,
allowing it to focus on more intricate and nuanced patterns within
the graph. This integration ultimately enhances both the model’s
performance and its interpretability.

Our main contributions are summarized as follows:

• We are the first to pose the problem of integrating structural
commonsense into contrastive learning, which primarily
involves how to leverage human intuition to uncover struc-
tural commonsense present in graph data (knowledge that
is often overlooked by traditional GCLmethods) and how to
effectively encode this commonsense to enable GCL models
to recognize and utilize it.

• We propose a novel graph contrastive learning paradigm,
called Str-GCL, that uses first-order logic to express rules
and guides the model to learn structural commonsense. To
the best of our knowledge, this is the first attempt that
human-defined rules are explicitly introduced into GCL,
providing an interpretable approach from the perspective
of structural commonsense.

(a) Misclassified nodes distribution of PubMed

(b) Misclassified nodes distribution of CS

Figure 2: Misclassified nodes distribution of PubMed and
CS datasets. The Error Ratio (horizontal axis) represents the
percentage of nodes misclassified a specific number of times
relative to the total number of misclassified nodes, while
the Error Counts (vertical axis) represents the number of
times a node is misclassified across 20 independent tests. To
illustrate that some nodes frequently exhibit classification
errors, we include only those nodes that are misclassified 15
or more times.

• We conduct experiments on six datasets, evaluating our
model’s performance by comparing it with numerous other
GCL models in classification and clustering tasks. Addi-
tionally, we perform detailed data analysis on misclassified
nodes and compare our results with the baseline model.
Moreover, we integrate Str-GCL as a plugin into multiple
GCL baselines, enhancing their performance to verify the
extensibility of Str-GCL. Extensive experiments and visual-
ization demonstrate the effectiveness of Str-GCL.

2 Observation & Analysis
In this section, we aim to detect nodes that are not adequately
learned by the model, as manifested by their frequent misclassifica-
tion in multiple tests across several benchmark datasets [21]. Here,
we use PubMed and CS as the representative examples. Specifically,
for each dataset, we run the well-known GCLmethod GRACE [3] 20
times under the default experimental settings. As shown in Figure
2, we observe that approximately 40% of the misclassified nodes
are consistently misclassified across all training runs, indicating
that a significant portion of nodes are not adequately constrained
by the objective function during training. Therefore, we analyze
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the attributes and topological properties of the misclassified nodes
(those with error counts greater than or equal to 15). We attempt
to manually classify these nodes based on their connections and
feature similarity while masking their labels. We find that by con-
sidering only connectivity and similarity, we can manually identify
that many misclassified nodes and their neighbors belong to the
same class (as illustrated by the simple example in Figure 1). How-
ever, the trained GCL model fails to recognize these misclassified
nodes. This leads us to understand that, even though humans can
easily interpret such simple structural commonsense, the current
GCL paradigm is incapable of perceiving or learning them. Instead,
GCL focuses on constraining instances in the representation space,
overlooking the inherent general structural commonsense in the
topology of data. This observation inspires us to explore structural
commonsense within the distribution of error-prone nodes and to
devise targeted interventions to mitigate their misclassification.

3 Preliminaries
Notations Given a graph G = (V, E), whereV = {𝑣1, 𝑣2, · · · , 𝑣𝑁 }
is the set of nodes, E ⊆ V×V is the set of edges. Additionally,𝑿 ∈
R𝑁×𝐹 is the feature matrix, and 𝑨 ∈ {0, 1}𝑁×𝑁 is the adjacency
matrix. 𝑿𝑖 ∈ R𝐹 is the feature of 𝑣𝑖 , and 𝑨𝑖 𝑗 = 1 iff

(
𝑣𝑖 , 𝑣 𝑗

)
∈ E.

Our objective is to learn an encoder 𝑓 (𝑿 ,𝑨) ∈ R𝑁×𝐹 ′
to represent

high-level representations under the unsupervised scenarios, which
can be used in various downstream tasks.

Graph Contrastive Learning (GCL) To illustrate our approach,
we employ a classic GCL method, GRACE [3], as a case study.
Giving a graph G, two augmentation functions 𝑡1 and 𝑡2 are applied
to the original data, resulting in two augmented views 𝑡1 (G) =

G1 = (𝑿1,𝑨1) and 𝑡2 (G) = G2 = (𝑿2,𝑨2). Subsequently, these
augmented views are processed by a shared GNN encoder, and then
generate node representations 𝑼 = 𝑓 (𝑿1,𝑨1) and 𝑽 = 𝑓 (𝑿2,𝑨2).
Finally, the loss function is defined by the InfoNCE [22] loss as:

ℓ (𝒖𝑖 , 𝒗𝑖 ) = log
𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏

𝑒𝜃 (𝒖𝑖 ,𝒗𝑖 )/𝜏 + ∑
𝑘≠𝑖 𝑒

𝜃 (𝒖𝑖 ,𝒗𝑘 )/𝜏 + ∑
𝑘≠𝑖 𝑒

𝜃 (𝒖𝑖 ,𝒖𝑘 )/𝜏
,

(1)
where 𝜃 (·, ·) is the cosine similarity function and 𝜏 is a tempera-
ture parameter. The positive samples are the node pairs (𝒖𝑖 , 𝒗𝑖 ),
representing corresponding nodes in two views, and the negative
samples are other node pairs (𝒖𝑖 , 𝒗𝑖 ) and (𝒖𝑖 , 𝒖𝑘 ) where 𝑘 ≠ 𝑖 . Since
two graph views are symmetric, LInfoNCE can be given by:

LInfoNCE =
1
2𝑁

𝑁∑︁
𝑖=1

(ℓ (𝒖𝑖 , 𝒗𝑖 ) + ℓ (𝒗𝑖 , 𝒖𝑖 )) . (2)

There are many types of GNN now, which can be served as the
encoder. We use a graph convolutional network (GCN) [23] as our
encoder 𝑓 by default, which can be formalized as 𝑓 (𝑿 ,𝑨) = 𝑯 =

�̂�𝑿𝑾 , where �̂� = �̃�−1/2 ( 𝑨 + 𝑰N) �̃�−1/2. Here, �̂� represents the
degree matrix of 𝑨 + 𝑰N, and 𝑰N represents the identity matrix.𝑾
represents learnable weight matrix.

First-Order Logics (FOLs) FOLs is a formal system used to
represent relationships and properties through predicates, quan-
tifiers (including the universal quantifier (∀) and the existential
quantifier (∃)), and logical connectives (including conjunction (∧),

disjunction (∨), negation (¬) and implication (→)). In the con-
text of graph data, first-order logic enables precise description and
manipulation of node and edge relationships. For example, the pred-
icate Connected(𝑣𝑖 , 𝑣 𝑗 ) can denote an edge between 𝑣𝑖 and 𝑣 𝑗 , while
HasFeature(𝑣𝑖 , feature) indicate that 𝑣𝑖 has a specified feature.

