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ABSTRACT

Vision–Language Models (VLMs) enable powerful multi-agent systems, but scaling
them is economically unsustainable: coordinating heterogeneous agents under informa-
tion asymmetry often spirals costs. Existing paradigms, such as Mixture-of-Agents and
knowledge-based routers, rely on heuristic proxies that ignore costs and collapse uncer-
tainty structure, leading to provably suboptimal coordination. We introduce Agora, a
framework that reframes coordination as a decentralized market for uncertainty. Agora for-
malizes epistemic uncertainty into a structured, tradable asset (perceptual, semantic, infer-
ential), and enforces profitability-driven trading among agents based on rational economic
rules. A market-aware broker, extending Thompson Sampling, initiates collaboration and
guides the system toward cost-efficient equilibria. Experiments on five multimodal bench-
marks (MMMU, MMBench, MathVision, InfoVQA, CC-OCR) show that Agora outper-
forms strong VLMs and heuristic multi-agent strategies, e.g., achieving +8.5% accuracy
over the best baseline on MMMU while reducing cost by over 3×. These results establish
market-based coordination as a principled and scalable paradigm for building economi-
cally viable multi-agent visual intelligence systems.

1 INTRODUCTION

The rapid advancement of Vision-Language Models (VLMs) (Li et al., 2022; 2023; Liu et al., 2023a; Bai
et al., 2023) has propelled the development of multi-agent systems (MAS) (Guo et al., 2024; Wang et al.,
2024c; Chen et al., 2024a), moving us closer to the vision of powerful, collective intelligence. Yet, as these
systems scale, they inevitably collide with foundational challenges from economic theory: coordinating self-
interested agents under information asymmetry and making globally optimal decisions under bounded
rationality. We argue current paradigms fail to address these root problems, leading to a crisis of economic
viability where operational costs spiral, precluding effective, large-scale deployment (Gandhi et al., 2025).
This inefficiency stems from a failure to treat intelligence not as a brute-force commodity, but as a scarce
economic resource requiring principled management.

Existing coordination strategies can be understood as heuristic patches, i.e., computationally cheap
workarounds for these deep-seated barriers. Paradigms like Mixture-of-Agents (MoA) (Guo et al., 2024)
or knowledge-based routers (e.g., KABB) (Zhang et al., 2025) attempt to bypass the complexity of true
optimization by relying on simplistic proxies for value, such as consensus or semantic similarity. As we for-
mally prove in Section 2, these heuristics render the systems fundamentally agnostic to the core economic
variables of cost and the fine-grained structure of uncertainty. This agnostic nature is not a minor flaw but a
theoretical dead-end, leading to provably suboptimal performance and systemic waste.
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Figure 1: Comparison of heuristic coordination and
Agora. Unlike heuristics that rely on flawed proxies,
Agora forms a dynamic market for uncertainty, where
emergent prices enable coordination.

To dismantle this economic bottleneck, we argue
for a paradigm shift: from heuristic patches to a
mechanism that embraces the decentralized nature
of the problem. Accordingly, we construct Agora, a
framework that redesigns multi-agent coordination
as a decentralized micro-economy. Agora does not
attempt to approximate a central planner; instead, it
uses market-based mechanisms to achieve efficient
coordination despite information asymmetry and
bounded rationality. Within this framework, cog-
nitive uncertainty is no longer a monolithic liability
but is ”minted” into a quantifiable, tradable asset.
Agents, guided by price signals and driven by eco-
nomic incentives (Gale & Shapley, 1962; von Neu-
mann & Morgenstern, 2004; Akerlof, 1970), trade
this asset to reveal private information and drive the
entire system towards a cost-effective equilibrium.

Our methodology, detailed in Section 3, provides
a constructive, non-agnostic solution. We first es-
tablish a multi-dimensional uncertainty quan-
tification model, creating a structured asset that
makes the system structure-aware. Second, we
introduce a profitability-driven trading protocol
that enforces economic rationality, making the sys-
tem cost-aware. Finally, the entire market is or-
chestrated by an intelligent market-aware Broker,
which uses a sophisticated utility function to find
economically sound initializations for the collabo-
rative process.

Our comprehensive experiments on multiple vi-
sual understanding benchmarks (e.g., MMMU (Yue
et al., 2024), MMBench (Liu et al., 2023b))
demonstrate that Agora not only achieves state-
of-the-art performance but also dramatically im-
proves cost-effectiveness, validating our market-
based paradigm. This work lays a theoretical
and practical foundation for building truly scal-
able and economically viable multi-agent intelli-
gent systems.

2 PROBLEM FORMULATION

The rise of multi-agent systems (MAS) promises powerful collective visual intelligence, yet this ambition
faces a crisis of economic viability: soaring operational costs preclude scalable deployment. The bottleneck
lies not in hardware, but in a conceptual failure—treating intelligence as a brute-force commodity rather
than a scarce economic resource. When cognitive uncertainty, the primary cost driver, is handled without
economic discipline, redundant computation ensues, making decisions prohibitively expensive. This section
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formalizes the problem and traces it to the heuristic-driven coordination paradigms dissected in Subsec-
tion 2.2.

2.1 THE ECONOMIC OBJECTIVE OF MULTI-AGENT COORDINATION
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Figure 2: Final epistemic uncertainty of
Agora (blue, 0.16) vs. KABB-VLM (or-
ange, 0.21).

To ground our analysis, we first establish the ideal of economic
rationality that any advanced MAS should pursue. Setup.
We consider a system with a set of N heterogeneous VLM
agents, A = {a1, . . . , aN}. Each agent ai is defined by a
unit processing cost ci > 0 and an expertise vector ξi =
[ξi,perc, ξi,sem, ξi,inf]

T , where ξi,k ∈ [0, 1] quantifies its effi-
ciency on uncertainty type k. For any task t drawn from a
distribution T , the system confronts an initial epistemic uncer-
tainty vector u(t) = [uperc, usem, uinf]

T . For a centralized ta-
ble and detailed definitions of all core variables and functions,
please refer to Appendix M. Objective. The system’s goal is to
learn an allocation policy π that performs principled economic
optimization. This policy must route uncertainty components
to the most suitable agents to minimize total expected opera-
tional cost, while ensuring the final uncertainty is resolved to
an acceptable level ϵ. This is the core constrained optimization problem:

min
π

Et∼T [C(π,u(t), c,Ξ)] s.t. ∥ufinal∥ ≤ ϵ (1)

where C(·) is the total cost function, c is the vector of agent costs, and Ξ is the matrix of agent expertise.

2.2 THE FAILURE OF HEURISTIC PROXIES FOR ECONOMIC RATIONALITY

Existing coordination paradigms fail to solve Eq. 1 because they do not perform true optimization, but in-
stead rely on heuristic proxies fundamentally misaligned with the economic objective. We highlight two
dominant paradigms that exemplify this failure. 1. Aggregation-Based Heuristics (e.g., MoA): These
equate statistical consensus with epistemic truth. Models like Mixture-of-Agents (MoA) assume that aggre-
gating multiple agent outputs converges on the correct answer, which only holds if errors are independent
and identically distributed (i.i.d.). In MAS with shared architectural biases, this assumption breaks down,
leading to systemic irrationality. Proposition 1 (Correlated Error Amplification). Let Sprop ⊂ A be a set of
agents with a common perceptual bias. For ambiguous inputs, they will likely produce correlated hallucina-
tions. An aggregator seeking consensus will then amplify this shared error. 2. Routing-Based Heuristics
(e.g., KABB): These rely on proxies for value, derived from historical performance and semantic similarity,
to guide agent selection. State-of-the-art routers maximize a scoring function, e.g.:

S = α · Phist + β · Simsem (2)
where Phist is historical performance and Simsem is semantic similarity. This surrogate conflates past
performance with future cost-effectiveness, remaining Cost-Agnostic (the cost vector c is absent) and
Uncertainty-Structure-Agnostic (the vector u(t) is collapsed into a scalar proxy). This structural igno-
rance results in higher residual uncertainty, as empirically demonstrated in Figure 2, where our structure-
aware Agora yields markedly lower final epistemic uncertainty than the heuristic baseline.

2.3 THE CORE CHALLENGE: A CALL FOR A NEW PARADIGM

The specific flaws in aggregation and routing are manifestations of a deeper, shared theoretical limitation,
which we formalize as agnostic coordination. Definition 1 (Agnostic Coordination). A coordination mecha-
nismM is defined as agnostic if its agent selection process is (i) Cost-Agnostic (invariant to agent processing

3
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Figure 3: In Agora, query uncertainty is split into perceptual (Uperc), semantic (Usem), and inferential (Uinf).
A market-aware broker trades these among agents for efficient resolution.

costs) and (ii) Uncertainty-Structure-Agnostic (collapses the uncertainty vector into a scalar proxy). Both
MoA and KABB are archetypes of agnostic coordinators, as conceptually illustrated in Figure 1. MoA’s
consensus heuristic disregards the cost of polling agents and the specific structure of the uncertainty it aims
to resolve. KABB’s routing heuristic, as shown in Eq. 2, explicitly demonstrates both agnostic properties.
This shared, fundamental flaw leads to provably suboptimal performance. Theorem 1 (The Inefficiency
Theorem for Agnostic Coordination). Any coordination mechanism M that is agnostic (per Definition 1)
is not guaranteed to solve the objective in Eq. 1 and is provably suboptimal for any task where the heuris-
tically superior agent is not the most cost-effective resolver. This impasse shows that incremental fixes to
heuristic coordinators are inadequate. A paradigm shift is needed—from heuristic proxies to non-agnostic
mechanisms capable of genuine economic reasoning. This crystallizes our central question, addressed in
Section 3: how to design a coordination mechanism that explicitly integrates cost and uncertainty to navi-
gate the optimization landscape of Eq. 1?

