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Abstract

Low-Rank Adaptation (LoRA) lowers the computational and memory overhead
of fine-tuning large models by updating a low-dimensional subspace of the pre-
trained weight matrix. Albeit efficient, LoRA exhibits suboptimal convergence and
noticeable performance degradation, due to inconsistent and imbalanced weight
updates induced by its nonunique low-rank factorizations. To overcome these
limitations, this article identifies the optimal low-rank factorization per step that
minimizes an upper bound on the loss. The resultant refactored low-rank adapta-
tion (RefLoRA) method promotes a flatter loss landscape, along with consistent
and balanced weight updates, thus speeding up stable convergence. Extensive
experiments evaluate RefLoRA on natural language understanding, and common-
sense reasoning tasks with popular large language models including DeBERTaV3,
LLaMA-7B, LLaMA2-7B and LLaMA3-8B. The numerical tests corroborate that
RefLoRA converges faster, outperforms various benchmarks, and enjoys negligible
computational overhead compared to state-of-the-art LoRA variants.

1 Introduction

Large language models (LLMs) have revolutionized a wide spectrum of applications including
chatbots [1], code generation [8], and scientific discovery [55]. Despite their success, adapting
LLMs to specific tasks remains computationally demanding. LLMs are built on a two-stage learning
process, namely pre-training and fine-tuning. Pre-training is performed on massive, Internet-scale
corpora. This endows LLMs with in-text comprehension and generation abilities, but results in
models with billions to trillions parameters [1, 17]. Though broad language capabilities are granted,
pre-trained LLMs are yet not tailored for specialized applications. To acquire domain-specific
expertise, LLMs must be further trained on downstream tasks, what is known as fine-tuning. With the
continually growing model size however, conventional full fine-tuning approaches (optimizing all
model parameters) can be increasingly prohibitive due to the immense GPU memory and substantial
computational capacity demands, rendering them impossible for individual users and organizations.

To tackle the computational bottleneck, parameter-efficient fine-tuning (PEFT) [22] has been investi-
gated to enhance fine-tuning efficiency. As opposed to fully fine-tuning all parameters, PEFT methods
either optimize a sparse subset [18, 54], or introduce additional lightweight trainable parameters
while keeping the pre-trained ones frozen [22, 46, 36, 29, 33]. Among these approaches, low-rank
adaptation (LoRA) [23] has gained popularity due to its low additional cost during inference. LoRA
presumes that the parameter updates during fine-tuning lie on a low-dimensional manifold, and thus
can be captured by a low-rank matrix. Though effective, LoRA is observed to suffer from challenges
such as slow and unstable convergence [41], inconsistent and unbalanced weight updates [67, 20], and
notable performance gaps relative to full fine-tuning [23]. One key reason behind these challenges is
the nonuniqueness of LoRA’s low-rank factorization [67].
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To cope with these challenges, this work advocates “refactoring” low-rank adaption (RefLoRA), a
novel approach that commits to the optimal factorization per step. Our contribution is threefold:

• We show that LoRA’s inconsistent weight updates can be characterized by a symmetric positive
definite matrix. RefLoRA dynamically selects the optimal one by minimizing an upper bound on
the loss, resulting in flatter landscape of the loss that facilitates stable and efficient optimization.

• The optimal factorization is proven to have a closed-form global solution; to yield consistent and
balanced weight updates; and to bring about a lower overhead compared to SOTA approaches.
Moreover, a simplified variant termed RefLoRA-S is developed to further reduce complexity.

• Extensive numerical tests are conducted on matrix factorization, natural language understand-
ing, and commonsense reasoning benchmarks with popular LLMs scaled up to 8B parameters,
demonstrating RefLoRA’s faster convergence and consistent performance gain.

Related work. Building upon LoRA, several have been developed to ameliorate its performance.
Some revise vanilla LoRA’s architecture or dynamically adjust its hyperparameters. For instance,
DoRA [65] decomposes LoRA weights into magnitude and direction components to improve learning
capacity and training stability. AdaLoRA [70] and GeoLoRA [51] allocates per-layer rank on-the-fly
to prune less salient updates. FedPara [25] (a.k.a. LoHa) and LoKr [66] respectively integrate
the low-rank structure with Hadamard and Kronecker products for reduced communication cost
and improved model expressiveness. Another line of work boosts LoRA’s behavior in early fine-
tuning epochs through well-designed initialization. PiSSA [41] leverages truncated singular value
decomposition (SVD) to keep the low-rank initialization close to the pre-trained weights, whereas
LoRA-GA [60] aligns the first update direction with full fine-tuning. Other variants refine LoRA’s
per-step optimization to promote empirical convergence. LoRA-Pro [61] redirects LoRA’s gradient
to match the weight update of full fine-tuning. LoRA-RITE [67] substitutes the default Adam
optimizer [26] with customized gradient calculation and moment estimation scheme. However, these
gradient-altering strategies necessitate meticulous crafting to ensure stability and convergence. Our
approach falls within the same family, but adheres strictly to standard backpropagation rule, avoiding
direct gradient manipulation and requiring less computational overhead. To meet constraints of space
limits, additional LoRA variants are discussed in Appendix A.

2 Preliminaries and nonunique low-rank factorizations

Consider a general weight matrix W ∈ Rm×n parameterizing a large model. With initialization
being the pre-trained matrix W0 := Wpt and t indexing iteration, conventional full fine-tuning
updates the sizable matrix Wt by backpropagating the loss function ℓ(Wt). Though straightforward,
this approach requires an excessive memory footprint and major computational cost.

Aiming at efficient fine-tuning, LoRA [23] freezes Wpt and presumes that the weight increment
exhibits a low-rank structure Wt = Wpt + AtB

⊤
t , where At ∈ Rm×r, Bt ∈ Rn×r, and r ≪

min{m,n} is a preselected constant. Consequently, LoRA’s objective function boils down to

min
A,B

L(A,B) := ℓ(Wpt +AB⊤).

This reformulation reduces the number of trainable parameters to (m+ n)r ≪ mn, thus effectively
minimizing the associated memory and computation costs. As for initialization, LoRA draws entries
of A0 from a zero-mean normal distribution with small variance σ2 for numerical stability; and
B0 = 0 to ensure W0 = Wpt. This choice gives rise to imbalanced updates of At and Bt, and
decelerates empirical convergence especially in early epochs. At the first iteration for example, the
chain rule implies that ∇A0

L(A0,B0) = ∇ℓ(Wpt +A0B
⊤
0 )B0 = 0, meaning no update to A0. In

comparison, B0’s gradient ∇B0
L(A0,B0) = ∇ℓ(Wpt)⊤A0 is generally non-zero. In fact, it turns

out that ∥Bt∥F ≪ ∥At∥F and ∥∇AtL(At,Bt)∥F ≪ ∥∇BtL(At,Bt)∥F when t is small [41], and
these unbalanced low-rank factors and updates can markedly impede the convergence of LoRA.

Additionally, the nonuniqueness of LoRA’s low-rank factors leads to inconsistent parameter updates.
While this issue has been previously recognized [43, 67], its implications for optimization remain
underexplored. Specifically, for any alternative decomposition (Ãt, B̃t) satisfying ÃtB̃

⊤
t = AtB

⊤
t ,

the forward pass and loss remain intact, whereas the update of Wt can differ significantly. For
illustration, consider standard gradient descent (GD) iterations

At+1 = At +∆At := At − η∇ℓ(Wt)Bt, Bt+1 = Bt +∆Bt := Bt − η∇ℓ(Wt)
⊤At (1)
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where η > 0 denotes the learning rate. The corresponding update to the weight matrix is
∆Wt := Wt+1 −Wt = At+1B

⊤
t+1 −AtB

⊤
t = At∆B⊤

t +∆BtA
⊤
t +∆At∆B⊤

t . (2)

Alternatively, GD can be also performed with the equivalent pair (Ãt, B̃t), yielding

At+1 = Ãt +∆Ãt := Ãt − η∇ℓ(Wt)B̃t, Bt+1 = B̃t +∆B̃t := B̃t − η∇ℓ(Wt)
⊤Ãt. (3)

The resultant parameter update is thereby ∆W̃t := Ãt∆B̃⊤
t +∆B̃tÃ

⊤
t +∆Ãt∆B̃⊤

t , which can
remarkably deviate from ∆Wt in (2), despite both factorizations representing the same Wt. Further
elaboration on this issue will be provided in the ensuing section.

The following notational conventions are adopted throughout the paper.

Notation. Bold lowercase (capital) letters denote vectors (matrices); ∥ · ∥2, ∥ · ∥∗, ∥ · ∥F and ⟨·, ·⟩F
stand for ℓ2-, nuclear-, Frobenius-norm and Frobenius inner product; Col(·), Null(·) and [·]i represent
column space, null space and the i-th entry/column of a vector/matrix; ·†, tr(·), and rank(·) refer
to the Moore-Penrose pseudoinverse, trace, and rank; λi(·) and σi(·) are the i-th largest eigenvalue
and singular value; Sr++ indicates the set of r × r symmetric positive definite (SPD) matrices; GL(r)
denotes the general linear group of degree r (i.e., the set of r× r invertible matrices); and O(r) stands
for the orthogonal group of degree r (i.e., the set of r × r orthogonal matrices).

3 Low-rank adaptation with optimal refactoring

This section delves into the nonuniqueness of LoRA’s factorization, and identifies the optimal one that
minimizes the loss ℓ(Wt +∆W̃t). It is first demonstrated that all possible factors (Ãt, B̃t) can be
characterized by an invertible matrix Pt, and the weight update ∆W̃t is fundamentally governed by
an SPD matrix St := PtP

⊤
t . Then, we will derive an upper bound of ℓ(Wt +∆W̃t) as a function

of St, whose global minimum will be obtained in closed form. Building on these theoretical insights,
we will optimally refactor LoRA’s low-rank matrices per iteration to obtain more effective updates,
that are at the center of our “refactored” low-rank adaptation (RefLoRA) approach. All proofs in this
section are deferred to Appendix B.

3.1 Characterizing LoRA’s factorization and weight update

Our analysis begins with the following mild assumption, which has been utilized and validated on
various realistic datasets [61].
Assumption 1. rank(At) = rank(Bt) = r, ∀t > 0.