4 Str-GCL
In this section, we explore embedding general structural common-
sense set by humans into models in the form of rules, and analyze
these rules in various datasets, with a special emphasis on homo-
geneous graphs. We detail the specific implementation aspects of
Str-GCL, providing a comprehensive understanding of its frame-
work. The model architecture is illustrated in Figure 3.

4.1 General Structural Commonsense Expressed
by Symbolic Logic

To uncover patterns not readily discernible within GNNs, and to
aid the training of encoders based on these patterns, our model
incorporates general structural commonsense derived from human
intuition. Through observation and statistical analysis, we have
identified that sets of nodes adhering to certain observable human
patterns are more prone to misclassification compared to those out-
side these patterns. These statistically derived intuitions serve as a
bridge between error-prone nodes and observed patterns. Moreover,
these commonsense insights are represented using the expressive
power of first-order logic.

Neighborhood Topological Summation Constraint (NTSC)
NTSC operates on the premise that the attributes of a node’s neigh-
bors can significantly influence the representations it generates
after passing through the encoder. In this paper, we use GCN as the
encoder, the first-order neighbors have the greatest impact on the
node. Specifically, this rule targets nodes with limited topological
connections, assigning higher attention to nodes with lower ag-
gregate neighbor degrees. The underlying hypothesis is that a low
sum of first-order neighbor degrees may not be able to effectively
learn the local graph structure and lack reliable information for
generating effective representations. Formally, we can represent
NTSC using first-order logic as follows:

∀𝑣𝑖∀𝑣 𝑗 (Neighbor(𝑣𝑖 , 𝑣 𝑗 ) → 𝑣 𝑗 ∈ N (𝑣𝑖 )),

∀𝑣𝑖 (TotalDegree(𝑣𝑖 ) =
∑︁

𝑣𝑗 :𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑣𝑖 ,𝑣𝑗 )
deg(𝑣 𝑗 )),

(3)

where N(𝑣𝑖 ) represents the set of first-order neighbors of node
𝑣𝑖 , Neighbor(𝑣𝑖 , 𝑣 𝑗 ) is a function which represents the total sum of
degrees of all neighbors of 𝑣𝑖 , deg(𝑣 𝑗 ) is a function that returns the
degrees of node 𝑣 𝑗 . We use 𝑑 to represent the degree of a node, and
𝑑sum represents the sum of the degrees of each node’s neighbors, i.e.,
𝑑sum = 𝑨 · 𝑑 . To avoid the excessive influence of large differences
in node degrees, we perform logarithmic normalization on 𝑑sum
as 𝑑sum = log(1 + 𝑑sum). Finally, we normalize values to generate
weights:𝒘𝑖 = max(𝑑log) − 𝑑log (𝑖). In this way, smaller degrees will
be assigned larger weights, thus paying more balanced attention to
nodes with different structures during the learning process.

Local-Global Threshold Constraint (LGTC) In the node clas-
sification task on homophilic graphs, nodes that exhibit substan-
tial disparities between their neighbor’s feature similarity and the

3
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global feature similarity may have more unique features or more
distinct structures. On the contrary, when the neighbor’s feature
similarity is strikingly similar to the global feature similarity, it
may indicate that the node’s features or local structure are unclear
or unspecific. Therefore, the goal of LGTC is to measure the gap
between the two similarities. The underlying assumption is that
a low value may lack unique information about their own class.
Formally, we can represent LGTC using first-order logic as follows:

∀𝑣𝑖 (LocalSim(𝑣𝑖 ) = avg𝑣𝑗 ∈N(𝑣𝑖 ) sim(𝑣𝑖 , 𝑣 𝑗 )),
∀𝑣𝑖 (GlobalSim(𝑣𝑖 ) = avg𝑣𝑗 ∈G sim(𝑣𝑖 , 𝑣 𝑗 )),

(4)

where LocalSim(𝑣𝑖 ) is a function representing the average simi-
larity of node 𝑣𝑖 to its first-order neighbors N(𝑣𝑖 ), GlobalSim(𝑣𝑖 )
is a function representing the average similarity of node 𝑣𝑖 to all
other nodes in G. Specially, we apply Principal Component Analy-
sis (PCA) [24] to the 𝑿 to capture the most significant invariance:
𝑿 ′ = PCA(𝑿 ). We calculate the average similarity AS(𝑣𝑖 ) between
node 𝑣𝑖 and its neighborN(𝑣𝑖 ) using cosine similarity, and obtains a
global similarity GS(𝑣𝑖 ): AS(𝑣𝑖 ) = 1

|N (𝑣𝑖 ) |
∑

𝑣𝑗 ∈N(𝑣𝑖 ) sim(𝑿 ′
𝑖
,𝑿 ′

𝑗
),

GS(𝑣𝑖 ) = 1
|𝑁 |−1

∑
𝑣𝑗 ∈𝑁 \𝑣𝑖 sim(𝑿 ′

𝑖
,𝑿 ′

𝑗
). Then, we compute the nor-

malized difference Diff(𝑣𝑖 ) between AS(𝑣𝑖 ) and GS(𝑣𝑖 ): Diff(𝑣𝑖 ) =
1
2 (AS(𝑣𝑖 )−GS(𝑣𝑖 )+1). Finally, we generate similarity-basedweights
𝒔𝑖 : 𝒔𝑖 = max𝑣𝑗 ∈𝑁 Diff(𝑣 𝑗 ) − Diff(𝑣𝑖 ). By subtracting each node’s
normalized difference from the maximum, higher attention is given
to nodes with smaller differences, ensuring those closer to global
features receive more balanced attention during learning.

After NTSC and LGTC, we use MLPparam to learn its weights, i.e.,
𝒒 = 𝜎

(
MLPparam ( [𝒘 ; 𝒔])

)
. The rule representations are generated

by an independent MLP acting on the features𝑾 . The generated
weights act on the rule representations to generate the final 𝑯R for
subsequent Lcross alignment.