3 METHODOLOGY: THE AGORA MARKET FRAMEWORK

To address the theoretical deficiencies of agnostic coordination identified in Section 2, we introduce Agora:
a framework that recasts multi-agent coordination as a decentralized micro-economy. Our methodology
provides a constructive, non-agnostic solution to the optimization problem in Eq. 1 by designing a system
that is inherently cost-aware and structure-aware. At its core, this is achieved by turning uncertainty into a
quantifiable, tradable asset and defining protocols for its efficient reallocation. As established in our analysis
of related work (Appendix B), prior heuristic-driven paradigms are fundamentally agnostic to these factors.
In response, Agora introduces the principled economic mechanism for coordination illustrated in Figure 3.
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3.1 ESTABLISHING THE MARKET: FROM UNCERTAINTY TO TRADABLE ASSETS

A market cannot exist without a well-defined asset. To counter the Uncertainty-Structure-Agnosticism from
Theorem 1, our first step is to “mint the currency” by formalizing cognitive uncertainty as a structured,
quantifiable portfolio. We decompose total uncertainty u into two classes: a tradable component, Epistemic
Uncertainty (uepis), which represents the reducible information gap from our problem formulation; and a
non-tradable component, Aleatoric Uncertainty (ualea), which represents irreducible systemic risk. The
tradable asset, uepis, is a vector in a three-dimensional state space, uepis = [uperc, usem, uinf]

T , corresponding
to the fundamental cognitive domains of perception, semantics, and inference. This vectorization transforms
a monolithic problem into a portfolio of distinct assets that can be independently priced and traded. Each
agent ai maintains an uncertainty portfolio U(ai, t), which is the linear superposition of its self-generated
uncertainty and the net uncertainty acquired through market trades:

U(ai, t) = Ubase(ai, t) +
∑
j ̸=i

Utransfer(aj → ai, t) (3)

The value of transferred uncertainty, Utransfer, is aggregated from a historical transaction ledger, weighting
past trades based on relevance and cost-effectiveness.

3.2 THE CORE MECHANISM: A PROFITABILITY-DRIVEN TRADING PROTOCOL

With a structured asset in place, we now introduce the core mechanism designed to overcome Cost-
Agnosticism. This mechanism is a Profitability-Driven Trading Protocol that governs all transactions
based on pure economic rationality. A trade is initiated when an arbitrage opportunity—a potential for
system-wide cost reduction—is identified. To evaluate this, we calculate the change in total cost, or cost
delta (∆C), that would result from reallocating an uncertainty packet. The derivation for a packet of magni-
tude Tij(t) being transferred from agent ai to aj is:

∆C(Tij(t)) = [ci(Ui(t)− Tij(t)) + cj(Uj(t) + (1− ξj)Tij(t))]︸ ︷︷ ︸
Cost After Trade

− [ciUi(t) + cjUj(t)]︸ ︷︷ ︸
Cost Before Trade

= Tij(t) · [cj(1− ξj)− ci] (4)

This leads to a simple, powerful admissibility rule. A trade is executed if and only if it is profitable (∆C < 0)
and feasible, meaning the receiving agent aj possesses the required cognitive capacity Cj(t):

Execute trade(i→ j, Tij(t)) ⇐⇒ (∆C(Tij(t)) < 0) ∧ (Uj(t) + Tij(t) ≤ Cj(t)) (5)

This protocol, by its very construction, is both cost-aware and structure-aware, thus violating both conditions
for suboptimality from Theorem 1. Each admissible trade represents a greedy step that descends the cost
landscape of the global objective function in Eq. 1.

3.3 MARKET EXECUTION: THE BROKER AND THE AGORA ALGORITHM

The market is set in motion by an intelligent Broker, an extension of Thompson Sampling (TS) that finds
an economically sound starting point for the decentralized optimization. It selects an initial agent by maxi-
mizing a market-aware expected utility function, θ̃(t)S :

θ̃
(t)
S = (E[Reward(t)S ]− Cost(t)S ) · exp(−λ · Dist(S, t)) · Ustrategic(S)

ω · Synergy(S)η · γ∆t (6)

where the terms account for expected reward minus cost, adjusted for task distance, strategic utility, agent
synergy, and temporal decay (see Appendix M for details). The entire process is operationalized by
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the Agora Algorithm, presented in Algorithm 1. The algorithm proceeds in two phases: (1) a utility-
maximizing initialization by the Broker, followed by (2) an iterative market phase. In this phase, the system
performs a deterministic greedy descent on the total cost function by repeatedly applying the trading proto-
col from Eq. 5. This continues until no further profitable trades are possible. As formally established in the
theoretical analysis in Appendix C, the market phase executes a finite sequence of strictly cost-decreasing
trades and therefore converges to a local minimum where no bilateral trade yields ∆C < 0. Since global
optimization is NP-hard, this provides the strongest tractable guarantee. Empirically, Appendix D con-
firms this equilibrium lies within 0.8% of the theoretical global optimum, validating the MAB-guided
initialization. Computational Complexity. Coordination overhead is negligible compared to VLM in-
ference. Broker selection (O(N)) and trading checks (O(N2)) consume milliseconds for typical pool sizes
(N ≤ 15), ensuring real-time viability.

4 EXPERIMENTS

We conduct experiments to validate Agora, using NVIDIA A100 GPUs. The agent pool
consists of five representative VLMs: qwen2.5vl-72b-instruct, gemini-2.0-flash,
qwen2.5vl-7b-instruct, gemma-3-27b, and gpt-4o-mini. In Agora, an ‘expert’ or ‘agent’
is an active configuration of a base model with a specific prompt and role. The number of concurrent ex-
perts, denoted by N , varies by setup. We evaluate five aspects: (1) comprehensive visual understanding
across benchmarks; (2) the role of our MAB strategy in uncertainty trading; (3) comparison with alternative
routing and MAS strategies; (4) cost–performance trade-offs across N ; (5) module/strategy ablations.

4.1 COMPREHENSIVE VISUAL UNDERSTANDING PERFORMANCE

Experiment Setup. Agora’s performance is benchmarked against its constituent models (individually) and
external SOTA VLMs, including gpt-4o-2024-08-06 (OpenAI, 2024), gemini-2.5-pro-exp-03-25 (Google,
2025), and InternVL3-78B (Chen et al., 2024c). Evaluation covers diverse benchmarks: MMMU (Val) (Yue
et al., 2024), MMBench V11 Test (Liu et al., 2023b), MathVision (Wang et al., 2024b), InfoVQA
(test) (Mathew et al., 2021), and CC-OCR (Yang et al., 2024). All models, including baselines and SOTA
comparators, are accessed via the OpenRouter API. We use greedy decoding (‘do sample=False’) for de-
terminism and comparability. Additional details are in the appendix. Experimental Results and Anal-
yses. Table 1 shows that Agora delivers robust performance across challenging benchmarks. It achieves
new SOTA on MMBench V11 Test, InfoVQA, and CC-OCR, owing to its architecture that explicitly man-
ages and trades uncertainties among heterogeneous agents. On reasoning-heavy tasks like MMMU and
MathVision, gemini-2.5-pro-exp-03-25 performs strongly as a specialized “thinking model,” but Agora still
secures second place. Overall, these results highlight Agora’s effective collaborative capability for com-
plex vision–language tasks. Agora achieves consistent gains (+1.1–8.5% across benchmarks), confirming
effectiveness in collaborative problem-solving via dynamic uncertainty management.

4.2 COMPARISON WITH ALTERNATIVE ROUTING AND MULTI-AGENT STRATEGIES

Experiment Setup. We benchmark Agora (Ours) against representative router models and multi-agent
strategies, including FrugalGPT (Chen et al., 2024b), RouteLLM (Ong et al., 2024), EmbedLLM (Zhuang
et al., 2025), HybridLLM (Ding et al., 2024), KABB (Zhang et al., 2025), and MOA (Wang et al., 2024a).
To ensure a fair comparison, we implemented a Unified Multimodal Wrapper for text-centric baselines
(FrugalGPT, RouteLLM, EmbedLLM). This wrapper generates visual embeddings using the visual encoder
of the strongest available agent and concatenates them with the textual query, enabling these routers to pro-
cess multimodal inputs without structural modification. All methods operate on the exact same agent pool
(N=6). Evaluation is performed on MMBench V11 Test (Liu et al., 2023b), reporting Accuracy (%), Rel-
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Algorithm 1 Agora: A Distributed Economic Optimization Algorithm

1: Input: Agent set A, costs c, expertise Ξ, initial uncertainty uinitial, Broker MAB.
2: Output: Final allocation Π.
3: ▷ Phase 1: Utility-Maximizing Initialization
4: ahandler ← Broker.select initial agent(A,uinitial)
5: Initialize allocation Π: uhandler ← uinitial; ui ← 0 for i ̸= handler.
6: while true do ▷ Phase 2: Iterative Greedy Cost Descent via Trading Protocol
7: best trade← FindMostProfitableTrade(Π,A, c,Ξ)
8: if best trade ̸= null then
9: Let (i, j, k, amt) be the components of best trade

10: ▷ Execute trade based on the protocol from Eq. 5
11: uj [k]← uj [k] + ui[k]; ui[k]← 0
12: else
13: break ▷ Market converged to a locally optimal equilibrium
14: end if
15: end while
16: return Π

Table 1: Comprehensive performance on visual benchmarks. Scores are percentages; best in bold, second
best underlined. Agora (Ours) routes tasks within the baseline pool, parentheses show gains over the top.