Assumption 1 asserts that the tall matrices At and Bt maintain full column rank after the first iteration.
Since LoRA seeks to approximate the full update of Wt using a low-rank matrix, this assumption
essentially reflects the effectiveness of LoRA’s parameterization. Under Assumption 1, the next
lemma reveals that all equivalent factorizations can be captured by an r × r invertible matrix Pt.
Lemma 1. With Assumption 1 in effect, it holds that

{(Ãt, B̃t) | ÃtB̃
⊤
t = AtB

⊤
t } = {(AtPt,BtP

−⊤
t ) | Pt ∈ GL(r)}. (4)

Moreover, if Pt ∈ O(r), then ∆W̃t = ∆Wt.

Beyond characterizing the structure of equivalent factorizations, Lemma 1 implies that consistent
weight updates are preserved when (Ãt, B̃t) differs from (At,Bt) up to a rotation and reflection.
This naturally raises the question: which factorization, or Pt, is preferable for effective optimization?

To answer the last question, we first present an important observation about ∆W̃t. When setting
Ãt = AtPt and B̃t = BtP

−⊤
t , it can be readily verified (see (14) of Appendix B.1) that

∆W̃t = At(PtP
⊤
t )∆B⊤

t +∆At(PtP
⊤
t )

−1B⊤
t +∆At∆B⊤

t . (5)

Letting Pt = UP
t Σ

P
t V

P⊤
t denote the SVD of Pt, it is clear that ∆W̃t is fully determined by

the r × r SPD matrix St := PtP
⊤
t = UP

t (Σ
P
t )

2UP⊤
t ∈ Sr++. This implies that VP

t can be
chosen arbitrarily from O(r). In other words, Pt can be right-multiplied by any orthogonal matrix,
without affecting ∆W̃t. This observation agrees with the last statement of Lemma 1 by replacing
(At,Bt) and Pt with (AtU

P
t Σ

P
t ,BtU

P
t (Σ

P
t )

−1) and VP
t . Consequently, identifying the optimal

factorization boils down to selecting an ideal St ∈ Sr++.
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3.2 Optimizing St via loss upper bound minimization

Our key idea is to select the St that minimizes the loss ℓ(Wt+1) = ℓ(Wt + ∆W̃t(St)). Unfor-
tunately, directly minimizing this objective over St requires exhaustive search due to the model
nonlinearity, which is infeasible in practice. As an alternative, we derive a tractable upper bound on
ℓ(Wt +∆W̃t(St)), and minimize the bound to obtain an optimal St. Our motivation stems from
GD, which relies on the following Lipschitz smoothness assumption.
Assumption 2. The loss function ℓ has L-Lipschitz gradient; i.e., ∥∇ℓ(W)−∇ℓ(W′)∥F ≤ L∥W−
W′∥F, ∀W,W′ ∈ Rm×n.

Assumption 2 is equivalent to requiring Lipschitz smoothness of ℓ w.r.t. the vectorized weight matrix
vec(W), which is fairly mild and common in machine learning [52, 16] and optimization [3, 6].
Under this assumption, the loss admits the following quadratic upper bound

ℓ(Wt +∆Wt) ≤ ℓ(Wt) + ⟨∇ℓ(Wt),∆Wt⟩F +
L

2
∥∆Wt∥2F. (6)

Minimizing the bound yields the optimum ∆W∗
t = − 1

L∇ℓ(Wt), thus recovering the standard GD
used in full fine-tuning. Given that L is typically unknown in practice, the optimal learning rate 1/L
is replaced by a hyperparameter, whose value can be tuned via grid search on a validation dataset.

Although ℓ is often Lipschitz smooth w.r.t. Wt, its smoothness constants w.r.t. At and Bt can be
unbounded due to the bilinear structure, unless one assumes boundedness or convergence of At and
Bt [14]. Since these two assumptions are overly restrictive, they will be avoided in our analysis.

The nonlinear dependence of ∆W̃t on St (cf. (5)) prevents an analytical solution when directly
optimizing St over the quadratic upper bound of ℓ(Wt+∆W̃t(St)). This motivates iterative solvers
involving matrix multiplication with the sizable matrix ∇ℓ(Wt) ∈ Rm×n. To mitigate the overhead,
the next proposition relaxes the quadratic upper bound to factor out ∥∇ℓ(Wt)∥22, thus decoupling
St’s optimization from ∇ℓ(Wt).

Proposition 2. Consider GD update (3) with Ãt = AtPt, B̃t = BtP
−⊤
t , and St := PtP

⊤
t . Under

Assumptions 1 and 2, it follows that

ℓ(Wt+∆W̃t(St)) ≤
Lη2

2
∥∇ℓ(Wt)∥22

(
∥AtS

1
2
t ∥2F+∥BtS

− 1
2

t ∥2F−
1

Lη

)2

+O(Lη3)+Const. (7)

where Const. refers to constants that do not rely on St.

The high-order term O(Lη3) originates from ∆At∆B⊤
t in (5). As η is typically small (∼ O(10−4)),

this term is negligible in practice [60, 67]. As a consequence, the upper bound in (7) is dominated by
its first term. This leads to our RefLoRA objective

min
St∈Sr++

(
∥AtS

1
2
t ∥2F + ∥BtS

− 1
2

t ∥2F − 1

Lη

)2

. (8)

Consider for convenience the variables S̃t and C̃t defined as

S̃t := (A⊤
t At)

− 1
2

[
(A⊤

t At)
1
2B⊤

t Bt(A
⊤
t At)

1
2

] 1
2 (A⊤

t At)
− 1

2 , C̃t := 2∥AtB
⊤
t ∥∗ (9)

based on which (8) can be solved in closed form as established in the following theorem.
Theorem 3. Under Assumptions 1 and 2, the global optimum of (8) satisfies

S∗
t


= S̃t, if η ≥ 1

C̃tL
or η < 0

∋
[
(C̃tLη)

−1 ±
√
(C̃tLη)−2 − 1

]
S̃t, if 0 < η < 1

C̃tL

. (10)

Theorem 3 states that if η > 0 is not too small, then (8) admits a unique global optimum S̃t. Otherwise,
there can be multiple optima, while two can always be constructed by appropriately scaling S̃t. In
addition, η < 0 is included in (10) for visualization purposes. We remark that S̃t in (9) is known
as the matrix geometric mean (A⊤

t At)
−1#(B⊤

t Bt) of (A⊤
t At)

−1 and (B⊤
t Bt) [32], which can be

also written as S̃t = (A⊤
t At)

−1[A⊤
t AtB

⊤
t Bt]

1
2 ; cf. Lemma 7 in the Appendix.
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(a) St = S∗
t (b) St = S̃t

Figure 1: Visualization of loss ℓ(Wt +∆W̃t) and upper bound (7). LoRA corresponds to St = Ir,
while our refactoring (ref.) optimizes St.

Figure 1 plots the loss ℓ(Wt +∆W̃t), and the upper bound (7) of a numerical example as a function
of η; see also Appendix D.2 for details. LoRA corresponds to the non-optimized St = Ir, whereas
our refactoring selects St = S∗

t based on Theorem 3. Notably, η = 0 leads to a jump discontinuity for
our refactoring. Figure 1a shows that by optimizing the upper bound (7), the associated loss becomes
lower and flatter. This enables a larger step size η to achieve a lower loss, thereby accelerating the
empirical convergence of LoRA; see Section 4 for experiments corroborating this claim.

The flatter loss landscape arises thanks to balancing Ãt and B̃t. Indeed, the imbalance of At and
Bt in vanilla LoRA necessitates different step sizes [20]. Appendix B.3 proves that the balance
Ã⊤

t Ãt = B̃⊤
t B̃t is guaranteed with St = S̃t, thus enabling a unified step size. With η too small

however, it is more beneficial (compared to balanced updates) to scale either At or Bt to accommodate
the small η. This corresponds to the two solutions in the 0 < η < 1/(C̃tL) case of (10).

3.3 RefLoRA: Refactored low-rank adaptation

Having identified in Theorem 3 the optimal S∗
t minimizing the loss upper bound, we are ready to

introduce our refactored low-rank adaptation (RefLoRA) approach. RefLoRA substitutes LoRA’s per-
step update (1) with the refactored version (3), where Ãt = AtPt, B̃t = BtP

−⊤
t , and PtP

⊤
t = S∗

t .
As the right singular matrix VP

t ∈ O(r) can be arbitrary (cf. Section 3.1), one convenient choice
is to simply set Pt = S

∗1/2
t . Next, this subsection deals with two practical challenges facing the

implementation of RefLoRA, and delves into several important properties of the resultant approach.

Smoothness constant L is typically unknown and difficult to estimate in practice, especially for
LLMs. Thus, it is unclear when to switch between the two schemes in (10). As a remedy, one can
either treat 1/L as a hyperparameter akin to GD, or, adhere to the balanced update by choosing
St = S̃t for ∀η. The latter results in a continuous loss function and upper bounds as sketched in
Figure 1b. Since this adjustment only affects the region where η is tiny, it still allows for a larger η to
improve convergence. For simplicity, the balanced update is adopted thereafter.

Adaptive optimizers such as Adam [26] and AdamW [40] are default to optimizing large models,
which adjust the update using the first moment and entrywise second moment estimated from the
running average of stochastic gradients. When refactoring (At,Bt) to (AtPt,BtP

−⊤
t ), the first

moment estimator can be transformed accordingly, while the second moment is generally intractable
due to the entrywise square. To tackle this challenge, we “refactor back” the low-rank matrices after
the GD update in (3) by right-multiplying P−1

t and P⊤
t . This gives an alternative update

At+1 := (Ãt +∆Ãt)P
−1
t = At − η∇ℓ(Wt)BtS̃

−1
t , (11a)

Bt+1 := (B̃t +∆B̃t)P
⊤
t = Bt − η∇ℓ(Wt)

⊤AtS̃t (11b)
whose axes align with the original (At,Bt), thus waiving the need to transform the moment estima-
tors. This observation prompts the view of refactoring as GD with preconditioning matrices S̃−1

t and
S̃t. As a side benefit, this also eliminates the need to compute Pt from S̃t.
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Table 1: Additional complexities introduced by LoRA variants
Method Time Space

LoRA forward/backward Ω(mn) Ω(mn)

LoRA-Pro [61] O(m2r + (m+ n+ r)r2) O(m2 + (m+ n+ r)r)
LoRA-RITE [67] O((m+ n+ r)r2) O((m+ n+ r)r)

RefLoRA (Thm. 3) O((m+ n+ r)r2) O(r2)
RefLoRA-S (Thm. 5) O((m+ n)r) O(1)

Interestingly, this reformulation (11) offers an alternative interpretation of RefLoRA as Riemannian
optimization over the quotient manifold Mr

∼=
(
Rm×r

∗ ×Rn×r
∗

)/
GL(r) [5], where the quotient is

wrt equivalence relation (A,B) ∼ (AP,BP−⊤), P ∈ GL(r), and the subscript ∗ denotes full-rank
matrices. On this manifold, (11) can be equivalently derived from the Riemannian metric

g(A,B)((GA,GB), (ZA,ZB)) := ⟨GAS̃,ZA⟩F + ⟨GBS̃
−1,ZB⟩F. (12)

Denoting (9) as S̃(A,B), it can be verified that the metric (12) is congruence-invariant
S̃(AP,BP−⊤) = P−1S̃(A,B)P−⊤. Moreover, it ensures the weight update always lies in the
horizontal space altering the equivalence class, and never wastes efforts on the vertical (gauge)
directions moving within the same equivalent group; see proof in Appendix B.7. As shown in the
next section, this steepest descent on horizontal space brings about a significant faster convergence.