4.2 Loss Function Design
As demonstrated, NTSC and LGTC significantly contribute to the
overall performance of the GCL model. Motivated by these findings,
we propose a targeted strategy to extract and individually train
features of nodes identified by these rules. Eventually, we will
generate a two-part representation, a rule representation and a
complete node representations generated by the encoder. We then
designed a representation alignment mechanism that employs a
specific loss function to constrain these two representations. This
ensures that the node representations can perceive the defined
structural commonsense implicit in the rule representations. Ideally,
if rule-based representations are directly applicable to downstream
tasks, all nodes identified by these rules as error-prone will be
correctly classified. However, due to the inconsistency between the
rule-based embedding space and the full node representations, and
the unpredictable nature of logical relationships in graph data, this
scenario is rarely achievable. Directly applying rule representations
to downstream tasks often neglects critical information, as these
representations fail to capture the complete graph topology and the
most suitable embedding space. Additionally, the quality of node
representations may significantly degrade due to noise introduced
by directly incorporating rule representations, which integrate
entirely different distribution representations into the node’s own.

To address this challenge, we first use a separate contrastive loss
for the rule representations, so that similar samples are closer while
dissimilar samples are further away from each other in the rule
representations. Details are as follows:

Lrule = − 1
𝑁

𝑁∑︁
𝑖=1

log

(
𝑺𝒊𝒊∑𝑁
𝑗=1 𝑺𝒊𝒋

)
, (5)

where 𝑺 = 𝑓 (𝒁norm𝒁𝑇
norm), 𝒁norm is the normalized rule representa-

tions, 𝑺𝑖 𝑗 represents the similarity of rule representations between
𝑣𝑖 and 𝑣 𝑗 , and 𝑓 (𝑥) = 𝑒 (𝑥/𝜏 ) .

After processing of rule representations, we use a representation
alignment mechanism to design the loss between these represen-
tations. Specifically, we avoid the problem of introducing noise
by aligning the distribution of rule representations and original
representations. We also separate rule representations and enable
the rule representations to perceive the information of the node
representations. Now, we have node representations 𝑯N and rule
representations 𝑯R, respectively, with dimension 𝑛 × 𝑑 where 𝑛 is
the number of error-prone nodes and 𝑑 is the number of represen-
tations. The mean of these representations is computed as:

𝝁N =
1
𝑛

𝑛∑︁
𝑖=1

𝑯N𝒊,: , 𝝁R =
1
𝑛

𝑛∑︁
𝑖=1

𝑯R𝒊,: , (6)

where 𝑯N𝒊,: and 𝑯R𝒊,: are the rows of the representations 𝑯N and
𝑯R. These means provide a central node around which the repre-
sentations are distributed. Then we compute the covariance matrix,
which measures how much two random variables change together
and indicates the spread and orientation of the data distribution:

Cov(𝑯N ) =
1

𝑛 − 1
(𝑯N − 𝝁N )⊤ (𝑯N − 𝝁N ) ,

Cov(𝑯R ) =
1

𝑛 − 1
(𝑯R − 𝝁R )⊤ (𝑯R − 𝝁R ) ,

(7)

where Cov(𝑯N) and Cov(𝑯R) are the covariance of the node and
rule representations, respectively. These matrices provide insights
into the variability and relationships between different dimensions
of the data. To align the distributions of the node and rule represen-
tations, we define the total cross-representation loss, Lcross, as the
sum of the mean squared error (MSE) of the mean representations
and the MSE of the covariance matrices. This ensures that both the
means and standard deviations of the two distributions are matched
as follows:

MSEmean =
1
𝑑

𝑑∑︁
𝑗=1

(
𝝁N, 𝑗 − 𝝁R, 𝑗

)2
,

MSEcov =
1
𝑑2

𝑑∑︁
𝑗=1

𝑑∑︁
𝑘=1

(
Cov(𝑨) 𝑗𝑘 − Cov(𝑩) 𝑗𝑘

)2
,

(8)

where 𝝁N, 𝑗 and 𝝁R, 𝑗 are the components of the mean representa-
tions 𝝁N and 𝝁R. Cov(𝑨) 𝑗𝑘 and Cov(𝑩) 𝑗𝑘 are the elements of the
covariance matrices of 𝝁N and 𝝁R. Lcross is then formulated as:

Lcross = MSEmean +MSEcov, (9)

which ensures that the model learns to align the distributions
of node representations and rule representations effectively. Ul-
timately, the comprehensive loss function for Str-GCL is given by:

L = LInfoNCE + Lrule + Lcross, (10)
4
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Figure 3: The overview of the proposed method. Two graph views G1 and G2 are generated from graph G by augmentations.
NTSC and LGTC process the original graph G and generate a weight set respectively. Then, each weight is passed to MLPparam
to learn the weights, and finally acts on the representations 𝑯R. G1 and G2 through a shared GNN encoder generates node
representations 𝑼 and 𝑽 respectively, and the rule feature𝑾 generates the corresponding rule representations 𝑯R through MLP.
𝑯R establishes losses with 𝑼 and 𝑽 respectively through Lcross, and constrains nodes to perceive structural commonsense.

where LInfoNCE retains the same form as in Equation 1. Overall
loss L integrates the InfoNCE loss, the rule-based loss for incorpo-
rating structural commonsense, and the cross-representations loss,
providing a mechanism for aligning node and rule representations.

5 Related Work
Graph Contrastive Learning is currently attracting widespread
attention in the academic community. It generates multiple aug-
mented views through data augmentation and designs different
objective functions to train the model based on maximizing mutual
information, thereby reducing the model’s dependence on label
information. GRACE [3] trains the model by maximizing the sim-
ilarity of corresponding nodes in two views and minimizing the
similarity between other nodes. On this basis, GCA [10] designs an
adaptive enhanced GCL framework to measure the importance of
nodes and edges, protecting the semantic information of graph data
during augmentation. CCA-SSG [25] utilizes Canonical Correla-
tion Analysis (CCA) [26] to align information from corresponding
dimensions across different views while decorrelating informa-
tion from distinct dimensions, resulting in linear time and space
complexity. HomoGCL [12] starts from the assumption of graph ho-
mophily and uses a Gaussian mixture model (GMM) to soft-cluster
nodes to determine whether neighboring nodes are positive sam-
ples. ProGCL [11] uses a Beta Mixture Model (BMM) to estimate the
probability that a negative sample is a true negative, and proposes
a method to compute the weights of negative samples and synthe-
size new negative samples. CGKS [27] constructs multi-view GCL
models of different scales through graph coarsening and introduces
a jointly optimized contrast loss across multiple layers to capture
information at different granularities. PiGCL [28] addresses the
implicit conflict problem in GCL caused by information mutual
exclusion and performs secondary screening of negative samples
by dynamically capturing and ignoring conflicting ones.

In BGRL [13], the nodes in the augmented graph are regarded as
positive samples, and the online encoder is trained to predict the
target encoder to generate efficient node representations. AFGRL
[14] differs from augmentation-based GCL methods. It does not
rely on data augmentation and negative samples. It discovers pos-
itive samples through a k-nearest neighbor search and optimizes
representation learning by combining local and global information.