Model MMMU(Val) MMBench V11 Test MathVision InfoVQA(test) CC-OCR

qwen2.5vl-72b-instruct 70.2% 88.4% 39.3% 87.3% 79.8%
gemini-2.0-flash 70.7% 83.0% 41.3% 83.2% 73.1%
qwen2.5vl-7b-instruct 58.6% 82.6% 25.1% 82.6% 77.8%
gemma-3-27b 64.9% 78.9% 27.5% 59.4% 72.6%
gpt-4o-mini 60.0% 76.3% 26.3% 68.7% 64.2%
gpt-4o-2024-08-06 70.7% 74.3% 30.4% 68.7% 66.6%
gemini-2.5-pro-exp-03-25 81.7% 88.3% 63.5% 81.0% 73.0%
InternVL3-78B 72.2% 87.7% 43.1% 84.1% 80.3%
Agora (Ours) 79.2%(+8.5%) 89.5%(+1.1%) 44.3%(+2.0%) 88.9%(+1.6%) 81.2%(+1.4%)

ative Cost (normalized to Agora=1.00), Average Inference Time (s), Collaboration Overhead Index (COI),
and Final Epistemic Uncertainty (Ufinal epis). Details of model adaptation and hyperparameters are in Ap-
pendix L.Note that the reported “Average Inference Time” is strictly end-to-end, encompassing all system
overheads including Broker selection, uncertainty estimation, and trading protocol execution.

Experimental Results and Analyses. As shown in Figure 4, Agora attains the highest accuracy (89.50%)
while remaining cost-efficient. KABB-VLM and MOA achieve competitive accuracy (87.12%, 86.65%) but
at much higher cost (1.24× and 3.11×), COI (1.53, 1.82), and residual uncertainty (0.21, 0.25). In contrast,
FrugalGPT, RouteLLM, EmbedLLM, and HybridLLM reduce cost (0.73–0.91) but suffer notable accuracy
drops (–8 to –9.6 points) and higher uncertainty (0.27–0.33). These results underline Agora’s superior ac-
curacy–efficiency trade-off. Furthermore, extended comparisons in Appendix E.3 demonstrate that
Agora consistently outperforms strong baselines (MoA, KABB-VLM) across reasoning-heavy (Math-
Vision) and perception-heavy (InfoVQA, CC-OCR) benchmarks.

Experiment Setup. To evaluate economic efficiency, we analyze Agora’s cost–performance on MM-
Bench TEST V11, varying agent pool size (N = 1–9) and comparing with baselines, external SOTA

7
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Table 2: MAB strategy on MMMU (Val). Except ”No Trading,” all use multi-agent trading (COI > 1).
Lower is better for Ufinal epis, COI; higher for Accuracy, UAPS. Best scores bold, second best underlined.

Method MMMU Acc. (%) Ufinal epis ↓ COI ↓ UAPS (%) ↑

Agora (Ours) 79.0 0.15 1.2 70.5
Agora (No Trading) 75.5 0.22 1.0 65.0
KABB Selector + Trading 76.0 0.25 1.5 65.5
PPO Selector + Trading 74.0 0.28 1.6 62.0
MCTS Selector + Trading 74.5 0.26 1.4 63.0
A2C Selector + Trading 73.5 0.29 1.7 61.0
DQN Selector + Trading 73.0 0.30 1.7 60.0
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Figure 4: Comparison with alternative routing and multi-agent strategies on MMBench V11 Test (N=6).
Lower is better for Cost, Time, COI, and Ufinal epis; higher is better for Accuracy.

VLMs, and KABB-VLM. The Cost–Performance Ratio is defined as relative cost (gpt-4o-mini=1.0) over
accuracy, using OpenRouter prices; lower is better.

4.3 THE ROLE OF THE MARKET-AWARE MAB STRATEGY

Table 3: Ablation of the Agora strategy on MM-
Bench V11 Test. Uncertainty trading is enabled for
all variants. Rel. Cost is normalized to the full
model. Best results are in bold.

Variant Acc. (%) ↑ Ufinal ↓ COI ↓ UAPS (%) ↑ Rel. Cost ↓

Agora (Full) 89.50 0.16 1.25 78.33 1.00
w/o Ustrategic 86.42 0.23 1.45 71.58 1.06
w/o Synergy 87.91 0.19 1.30 74.88 1.03
w/o Dist 88.53 0.18 1.27 76.21 1.01
w/o ∆t 89.05 0.17 1.26 77.14 1.00
Only Net Return 82.15 0.31 1.08 60.72 0.92

To validate the central role of our market-aware
Multi-Armed Bandit (MAB) broker, we conducted a
comparative experiment on the MMMU (Val) bench-
mark. In this controlled setup, we replaced our selec-
tor with prominent heuristic (KABB) and reinforce-
ment learning (PPO, MCTS, A2C, DQN) alternatives,
while the underlying uncertainty trading protocol re-
mained constant. The results, presented in Table 2,
are decisive. Our MAB-based approach outperforms
all baselines, achieving the highest accuracy (79.0%)
and Uncertainty-Aware Performance Score (UAPS)
of 70.5%. Notably, it surpasses the next-best heuristic
selector (KABB) by a margin of 3.0% in accuracy and 5.0 UAPS points. While the RL agents demonstrate
learning capabilities, they struggle to match the efficiency of our method within this economic coordination
task, consistently yielding lower scores and higher final epistemic uncertainty (Ufinal epis). These findings
underscore that the specific design of our market-aware Broker, which leverages an economically-informed
utility function, is a critical contributor to the Agora framework’s superior performance and efficiency.

4.4 COST AND PERFORMANCE BALANCE ANALYSIS

Experimental Results and Analyses. Figure 5 plots the accuracy-cost trade-off, where the Cost-
Performance Ratio (lower is better) reveals the economic efficiency of different strategies. The results
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demonstrate Agora’s ability to establish a superior Pareto frontier. Even with a single agent type (N = 1),
Agora achieves a competitive 87.5% accuracy at an exceptionally low cost ratio (0.02057), outperforming
even costly SOTA models like ‘gemini-2.5-pro‘ and ‘InternVL3-78B‘. As the agent pool diversifies, accu-
racy steadily climbs to a peak of 89.6% at N = 8, with only marginal changes at N = 9. Crucially, every
Agora configuration (N ≥ 1) maintains a significantly better cost ratio than strong baselines like ‘qwen-72b‘
(0.05656) and alternative multi-agent systems like KABB-VLM (0.05191).

These trends reveal key insights into Agora’s economic design. First, the remarkable efficiency of the N = 1
case is not merely about using a cheap model; it highlights the intelligence of our market-aware broker, which
selects the most suitable configuration for a given task, avoiding unnecessary costs. Second, the graceful
scaling from N = 2 to N = 8 validates our core thesis: as the market gains access to more specialized agents
(a more heterogeneous pool), the uncertainty-trading mechanism more effectively allocates cognitive labor
to the cheapest specialist. This allows the system to push the accuracy boundary without a proportional
surge in cost. Finally, the performance plateau around N = 8 indicates a point of diminishing returns,
a classic economic principle. It suggests that Agora does not require an ever-expanding, costly pool of
agents to maintain its edge. Instead, it efficiently leverages a finite set of resources to approach an optimal
performance ceiling. This economically rational behavior stands in stark contrast to the brute-force strategy
of monolithically applying a single, expensive SOTA model to all problems, a tactic that Figure 5 shows is
fundamentally inefficient.

4.5 MODULE AND STRATEGY ABLATION STUDIES
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Figure 5: Cost–Performance vs. Accuracy on MM-
Bench TEST V11. The curve illustrates Agora’s abil-
ity to achieve a superior Pareto frontier. As the agent
pool grows, the system improves accuracy at a sub-
linear cost increase, highlighting the efficiency of its
market-aware MAB.

Experimental Setup. To dissect the contribution
of each component in Agora, we conduct an abla-
tion study on the key multiplicative factors within
our market-aware Thompson Sampling utility func-
tion: θ̃

(t)
S = (E[Reward(t)

S ] − Cost(t)S ) · exp(−λ ·
Dist(S, t))·γ∆t·Synergy(S)η·Ustrategic(S)

ω . Specif-
ically, we create variants by individually ablating
the Strategic Uncertainty (Ustrategic), Synergy, Task
Match (Dist), and Time Decay (∆t) factors. These
variants are benchmarked against a baseline, ”Only
Net Return,” which relies solely on the expected net
return for agent selection. All experiments in this
study are performed on the MMBench V11 Test
dataset, utilizing a consistent agent pool of N = 6
experts. For each ablated variant, its corresponding
term in the utility function is neutralized by setting
it to one. Further ablation on key hyperparameters
is detailed in Appendix H. Experimental Results
and Analyses.