Next, we present three key RefLoRA properties.

Balanced refactoring A⊤
t At = B⊤

t Bt can be achieved per iteration upon setting PtP
⊤
t = S̃t,

as stated in Section 3.2. It is worthwhile pointing out that SVD-based initializations including
PiSSA [41] and LoftQ [34] inherently satisfy A⊤

0 A0 = B⊤
0 B

⊤
0 . When t is small, the balance tends

to hold approximately even without refactoring, which partially explains why empirical convergence
is fast during the early epochs. Analytically, balanced refactoring maximizes the potential loss
reduction as formalized in the ensuing Theorem.

Theorem 4. The solution St = S̃t given by (9) minimizes the lower bound

0 ≥
〈
∇Ãt

ℓ(W̃t),∆Ãt

〉
F
+
〈
∇B̃t

ℓ(W̃t),∆B̃t

〉
F︸ ︷︷ ︸

≈∆ℓ(Wt):=ℓ(Wt+1)−ℓ(Wt) with small η

≥ −η∥∇ℓ(Wt)∥22
(
∥AtS

1
2
t ∥2F + ∥BtS

− 1
2

t ∥2F
)
.

The upper bound 0 stems from the low-rank nature of LoRA, which can be reached when ∇ℓ(Wt)
⊤ ∈

Null(B⊤
t ) and ∇ℓ(Wt) ∈ Null(A⊤

t ); i.e., the stationary points of At and Bt. While this upper
bound cannot be improved, RefLoRA minimizes the lower bound, and thus leads to a more effective
descent in the loss.

Additional computational overhead induced by RefLoRA is as small as O((m + n + r)r2) in
time and O(r2) in memory, thanks to the decoupling of ∇ℓ(Wt) in Proposition (2). Compared to
the forward/backward overhead Ω(mn) of LoRA, the extra complexity introduced by RefLoRA is
relatively minimal. In contrast, LoRA-Pro [61] suffers from O(m2r + (m + n + r)r2) time and
O(m2 + (m+ n+ r)r) space, whereas LoRA-RITE [67] requires O((m+ n+ r)r) memory for
polar decomposition. Despite the low complexity of RefLoRA, further curtailing the extra cost can
be beneficial for resource-limited applications. The next theorem restricts St to a scaled identity stIr
with st > 0, and derives a result analogous to Theorem 3.
Theorem 5. Consider (8) confined with St = stIr, st ∈ R++. Under Assumptions 1 and 2, it holds

s∗t =


∥Bt∥F

∥At∥F
, if η ≥ 1

2∥At∥F∥Bt∥FL
or η < 0

1
Lη±

√
1

L2η2 −4∥At∥2
F∥Bt∥2

F

2∥At∥2
F

, if 0 < η < 1
2∥At∥F∥Bt∥FL

. (13)

This simplified refactoring (RefLoRA-S) enjoys further reduced complexity of O((m+ n)r) time
and O(1) space; see Table 1 for a summary. Compared to Theorem 3, the scalar st only has two
global optima when η is too small. Note that this simplification only guarantees a weaker balance
∥Ãt∥F = ∥B̃t∥F. However, it can be directly combined with adaptive optimizers by scaling the
moment estimators without the second refactoring.
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(a) Loss ℓ vs. iteration t (b) Norms of LoRA’s factors and gradients

Figure 2: Comparison of LoRA, ScaledGD, and RefLoRA for matrix factorization

Consistent weight updates are always guaranteed for all equivalent factorizations.

Theorem 6. Under Assumptions 1-2 and for any A′
tB

′⊤
t = AtB

⊤
t , let ∆W̃′

t and ∆W̃t be the
corresponding weight updates (5) with RefLoRA. It then always holds that ∆W̃′

t = ∆W̃t.

This consistency holds for either St = S∗
t or St = S̃t, but not for the lightweight version (13).

In this context, we dealt with slow convergence and the non-uniqueness of low-rank factorization
with the added benefit of balanced updates. The step-by-step algorithm of RefLoRA(-S) is listed in
Appendix C. Next, experiments are conducted to verify our findings.

4 Numerical tests

This section evaluates the empirical performance of RefLoRA. All experimental setups includ-
ing platforms, datasets, models, metrics, and hyperparameters are detailed in Appendix D. Our
implementation is available at https://github.com/zhangyilang/RefLoRA.

4.1 Matrix factorization

The first numerical test considers low-rank matrix factorization minA,B
1
2∥Y − AB∥2F, where

Y ∈ Rm×n is a given low-rank matrix [14]. It can be viewed as applying LoRA to a single-layer
model, and training it with whitened data [2, 31]. Figure 2a compares the training loss of RefLoRA
with LoRA, and another popular approach dubbed ScaledGD [56]—which is tailored particularly for
low-rank matrix factorization, and has gained popularity among LoRA variants; see e.g., [69]. Each
method is tested with two learning rates η ∈ {0.01, 0.03}. While vanilla LoRA converges slowly
with the lower learning rate and diverges with the higher one, RefLoRA remains stable and converges
markedly faster under both rates, as corroborated also with observations in Figure 1. Notably,
RefLoRA even outperforms ScaledGD, thanks to its balanced update. Figure 2b depicts the dynamics
of LoRA (η = 0.01) by plotting the Frobenius norms of At,Bt and their gradients. It is observed
that ∥At∥F and ∥Bt∥F are highly unbalanced across iterations, and ∥∇At

ℓ∥F as well as ∥∇Bt
ℓ∥F

exhibit a sharp change when t is small. In comparison, RefLoRA maintains Ã⊤
t Ãt = B̃⊤

t B̃t, ∀t,
which guarantees that ∥Ãt∥2F = tr(Ã⊤

t Ãt) = tr(B̃⊤
t B̃t) = ∥B̃t∥F. This balance can afford larger

learning rates, thus improving the empirical convergence.

4.2 Natural language understanding

Beyond matrix factorization the evaluation here starts with fine-tuning DeBERTaV3-base [21], a
masked language model with 184M parameters, on the General Language Understanding Evaluation
(GLUE) benchmark [59]. GLUE contains 8 datasets, providing a general-purpose evaluation for
natural language understanding (NLU) [59]. The test setup follows from [23, 70], where LoRA rank
is r = 8, reducing the trainable parameters to 1.33M. We compare RefLoRA and its lightweight
variant RefLoRA-S against a suite of LoRA variants, including SOTA methods DoRA [65] and

7

https://github.com/zhangyilang/RefLoRA


Table 2: Performance comparison using DeBERTaV3-base on the GLUE benchmark dataset. The
best results are depicted in solid lines. The score in the last column averages Matthews correlation
coefficient (Mcc), accuracies (Acc), Pearson correlation (Corr), and matched accuracy (M). The
results are obtained by averaging 5 random runs.

Method Params CoLA SST-2 MRPC STS-B QQP MNLI QNLI RTE All

Mcc Acc Acc Corr Acc/F1 M/Mm Acc Acc Avg

Full FT 184M 69.19 95.63 89.46 91.60 92.40/89.80 89.90/90.12 94.03 83.75 88.25
BitFit 0.1M 66.96 94.84 87.75 91.35 88.41/84.95 89.37/89.91 92.24 78.70 86.20
HAdapter 1.22M 68.64 95.53 89.95 91.48 91.91/89.27 90.13/90.17 94.11 84.48 88.28
PAdapter 1.18M 68.77 95.61 89.46 91.54 92.04/89.40 90.33/90.39 94.29 85.20 88.41

LoRA 1.33M 69.82 94.95 89.95 91.60 91.99/89.38 90.65/90.69 93.87 85.20 88.50
DoRA 1.33M 70.85 95.79 90.93 91.79 92.07/- 90.29/- 94.10 86.04 88.98
AdaLoRA 1.27M 71.45 96.10 90.69 91.84 92.23/89.74 90.76/90.79 94.55 88.09 89.46
LoRA-Pro 1.33M 71.36 95.76 90.20 91.92 92.19/89.60 90.23/90.19 94.29 85.56 88.94
LoRA-RITE 1.33M 69.55 95.41 90.93 91.79 92.02/89.42 90.22/90.33 94.42 85.20 88.69

RefLoRA 1.33M 71.73 95.99 91.42 92.03 92.28/89.70 90.23/90.41 94.40 88.09 89.52
RefLoRA-S 1.33M 70.66 95.76 90.44 92.21 92.43/89.89 90.13/90.17 94.16 87.73 89.19

AdaLoRA [70], as well as baselines falling in the same category with RefLoRA, i.e., LoRA-Pro [61]
and LoRA-RITE [67]. The results can be found in Table 2. It is worth mentioning that these datasets
are relatively small, so that full fine-tuning (FT) is prone to overfitting, thus leading to worse perfor-
mance compared to PEFT methods. RefLoRA and RefLoRA-S outperform all competitors on 5 out of
8 datasets, and present comparable performance to SOTA approaches on the rest 3 datasets. Overall,
RefLoRA achieves the highest average performance, demonstrating more effective optimization via
refactoring. In spite of the simplified refactoring, RefLoRA-S maintains competitive performance,
i.e., only 0.33% lower than RefLoRA on average, while markedly reducing computational overhead.