Unlike previous models, DGI [2] learns node representations
by maximizing the mutual information between node and global
representations, treating the corrupted graph as negative samples.
GGD [29] designs a new model based on binary cross-entropy loss,
analyzing DGI’s loss function, and groups positive and negative
samples separately, which accelerates the model’s training process.
Based on DGI, MVGRL [30] generates new structural views through
graph diffusion, and distinguishes between the graph representa-
tions and node representations generated by different views.

6 Experiments
6.1 Experimental Setup
We compare Str-GCL with three types of baseline methods, in-
cluding: (1) Classical unsupervised algorithms: Deepwalk [31] and
node2vec [32]. (2) Semi-supervised baselines GCN [23]. (3) GCL
baselines: BGRL [13], MVGRL [30], DGI [2], GBT [33], GRACE [3],
GCA [10], CCA-SSG [25], Local-GCL [34], ProGCL [11], HomoGCL
[12] and PiGCL [28]. We evaluate the effectiveness of Str-GCL using
six datasets of different sizes. These datasets include Cora, CiteSeer,
PubMed [35], Coauthor CS, Amazon Photo and Amazon Computers
[21]. Details are presented in Appendix A.3.

6.2 Node Classification
We evaluated the performance of Str-GCL on node classification
tasks. During the evaluation phase, we follow the configuration in
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Table 1: Performance on node classification. 𝑋,𝐴,𝑌 denote the node attributes, adjacency matrix, and labels in the datasets. The
best and second-best results for each dataset are highlighted in bold and underlined. OOM signifies out-of-memory on 24GB
RTX 3090. Data without variance are drawn from previous GCL works[3, 10].

Method Available Data Cora CiteSeer PubMed CS Photo Computers

Raw Features 𝑋 64.80 64.60 84.80 90.37 78.53 73.81
Node2vec 𝐴 74.80 52.30 80.30 85.08 89.67 84.39
DeepWalk 𝐴 75.70 50.50 80.50 84.61 89.44 85.68
DeepWalk + Features 𝑋,𝐴 73.10 47.60 83.70 87.70 90.05 86.28

BGRL 𝑋,𝐴 81.40 ± 0.57 69.53 ± 0.39 85.38 ± 0.08 92.16 ± 0.13 92.75 ± 0.22 87.72 ± 0.24
MVGRL 𝑋,𝐴 84.06 ± 0.63 71.78 ± 0.78 84.88 ± 0.20 92.35 ± 0.14 91.94 ± 0.27 86.00 ± 0.32
DGI 𝑋,𝐴 83.71 ± 0.86 71.82 ± 1.59 86.08 ± 0.23 92.87 ± 0.08 92.78 ± 0.14 87.77 ± 0.36
GBT 𝑋,𝐴 81.52 ± 0.45 68.41 ± 0.66 85.81 ± 0.15 93.06 ± 0.08 92.82 ± 0.40 88.85 ± 0.25
GRACE 𝑋,𝐴 83.96 ± 0.62 71.97 ± 0.67 86.09 ± 0.17 92.19 ± 0.12 91.92 ± 0.30 88.19 ± 0.41
GCA 𝑋,𝐴 82.15 ± 1.00 69.76 ± 1.05 86.58 ± 0.15 92.35 ± 0.21 91.75 ± 0.29 86.58 ± 0.32
CCA-SSG 𝑋,𝐴 84.06 ± 0.62 70.02 ± 1.09 86.00 ± 0.22 92.05 ± 0.12 92.74 ± 0.31 88.96 ± 0.13
Local-GCL 𝑋,𝐴 83.74 ± 0.93 70.83 ± 1.62 85.89 ± 0.26 92.22 ± 0.16 92.86 ± 0.23 89.54 ± 0.32
ProGCL 𝑋,𝐴 83.74 ± 0.74 71.90 ± 1.66 85.84 ± 0.20 93.20 ± 0.17 92.55 ± 0.38 87.69 ± 0.22
HomoGCL 𝑋,𝐴 83.50 ± 1.09 70.34 ± 1.12 85.48 ± 0.21 91.53 ± 0.13 92.35 ± 0.22 88.80 ± 0.25
PiGCL 𝑋,𝐴 84.63 ± 0.78 73.51 ± 0.64 86.75 ± 0.20 93.30 ± 0.09 93.14 ± 0.30 89.25 ± 0.27
Str-GCL (Ours) 𝑋,𝐴 84.89 ± 0.90 73.58 ± 0.84 86.81 ± 0.14 93.89 ± 0.04 93.90 ± 0.26 90.19 ± 0.16

Supervised GCN 𝑋,𝐴,𝑌 82.80 72.00 84.80 93.03 92.42 86.51

previous works[3, 10], and our GNN encoder and classifier com-
ponents are the same as those used in GRACE. All of the node
classification experiments are shown in Table 1 and our experi-
mental results reveal the following findings: 1) Our Str-GCL model
demonstrated excellent performance across various datasets. In our
comparative experiments, our method significantly outperformed
the supervised GCN method, underscoring the effectiveness of our
approach. 2) Our model outperforms the baseline model GRACE
across all node classification tasks, with significant improvements
observed on the CS, Photo and Computers datasets. We analyze the
degree and similarity of the datasets and find that there are many
high-degree nodes in the CS and Computers. These high-degree
nodes make it difficult for local structures to change, and some
nodes struggle to break free from the influence of their neighbors
solely through the objective function. Structural commonsense en-
hances and highlights the representations of these nodes during
alignment, allowing misclassified nodes to be correctly classified.
This corresponds with the earlier results where the proportion of
selected rule nodes significantly exceeds the error rate of datasets,
indicating that the encoder can indeed learn structural common-
sense through rule representations and demonstrating the effec-
tiveness of our rules. In the PubMed dataset, due to its sparsity
and generally low node degrees, only the nodes with the smallest
degrees are prioritized by structural commonsense. This is to pre-
vent additional information from disrupting the stable structures in
the graph. 3) Our approach significantly outperforms the GRACE-
based improved models GCA, Local-GCL, ProGCL, HomoGCL and
PiGCL. This further demonstrates that the structural commonsense
can indeed enhance model performance.