As presented in Table 3, the results validate the ef-
ficacy of the complete Agora strategy and quantify
the contribution of each component. The full model
outperforms all variants, achieving the highest ac-
curacy (89.50%), lowest final epistemic uncertainty
(0.16), lowest Collaboration Overhead Index (COI, 1.25), and highest Uncertainty-Aware Performance Score
(UAPS, 78.33%). Ablating any strategic factor impairs performance. Critically, removing the novel Strate-
gic Uncertainty (Ustrategic) factor causes the most substantial performance degradation (Accuracy -3.08%,
Ufinal epis +0.07, UAPS -6.75 points, Cost +6%), underscoring its pivotal role in guiding agent selection to-
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ward profitable uncertainty trades. The removal of the Synergy, Task Match, and Time Decay factors also
leads to measurable performance drops, confirming their positive contributions. In stark contrast, the ”Only
Net Return” baseline, which ignores all strategic heuristics, performs substantially worse than any other
variant (e.g., -7.35% accuracy and -17.61 UAPS points vs. the full model). This confirms that all strategic
components are integral to achieving the high-accuracy, cost-efficient coordination that defines the Agora
framework.

5 CONCLUSION

We propose Agora, a market-based framework for coordinating multi-agent Vision–Language Models
(VLMs). Unlike heuristic methods such as Mixture-of-Agents or knowledge-based routers, which collapse
uncertainty and ignore costs, Agora casts epistemic uncertainty as a structured, tradable asset across per-
ceptual, semantic, and inferential dimensions. Guided by a market-aware Thompson Sampling broker, a
profitability-driven protocol enables agents to trade uncertainty rationally and reach cost-efficient equilibria.
Experiments on five benchmarks show consistent gains—up to +8.5% accuracy at over 3× lower cost.
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A APPENDIX

SUPPLEMENTARY MATERIAL OVERVIEW

This Supplementary Material provides a detailed expansion of the Agora framework presented in the main
paper. It begins with foundational Preliminary concepts in Appendix A and a review of Related Work in
Appendix B. Appendix C offers in-depth Theoretical Proofs and Supplements for the core mechanisms
discussed. Further empirical validation is provided through an analysis of the Impact of Agent Pool Con-
figuration in Appendix E, a FLOPs Comparison and Computational Efficiency study in Appendix F,
and an extensive Supplementary Core Component Ablation Discussion in Appendix G. To ensure repro-
ducibility and transparency, we detail the Hyperparameter Ablation Experiments in Appendix H, list all
Hyperparameters Used in the Experiments in Appendix L, present a Runtime Analysis in Appendix J,
and include the Prompt Setting Statement for our VLM agents in Appendix K. Finally, Appendix N offers
a qualitative Case Analysis with examples of successful and unsuccessful expert collaborations.

A PRELIMINARY

Vision-Language Models (VLMs) and Decision Uncertainty: VLMs are systems that process multimodal
inputs, such as visual data I , and generate textual responses R based on task descriptions T . At their core,
they rely on a Large Vision-Language Model. Formally, a VLM agent a acts as a function fa: R = fa(I, T ),
where I ∈ I is the visual input space, T ∈ T is the task description space, and R ∈ R is the response space.
Each agent a incurs a processing cost ca, reflecting computational resource usage. In heterogeneous multi-
agent setups, the agent set A = {a1, a2, . . . , an} varies significantly in capabilities and costs.

Uncertainty plays a crucial role in agent decision-making. For an agent a, input I , and task T , uncertainty
U measures the dispersion in the response probability distribution Pa(R|I, T ), often quantified via Shannon
entropyH:

U(a, I, T ) = H(Pa(R|I, T )) = −
∑
r∈R

Pa(r|I, T ) logPa(r|I, T ).

Here, Pa(R|I, T ) denotes the distribution over possible responses r ∈ R. Higher U indicates lower confi-
dence, potentially increasing computational costs. In multi-agent systems, uncertainty can be decomposed
into epistemic (reducible through collaboration) and aleatoric (irreducible) components, allowing for tar-
geted trading to optimize resource allocation.

Multi-Armed Bandit Problem (MAB): MAB involves sequential decisions where a learner selects from
actions (arms) to maximize cumulative rewards. Selecting arm a at time t yields a random reward Xa(t)
from an unknown distribution.

Thompson Sampling (TS) addresses MAB by balancing exploration and exploitation via Bayesian methods.
For each arm a, it maintains a posterior on reward probability θa, often a Beta distribution Beta(αa, βa). At
each step, sample θa ∼ Beta(αa, βa) and choose:

a∗ = argmax
a

θa.

Update after reward r:

(αa, βa)←
{
(αa + 1, βa) if r = 1,

(αa, βa + 1) if r = 0.

This approach is particularly useful in agent selection, as it adapts to performance over time, reducing regret
in uncertain environments.
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Cost-Benefit Modeling and Comparative Advantage: In multi-agent systems, agent ai’s efficiency in
handling uncertainty U is modeled by cost function Ci(U) = αi · U + βi, where αi is the marginal cost per
unit uncertainty and βi is the fixed cost. Total system cost is Ctotal =

∑n
i=1 Ci(Ui), with Ui assigned to ai.

Drawing from comparative advantage theory, our framework reallocates uncertainty based on relative effi-
ciencies: agents with absolute disadvantages can still improve system efficiency if strengths differ across
dimensions. For agents ai, aj and dimensions d1, d2, the comparative advantage index is:

CAI(ai, aj , d1, d2) =
Ci(d1)/Ci(d2)

Cj(d1)/Cj(d2)
< 1,

implying ai advantages in d1 relative to d2, and vice versa. Trading then reduces total cost:

∆Ctotal = [Ci(Ui −∆Ud1
) + Cj(Uj +∆Ud1

)]− [Ci(Ui) + Cj(Uj)] < 0.

Analysis and Improvements in Agora: Traditional multi-agent coordination often relies on heuristics like
consensus in Mixture-of-Agents (MoA) or semantic routing in KABB, which are cost-agnostic and col-
lapse uncertainty into scalars, leading to suboptimal performance as proven by the Inefficiency Theorem.
These approaches fail to address information asymmetry and bounded rationality, resulting in high costs and
inefficiencies.

Agora improves upon this by framing coordination as a decentralized market for uncertainty, minting it
into tradable assets (perceptual, semantic, inferential). This structure-awareness enables profitability-driven
trades, ensuring cost-aware optimization. The market-aware Broker, extending TS, initializes collabora-
tions efficiently, while the trading protocol greedily descends the cost landscape. Experiments show Agora
achieves up to +8.5% accuracy on MMMU with 3× cost reduction, demonstrating scalable, economically
viable intelligence.

B RELATED WORK

B.1 VISION-LANGUAGE MODELS IN MULTI-AGENT SYSTEMS

The integration of Vision-Language Models (VLMs) (Parascandolo et al., 2025; Peng et al., 2024; Kim &
Ji, 2024; Xu et al., 2024; Wang et al., 2023; Radford et al., 2021) into multi-agent systems (MAS) has un-
locked new capabilities for collaborative multimodal tasks (Nash, 1950). However, prevailing coordination
paradigms, such as centralized controllers or heuristic-based task allocators (Gregory et al., 2019; Han et al.,
2024), often struggle with the economic realities of scaling these systems. They tend to overlook the steep
computational costs inherent in large VLMs (Wang et al., 2024a) and rely on static uncertainty-handling
mechanisms, which fundamentally limits their efficiency and scalability. In contrast, Agora introduces a
market-driven framework that directly addresses these shortcomings. It enables agents to dynamically trade
uncertainty as a resource, optimizing for both performance and cost by leveraging decentralized economic
principles to resolve information asymmetry—a key limitation of prior heuristic-based approaches.

B.2 UNCERTAINTY QUANTIFICATION AND MANAGEMENT

While uncertainty quantification is a recognized field in deep learning, particularly within Bayesian meth-
ods (LeCun et al., 2015) and active learning, its application in multi-agent VLM systems remains underde-
veloped. Existing research is often limited in scope: many methods decompose uncertainty into epistemic
and aleatoric types but focus primarily on single-agent settings (Gawlikowski et al., 2022). Other studies
investigate uncertainty sharing for perceptual tasks (Hao et al., 2022) but lack a formal economic model for
efficient resource allocation. Agora uniquely bridges this gap. It formalizes multi-dimensional uncertainty
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(perceptual, semantic, and inferential) as a structured, tradable asset. This enables a novel, profitability-
driven trading protocol that reduces system-wide costs and enhances collaborative efficiency, moving beyond
the static and heuristic methods found in existing literature.

B.3 MULTI-ARMED BANDITS AND DECISION-MAKING

Multi-armed bandit (MAB) frameworks (Dai et al., 2023; Sun et al., 2025; Bouneffouf & Féraud, 2024) are
a cornerstone of sequential decision-making in MAS (de Curtò et al., 2023; Xia et al., 2025). Advanced
methods like contextual bandits (Zhu et al., 2022; david cortes, 2025) and reinforcement learning-based
MABs (Azizi et al., 2022; Gupta et al., 2023) incorporate state information to refine action selection. How-
ever, their direct application often falls short in the complex economic landscape of large-scale MAS, as
traditional MABs are typically engineered to maximize an abstract reward signal. They rarely situate the
decision-making process within a formal economic framework that explicitly models the trade-offs between
performance, computational cost, and the fine-grained structure of uncertainty.