4.3 Commonsense reasoning

We further extend our numerical experiments to fine-tuning the LLaMA series [57, 58, 17], which are
autoregressive language models with 7B and 8B parameters. We tackle commonsense reasoning tasks
following the setup in [24, 65]. Training data are aggregated from 8 datasets listed in Table 3, and test
sets remain separate for individual evaluation. These reasoning tasks are intended to push the model
beyond pattern recognition, requiring commonsense and knowledge to make proper inferences. The
baselines are chosen as DoRA [65], LoRA-RITE [67], PrecLoRA [69], and NoRA+ [31]. Note that
the latter two approaches are variants of ScaledGD [56], sharing similar complexity with RefLoRA.
The accuracy comparison is summarized in Table 3. Both RefLoRA and RefLoRA-S consistently
outperform other PEFT methods in 5 out of 6 settings. Even under lower-rank configurations r = 16,
both RefLoRA and RefLoRA-S continue to lead or match top-performing approaches, underscoring
their parameter efficiency and robustness. These results demonstrate the effectiveness of the proposed
RefLoRA(-S), and underscore the potential of optimal refactoring.

4.4 Subject-driven image generation with diffusion models

Akin to LoRA, RefLoRA can be seamlessly integrated into a wide range of larger models beyond
LLMs. Further numerical tests are conducted on a subject-driven image generation task [48] with
Stable Diffusion v1.4 [45]. The goal is to fine-tune a diffusion model using a few user-provided
images so that it can generate the same object in various contexts. Specifically, the model is fine-tuned
on a set of images labeled “a photo of sks dog,” and subsequently evaluated by generating images
under the prompt “a sks dog eating nachos.” LoRA adapters with rank r = 4 are attached to the
U-Net component of Stable Diffusion, and experimental setups including hyperparameters are default
to those in [48]. The fine-tuning losses for LoRA, LoRA-Pro, LoRA-RITE, and RefLoRA are
summarized in the table 4, where average and standard deviation are calculated over 3 random runs.
It is seen that RefLoRA achieves 14.0% , 13.1%, and 9.5% improvements over LoRA, LoRA-Pro,
and LoRA-RITE, respectively. In addition to quantitative gains in loss, we also observe noticeable
improvements in image quality; see Figure 3. The generations from RefLoRA-tuned models show
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Table 3: Accuracy comparison using LLaMA series on commonsense reasoning datasets.
r Method Params BoolQ PIQA SIQA HS WG ARCe ARCc OBQA Avg

ChatGPT-3.5-turbo - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0
L

L
aM

A
-7

B 32

LoRA 0.83% 66.42 80.03 77.84 82.88 81.85 79.92 63.40 77.20 76.19
PrecLoRA 0.83% 68.96 80.95 77.43 81.54 80.27 78.83 64.16 79.20 76.42
NoRA+ 0.83% 69.85 81.83 77.38 82.09 80.03 79.67 64.25 78.60 76.71
DoRA 0.84% 69.7 83.4 78.6 87.2 81.0 81.9 66.2 79.2 78.4
LoRA-RITE 0.84% 69.82 82.75 78.55 84.72 81.69 82.15 66.23 81.40 78.54
RefLoRA 0.83% 69.60 82.48 79.53 88.25 82.56 81.57 66.64 80.20 78.85
RefLoRA-S 0.83% 70.18 82.48 78.15 87.41 82.08 81.52 65.36 81.60 78.60

16
DoRA 0.43% 70.0 82.6 79.7 83.2 80.6 80.6 65.4 77.6 77.5
RefLoRA 0.41% 69.66 82.43 79.43 87.38 81.22 80.68 65.44 78.60 78.11
RefLoRA-S 0.41% 67.65 81.50 79.07 88.28 81.77 81.23 64.59 78.60 77.84

L
L

aM
A

2-
7B 32

LoRA 0.83% 69.8 79.9 79.5 83.6 82.6 79.8 64.7 81.0 77.6
PrecLoRA 0.83% 71.47 81.50 78.81 85.97 80.43 81.14 66.55 81.00 78.36
NoRA+ 0.83% 70.52 81.94 79.07 87.66 82.24 82.70 67.06 80.20 78.92
DoRA 0.84% 71.8 83.7 76.0 89.1 82.6 83.7 68.2 82.4 79.7
LoRA-RITE 0.84% 71.04 82.43 79.79 89.12 84.53 83.88 68.77 81.20 80.10
RefLoRA 0.83% 72.54 83.79 80.04 86.94 84.85 86.36 71.50 80.20 80.78
RefLoRA-S 0.83% 73.36 83.84 80.76 90.02 82.48 84.55 67.92 82.60 80.69

16
DoRA 0.43% 72.0 83.1 79.9 89.1 83.0 84.5 71.0 81.2 80.5
RefLoRA 0.41% 71.38 82.43 80.35 90.49 83.43 84.05 69.28 82.00 80.43
RefLoRA-S 0.41% 72.08 83.03 80.45 85.89 83.27 84.30 69.88 82.00 80.11

L
L

aM
A

3-
8B 32

LoRA 0.70% 70.8 85.2 79.9 91.7 84.3 84.2 71.2 79.0 80.8
PrecLoRA 0.70% 70.73 85.80 78.86 91.87 83.66 85.10 71.08 82.40 81.19
NoRA+ 0.70% 71.16 85.10 79.48 92.22 83.35 85.86 72.27 83.20 81.58
DoRA 0.71% 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2
LoRA-RITE 0.84% 74.19 89.44 81.52 95.44 86.74 90.45 80.12 86.60 85.56
RefLoRA 0.70% 75.35 88.74 80.91 95.71 86.66 90.49 80.20 87.40 85.68
RefLoRA-S 0.70% 75.50 89.72 81.11 95.59 87.29 90.99 79.78 86.00 85.75

16
DoRA 0.35% 74.5 88.8 80.3 95.5 84.7 90.1 79.1 87.2 85.0
RefLoRA 0.35% 75.26 88.79 81.37 95.85 85.64 90.11 80.55 86.60 85.52
RefLoRA-S 0.35% 74.92 89.01 80.60 95.75 85.24 90.45 80.89 86.40 85.41

Table 4: Fine-tuning loss (↓) for subject-driven image generation on DreamBooth.
Loss LoRA LoRA-Pro LoRA-RITE RefLoRA

Avg±std 0.100± 0.015 0.099± 0.015 0.095± 0.016 0.086± 0.017

markedly clearer details and better object fidelity, particularly in the mouth and tongue regions, where
features are often distorted in outputs from other three baselines.

4.5 Convergence and complexity comparison

Lastly, we evaluate the convergence behavior and computational efficiency of RefLoRA in comparison
with LoRA [23], LoRA-Pro [61], and LoRA-RITE [67]. These tests are conducted on the MRPC
subset of the GLUE benchmark using DeBERTaV3-base as the backbone model. For fairness, the
learning rate is set to η = 4 × 10−4 across all methods. Figure 4a depicts the loss ℓ(Wt) over 10
fine-tuning epochs. The loss of RefLoRA(-S) declines more rapidly and exhibits less fluctuation than
the other three methods, which ultimately achieves the lowest value approaching 0. This confirms
stability and convergence speed, on par with our theoretical insights in Section 3. The sharper descent
in the loss suggests improved optimization trajectories enabled by RefLoRA’s principled refactoring.

The comparison of computational overhead is presented in Figure 4b. Time complexity is reflected
via the fine-tuning throughput (iterations per second; higher is better), while space complexity is
measured in GPU memory occupation (lower is better). For better visualization, the vertical axes
start with a non-zero value. The plot reveals that RefLoRA and RefLoRA-S respectively showcase
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Figure 3: Images generated from Stable Diffusion fine-tuned with different approaches.

(a) Loss ℓ vs. epoch (b) Throughput (↑) and GPU memory usage (↓)

Figure 4: Convergence and complexity comparison

88.5% and 98.7% throughput compared to LoRA, at the additional memory cost of 132MB and
< 1MB. In contrast, the throughput of LoRA-Pro and LoRA-RITE are 60.2% and 72.6% of LoRA,
requiring 134MB and 140MB extra memory. This is consistent with our complexity analysis in
Table 1. Extended comparisons scaling up to 27B models are offered in Appendix E.

5 Conclusion and outlook

This paper introduced refactored low-rank adaptation (RefLoRA), a principled LoRA variant that
remarkably enhances the efficiency and stability of fine-tuning large models. By identifying the
optimal matrix St that minimizes the loss upper bound, RefLoRA addressed the key challenges in
LoRA by providing balanced updates, improved convergence, and consistently superior empirical
performance with affordable overhead. To further facilitate scalability and applicability to large
models, RefLoRA-S leverages simplified refactoring to minimize the computational complexity. Our
future research agenda involves analyzing the convergence rate of LoRA and RefLoRA, and adapting
RefLoRA to extensive model architectures such as vision transformers and diffusion models.
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A Additional related work

LoRA variants. LoRA has been extended in several directions. For example, recent works further
reduce LoRA’s trainable parameters [28, 37, 15, 19, 27]. As these methods can achieve performance
comparable to that of LoRA, they indirectly suggest that the expressiveness of LoRA has not been
fully exploited. Another line of work [12, 34] incorporates quantization in LoRA to reduce memory
footprint and computational overhead. There are also works that broaden the applicability of LoRA
to pre-training LLMs by e.g., sequentially chaining LoRA modules [35, 39]. As our method enhances
the efficiency of LoRA training, we expect that it can be seamlessly integrated to such settings as
well. Going beyond LoRA, there are also approaches for fine-tuning LLMs in a parameter efficient
manner such as [33, 29, 38, 64]. Moreover, [30] shows that applying sharpness-aware minimization
on LoRA promotes balance between At and Bt. These approaches are orthogonal to our work.

Broader Impact. The theoretical insights and algorithmic contributions of the current work are
broadly applicable across a range of fine-tuning scenarios. Our RefLoRA enhances the efficiency and
effectiveness of adapting language models to downstream tasks, leading to improved performance in
applications such as sentiment classification. This, in turn, can positively impact real-world systems
including recommendation systems by increasing accuracy and relevance. However, caution should
be exercised when deploying the method for generative tasks. In such settings, the outputs of language
models should be carefully reviewed, and proper safeguards, such as gating mechanisms, should be
considered to ensure safety, reliability, and trustworthiness of the generated content.

Future directions. Due to limited computational resources, our evaluation currently deals with
models having reasonably large scale, e.g., LLaMA3-8B. Our future work will include scaling
RefLoRA to even larger models, such as those with 30B parameters. Another promising direction
is to integrate RefLoRA with sequentially chaining, namely [35]. This will further broaden the
applicability of RefLoRA for pre-training LLMs.

B Missing proofs

This appendix presents the proofs that were omitted from the main paper.