6.3 Ablation Study
In this section, we investigate how each component of Str-GCL,
including Lrule and Lcross contributes to the overall performance.
The result is shown in Table 2. Here, in "w/o Lrule", we disable the
Lrule in Equation 5, and in "w/o Lcross", we disable the interaction
between rule representations and node representations. The abla-
tion study results demonstrate the effectiveness of the proposed
loss in our Str-GCL model on different datasets. This trend is con-
sistent across all datasets. Among them, the decrease of deleting
Lcross is the most significant compared to only delete Lrule, which
shows that this alignment mechanism can indeed enable the node
representations to perceive the structural commonsense expressed
by the rules. In addition, for handling rule representations, Lrule
generates a representation space aligned with the node represen-
tations, reducing the difficulty of interactions between different
representations, which further enhances the performance of the
baseline model. When both Lcross and Lrule are eliminated, we
observe the most significant decrease, confirming their combined
importance in achieving optimal performance.

6.4 Performance Analysis of the Str-GCL Plugin
In Table 3, we evaluate the effectiveness of our proposed model by
integrating Str-GCL into three classical GCL models: GRACE [3],
CCA-SSG [25], and DGI [2]. It is important to note that throughout
the paper if Str-GCL is mentioned without specifying a base model,
it is implicitly assumed to be based on GRACE for performance
evaluation and analysis. During the integration of Str-GCL, we
maintain the original parameters of the base models unchanged,
modifying only the necessary model architecture and hyperparame-
ters required for the plugin. As shown in the table, the incorporation
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Table 2: Ablation study evaluated on six benchmark datasets.

Model Cora CiteSeer PubMed CS Photo Computers

Str-GCL 84.89 ± 0.90 73.58 ± 0.84 86.81 ± 0.14 93.89 ± 0.04 93.90 ± 0.26 90.19 ± 0.16
w/o Lrule 84.76 ± 0.51 73.07 ± 0.31 86.62 ± 0.30 93.58 ± 0.21 93.49 ± 0.41 89.88 ± 0.08
w/o Lcross 83.73 ± 0.74 72.19 ± 1.10 86.51 ± 0.15 93.74 ± 0.08 93.16 ± 0.15 89.23 ± 0.13
w/o Lrule & Lcross 83.87 ± 1.10 72.23 ± 0.34 86.46 ± 0.66 93.51 ± 0.15 92.95 ± 0.26 89.20 ± 0.28

Table 3: Node classification accuracy comparison with Str-GCL plugin integration across various GCL models and datasets

Model Cora CiteSeer PubMed CS Photo Computers

GRACE 84.0±0.6 72.0±0.7 86.1±0.2 92.2±0.1 91.9±0.3 88.2±0.4
Str-GCLGRACE 84.9±0.9 (0.9 ↑) 73.6±0.8 (1.6 ↑) 86.8±0.1 (0.7 ↑) 93.9±0.1 (1.7 ↑) 93.9±0.3 (2.0 ↑) 90.2±0.2 (2.0 ↑)

CCA-SSG 84.0±0.6 70.0±1.0 86.0±0.2 92.0±0.1 92.7±0.3 88.9±0.1
Str-GCLCCA-SSG 84.5±1.1 (0.5 ↑) 71.3±0.9 (1.3 ↑) 86.4±0.2 (0.4 ↑) 92.8±0.1 (0.8 ↑) 93.2±0.2 (0.5 ↑) 89.5±0.2 (0.6 ↑)

DGI 83.7±0.8 71.8±1.6 86.0±0.2 92.8±0.1 92.7±0.1 87.8±0.3
Str-GCLDGI 84.4±0.3 (0.7 ↑) 72.2±0.9 (0.4 ↑) 86.1±0.3 (0.1 ↑) 93.3±0.1 (0.5 ↑) 93.3±0.3 (0.6 ↑) 88.2±0.2 (0.4 ↑)

of Str-GCL into various base models leads to performance enhance-
ments across different datasets. Specifically, the performance im-
provement of Str-GCLGRACE is the most notable. This is due to the
objectives of GRACE, which causes semantically deficient nodes
to maintain deficiency while incorporating significant averaging
and noises. Consequently, in the InfoNCE loss, the alignment of
positive samples lacks learnable information and the discrimina-
tive ability between negative samples is diminished. This results
in increased bias in the representation space and obscures the core
semantics within the embedding space. CCA-SSG employs an invari-
ance loss to align embeddings from different views. Compared to
GRACE, CCA-SSG enforces consistency within the representation
spaces across different views rather than node-level discrimina-
tion. Consequently, CCA-SSG emphasizes the correlation between
representations instead of specifically addressing node-level dis-
tinctions, resulting in a somewhat reduced performance gain for
Str-GCLCCA-SSG compared to Str-GCLGRACE. DGI maximizes the
mutual information between local and global representations, im-
posing specific constraints on the representation space. However,
DGI overlooks the discriminative capacity between nodes, which
is a key reason why Str-GCLDGI can enhance accuracy. Neverthe-
less, in graphs with high homophily, DGI can still achieve effective
representations by solely learning global information.

6.5 Error-Prone Nodes Analysis
In this section, we analyze the distribution of misclassified nodes
across different datasets using the GRACE model and our proposed
Str-GCL model. Table 4 presents the detailed results, showing the
number of nodes that were misclassified at least 15 times out of
20 complete runs with Str-GCL. Additionally, it includes the total
number of nodes with 15 or more misclassifications. This analysis
helps evaluate the effectiveness of Str-GCL in handling frequent
errors and identifying unavoidable errors. From Table 4, we can
observe that for Str-GCL, the number of frequently misclassified
nodes has decreased in each dataset. The most obvious among them

Table 4: Comparsion of misclassified nodes distribution in
GRACE and Str-GCL across multiple datasets.

Datasets Model 15 16 17 18 19 20 Total Decline

PubMed GRACE 98 84 93 144 195 1437 2051 -
Str-GCL 100 105 116 138 234 1254 1947 5.1%

CS GRACE 38 44 40 82 125 804 1133 -
Str-GCL 17 31 34 44 65 753 944 16.68%

Photo GRACE 17 16 20 20 29 348 450 -
Str-GCL 19 17 24 27 35 308 430 4.44%

Computers GRACE 45 36 42 60 73 926 1182 -
Str-GCL 35 35 33 55 83 770 1011 14.47%

are the CS and Computers datasets. In the error range of 15-20, the
number of almost all misclassified nodes has decreased. This shows
that introducing structural commonsense can significantly reduce
the number of frequently misclassified nodes. In addition, in the
PubMed and CS datasets, although the number of misclassified
nodes dropped only 20 times, this also shows that some nodes that
will definitely be misclassified can be guided by rules, even if they
cannot be completely classified correctly. This will reduce the num-
ber of misclassifications of these nodes to a certain extent. This
highlights the improved robustness and accuracy of our proposed
approach in reducing the most error-prone nodes. Across all an-
alyzed datasets, the Str-GCL model showed clear advantages in
handling error-prone nodes. This improvement is attributed to its
ability to incorporate structural commonsense that traditional GCL
methods such as GRACE cannot capture.