In contrast, the Agora framework makes several novel contributions that extend the MAB paradigm from a
simple decision-making tool to a market-aware economic broker: Uncertainty as a Tradable Asset: We
are the first to formalize multi-dimensional cognitive uncertainty (perceptual, semantic, and inferential) as
a quantifiable and tradable economic asset. This moves beyond merely using uncertainty as a feature for
exploration. Profitability-Driven Coordination: We introduce a trading protocol governed by economic
rationality, where agent collaboration is based on explicit cost-benefit analysis (∆C) rather than heuristic
rules. Market-Aware Utility Function: The Broker in Agora utilizes a novel, market-aware utility func-
tion (Eq. 6) that integrates not only expected reward but also explicit costs, task similarity, team synergy,
and a unique Strategic Uncertainty Index. This design aligns the MAB’s selection policy directly with the
economic efficiency of the entire multi-agent system. This economically grounded approach yields superior
cost-performance trade-offs compared to traditional MAB applications, marking a significant advancement
in building truly viable decision-making frameworks for MAS.

C THEORETICAL PROOFS AND SUPPLEMENTS IN THE MAIN TEXT

C.1 MULTI-DIMENSIONAL VISUAL UNCERTAINTY QUANTIFICATION MODEL (3.1)

To achieve fine-grained management and efficient trading of visual uncertainty, Agora proposes a multi-
dimensional uncertainty quantification model. This model decomposes the overall uncertainty faced by an
agent into three fundamental dimensions: perceptual uncertainty (uperc), semantic uncertainty (usem), and
inferential uncertainty (uinf), as formalized in Section 3.

C.1.1 FORMAL DEFINITION AND EXPANSION OF CORE UNCERTAINTY DIMENSIONS

a. Perceptual Uncertainty (uperc) Perceptual uncertainty (uperc) quantifies the lack of confidence in iden-
tifying raw visual signals (e.g., object categories, basic features) due to factors such as image quality and
visual ambiguity. It is defined as follows:

uperc(I, R) = fperc︸︷︷︸
Perceptual Uncertainty
Aggregation Function

 Stat︸︷︷︸
Statistical Analysis

Function

 fvisual(I)︸ ︷︷ ︸
Visual Features Extracted

from Image I

 , Ψ(R)︸ ︷︷ ︸
Contextual/Modulating Factors

Related to Response R

 (7)

Detailed Expansion and Explanation: I: Input Visual Signal. fvisual(I): Visual feature extraction module.
For example, fvisual(I) → V, where V is a set of feature vectors extracted by a Convolutional Neural
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Network (CNN) or Vision Transformer (ViT). Stat(fvisual(I)): Statistical evaluation of the extracted vi-
sual features to quantify their clarity, consistency, or the model’s raw confidence in these features. For
example: If fvisual(I) yields a probability distribution P (O|I) = {p(o1|I), . . . , p(oK |I)} over K pos-
sible visual categories ok, then Stat(fvisual(I)) can be: The entropy of this distribution: H(P (O|I)) =

−
∑K

k=1 p(ok|I) log p(ok|I). Or the complement of the highest probability: 1 − maxk p(ok|I). Ψ(R):
A function that adjusts or focuses the assessment of perceptual uncertainty based on the current agent’s
response R (or task context). For example: Ψ(R) might selectively weight certain types of perceptual un-
certainty based on the content of R, or adjust the overall scale of uncertainty according to task importance.
fperc(·, ·): The final aggregation function that combines the quantified visual feature information from Stat(·)
and contextual

b. Semantic Uncertainty (usem) Semantic uncertainty (usem) reflects the ambiguity or multiple possi-
bilities in understanding the meaning of a scene, interactions between objects, or symbolic interpretations,
assuming the visual signals have been perceived. It is defined as follows:

usem(R) =

∑
i∈SemTypes

Weight of
Semantic Type i︷︸︸︷

wi ·

Ambiguity in Response R
regarding Semantic Type i︷ ︸︸ ︷

Ci(R)

N(R)︸ ︷︷ ︸
Normalization Factor for Complexity

or Number of Semantic Elements in R

+ λ︸︷︷︸
Smoothing
Constant

(8)

Detailed Expansion and Explanation: R: The response generated by the agent or its internal semantic rep-
resentation. SemTypes: A predefined set of semantic types, e.g., {object attributes, spatial relationships, be-
havioral intentions, ...}. wi: Importance weight assigned to semantic type i, typically wi ≥ 0 and

∑
wi = 1

(or other normalization methods). Ci(R): A function that quantifies the ambiguity or complexity related to
semantic type i in response R. For example: If semantic type i focuses on ”inter-object relationships,” and
there are MAB possible valid relationships between object A and object B mentioned in response R, then
Ci(R) could be a function of MAB (e.g., logMAB), or the entropy of the probability distribution of these
relationships. N(R): A measure of the overall complexity of response R (e.g., number of entities, propo-
sitions, or words contained), used as a normalization term in the denominator to obtain an average per-unit
semantic ambiguity. λ: A small positive constant (λ > 0) to prevent division by zero.

c. Inferential Uncertainty (uinf) Inferential uncertainty (uinf) measures the agent’s confidence in its pre-
dictions about future events, unknown states, or decision outcomes based on current information. It is
defined as follows: uinf(R,S) = γ · (1 − P (S)) + (1 − γ) · H(S) Detailed Expansion and Explana-
tion: R: The current agent response or contextual information extracted from it. S = {s1, s2, . . . , sM}:
A set of M mutually exclusive potential outcomes of future events, states, or decisions to be predicted.
P (S|R, I): The predicted probability distribution over the outcomes in S, given current information.
P (S) = maxsj∈S P (sj |R, I): The probability value of the most likely predicted outcome in this distri-
bution. The first term γ

(
1− P (S)

)
thus quantifies the uncertainty arising from a lack of confidence in the

”best guess.”H(S) = −
∑M

j=1 P (sj |R, I) logP (sj |R, I): The Shannon entropy of this predictive probabil-
ity distribution. The second term (1−γ)H(S) thus quantifies the uncertainty due to the dispersion or disorder
of the overall prediction outcomes. γ ∈ [0, 1]: A hyperparameter that balances the relative importance of
these two sources of uncertainty.

C.1.2 MANAGEABILITY DIMENSIONS: EPISTEMIC UNCERTAINTY AND ALEATORIC UNCERTAINTY

Uncertainty is further divided into manageable epistemic uncertainty (uepis) and inherent aleatoric uncer-
tainty (ualea), as introduced in Section 3.
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a. Epistemic Uncertainty (uepis)
uepis = f ′

base,epis(uperc, usem, uinf)︸ ︷︷ ︸
Mapping from Base Dimensions to Epistemic Uncertainty

(Reducible Part)

+ f ′′
epis(Λ(R))︸ ︷︷ ︸

Epistemic Uncertainty Directly Contributed by
Knowledge Gap Cues Λ(R)

(9)

Detailed Expansion and Explanation: f ′
base,epis(·, ·, ·): A function that aggregates those parts of perceptual,

semantic, and inferential uncertainty considered ”knowable” or ”reducible” (through more information or
better models). Λ(R): Represents ”Explicit Cues of Knowledge Gaps” related to response R. For ex-
ample: Λ(R) could quantify the deviation of the current query from the training data distribution (Out-
of-Distribution detection), or the model’s familiarity score with specific concepts in the query. f ′′

epis(·): A
function that converts these knowledge gap cues into an additional amount of epistemic uncertainty.

b. Aleatoric Uncertainty (ualea)
ualea = f ′

base,alea(uperc, usem)︸ ︷︷ ︸
Mapping from Base Dimensions to Aleatoric Uncertainty

(Inherent Random Part, Primarily from Perception and Semantics)

+ f ′′
alea(Ω(R))︸ ︷︷ ︸

Aleatoric Uncertainty Directly Contributed by
Environmental Randomness Signals Ω(R)

(10)

Detailed Expansion and Explanation: f ′
base,alea(·, ·): A function that aggregates those parts of perceptual and

semantic uncertainty considered ”inherent” or ”irreducible” (stemming from the randomness of the data
itself or the intrinsic ambiguity of the task). Ω(R): Represents ”Explicit Signals of Environmental Ran-
domness” related to response R. For example: Ω(R) could be inherent randomness explicitly stated in
the task description (e.g., ”result of a dice roll”), or unpredictable disturbances perceived from the environ-
ment. f ′′

alea(·): A function that converts these environmental randomness signals into an additional amount
of aleatoric uncertainty.

C.1.3 TOTAL UNCERTAINTY (uTOTAL)

Finally, the uncertainties from the three base dimensions are weighted and fused to obtain the total uncer-
tainty:

utotal = wperc︸︷︷︸
Perceptual Weight

uperc + wsem︸︷︷︸
Semantic Weight

usem + winf︸︷︷︸
Inferential Weight

uinf (11)

Detailed Expansion and Explanation: wperc, wsem, winf: Weights for the perceptual, semantic, and inferential
uncertainty dimensions, respectively. These weights typically satisfy wk ≥ 0 and

∑
wk = 1 (or other

normalization methods), reflecting the relative importance of different uncertainty dimensions in a specific
task or system objective.

C.2 DYNAMIC UNCERTAINTY TRANSFER MECHANISM (3.2)

To achieve active management of uncertainty and optimize system operational costs, Agora introduces a
dynamic uncertainty transfer mechanism that explicitly tracks the flow of uncertainty among agents.