B.1 Proof of Lemma 1

Proof. First, we prove (4) by showing that the two sets in (4) contain each other.

For any pair (AtPt,BtP
−⊤
t ), it is easy to see AtPt(BtP

−⊤
t )⊤ = AtB

⊤
t . Thus we have

{(Ãt, B̃t) | ÃtB̃
⊤
t = AtB

⊤
t } ⊇ {(AtPt,BtP

−⊤
t ) | Pt ∈ GL(r)}.

Next, we prove the opposite containing relationship. Let (Ãt, B̃t) be an arbitrary pair satisfying
ÃtB̃

⊤
t = AtB

⊤
t . It follows that

rank(ÃtB̃
⊤
t ) = rank(AtB

⊤
t ) ≥ rank(At) + rank(Bt)− r = r,

rank(ÃtB̃
⊤
t ) ≤ min{rank(Ãt), rank(B̃t)} ≤ r.

We thus obtain rank(AtB
⊤
t ) = rank(ÃtB̃

⊤
t ) = r, and rank(Ãt) = rank(B̃t) = r.

Since Col(AtB
⊤
t ) ⊆ Col(At) and dim(Col(AtB

⊤
t )) = rank(AtB

⊤
t ) = r = rank(At) =

dim(Col(At)), we have Col(AtB
⊤
t ) = Col(At); and likewise Col(ÃtB̃

⊤
t ) = Col(Ãt).

Then, the condition ÃtB̃
⊤
t = AtB

⊤
t leads to

Col(Ãt) = Col(ÃtB̃
⊤
t ) = Col(AtB

⊤
t ) = Col(At).

This suggests, there must exist an invertible matrix Pt ∈ Rr×r such that Ãt = AtPt.

As a result, we have AtPtB̃
⊤
t = AtB

⊤
t . Multiplying P−1

t A†
t on both sides and taking transpose

yield B̃t = BtP
−⊤
t . This suggests

{(Ãt, B̃t) | ÃtB̃
⊤
t = AtB

⊤
t } ⊆ {(AtPt,BtP

−⊤
t ) | Pt ∈ GL(r)}.
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which completes the proof of (4).

Additionally, it follows from the definition of ∆W̃t that

∆W̃t = Ãt∆B̃⊤
t +∆ÃtB̃

⊤
t +∆Ãt∆B̃⊤

t

(a)
= −ηÃtÃ

⊤
t ∇ℓ(Wt)− η∇ℓ(Wt)B̃tB̃

⊤
t + η2∇ℓ(Wt)B̃tÃ

⊤
t ∇ℓ(Wt)

(b)
= −ηAtPtP

⊤
t A

⊤
t ∇ℓ(Wt)− η∇ℓ(Wt)BtP

−⊤
t P−1

t B⊤
t + η2∇ℓ(Wt)BtA

⊤
t ∇ℓ(Wt)

(c)
= At(PtP

⊤
t )∆B⊤

t +∆At(PtP
⊤
t )

−1B⊤
t +∆At∆B⊤

t (14)

where (a) uses (3) and that Wpt
t + ÃtB̃

⊤
t = Wpt

t +AtB
⊤
t = Wt, (b) is due to Ãt = AtPt and

B̃t = BtP
−⊤, and (c) leverages (1).

Comparing (14) with (2), it can be easily seen that PtP
⊤
t = Ir results in ∆Wt = ∆W̃t.

B.2 Proof of Proposition 2

Proof. For (3), it follows from Assumption 2 that

ℓ(Wt +∆W̃t(St)) ≤ ℓ(Wt) + ⟨∇ℓ(Wt),∆W̃t(St)⟩F +
L

2
∥∆W̃t(St)∥2F

(a)
= ℓ(Wt) +

〈
∇ℓ(Wt),AtSt∆B⊤

t +∆AtS
−1
t B⊤

t −∆At∆B⊤
t

〉
F
+

L

2

∥∥AtSt∆B⊤
t +∆AtS

−1
t B⊤

t −∆At∆B⊤
t

∥∥2
F

(b)
=

〈
∇ℓ(Wt),AtSt∆B⊤

t +∆AtS
−1
t B⊤

t

〉
F
+

L

2

[∥∥AtSt∆B⊤
t

∥∥2
F
+

∥∥∆AtS
−1
t B⊤

t

∥∥2
F
+

2
〈
AtSt∆B⊤

t ,∆AtS
−1
t B⊤

t

〉
F
− 2

〈
AtSt∆B⊤

t +∆AtS
−1
t B⊤

t ,∆At∆B⊤
t

〉
F

]
+Const.

(c)
=

L

2

[∥∥∥ 1

L
∇ℓ(Wt) +AtSt∆B⊤

t

∥∥∥2
F
+

∥∥∥ 1

L
∇ℓ(Wt) + ∆AtS

−1
t B⊤

t

∥∥∥2
F
+ (15)

2
〈
AtSt∆B⊤

t ,∆AtS
−1
t B⊤

t

〉
F
− 2

〈
AtSt∆B⊤

t +∆AtS
−1
t B⊤

t ,∆At∆B⊤
t

〉
F

]
+Const.

where (a) relies on (14); (b) expands the squared Frobenius norm and merges terms independent St

of into Const.; and (c) utilizes completing the square and merges the constant terms.

Next, we bound the four terms in (15). Using the definition (1) of ∆Bt, the first term is relaxed via∥∥∥ 1

L
∇ℓ(Wt) +AtSt∆B⊤

t

∥∥∥2
F
=

∥∥∥ 1

L
∇ℓ(Wt)− ηAtStA

⊤
t ∇ℓ(Wt)

∥∥∥2
F

≤ η2∥∇ℓ(Wt)∥22
∥∥∥ 1

Lη
Im −AtStA

⊤
t

∥∥∥2
F
. (16)

Likewise, the second term is bounded through∥∥∥ 1

L
∇ℓ(Wt) + ∆AtS

−1
t B⊤

t

∥∥∥2
F
≤ η2∥∇ℓ(Wt)∥22

∥∥∥ 1

Lη
In −BtS

−1
t B⊤

t

∥∥∥2
F
. (17)

Again using the definitions of ∆At and ∆Bt, the third term in (15) satisfies〈
AtSt∆B⊤

t ,∆AtS
−1
t B⊤

t

〉
F
= η2

〈
AtStA

⊤
t ∇ℓ(Wt),∇ℓ(Wt)BtS

−1
t B⊤

t

〉
F

(a)

≤ η2
∥∥AtStA

⊤
t ∇ℓ(Wt)

∥∥
F

∥∥∇ℓ(Wt)BtS
−1
t B⊤

t

∥∥
F

≤ η2∥∇ℓ(Wt)∥22
∥∥AtStA

⊤
t

∥∥
F

∥∥BtS
−1
t B⊤

t

∥∥
F

(18)

where (a) follows from Cauchy-Schwarz inequality.

Regarding the last non-constant term in (15), it holds

−
〈
AtSt∆B⊤

t +∆AtS
−1
t B⊤

t ,∆At∆B⊤
t

〉
F
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= η3
〈
AtStA

⊤
t ∇ℓ(Wt) +∇ℓ(Wt)BtS

−1
t B⊤

t ,∇ℓ(Wt)BtA
⊤
t ∇ℓ(Wt)

〉
F

≤ η3
(∥∥AtStA

⊤
t ∇ℓ(Wt)

∥∥
F
+
∥∥∇ℓ(Wt)BtS

−1
t B⊤

t

∥∥
F

)∥∥∇ℓ(Wt)BtA
⊤
t ∇ℓ(Wt)

∥∥
F

≤ η3∥∇ℓ(Wt)∥32
(∥∥AtStA

⊤
t

∥∥
F
+

∥∥BtS
−1
t B⊤

t

∥∥
F

)
∥BtA

⊤
t ∥F = O(η3). (19)

When performing fine-tuning from a pre-trained weight, both η and ∥∇ℓ(Wt)∥2 are observed to be
tiny1. As a result, (19) is dominated by (18), and is neglectable in practice; see also [60, 67].

Plugging (16)-(19) into (15) yields

ℓ(Wt +∆W̃t(St)) ≤
Lη2

2
∥∇ℓ(Wt)∥22

[∥∥∥ 1

Lη
Im −AtStA

⊤
t

∥∥∥2
F
+
∥∥∥ 1

Lη
In −BtS

−1
t B⊤

t

∥∥∥2
F
+

2
∥∥AtStA

⊤
t

∥∥
F

∥∥BtS
−1
t B⊤

t

∥∥
F

]
+O(Lη3) + Const.

(a)
=

Lη2

2
∥∇ℓ(Wt)∥22

[∥∥AtStA
⊤
t

∥∥2
F
− 2

Lη

〈
Im,AtStA

⊤
t

〉
F
+
∥∥BtS

−1
t B⊤

t

∥∥2
F
−

2

Lη

〈
In,BtS

−1
t B⊤

t

〉
F
+ 2

∥∥AtStA
⊤
t

∥∥
F

∥∥BtS
−1
t B⊤

t

∥∥
F

]
+O(Lη3) + Const.

(b)
=

Lη2

2
∥∇ℓ(Wt)∥22

[(∥∥AtStA
⊤
t

∥∥
F
+

∥∥BtS
−1
t B⊤

t

∥∥
F

)2 − 2

Lη
×(

∥AtS
1
2
t ∥2F + ∥BtS

− 1
2

t ∥2F
)]

+O(Lη3) + Const.

(c)

≤ Lη2

2
∥∇ℓ(Wt)∥22

[(∥∥AtS
1
2
t

∥∥2
F
+
∥∥BtS

− 1
2

t

∥∥2
F

)2 − 2

Lη
×(

∥AtS
1
2
t ∥2F + ∥BtS

− 1
2

t ∥2F
)]

+O(Lη3) + Const.

(d)
=

Lη2

2
∥∇ℓ(Wt)∥22

(∥∥AtS
1
2
t

∥∥2
F
+
∥∥BtS

− 1
2

t

∥∥2
F
− 1

Lη

)2

+O(Lη3) + Const.

where (a) expands the squared Frobenius norm; (b) follows from ⟨Im,AtStA
⊤
t ⟩F =

tr(AtStA
⊤
t ) = ∥AtS

1/2
t ∥2F; (c) is because AtStA

⊤
t is SPD, thus ∥AtStA

⊤
t ∥F =

tr1/2(AtStA
⊤
t AtStA

⊤
t ) = [

∑
i λi(AtStA

⊤
t AtStA

⊤
t )]

1/2 = [
∑

i λ
2
i (AtStA

⊤
t )]

1/2 ≤∑
i λi(AtStA

⊤
t ) = tr(AtStA

⊤
t ) = ∥AtS

1/2
t ∥2F; and (d) utilizes completing the square.