6.6 Node Clustering
The experimental results for node clustering are presented in Ta-
ble 5, where we evaluate the Str-GCL on the Cora, CiteSeer, PubMed
andCS datasets. Str-GCL demonstrates excellent performance across
multiple clustering tasks. Specifically, Str-GCL outperforms all other
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Table 5: Performance on node clustering. The best and second best results for each dataset are highlighted in bold and underline.

Datasets Model GRACE GCA DGI BGRL MVGRL GBT Str-GCL (Ours)

Cora NMI 0.5261 0.4483 0.5310 0.4719 0.5337 0.5055 0.5656
ARI 0.4312 0.3235 0.4499 0.3851 0.4790 0.4201 0.5067

CiteSeer NMI 0.4116 0.3909 0.3765 0.3809 0.4133 0.4310 0.4177
ARI 0.4183 0.3816 0.3752 0.3949 0.4087 0.4400 0.4349

PubMed NMI 0.3504 0.3113 0.3128 0.2898 0.2599 0.3266 0.3501
ARI 0.3307 0.3085 0.3066 0.2645 0.2556 0.2973 0.3069

CS NMI 0.7579 0.7205 0.6062 0.6380 0.6324 0.7524 0.7971
ARI 0.6538 0.5602 0.4390 0.5346 0.5124 0.6509 0.7852

baselines on the Cora and CS datasets and improves on the baseline
GRACE by an average of 2.1% in NMI and 5.0% in ARI. Addition-
ally, models based on InfoNCE generally show higher accuracy
on the PubMed and CS datasets compared to other GCL baselines,
such as BGRL, MVGRL and DGI. However, Str-GCL’s accuracy on
PubMed does not improve with the incorporation of structural
commonsense compared to GRACE. This is attributed to the small
difference between inter-class and intra-class similarities in the
PubMed dataset, making it difficult to distinguish those nodes at
the boundaries of classes.

(a) GRACE (b) CCA-SSG

(c) DGI (d) Str-GCL

Figure 4: T-SNE embeddings of nodes in Amazon Computers
dataset, and the best result is highlighted in underline.

6.7 Visualizaion
In this section, we use T-SNE to demonstrate the advantages of
Str-GCL over other baseline models. We conducted experiments on
the Amazon Computers dataset using GRACE, CCA-SSG, DGI, and
GRACE-Based Str-GCL, as shown in Fig 4. It is evident that, com-
pared to other baseline models, Str-GCL significantly improves the
quality of the generated embeddings. While Str-GCL does not fur-
ther enhance intra-class similarity compared to the default baseline

model GRACE, it optimizes inter-class similarity by increasing the
separation between classes and providing stable class assignments
for those nodes at the boundaries of classes. This is aligned with
the focus of our structural commonsense. DGI, on the other hand,
emphasizes local-global similarity, which yields good accuracy in
node classification but exhibits less effective clustering. It fails to
achieve clear inter-class separation, and the intra-class similarity re-
mains low, particularly in datasets with high homophily. CCA-SSG
achieves highly discriminative representations due to the decorre-
lation between different dimensions. However, in graphs with high
homophily, the high similarity between representations increases
the difficulty of distinguishing across dimensions, resulting in less
effective clustering compared to our method.

7 Conclusion
In this paper, we address the limitations of existing GCL methods,
which primarily capture implicit semantic relationships but fail
to perceive structural commonsense within graph structures. We
identify that many nodes with fewer topological connections or
lower feature distinctiveness are inadequately trained by conven-
tional GCL methods. To overcome these challenges, we propose
a new paradigm called Str-GCL (Structural Commonsense Driven
Graph Contrastive Learning), which integrates rules, represented
by first-order logic, to guide the model in learning human-perceived
structural commonsense, and also provides a new direction for de-
veloping universal and efficient rule-based reasoning mechanisms
and applying these reasoning rules to existing pre-trained models.
Through extensive analysis of various datasets, we demonstrate
that manually defined rules can effectively represent structural
commonsense from both attribute and topological perspectives. We
introduce an alignment mechanism that enables the encoder to
perceive these additional structural commonsense, ensuring more
comprehensive and effective training for all nodes. We integrate Str-
GCL as a plugin into multiple GCL baselines. Extensive experiments
and visualization demonstrate the effectiveness of Str-GCL.

Future research could focus on developing automated logic rule
definitions to enhance the model’s efficiency, scalability, and ro-
bustness. Moreover, since our rules operate independently of the
encoder, this opens up the possibility of designing a universal rule
set and corresponding plugins that can be easily adapted to various
models, thereby extending the generalizability of our approach.
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A Appendix
A.1 Proofs for Neighborhood Topological

Summation Constraint (NTSC)
Objection: Nodes with a smaller sum of neighbor’s degrees are
poor at average out noise and thus unstable during training.

Let 𝐺 = (𝑉 , 𝐸) be an graph where 𝑉 is the set of nodes and 𝐸

is the set of edges. For a node 𝑣 ∈ 𝑉 , let 𝑁 (𝑣) denote the set of
neighbors of 𝑣 , and let 𝑑 (𝑢) be the degree of a neighbor 𝑢 ∈ 𝑁 (𝑣).
We define the total degree of the neighbors of 𝑣 as TotalDegree
(𝑣) = ∑

𝑢∈𝑁 (𝑣) 𝑑 (𝑢). The loss function 𝐿 can be expressed as the
sum of the local losses 𝐿𝑢 for each node 𝑢 ∈ 𝑉 :

𝐿 =
∑︁
𝑢∈𝑉

𝐿𝑢 , (11)

for a sepcific node 𝑣 , the gradient of 𝐿 with respect to ℎ𝑣 is:
𝜕𝐿

𝜕ℎ𝑣
=

∑︁
𝑢∈𝑁 (𝑣)

𝜕𝐿𝑢

𝜕ℎ𝑣
, (12)

each gradient term 𝜕𝐿𝑢
𝜕ℎ𝑣

may contain a noise component 𝜖𝑢 :

𝜕𝐿𝑢

𝜕ℎ𝑣
= ∇𝐿𝑢 + 𝜖𝑢 . (13)

Thus, the total gradient for node 𝑣 can be written as:
𝜕𝐿

𝜕ℎ𝑣
=

∑︁
𝑢∈𝑁 (𝑣)

(∇𝐿𝑢 + 𝜖𝑢 ) =
∑︁

𝑢∈𝑁 (𝑣)
∇𝐿𝑢 +

∑︁
𝑢∈𝑁 (𝑣)