C.2.1 UNCERTAINTY FLOW EQUATION

At any task t, the total uncertainty U(ai, t) borne by agent ai consists of its self-generated base uncer-
tainty and the transferred uncertainty received from other agents. This dynamic process is described by the
following core equation (see Eq. 3):

U(ai, t) = Ubase(ai, t)︸ ︷︷ ︸
Base Uncertainty

(Generated by ai for task t itself)

+
∑
j ̸=i

Utransfer(aj → ai, t)︸ ︷︷ ︸
Transferred Uncertainty

(Sum received from other agents aj )

(12)
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Detailed Expansion and Explanation: U(ai, t): The total uncertainty vector-borne by agent ai at
task t. This is a multi-dimensional vector where each dimension corresponds to a specific type
of uncertainty (e.g., uperc, usem, uinf defined earlier, or more fine-grained subtypes). U(ai, t) =
[uperc(ai, t), usem(ai, t), uinf(ai, t), . . . ]

T Ubase(ai, t): The base uncertainty vector generated by agent ai
due to its direct interaction with task t. Its calculation can depend on historical information, agent profiles,
or default values. Utransfer(aj → ai, t): The uncertainty vector successfully transferred from agent aj and re-
ceived by agent ai in task t.

∑
j ̸=i Utransfer(aj → ai, t): Summation of uncertainty vectors transferred from

all other agents aj (j ̸= i) to ai, yielding the total uncertainty received by ai via the transfer mechanism at
task t.

C.2.2 TREND OF CHANGE IN SYSTEM-TOTAL UNCERTAINTY: CONSERVATION/CONVERGENCE
ANALYSIS

a. Definition of System-Total Uncertainty Let A = {a1, a2, . . . , aN} be the set of agents in the system.
At time t, the System-Total Uncertainty Usys(t) borne by all agents in the system can be defined as the
sum of the total uncertainties of individual agents: Usys(t) ≜

∑N
i=1 U(ai, t) Substituting the uncertainty

flow equation:

Usys(t) =

N∑
i=1

Ubase(ai, t) +
∑
j ̸=i

Utransfer(aj → ai, t)

 (13)

Usys(t) =

N∑
i=1

Ubase(ai, t)︸ ︷︷ ︸
Usys,base(t): System total base uncertainty

+

N∑
i=1

∑
j ̸=i

Utransfer(aj → ai, t)︸ ︷︷ ︸
Usys,transfer received(t): System total received uncertainty

(14)

b. Impact of Uncertainty Transfer on Total Uncertainty Consider a specific transfer event: at some
stage of task t, agent ak successfully transfers an amount of uncertainty Tkl(d) (in dimension d) to agent al.
As per Eq. 4, the change in uncertainty for the sender and receiver after the transfer: Sender ak’s uncertainty
change: U′

k = Uk−κTkl, receiver al’s uncertainty change: U′
l = Ul+(1−ξl)Tkl Where: Tkl: The amount

of uncertainty declared for transfer from ak to al. κ ∈ [0, 1]: Transfer Efficiency factor. κ = 1 means the
declared amount is fully removed from the sender. ξl ∈ [0, 1]: Receiver al’s Expertise/Resolution Factor.
ξl > 0 means the receiver, due to its expertise, effectively bears or perceives an incremental uncertainty
less than the declared transfer amount, i.e., part of the uncertainty is ”resolved” or ”absorbed.” A successful
transfer Tkl from ak to al leads to a change in system total uncertainty ∆Usys: Assume this transfer is the
only change in the system, and other agents’ uncertainties remain constant.

∆Usys = (U′
k +U′

l +
∑

m̸=k,l

Um)− (Uk +Ul +
∑

m̸=k,l

Um) (15)

∆Usys = (U′
k −Uk) + (U′

l −Ul) (16)
∆Usys = (−κTkl) + ((1− ξl)Tkl) (17)

∆Usys = (1− ξl − κ)︸ ︷︷ ︸
Net change factor in system uncertainty due to a single trade

Tkl (18)

Analysis: Conservation: Strict Conservation: ∆Usys = 0 when ξl + κ = 1. If κ = 1 (fully removed),
then ξl = 0 (fully borne) is needed - uncertainty merely redistributes. Generally Non-conserved: Typically
κ ≈ 1 and ξl > 0, so ∆Usys = −ξlTkl. When uncertainty transfers to agents with expertise (ξl > 0), total
system uncertainty decreases, not physical disappearance but effective resolution by more suitable agents.
2. Convergence: Total Uncertainty Amount: With continuous Ubase(ai, t) and transfers to skilled agents
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(ξl > 0), the system reaches a dynamic equilibrium where new uncertainty balances resolved uncertainty. If
Ubase(ai, t)→ 0 and transfers continue, Usys(t) decreases, potentially to zero if all uncertainty is resolvable.
Specific State: System state convergence depends on trading protocols and cost optimization. If each trade
reduces cost, the system reaches the local optimum with stable uncertainty distribution - an ”equilibrium”
state where uncertainty continues being processed dynamically. Conclusion: The dynamic uncertainty
transfer mechanism, especially when considering the receiver’s expertise factor ξl > 0, has the potential to
reduce the system’s effective total uncertainty. The absolute convergence of the system’s total uncertainty
depends on the rate of base uncertainty generation and the continued effectiveness of the trading mechanism.
The convergence of uncertainty distribution among agents is closely related to the trading equilibrium state
driven by cost optimization.

C.2.3 DEEPENING THE TRANSFER COST-BENEFIT ANALYSIS: CONSIDERING TOTAL TRANSFER
AMOUNT AND EXPERT KNOWLEDGE

In the dynamic uncertainty transfer mechanism, a key decision criterion is whether a trade can reduce the
cost of handling uncertainty at the system level. This depends not only on the comparison of unit costs
but also on the actual total amount of uncertainty transferred and the receiver’s expertise in handling that
uncertainty.

a. Variable Processing Cost Change of a Trade Consider a transfer of uncertainty in a specific dimension
d from agent ai (sender) to agent aj (receiver). Let Ui(d) and Uj(d) be the uncertainty stock of ai and aj
in dimension d before the trade, respectively. * Let ci and cj be the marginal processing costs for ai and aj
to handle a unit of uncertainty in dimension d, respectively. * Let Tij(d) be the total amount of uncertainty
declared for transfer from ai to aj in dimension d. Tij(d) > 0. * Let ξj ∈ [0, 1] be the expertise factor of
receiver aj when processing uncertainty of dimension d. (1− ξj)Tij(d) represents the effective increase in
uncertainty borne by aj . If ξj > 0, a part of the uncertainty is ”resolved” or efficiently processed by aj’s
expertise. Before the trade, the total processing cost related to Ui(d) and Uj(d) (considering only these
stock parts) is:

Cbefore = ciUi(d)︸ ︷︷ ︸
Cost of Agent i

+ cjUj(d)︸ ︷︷ ︸
Cost of Agent j

(19)

After the trade, agent ai’s uncertainty stock becomes Ui(d) − Tij(d). Agent aj’s uncertainty stock effec-
tively increases by (1− ξj)Tij(d), becoming Uj(d) + (1− ξj)Tij(d). The new total processing cost related
to this is:

Cafter = ci(Ui(d)− Tij(d))︸ ︷︷ ︸
New cost of Agent i

+ cj(Uj(d) + (1− ξj)Tij(d))︸ ︷︷ ︸
New cost of Agent j

(20)

b. Deriving the Cost-Benefit Condition for a Trade A trade is beneficial in terms of processing costs if
and only if the total processing cost after the trade is strictly less than the total processing cost before the
trade, i.e., Cafter < Cbefore. (This is equivalent to Eq. 4 which states ∆C < 0).

ciUi(d) + cjUj(d)︸ ︷︷ ︸
Total processing cost before trade (LHS)

> ci(Ui(d)− Tij(d)) + cj(Uj(d) + (1− ξj)Tij(d))︸ ︷︷ ︸
Total processing cost after trade (RHS)

(21)

Formal Expansion and Proof :

1. Subtract common terms ciUi(d) and cjUj(d) from both sides of the inequality:

0 > −ciTij(d) + cj(1− ξj)Tij(d) (22)

2. Rearrange terms to centralize those containing Tij(d):

ciTij(d)− cj(1− ξj)Tij(d) > 0 (23)

21



987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033

Under review as a conference paper at ICLR 2026

3. Factor out Tij(d) (by definition, the actual transferred amount Tij(d) > 0):
Tij(d)︸ ︷︷ ︸

>0

· (ci − cj(1− ξj)) > 0 (24)

4. Since Tij(d) > 0, the necessary and sufficient condition for the above inequality to hold is:

ci > cj(1− ξj) (25)

ci︸︷︷︸
Sender ai
unit cost

> cj(1− ξj)︸ ︷︷ ︸
Receiver aj effective unit cost

(considering expertise ξj )

(26)

Theoretical Significance: This condition explicitly states that only when the sender’s unit processing cost is
higher than the receiver’s effective unit processing cost can the trade yield benefits at the variable processing
cost level.

c. Connection with CE Ratio and Broader Cost Considerations The naive CE ratio defined as
CE(ai → aj , u) = ci(u)

cj(u)
(here using i as the sender, j as a receiver, consistent with current notation)

suggests that if ci(u) > cj(u), the transfer is beneficial. Now, incorporating the receiver’s expertise factor
ξj , we can define an Effective Cost-Effectiveness Ratio (CE′

i→j):

CE′
i→j(d) ≜

Sender’s unit cost︷︸︸︷
ci

cj(1− ξj)︸ ︷︷ ︸
Receiver’s effective unit cost

(27)

Then, the derived cost-benefit condition ci > cj(1− ξj) is equivalent to:
CE′

i→j(d) > 1 (28)
This indicates that a transfer is beneficial in terms of direct processing costs only when the sender’s unit
processing cost is higher relative to the receiver’s ”effective” unit cost. Notes on Fixed Costs and Transac-
tion Costs: The above derivation primarily focuses on the reduction of variable costs directly related to the
amount of uncertainty processed. A complete trading decision also needs to consider more comprehensive
cost-benefits: Fixed Costs (βi, βj): If a trade causes an agent to change from inactive to active (incurring
a new βj), or from active to inactive (saving βi), these changes in fixed costs need to be included in the
calculation of the total benefit. 2. Transaction Costs: Communication and computation overheads that may
exist for executing the trade itself. Therefore, the condition ci > cj(1 − ξj) is a core element for judging
whether a trade can potentially reduce variable processing costs, but the final decision to execute the trade
must be made through a more comprehensive benefit evaluation (which should internalize all relevant cost
and benefit items).