B.3 Proof of Theorem 3

Proof. For SPD matrix St, the eigendecomposition gives St = QS
t diag(λS

t )Q
S⊤
t , where QS

t ∈
O(r) and λS

t is element-wise positive. Thus, the objective (8) can be reformulated as

min
QS

t ∈O(r)

λS
t ⪰0

(∥∥AtQ
S
t diag

1
2 (λS

t )Q
S⊤
t ∥2F +

∥∥BtQ
S
t diag−

1
2 (λS

t )Q
S⊤
t

∥∥2
F
− 1

Lη

)2

= min
QS

t ∈O(r)

λS
t ⪰0

(∥∥AtQ
S
t diag

1
2 (λS

t )∥2F +
∥∥BtQ

S
t diag−

1
2 (λS

t )
∥∥2
F
− 1

Lη

)2

= min
QS

t ∈O(r)

λS
t ⪰0

( r∑
i=1

[λS
t ]i

∥∥At[Q
S
t ]i∥22 +

r∑
i=1

[λS
t ]

−1
i

∥∥Bt[Q
S
t ]i

∥∥2
2
− 1

Lη

)2

:= f(QS
t ,λ

S
t ). (20)

Since f(QS
t ,λ

S
t ) is continuous w.r.t. both QS

t ∈ O(r) and λS
t ⪰ 0, its infimum can be determined

by checking the limit of f as it approaches the boundary of the open set Sr++, and analyzing stationary
points in the interior [47].

Notice that O(r) is closed [47], while (0,+∞)r is open. It follows from (20) that, for any given
QS

t ∈ O(r), if some [λS
t ]i approaches 0 or +∞, the objective f(QS

t ,λ
S
t ) goes to +∞. As a

consequence, the minimum must be attained inside the interior of Sr++.
1Typically, η = O(10−4), and ∥∇ℓ(Wt)∥2 ≤ ∥∇ℓ(Wt)∥F = O(10−1) per matrix.
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Next, the stationary points are investigated under the following two cases.

Case 1: η ≥ 1/(C̃tL) or η < 0.

Defining g(St) := ∥AtS
1
2
t ∥2F + ∥BtS

− 1
2

t ∥2F, it will be shown that minSt∈Sr++
g(St) = C̃t and the

corresponding minimizer is uniquely S̃t.

From the stationary point condition we have

∇g(St) = A⊤
t At − S−1

t B⊤
t BtS

−1
t = 0

⇒ StA
⊤
t AtSt = B⊤

t Bt (21)

⇒ (A⊤
t At)

1
2St(A

⊤
t At)

1
2 (A⊤

t At)
1
2St(A

⊤
t At)

1
2 = (A⊤

t At)
1
2B⊤

t B
⊤
t (A

⊤
t At)

1
2

⇒
[
(A⊤

t At)
1
2St(A

⊤
t At)

1
2

]2
= (A⊤

t At)
1
2B⊤

t B
⊤
t (A

⊤
t At)

1
2 .

Since (A⊤
t At)

1
2St(A

⊤
t At)

1
2 is also SPD when St ∈ Sr++ and rank(At) = r, its solution is uniquely

given by the positive square root

(A⊤
t At)

1
2St(A

⊤
t At)

1
2 =

[
(A⊤

t At)
1
2B⊤

t B
⊤
t (A

⊤
t At)

1
2

] 1
2 .

Left- and right-multiplying (A⊤
t At)

−1/2 results in

St = (A⊤
t At)

− 1
2

[
(A⊤

t At)
1
2B⊤

t Bt(A
⊤
t At)

1
2

] 1
2 (A⊤

t At)
− 1

2 = S̃t.

Given that g(St) approaches +∞ on the boundary of Sr++ and has only one stationary point S̃t, its
minimum is reached uniquely at S̃t, i.e.,

min
St∈Sr++

g(St) = ∥AtS̃
1
2
t ∥2F + ∥BtS̃

− 1
2

t ∥2F = tr(AtS̃tA
⊤
t ) + tr(BtS̃

−1
t B⊤

t )

(a)
= tr(A⊤

t AtS̃t) + tr(S̃−1
t B⊤

t Bt)
(b)
= 2 tr(A⊤

t AtS̃t)

= 2∥AtS̃
1
2
t ∥2F = 2∥BtS̃

− 1
2

t ∥2F (22)

where (a) relies on the cyclic property of trace, and (b) utilizes (21).

Next, we prove the minimum value in (22) can be equivalently expressed as ∥AtB
⊤
t ∥∗.

Let At = UA
t Σ

A
t V

A⊤
t be the economy-sized SVD. By the definition of S̃t, it follows that

∥AtS̃
1
2
t ∥2F = tr

(
At(A

⊤
t At)

− 1
2

[
(A⊤

t At)
1
2B⊤

t Bt(A
⊤
t At)

1
2

] 1
2 (A⊤

t At)
− 1

2A⊤
t

)
(a)
= tr

([
(A⊤

t At)
1
2B⊤

t Bt(A
⊤
t At)

1
2

] 1
2
)
=

r∑
i=1

λi

([
(A⊤

t At)
1
2B⊤

t Bt(A
⊤
t At)

1
2

] 1
2
)

=

r∑
i=1

λ
1
2
i

(
(A⊤

t At)
1
2B⊤

t Bt(A
⊤
t At)

1
2

)
=

r∑
i=1

σi

(
(A⊤

t At)
1
2B⊤

t

)
=

r∑
i=1

σi

(
VA

t Σ
A
t V

A⊤
t B⊤

t

)
=

r∑
i=1

σi

(
UA

t Σ
A
t V

A⊤
t B⊤

t

)
=

r∑
i=1

σi

(
AtB

⊤
t

) (b)
= ∥AtB

⊤
t ∥∗

where (a) relies on the cyclic property of trace, and (b) is from the definition of nuclear norm.

From the condition η ∈ (−∞, 0) ∪ (1/(C̃tL),+∞), we have g(St) − 1/(Lη) ≥ 0, ∀St ∈ Sr++,
thus

argmin
St∈Sr++

(
∥AtS

1
2
t ∥2F+∥BtS

− 1
2

t ∥2F−
1

Lη

)2

= argmin
St∈Sr++

(
g(St)−

1

Lη

)2

= argmin
St∈Sr++

g(St)−
1

Lη
= S̃t.

Case 2: 0 < η < 1/(C̃tL).
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For this case, it holds minSt∈Sr++
g(St)− 1/(Lη) < 0, hence the minimum of (8) is reached when

g(St) = 1/(Lη). In particular, for any St satisfying g(St) < 1/(Lη), it is possible to find a scaling
factor γt > 0 by solving a quadratic equation such that g(γtSt) = 1/(Lη).

As an example, we consider scaling S̃t to attain g(γtS̃t) = 1/(Lη). It is worth emphasizing that, for
any choice η ∈ (0, 1/(C̃tL)), this solution is universally valid because g(S̃t) < 1/(Lη) always hold
in this case.

By the definition of g(St), the sought g(γtS̃t) = 1/(Lη) is equivalent to the quadratic equation
1

Lη
= γt∥AtS̃

1
2
t ∥2F + γ−1

t ∥BtS
− 1

2
t ∥2F, γt > 0.

Solving this equation gives

γt =

1
Lη ±

√
1

L2η2 − 4∥AtS̃
1
2
t ∥2F∥BtS̃

− 1
2

t ∥2F
2∥AtS̃

1
2
t ∥2F

=
1

C̃tLη
±
√

1

C̃2
t L

2η2
− 1

which concludes the proof.

B.4 Proof of Theorem 5

Proof. Plugging St = stIr, st ∈ R++ into (8) incurs alternative objective

min
st∈R++

h(st) :=
(
∥At∥2Fst + ∥Bt∥2Fs−1

t − 1

Lη

)2

. (23)

To solve this quartic optimization problem, we consider the following two cases.

Case 1: η ≥ 1/(2∥At∥F∥Bt∥FL) or η < 0.

In this case we have
∥At∥2Fst + ∥Bt∥2Fs−1

t ≥ 2∥At∥F∥Bt∥F ≥ 1

Lη
.

Since (·)2 monotonically increases on R+, the unique global optimum of (23) is

s∗t = argmin
st∈R++

∥At∥2Fst + ∥Bt∥2Fs−1
t − 1

Lη
=

∥Bt∥F
∥At∥F

.

Case 2: 0 < η < 1/(2∥At∥F∥Bt∥FL).
The proof for this case relies on Descartes’ rule of signs; cf. Theorem 8.

The gradients of the objective function h is given by

h′(st) = 2∥At∥4Fst − 2∥Bt∥4Fs−3
t − 2

Lη
∥At∥2F +

2

Lη
∥Bt∥2Fs−2

t

= 2s−3
t

(
∥At∥4Fs4t −

1

Lη
∥At∥2Fs3t +

2

Lη
∥Bt∥2Fst − 2∥Bt∥4F

)
(24)

where the quartic polynomial in the parenthesis has coefficients with signs (+,−,+,−). Using
Theorem 8, the gradient (24) has 3 or 1 positive roots. That says, (23) has either 3 or 1 stationary
point(s).

Notice that the objective (23) must be non-negative, and its lower bound of 0 can be reached if and
only if ∥At∥2Fst + ∥Bt∥2Fs

−1
t − 1/(Lη) = 0. Solving this quadratic equation over st ∈ R++ leads

to two global minimum

s∗t =

1
Lη ±

√
1

L2η2 − 4∥At∥2F∥Bt∥2F
2∥At∥2F

. (25)

Hence, (23) must have 3 stationary points. As minst>0 ∥At∥2Fst + ∥Bt∥2Fs
−1
t = 2∥At∥F∥Bt∥F <

1/(Lη), the remaining stationary point is a local maximum at st = ∥Bt∥F/∥At∥F.