𝜖𝑢 . (14)

Let𝑤 be a nodewith a high sumof neighbor degrees TotalDegree(𝑤)
and 𝑣 be a nodewith a lower sumof neighbor degrees TotalDegree(𝑣),
where TotalDegree(𝑤) > TotalDegree(𝑣). Therefore, the noise
components for node𝑤 and 𝑣 can be expressed as:

Noise 𝑤 =
∑︁

𝑢∈𝑁 (𝑤 )
𝜖𝑢 , Noise 𝑣 =

∑︁
𝑢∈𝑁 (𝑣)

𝜖𝑢 , (15)

according to the law of large numbers, as the number of terms
increases, the average noise effect decreases:

Noise 𝑤

TotalDegree (𝑤) ≈ E [𝜖𝑢 ] ,
Noise 𝑣

TotalDegree (𝑣) ≈ E [𝜖𝑢 ] . (16)

While the expected value of noise E [𝜖𝑢 ] is the same for all nodes
(under the i.i.d. assumption), the actual noise impact on the gradient
is smaller for nodes with a higher sum of neighbor degrees due to
the averaging effect. Since TotalDegree(𝑤) > TotalDegree(𝑣), the
node 𝑤 with a higher sum of neighbor degrees experiences less
relative noise impact:

Noise 𝑤

TotalDegree (𝑤) <
Noise 𝑣

TotalDegree (𝑣) . (17)

Therefore, nodes with a smaller sum of neighbor degrees are poorer
at averaging out noise and have more unstable representations
during training.

A.2 Proofs for Local-Global Threshold
Constraint (LGTC)

Objection: Nodes with similarity between local and global feature
averages have fewer distinctive class features and are more prone
to classification errors.

Let 𝐺 = (𝑉 , 𝐸) be an undirected graph where 𝑉 is the set of
nodes and 𝐸 is the set of edges. For a node 𝑣 ∈ 𝑉 , let 𝑁 (𝑣) denote
the set of neighbors of 𝑣 . Let 𝑥𝑣 represent the original feature vector
of node 𝑣 , and sim(𝑥𝑣, 𝑥𝑢 ) is the dot product of the feature between
node 𝑣 and node 𝑢. Then, we define LocalSim(𝑣) as the average
similarity between 𝑣 and its neighbor’s original features, and define
GlobalSim(𝑣) as the average similarity between 𝑣 and all other
nodes’ original features in the graph. The definition is as follows:

LocalSim(𝑣) = 1
|𝑁 (𝑣) |

∑︁
𝑢∈𝑁 (𝑣)

sim (𝑥𝑣, 𝑥𝑢 ) ,

GlobalSim(𝑣) = 1
𝑉

∑︁
𝑢∈𝑉

sim (𝑥𝑣, 𝑥𝑢 ) ,
(18)

there we let node 𝑣 satisfies |LocalSim(𝑣) − GlobalSim(𝑣) | is small,
and for the representations ℎ𝑘+1𝑣 of node 𝑣 is as follows:

ℎ
(𝑘+1)
𝑣 = 𝜎 (

∑︁
𝑢∈𝑁 (𝑣)

1√︁
𝑑 (𝑣)𝑑 (𝑢)

𝑊 (𝑘 )𝑥𝑢 ), (19)

here we assume LocalSim(𝑣) ≈ GlobalSim(𝑣), for example, the
initial feature of node 𝑣 and its neighbors is close to the global
feature:

LocalSim(𝑣) = 1
|𝑁 (𝑣) |

∑︁
𝑢∈𝑁 (𝑣)

(𝑥𝑣 · 𝑥𝑢 )

≈ GlobalSim(𝑣) = 1
|𝑉 |

∑︁
𝑢∈𝑉

(𝑥𝑣 · 𝑥𝑢 ),
(20)

this implies that 𝑥𝑢 can be approximately represented by the global
feature mean 𝑥 :

𝑥𝑢 ≈ 𝑥 ∀𝑢 ∈ 𝑁 (𝑣) . (21)
Therefore, the updated representation of node 𝑣 is:

ℎ
(𝑘+1)
𝑣 = 𝜎 (

∑︁
𝑢∈𝑁 (𝑣)

1√︁
𝑑 (𝑣)𝑑 (𝑢)

𝑊 (𝑘 )𝑥). (22)

The representation ℎ (𝑘+1)𝑣 of node 𝑣 primary reflects global features
and lacks distinctive class features. Therefore, nodes with similarity
between local and global feature averages have fewer distinctive
class features and are more prone to classification errors.

A.3 Datasets

Table 6: Dataset statistics in experiment

Dataset #Nodes #Edges #Features #Classes
Cora 2,708 10,556 1,433 7

CiteSeer 3,327 9,228 3,703 6
PubMed 19,717 88,651 500 3

CS 18,333 163,788 6,805 15
Photo 7,650 238,163 745 8

Computers 13,752 491,722 767 10

In Cora, CiteSeer and PubMed[35] dataset, nodes are papers,
edges are citation relationships. Each dimension in the feature
corresponds to a word. Labels are the categories into which the
paper is divided.
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Coauthor CS [21] dataset, nodes are authors, that are connected
by an edge if they co-authored a paper. Node features represent
paper keywords for each author’s papers, and class labels indicate
most active fields of study for each other.

Amazon Computers and Amazon Photo are segments of Amazon
co-purchase graph [36], where nodes represent goods, edges indi-
cate that two goods are frequently bought together, node features
are bag-of-words encoded product reviews, and class labels are
given by the product category.

A.4 Pseudo Code of Str-GCL
The following pseudo code outlines the Str-GCL training algo-
rithm, which integrates structural commonsense to enhance GCL.
As shown in Algorithm 1. The algorithm identifies error-prone
nodes using a set of predefined rules and extracts their original fea-
tures. During each training epoch, two graph views are generated,
and node representations is obtained using an encoder, while rule
representations is generated using an MLP. The total loss, compris-
ing contrastive loss, rule loss, and cross loss, is minimized to train
the model.