C.3 UNCERTAINTY TRADING PROTOCOL

This protocol defines the rules and conditions for agents to trade uncertainty, aiming to transform uncertainty
into a manageable and optimizable resource to reduce total system operating costs. The core of trading is
transferable epistemic uncertainty (uepis), conducted based on principles of comparative advantage and cost-
effectiveness, as per Eq. 5.

C.3.1 PREREQUISITES FOR A TRADE

A potential trade to transfer uncertainty of dimension d ∈ Dtradable (set of tradable uncertainty dimensions)
from agent ai (sender) to aj (receiver) must first satisfy the following conditions:
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a. Trade Trigger Condition To ensure the necessity of trade and avoid ineffective fluctuations, an uncer-
tainty differential threshold is set:

∃d ∈ Dtradable s.t. Ui(d)︸ ︷︷ ︸
Sender ai’s current

uncertainty level in dim d

− Uj(d)︸ ︷︷ ︸
Receiver aj ’s current

uncertainty level in dim d

> τtrade︸︷︷︸
Minimum uncertainty
differential threshold

to trigger trade

(29)

Theoretical Significance: τtrade > 0 ensures that a trade intention is initiated only when there is a significant
imbalance in uncertainty distribution, sufficient to overcome potential transaction friction costs and form an
effective comparative advantage.

b. Receiver Capacity Constraint The planned amount of uncertainty to be transferred Tij(d) must not
exceed the processing capacity of the receiver aj . Considering the receiver’s expertise factor ξj , the effective
increase is (1− ξj)Tij(d):

∀d ∈ Dtradable, Uj(d)︸ ︷︷ ︸
Receiver aj ’s pre-trade

uncertainty in dim d

+(1− ξj)Tij(d)︸ ︷︷ ︸
Effective uncertainty
increment in dim d

≤ Cj(d)︸ ︷︷ ︸
Receiver aj ’s uncertainty

capacity limit in dim d

(30)

Theoretical Significance: This constraint prevents the receiver from being overloaded by taking on too much
uncertainty, ensuring its own task-processing capability and system stability.

C.3.2 COST-BENEFIT ANALYSIS OF A TRADE

a. Condition for Reducing Variable Processing Costs A trade must at least show an advantage in directly
related variable processing costs. Consider the transfer of uncertainty Tij(d) in dimension d from ai to aj :
Before the trade, the local processing cost related to Ui(d) and Uj(d) is:

Cproc, pre = ciUi(d)︸ ︷︷ ︸
Cost: ai processes Ui(d)

+ cjUj(d)︸ ︷︷ ︸
Cost: aj processes Uj(d)

(31)

After the trade, the relevant new local processing cost :

Cproc, post = ci(Ui(d)− Tij(d))︸ ︷︷ ︸
Cost: ai processes remainder

+ cj(Uj(d) + (1− ξj)Tij(d))︸ ︷︷ ︸
Cost: aj processes total (incl. effective new)

(32)

where ci, cj are the marginal costs for ai, aj to process unit uncertainty in dimension d, and ξj is aj’s
expertise factor. The condition for the trade to reduce variable processing costs is Cproc, pre > Cproc, post:

ciUi(d) + cjUj(d)︸ ︷︷ ︸
LHS

> ci(Ui(d)− Tij(d)) + cj(Uj(d) + (1− ξj)Tij(d))︸ ︷︷ ︸
RHS (expanded)

(33)

Formal Expansion and Proof :

1. Subtract common terms ciUi(d) and cjUj(d) from both sides of the inequality:

0 > −ciTij(d) + cj(1− ξj)Tij(d) (34)

2. Rearrange terms to centralize those containing Tij(d):

ciTij(d)− cj(1− ξj)Tij(d) > 0 (35)

3. Factor out Tij(d) (by definition, the actual transferred amount Tij(d) > 0):

Tij(d)︸ ︷︷ ︸
>0

· (ci − cj(1− ξj)) > 0 (36)
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4. Since Tij(d) > 0, the necessary and sufficient condition for the above inequality to hold is:

ci > cj(1− ξj) (37)

ci︸︷︷︸
Sender ai
unit cost

> cj(1− ξj)︸ ︷︷ ︸
Receiver aj effective unit cost

(considering expertise ξj )

(38)

Theoretical Significance: This condition explicitly states that only when the sender’s unit processing cost is
higher than the receiver’s effective unit processing cost can the trade yield benefits at the variable processing
cost level.

b. Overall Expected Benefit Condition The final decision to execute a trade depends on whether its
overall expected benefit exceeds a threshold τbenefit (as in Eq. 5):

∆C(Tij(t)) < 0 ∧ (Uj(t) + Tij(t) ≤ Cj(t)) (39)

Formal Expansion and Explanation: Upre(i, j), Cpre(i, j): Measure of uncertainty and costs for agents ai, aj
before the trade. Upre(i, j) could be |(Ui Uj)|agg, a norm or weighted sum. Cpre(i, j) might be unit cost or
total cost estimate. Upost(i, j, Tij), Cpost(i, j, Tij): Measures after trade. Post-trade vectors: U ′

i = Ui−κTij ,
U ′
j = Uj+(1−ξj)Tij , where κ is transfer efficiency. Upost(i, j, Tij) could be

∣∣(wiU
′
i wjU

′
j

)∣∣
agg, with weights

wi, wj . τbenefit ≥ 0: Ensures significant trade benefit, covering implicit transaction costs/risks. * Theoreti-
cal Significance: Comprehensive trade evaluation ensuring not just marginal cost benefits but system-wide
favorability after considering total uncertainty changes, fixed cost impacts, and return requirements.

C.3.3 MARKET EQUILIBRIUM ANALYSIS - BRIEF THEORETICAL PERSPECTIVE

Market equilibrium refers to a state where no potential trades satisfying all trading conditions (trigger, ca-
pacity, cost-benefit, overall expected benefit) exist in the system, leading to a relatively stable distribution of
uncertainty. Definition 3.3.1 (Local Equilibrium State). The system reaches a local equilibrium if, for any
pair of agents (ai, aj) and any tradable dimension d ∈ Dtradable, at least one of the following does not hold:

1. Ui(d)− Uj(d) > τtrade

2. Uj(d) + (1− ξj)Tij(d) ≤ Cj(d) (for some permissible Tij(d) > 0)

3. ci > cj(1− ξj)

4. ∆C(Tij) < 0 (for some Tij(d) determined by 1-3)

Proposition 3.3.1 (Convergence of Trading Process to Local Equilibrium). If: (A1) The total tradable
uncertainty in the system is finite, or the volume of a single trade Tij(d) has a positive lower bound. (A2)
Each successful trade strictly reduces the global cost function Csys by an amount greater than δmin > 0.
(A3) Csys is bounded below. Then the sequence of trades is finite, and the system will converge to a local
equilibrium state as defined above. Proof Outline: C(k+1)

sys ≤ C(k)sys − δmin (each trade reduces cost). Since
Csys has a lower bound Cmin, and the initial cost is C(0)sys , the maximum number of trades Nmaxtrades ≤ (C(0)sys −
Cmin)/δmin, hence the trade sequence is finite. When the sequence terminates, no more trades satisfy all
conditions, and the system reaches local equilibrium. This equilibrium state represents a point where, under
the current protocol and information, system costs cannot be further optimized through bilateral trades.
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C.3.4 APPLICATION OF COMPARATIVE ADVANTAGE THEORY

The theory of comparative advantage provides a theoretical basis for uncertainty trading: even if some
agents do not possess an absolute cost advantage in processing all uncertainty dimensions, as long as there
are differences in the relative processing efficiencies (opportunity costs) of various agents across different
dimensions, specialization, and trade can still enhance overall system efficiency and reduce total costs.
Definition 3.4.1 (Comparative Advantage). For agents ak, al and uncertainty dimensions d1, d2, if their
unit processing costs cx(dy):

ck(d1)

ck(d2)
<

cl(d1)

cl(d2)
(40)

then ak has a comparative advantage over al in processing d1 (relative to d2).

a. Comparative Advantage and Cost Optimization Trades based on comparative advantage aim to
allocate specific types of uncertainty to the agent with the lowest opportunity cost for that type.