Lastly, the objective (23) is a continuous function of st ∈ (0,+∞), and tends to +∞ when st → 0
and st → +∞. We conclude it only has two global minimum given by (25).
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B.5 Proof of Theorem 4

Proof. By the definition (5) of Ãt and B̃t, it holds〈
∇Ãt

ℓ(W̃t),∆Ãt

〉
F
=

〈
∇ℓ(Wt)B̃t,−η∇ℓ(Wt)B̃t

〉
F
= η

〈
∇ℓ(Wt)B̃t,∇ℓ(Wt)B̃t

〉
F

= −η
∥∥∇ℓ(Wt)BtS

− 1
2

t

∥∥2
F
≤ 0

Likewise, we have 〈
∇Btℓ(Wt),∆B̃t

〉
F
= −η

∥∥∇ℓ(Wt)
⊤AtS

1
2
t

∥∥2
F
≤ 0.

As a consequence,〈
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ℓ(W̃t),∆Ãt

〉
F
+
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ℓ(W̃t),∆B̃t

〉
F
= −η

(
∥∇ℓ(Wt)BtS

− 1
2

t ∥2F + ∥∇ℓ(Wt)
⊤AtS

1
2
t ∥2F

)
≥ ∥∇ℓ(Wt)∥22

(
∥AtS

1
2
t ∥2F + ∥BtS

− 1
2

t ∥2F
)
.

It follows from (22) that St = S̃t is the unique global minimum of this lower bound.

B.6 Proof of Theorem 6

Proof. As Ã′
tB̃

′⊤
t = A′

tB
′⊤
t = AtB

⊤
t = ÃtB̃

⊤
t , Lemma 1 suggests there exists Qt ∈ GL(r) such

that Ã′
t = ÃtQt and B̃′

t = B̃tQ
−⊤
t . Further, to prove Theorem 6, it is sufficient to prove that

Qt ∈ O(r). Since Ãt has full rank, the condition Qt ∈ O(r) is equivalent to Ã′
tÃ

′⊤
t = ÃtÃ

⊤
t .

By Lemma 7, this can be simplify as

Ã′
tÃ

′⊤
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′
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Again using Lemma 1 and that A′
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⊤
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It then follows

Ã′
tÃ

′⊤
t = At(A

⊤
t At)

−1(A⊤
t AtB

⊤
t Bt)

1
2A⊤

t

(a)
= AtS̃tA

⊤
t = ÃtÃ

⊤
t

where (a) applies (26) with X = A⊤
t At and Y = B⊤

t Bt.

The proof is thereby completed.

B.7 Proof for Riemannian metric and gradient

We first show that the Riemannian metric (12) leads to update 11. The subscript t is dropped for
simplicity. By definition, the Riemannian gradient (GA,GB) should satisfy

g(A,B)((GA,GB), (ZA,ZB)) = ⟨∇Aℓ(W),ZA⟩F+⟨∇Bℓ(W),ZB⟩F, ∀ZA ∈ Rm×r,ZB ∈ Rn×r.

Using (12), the Riemannian gradient is thus given by

⟨GAS̃,ZA⟩F = ⟨∇Aℓ(W),ZA⟩F, ∀ZA ⇒ GA = ∇Aℓ(W)S̃−1 = ∇ℓ(W)BS̃−1,

⟨GBS̃
−1,ZB⟩F = ⟨∇Bℓ(W),ZB⟩F, ∀ZB ⇒ GA = ∇Bℓ(W)S̃ = ∇ℓ(W)⊤AS̃.

We next show that our metric (12) guarantees the update of (A,B) is always on the horizontal
space, and has no component on the vertical space. First, the vertical space at (A,B) is T vert

(A,B) =

{(AX,−BX⊤) | X ∈ Rr×r}, which can be easily verified via

(A+ ϵAX)(B− ϵBX⊤)⊤ = AB⊤ +O(ϵ2).
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Thus, for update (∆A,∆B) to be purely horizontal, we must have

g(A,B)((AX,−BX⊤), (∆A,∆B)) = 0, ∀X ∈ Rr×r.

From (11), plugging in the update ∆A = −η∇ℓ(W)BS̃−1 and ∆B = −η∇ℓ(W)⊤BS̃t gives

g(A,B)((AX,−BX⊤), (∆A,∆B))

= ⟨AXS̃,−η∇ℓ(W)BS̃−1⟩F + ⟨−BX⊤S̃−1,−η∇ℓ(W)⊤AS̃⟩F
= 0

which completes the proof.

B.8 Useful facts

Lemma 7. Under Assumption 1, it holds

S̃t = (A⊤
t At)

− 1
2

[
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t At)
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⊤
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] 1
2 .

Proof. It holds for any X,Y ∈ Sr++ that[
X

1
2 (X

1
2YX

1
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1
2X− 1

2

]2
= X

1
2 (X

1
2YX

1
2 )X− 1

2 = XY.

Taking square root on both sides and left-multiplying X−1 give

X− 1
2 (X

1
2YX

1
2 )

1
2X− 1

2 = X−1(XY)
1
2 . (26)

Letting X = A⊤
t At and Y = B⊤

t Bt in (26) completes the proof.

Theorem 8 (Descartes’ rule of signs [11]). The number of strictly positive roots (counting multiplicity)
of polynomial h is equal to the number of sign changes in the coefficients of h, minus a nonnegative
even number.

C Algorithm pseudocodes

The Appendix provides the step-by-step pseudocodes for RefLoRA and its lightweight version
RefLoRA-S. As our algorithms rely on Assumption 1 but LoRA intialize B0 = 0 by default, one can
either utilizes other full-rank initialization schemes [41, 34, 60], or warm up the algorithm for tw > 0
steps until At and Bt both satisfy full column rank. Without loss of generality, our pseudocodes
assume A0 and B0 are already full-rank, and define Wt := Wpt +AtB

⊤
t == Wpt + ÃtB̃

⊤
t .

For RefLoRA-S, it is worth noting that adaptive optimizers rely on the first and second moments
of gradients ∇Ãt

ℓ(Wt) = ∇ℓ(Wt)B̃t = 1√
st
∇At

ℓ(Wt) and ∇B̃t
ℓ(Wt) = ∇ℓ(Wt)

⊤Ãt =
√
st∇Bt

ℓ(Wt). As a consequence, one can correspondingly scale the gradient moments of At and
Bt to render the gradient moments of Ãt and B̃t, thus removing the need for preconditioning.

D Experimental setups and hyperparameters

This appendix provides the detailed setups as well as hyperparameters used in our numerical tests.

D.1 Platforms

All the experiments are conducted on a desktop equipped with an NVIDIA RTX A5000 GPU, and a
server with NVIDIA A40 and A100 GPUs. The codes for synthetical tests are written with MATLAB,
and codes for LLM-related experiments are in PyTorch. In addition, our implementation of LLM
tests are based on [24, 70].
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Algorithm 1: Refactored low-rank adaptation (RefLoRA)
Input: Loss ℓ, pre-trained weight Wpt, maximum iterations T , and learning rate η.
Initialize: full-rank A0 and B0.

1 for t = 0, . . . , T − 1 do
2 Compute S̃t = (A⊤

t At)
− 1

2

[
(A⊤

t At)
1
2B⊤

t Bt(A
⊤
t At)

1
2

] 1
2 (A⊤

t At)
− 1

2 ;
3 if adaptive optimizer then
4 Precondition gradients GA = ∇ℓ(Wt)BtS̃

−1
t , GB = ∇ℓ(Wt)

⊤AtS̃t;
5 Update At+1 = AdaptOpt(At, η,GA, t), Bt+1 = AdaptOpt(Bt, η,GB , t);
6 else
7 Refactor Ãt = AtS̃

1/2, B̃t = BtS̃
−1/2;

8 Update At+1 = Ãt − η∇ℓ(Wt)B̃t, Bt+1 = B̃t − η∇ℓ(Wt)
⊤Ãt;

9 end
10 end

Output: AT and BT .

Algorithm 2: Low-rank adaptation with simplified refactoring (RefLoRA-S)
Input: Loss ℓ, pre-trained weight Wpt, maximum iterations T , and learning rate η.
Initialize: full-rank A0 and B0.

1 for t = 0, . . . , T − 1 do
2 Compute s̃t = ∥Bt∥F/∥At∥F;
3 Refactor Ãt =

√
s̃At, B̃t = 1/

√
s̃Bt;

4 if adaptive optimizer then
5 Update At+1 = AdaptOpt(Ãt, η,∇ℓ(Wt)B̃t, t) with first and second moments scaled

by 1/
√
s̃ and 1/s̃t, and Bt+1 = AdaptOpt(B̃t, η,∇ℓ(Wt)

⊤Ãt, t) with first and
second moments scaled by

√
s̃ and s̃t;

6 else
7 Update At+1 = Ãt − η∇ℓ(Wt)B̃t, B̃t+1 = B̃t − η∇ℓ(Wt)

⊤Ãt;
8 end
9 end

Output: AT and BT .

D.2 Setups for visualization in Figure 1

Figure 1 considers linear regression

min
W

∥Y −WX∥2F

where X ∈ Rn×k and Y ∈ Rm×k are random data matrices with entries generated from standard
Gaussian distribution N (0, 1). The corresponding LoRA objective is

min
A,B

∥Y − (Wpt +AB⊤)X∥2F. (27)

For simplicity, we set m = n = k = 2, r = 1, and Wpt = 0. A0 and B0 are randomly initialized
from N (0, 10) and N (0, 1

10 ).

Although it is well-known that linear regression has a closed-form solution through least squares,
we consider it here because its Lipschitz smoothness constant can be computed analytically as
L = ∥XX⊤∥2, allowing us to track the upper bound (7).

D.3 Setups for matrix factorization

Matrix factorization aims to solve

min
A,B

1

2
∥Y −AB∥2F
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where Y ∈ Rm×n is a given low-rank matrix. It can be viewed as a special case of the linear
model (27) with k = n, X = In, and Wpt = 0. This test utilizes m = 128, n = 100, and r = 8.
The low-rank matrix Y is generated from standard Gaussian N (0, 1), and then truncated to the
largest r singular values. Following the standard LoRA initialization, A0 is sampled from standard
Gaussian N (0, 1), and B0 = 0. Standard GD is employed in LoRA for ∀t, while RefLoRA and
ScaledGD are applied when t > 0.

D.4 Details of Datasets

Our evaluations are carried out on commonly-used datasets in the literature.

GLUE benchmark. The General Language Understanding Evaluation (GLUE) benchmark is
designed to provide a general-purpose evaluation of natural language understanding (NLU) [59].
Those adopted in our work include

• MNLI [63] (Multi-Genre Natural Language Inference) tests a model’s ability to perform natural
language inference across different genres of text.

• SST-2 [53] (Stanford Sentiment Treebank) is a sentiment analysis dataset with binary labels.