Algorithm 1 The Str-GCL training algorithm
Require: Original Graph G, Rule Set{ NTSC, LGTC }, Encoder 𝑓 ,

MLP 𝑔 and MLPparam 𝑔param.
1: Generate weights by applying NTSC and LGTC on the original

data
2: Calculate NTSC and LGTC, and get original features 𝑿R
3: for epoch = 0, 1, 2, . . . do
4: Generate two graph views G1 and G2 by corrupting G
5: Get node representations 𝑼 of G1 using the encoder 𝑓
6: Get node representations 𝑽 of G2 using the encoder 𝑓
7: Get rule representations 𝑯R of 𝑿R using the MLP 𝑔
8: Get learnable rule weights 𝒘 and 𝒔 of 𝑯R using the

MLPparam 𝑔param
9: Compute the contrastive loss LInfoNCE with Equation 1
10: Compute the rule loss Lrule with Equation 5
11: Compute the cross loss Lcross to align 𝑼 , 𝑽 , and 𝑯R
12: Update parameters to minimize the total loss L =

LInfoNCE + Lrule + Lcross
13: end for
14: Return node embedding 𝑯 , trained encoder 𝑓

A.5 Experimental details
We test Str-GCL on classification and clustering tasks, with both
Str-GCL and all GCL baselines trained in a self-supervised manner.
For the Cora and CiteSeer datasets, due to their small size, we use
a two-layer GCN encoder for training. In contrast, for PubMed,
Coauthor CS, Amazon Photo, and Amazon Computers, we employ
a single-layer GCN encoder. For the classification task, we follow
the same setup as GRACE [3], using 10% of the data to train the
downstream classifier and 90% for testing. All experiments are
conducted on an RTX 3090 GPU (24GB).

Str-GCL(Ours)

(a) Misclassified nodes distribution comparison of PubMed

Str-GCL(Ours)

(b) Misclassified nodes distribution comparison of CS

Figure 5: Misclassified nodes distribution comparison of
PubMed and CS datasets.

A.6 Hyperparameter Specifications
In this section, we present the hyperparameter specifications used
for training the Str-GCL model on various datasets. Table 7 and 8
detail the hyperparameters employed for different datasets.

Table 7 lists the core hyperparameters, including the temperature
parameter 𝜏 and 𝜏rule, learning rate, weight decay, number of epochs,
hidden dimension, MLP hidden dimension, and activation function.
For example, on the Cora dataset, we used a 𝜏 value of 0.5, a 𝜏rule
value of 0.4, a learning rate of 0.0001, a weight decay of 0.0005 and
800 epochs, with a hidden dimension of 1024 and an MLP hidden
dimension of 128, employing the 𝑟𝑒𝑙𝑢 activation function.

Table 8 provides additional hyperparameters, such as 𝛼 , 𝛽 , drop
edge rates, and drop feature rates. For instance, on the Cora dataset,
we set drop edge rates of 0.3 and 0.2 for the two dropout layers, and
drop feature rates of 0.4 and 0.2. The weight of Lrule is 100, and
the weight of Lcross is 1.

These hyperparameters are carefully selected to optimize the
performance of Str-GCL across different datasets, ensuring robust
and consistent results.
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Table 7: Hyperparameters specifications 1.

Dataset 𝜏 𝜏rule Learning rate Weight decay Num epochs Hidden dimension Mlp hidden dim Activation function

Cora 0.5 0.4 0.0001 0.0005 800 1024 128 𝑟𝑒𝑙𝑢

CiteSeer 0.9 0.8 0.005 0.0001 100 512 256 𝑟𝑒𝑙𝑢

PubMed 0.9 0.9 0.0005 0.0005 1000 1024 128 𝑟𝑒𝑙𝑢

CS 0.4 0.3 0.0005 0.00005 1000 512 128 𝑟𝑒𝑙𝑢

Photo 0.4 0.4 0.0001 0.00001 15000 2048 128 𝑟𝑒𝑙𝑢

Computers 0.4 0.3 0.0005 0.0001 18000 512 128 𝑟𝑒𝑙𝑢

Table 8: Hyperparameters specifications 2.

Dataset Drop edge rate 1 Drop edge rate 2 Drop feature rate 1 Drop feature rate 2 Weight of Lrule Weight of Lcross

Cora 0.3 0.2 0.4 0.2 100 1
CiteSeer 0.4 0.3 0.2 0.2 5 1
PubMed 0.2 0.2 0.3 0.1 1 1
CS 0.1 0.2 0.3 0.1 1 1
Photo 0.4 0.4 0.3 0.1 1 1
Computers 0.1 0.2 0.3 0.1 1 1

Str-GCL(Ours)

(a) Misclassified nodes distribution comparison of Computers

Str-GCL(Ours)

(b) Misclassified nodes distribution comparison of Photo

Figure 6: Misclassified nodes distribution comparison of
Computers and Photo datasets.

A.7 Misclassified Nodes Analysis on Benchmark
Datasets

In this section, we provide a detailed analysis of misclassified nodes
across multiple benchmark datasets, following the same experi-
mental settings as described in the main text. As shown in Figure
6 Our goal is to identify nodes that are insufficiently trained, as
evidenced by their frequent misclassification errors across multiple
tests. As outlined in the main text, we use the well-known GCL
method, GRACE [3], and run it 20 times on each dataset under the
default experimental settings. For each run, we record the number
of misclassifications for each node. This aggregated data allows us
to observe the frequency distribution of misclassified nodes and
identify those that consistently exhibit high error rates.

The CS dataset demonstrates excellent performance with the
Str-GCL model, showing a reduction in the number of misclassi-
fied nodes within the 15-20 error range. This indicates that on the
CS dataset, Str-GCL not only reduces the number of frequently
misclassified nodes but also significantly lowers their error counts.
Similarly, The Computers dataset also benefits from the Str-GCL
model. Although the reduction in the number of nodes with varying
error counts is not as consistent as in the CS dataset, there is a very
significant decrease in the number of nodes that are consistently
misclassified. This highlights the improved robustness and accuracy
of our proposed approach in reducing the most error-prone nodes.

Across all analyzed datasets, the Str-GCL model demonstrates a
clear advantage in handling error-prone nodes. This improvement
is attributed to its ability to incorporate structural commonsense,
which are not captured by traditional GCL methods like GRACE.

A.8 Reproducibility
Table 9 presents the GitHub links to the source codes of various
contrastive methods used in our evaluation.
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Table 9: Code links of various baseline methods.

Methods Source Code

BGRL https://github.com/nerdslab/bgrl
MVGRL https://github.com/kavehhassani/mvgrl
DGI https://github.com/PetarV-/DGI
GBT https://github.com/pbielak/graph-barlow-twins
GRACE https://github.com/CRIPAC-DIG/GRACE
GCA https://github.com/CRIPAC-DIG/GCA
CCA-SSG https://github.com/hengruizhang98/CCA-SSG
Local-GCL https://openreview.net/forum?id=dSYkYNNZkV
ProGCL https://github.com/junxia97/ProGCL
HomoGCL https://github.com/wenzhilics/HomoGCL
PiGCL https://github.com/hedongxiao-tju/PiGCL
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