• MRPC [13] (Microsoft Research Paraphrase Corpus) focuses on paraphrase detection; i.e. identi-
fying whether two sentences are semantically equivalent.

• CoLA [62] (Corpus of Linguistic Acceptability) requires models to judge whether a sentence is
linguistically acceptable.

• QNLI [44] (Question Natural Language Inference) is a question-answering dataset converted to a
binary inference task.

• QQP2 (Quora Question Pairs) contains pairs of questions and the task is to determine if they are
semantically equivalent.

• RTE3 (Recognizing Textual Entailment) consists of sentence pairs for textual entailment inference.

• STS-B [7] (Semantic Textual Similarity Benchmark) evaluates the textual similarity of sentence
pairs on a continuous scale.

These datasets present a comprehensive benchmark to test general-purpose language models and are
distributed under various permissive licenses. A summary of these datasets can be found in Table 5.

Table 5: Summary of GLUE benchmark datasets
Dataset Task type |Train| |Test| Metric(s)
MNLI Natural language inference 393k 20k Matched & mismatched accuracies
SST-2 Sentiment analysis 67k 1.8k Accuracy
MRPC Paraphrase detection 3.7k 1.7k Accuracy, F1
CoLA Acceptability judgment 8.5k 1k Matthews correlation
QNLI QA/NLI 105k 5.4k Accuracy
QQP Paraphrase detection 364k 391k Accuracy, F1
RTE Textual entailment 2.5k 3k Accuracy
STS-B Semantic similarity 7k 1.4k Pearson & Spearman Correlations

Commonsense reasoning. This category includes tasks that require models to apply everyday
knowledge and infer beyond explicit textual information. These datasets are vital for evaluating a
model’s ability to reason about physical and social contexts. The considered datasets include

• BoolQ [10] (Boolean Questions) is a reading comprehension dataset of yes/no questions paired
with Wikipedia passages, testing a model’s ability to extract and reason over text.

• WG [49] (WinoGrande) is a challenging dataset designed to reduce annotation artifacts present in
traditional Winograd schemas.

2https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
3https://paperswithcode.com/dataset/rte
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• PIQA [4] (Physical Interaction QA) assesses knowledge of physical commonsense and intuitive
physics.

• SIQA [50] (SOCIAL-I-QA) focuses on social interaction and social commonsense reasoning.
• HS [68] (HellaSwag) aims at evaluating grounded commonsense inference for multiple-choice

sentence completion.
• ARC [9] (AI2 Reasoning Challenge) contains grade-school level science questions, split into

ARCe (ARC-easy) and ARCc (ARC-challenge), based on difficulty.
• OpenbookQA [42] involves multiple-choice science questions that require integrating common-

sense and scientific facts.

These datasets are drawn from multiple domains and present diverse reasoning challenges. All
datasets used in our work are publicly available under open or research-friendly licenses. Table 6
summarizes these datasets.

Table 6: Summary of commonsense reasoning datasets
Dataset Task type |Train| |Test| Metric
WinoGrande Coreference resolution 40k 1.3k Accuracy
PIQA Physical reasoning 16k 3k Accuracy
SIQA Social reasoning 33k 2k Accuracy
HellaSwag Sentence completion 70k 10k Accuracy
ARC-easy Multiple choice QA 2.3k 1.2k Accuracy
ARC-challenge Multiple choice QA 2.6k 1.2k Accuracy
OpenbookQA Open-book QA 5.0k 500 Accuracy

D.5 Details on LLMs

We summarize the adopted language models in our evaluation. All model checkpoints are obtained
from HuggingFace.

DeBERTaV3-base [21] is a transformer-based language model with 184 million parameters. The
model checkpoint4 is released under the MIT license.

GPT3-turbo is a proprietary language model accessible via the OpenAI API. While the model
weights are not publicly available, its tokenizer5 is open-sourced under the MIT license.

LLaMA-7B [57] is a decoder-only transformer model, which is part of the LLaMA (Large Language
Model Meta AI) series. The chekpoint6 is intended for research use under a non-commercial license.

LLaMA2-7B [58] is a refined successor to LLaMA. Its checkpoint7 is under a permissive license for
both research and commercial use.

LLaMA3-8B [17] is part of the third generation of LLaMA series. The checkpoint8 is released under
a permissive Meta license for both research and commercial applications.

Stable Diffusion V1.4 [45] is a latent text-to-image diffusion model released by CompVis, Stability
AI, and Runway. The checkpoint9 is made available under the CreativeML-OpenRAIL-M license.

D.6 Hyperparameters for fine-tuning LLMs

GLUE setup follows from [23, 70], where LoRA is applied to all linear modules. The results for
Full FT, BitFit, Adapters, LoRA, DoRA and AdaLoRA in Table 2 are taken from [70], while the
remaining results are obtained from our experiments. We fix the LoRA rank as r = 8 and scaling

4https://huggingface.co/microsoft/deberta-v3-base
5https://huggingface.co/Xenova/gpt-3.5-turbo
6https://huggingface.co/huggyllama/llama-7b
7https://huggingface.co/meta-llama/Llama-2-7b
8https://huggingface.co/meta-llama/Meta-Llama-3-8B
9https://huggingface.co/CompVis/stable-diffusion-v1-4
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factor as α = 8, and search the optimal learning rate from η ∈ {1 × 10−3, 8 × 10−4, 4 × 10−4}.
Batch size is fixed as 32 for all datasets. The default AdamW [40] optimizer and linear learning
rate scheduler are utilized for all tests. Other hyperparameters are gathered in Table 7. Note that
RefLoRA requires less fine-tuning epochs compared other LoRA variants due to its fast convergence.

Table 7: Hyperparameters for GLUE benchmark
Dataset η Epochs Warmup steps Max seq. len. Cls. dropout Weight decay

MNLI 4× 10−4 5 1000 256 0.15 0
SST-2 1× 10−3 2 500 128 0 0.01
MRPC 4× 10−4 10 50 128 0 0.01
CoLA 1× 10−3 5 100 64 0.15 0
QNLI 4× 10−4 5 500 512 0.1 0.01
QQP 1× 10−3 5 1000 320 0.2 0.01
RTE 8× 10−4 10 50 320 0.2 0.01
STS-B 1× 10−3 10 100 128 0.1 0.1

Commonsense reasoning setup is from [24, 65], where LoRA is attached to linear projections in
transformers’ self-attention and feedforward modules. The results for ChatGPT, LoRA, and DoRA
in Table 3 are taken from [65], while the remaining are acquired through our tests. We test with
LoRA ranks r ∈ {16, 32} and scaling factor fixed as α = 2r. The learning rate is tuned from
η ∈ {8 × 10−5, 1 × 10−4, 2 × 10−4, 3 × 10−4}. The tuned learning rate per model can be found
in Table 8. The number of fine-tuning epochs is set to 2, and batch size is 16 for all tests. The
default AdamW [40] optimizer and linear learning rate scheduler are utilized with 100 warmup steps.
Dropout rate is 0.05. The remaining hyperparameters are set to the default values used in [24].

Table 8: Learning rates for LLaMA models
LLaMA-7B LLaMA2-7B LLaMA3-8B

Rank r 16 32 16 32 16 32

Learning rate η 2× 10−4 2× 10−4 3× 10−4 2× 10−4 8× 10−5 1× 10−4

We also attempted to include LoRA-Pro [61]; however, it incurred runtime costs that exceeded
the limits of our resources. Similar scalability concerns have been reported by other users in the
community; see e.g., issue #6 on the LoRA-Pro GitHub repository. For this reasons, we omitted it
from our final results.

Subject-driven image generation utilizes the default setups in [48]. Specifically, LoRA is applied to
the to_k, to_q, to_v, to_out, add_k_proj, and add_v_proj modules of U-net with rank r = 4,
and scaling factor α = 4. The diffusion model is fine-tuned with batch size 1 and learning rate
η = 10−4 for 500 iterations. AdamW with 0.01 weight decay is adopted as the optimizer.

E Scaling to larger models

Scalability does not confine the applicability of RefLoRA. In larger models, the major runtime
bottleneck is the forward pass and gradient computation. In comparison, the additional overhead
of RefLoRA becomes negligible. Table 9 compares the computational overheads of LoRA variants
under various model sizes, where gradient checkpointing is turned on for Gemma3-27B-pt so that
the model can fit within a single NVIDIA H100 96GB GPU. Notably, the runtime and memory gap
between LoRA and RefLoRA narrows as model size increases. These findings indicate that RefLoRA
remains as practical and efficient as LoRA, especially for larger models.
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Table 9: Throughput (it/s↑) and GPU memory consumption (GB↓) under various models sizes.

Method DeBERTaV3-base LLaMA3-8B Gemma3-27B-pt
Tp. Mem. Tp. Mem. Tp. Mem.

LoRA 1× (2.26) 8.73 1× (1.53) 36.21 1× (0.58) 64.28
LoRA-RITE 0.73× 8.87 0.63× 37.37 0.95× 64.28
RefLoRA 0.88× 8.86 0.87× 36.35 0.98× 64.28
RefLoRA-S 0.99× 8.73 0.99× 36.21 0.99× 64.28
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they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Appendix D contains full details of datasets, hyperparameters, training setups,
and platform specs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.

27



(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The models and datasets used are publicly available with links in Section D.
Codes for reproducing the main results are provided as supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed training settings including datasets, hyperparameters, and optimizers
are documented in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: While results are averaged over multiple runs, error bars are not reported
because the overall performance is computed across multiple datasets that differ in size and
use heterogeneous metrics, making it improper to calculate a unified error bar. Additionally,
space constraints in performance tables prevent the inclusion of error bars, and for fair
comparison, we follow prior works which also do not report error bars for their methods.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Appendix D.1 lists the compute resources (NVIDIA A40, A100, and RTX
A5000) used for experiments. Section 4.5 compares the throughput and GPU usage.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The paper does not involve sensitive data, human subjects, or unethical
practices, and abides by NeurIPS ethical guidelines.
Guidelines:
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The broader impacts of this work are explicitly discussed in Appendix A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This work does not release any new datasets or pre-trained models that could
pose a risk of misuse. It solely builds on publicly available models and benchmarks for
evaluation purposes.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Original owners of codes, datasets, and models are explicitly mentioned via
citations or urls in Section D.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new datasets or models are introduced; the work only modifies and
evaluates existing ones.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or human participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects or participant-based studies are involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: The paper focuses on the fine-tuning of LLMs, whose usages are clearly
described throughout the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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