∆Ctotal = [ci(Ui −∆Ud1
) + cj(Uj +∆Ud1

)]− [ci(Ui) + cj(Uj)] (41)

Expanding this:
∆Ctotal = (αj − αi) ·∆Ud1 (42)

For ∆Ctotal < 0, it is required that αj < αi. That is, uncertainty d1 should flow from an agent with a higher
unit processing cost (ai) to one with a lower unit processing cost (aj).

b. Implicit Implementation of Comparative Advantage by Agora Protocol The core trading condition
of Agora, ci > cj(1− ξj), is based on effective absolute cost advantage. However, if the cost parameters
ck and expertise ξk of agents dynamically reflect their true efficiency and specialization in handling different
dimensions of uncertainty (which may stem from their comparative advantages), then a series of local trades
based on effective absolute cost advantage will, at a macro level, guide the system’s uncertainty distribution
towards a configuration that aligns with the principles of comparative advantage. For instance, an agent
with a comparative advantage in dimension d1 might develop a low c(d1) and high ξ(d1) for processing d1,
thereby becoming a natural ”sink” for uncertainty in that dimension.

C.4 UNCERTAINTY-AWARE MAB SELECTION STRATEGY

a. Beta Posterior Parameter Update For all S ∈ A (set of agents), at decision round t, the Beta distri-
bution parameters (α(t)

S , β
(t)
S ) are updated: Let r(t−1)

S ∈ {0, 1} be the observed binary reward for agent S in
round t− 1.

α
(t)
S := α

(0)
S︸︷︷︸

Prior α0

+

t−1∑
τ=0

I(S(τ) = S) · r(τ)S (43)

β
(t)
S := β

(0)
S︸︷︷︸

Prior β0

+

t−1∑
τ=0

I(S(τ) = S) · (1− r
(τ)
S ) (44)

where I(S(τ) = S) is an indicator function, indicating whether agent S was selected in round τ . Typically,
α
(0)
S = 1, β

(0)
S = 1.

b. Baseline Expected Reward E[θ(t)S ] =
α

(t)
S

α
(t)
S +β

(t)
S
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c. Comprehensive Scoring Function θ̃
(t)
S

θ̃
(t)
S ≜

(
E[Reward(t)S ]− Cost(t)S

)
︸ ︷︷ ︸

Expected Net Reward (ENR(t)
S )

· fTM (S, t;λdist)︸ ︷︷ ︸
Task Matching Factor (TMF(t)

S )

· fTD(∆tS ; γdecay)︸ ︷︷ ︸
Time Decay Factor (TDF(t)

S )

· fSyn(S; η)︸ ︷︷ ︸
Team Synergy Factor (TSFS )

· fStrat(S;ω)︸ ︷︷ ︸
Strategic Uncertainty Index Factor (SUIFS )

(45)

Expected Net Reward (ENR): (E[Reward(t)S ] − Cost(t)S ) This term represents the fundamental utility of
selecting agent S for task t, balancing its expected rewards against its operational costs; E[Reward(t)

S ] =

E[θ(t)S ] · Rmax(t): This is the anticipated raw reward from agent S for task t; E[θ(t)S ]: The posterior mean
of the success probability for agent S, typically derived from a Beta distribution Beta(α(t)

S , β
(t)
S ), calculated

as α
(t)
S

α
(t)
S +β

(t)
S

; Rmax(t): The maximum possible reward achievable for task t; Cost(t)S (U
(t)
S,est,TaskFeatt) =

αcost,S · U (t)
S,est + βcost,S + Ctask(t,TaskFeatt): The estimated cost for agent S to handle task t; αcost,S :

The marginal cost for agent S to process one unit of uncertainty; U
(t)
S,est = ||U(t)

S,base + U
(t)
S,transfer in −

U
(t)
S,transfer out||1: The estimated total uncertainty agent S handles for task t (using the L1 norm). This con-

siders its self-generated base uncertainty (U(t)
S,base), uncertainty received from other agents (U(t)

S,transfer in),

and uncertainty offloaded to others (U(t)
S,transfer out); βcost,S : The fixed base operational cost for agent S;

Ctask(t,TaskFeatt): Additional costs incurred due to specific features of task t (TaskFeatt). Task Matching

Factor (TM): fTM(S, t;λdist) = exp(−λdist · dS,t) This factor quantifies the compatibility or relevance of
agent S to the current task t. A higher match (smaller distance dS,t) results in a factor closer to 1; λdist:
A hyperparameter that weights the influence of the distance dS,t; dS,t: The distance or dissimilarity be-
tween the feature vector of agent S (vS) and that of task t (vt). Two alternative calculations are suggested:
Normalized Euclidean distance: dS,t = ||vS−vt||2

maxS′∈A ||vS′−vt||2+ϵ . Normalization is done by dividing by the
maximum distance found among all agents for that task, with ϵ being a small constant to prevent division
by zero; Cosine dissimilarity: 1− vS ·vt

||vS ||2||vt||2 . This measures the difference in orientation between the two

vectors. Time Decay Factor (TDF): fTD(∆tS ; γdecay) = γ∆tS
decay This factor prioritizes more recent infor-

mation regarding agent S’s performance or state, diminishing the impact of older data; γdecay: The decay
base hyperparameter, where 0 < γdecay ≤ 1. If γdecay < 1, older information receives a lower weight;
∆tS = t − tlast update(S): The time elapsed since agent S’s parameters (e.g., Beta distribution parameters)
were last updated. Team Synergy Factor (TSF): fSyn(S; η) = (1 + SynVal(t)S )η This factor assesses the

potential for agent S to collaborate effectively with other agents in the current team or context for task t;
SynVal(t)S = 1

|Team(t)|−1

∑
j∈Team(t),j ̸=S Comp(S, j) · Pot(j,Task(t)): The synergy value for agent S at time

t. It’s an average of compatibility scores (Comp(S, j)) between agent S and its teammates j, weighted by
each teammate’s potential (Pot(j,Task(t))) for the current task. |Team(t)| is the number of agents in the
current team; η: A hyperparameter exponent that controls the degree of influence of the team synergy value.
Strategic Uncertainty Index Factor (SUIF): fStrat(S;ω) = (1 + U

(t)
strat,S)

ω This novel factor incorporates

the strategic value of agent S’s uncertainty within the uncertainty trading market. Agents that can contribute
more to system-level cost savings via uncertainty trading are favored; U

(t)
strat,S : The strategic uncertainty

value of agent S at time t. It quantifies the expected net cost saving that agent S can bring to the system by
participating in the uncertainty market (as a seller or buyer). This is detailed further in Appendix C.4.2; ω:
A hyperparameter exponent that modulates the importance of this strategic uncertainty value in the overall
score.
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C.4.1 THEORETICAL GUARANTEES: REGRET & CONVERGENCE

a. Redefining Regret Let θ̃(t)S,true(C(t)) be the true expected comprehensive score of agent S at time t given

context C(t) (including task characteristics, market state, etc.). Let S(t)
opt(C(t)) = argmaxS∈A θ̃

(t)
S,true(C(t)).

The context-cumulative regret Rθ̃
T over T time steps is:

Rθ̃
T ≜

T∑
t=1

EC(t)

[
θ̃
(t)

S
(t)
opt(C(t)),true

(C(t))− θ̃
(t)

S(t),true
(C(t))

]
(46)

where S(t) is the agent actually selected at time t (context C(t)).

b. Assumptions for Convergence Analysis (A1) Boundedness: For all S, t, the values of θ̃(t)S (and its
components) are within a bounded interval, e.g., [0,Θmax]. (A2) Lipschitz Continuity (some factors): For
changes in some contextual variables c ∈ C(t), the change in θ̃

(t)
S is Lipschitz continuous, i.e., |θ̃(t)S (c1) −

θ̃
(t)
S (c2)| ≤ L|c1 − c2|. (A3) Learning and Adaptation: The agent’s estimate of E[θ(t)S ] converges, and

its estimates of dynamically changing contextual factors (like Cost(t)S , Ustrategic(S)) are also progressively
adapting.

c. Direction of Convergence Although proving classic O(log T ) or O(
√
T ) regret bounds is very difficult,

the strategy is designed such that the selection probability P (S(t) = S|History(t−1), C(t)) gradually biases
towards agents with higher true expected θ̃

(t)
S,true(C(t)). If E[θ̃(t)S (C(t))] itself converges to a stationary value

θ̃∗S,true(C∗) (under a stationary context C∗), then the selection will converge to the optimal arm S∗
opt =

argmaxS θ̃∗S,true(C∗). If the context is non-stationary, the strategy attempts to track the optimal arm, similar
to a multi-armed bandit problem in a non-stationary environment. Its performance depends on the speed and
predictability of contextual changes, as well as the accuracy and adaptation speed of the factor estimates.

C.4.2 MATHEMATICAL DECONSTRUCTION OF STRATEGIC UNCERTAINTY INDEX (USTRATEGIC(S))

a. Core Objective Function of Ustrategic(S) : Let M(t) be the uncertainty market state at time t.
Ustrategic(S,M(t)) represents the expected net cost saving E[∆Csys(S,M(t))] that agent S can bring to the
entire system by participating in the market defined byM(t).

Ustrategic(S,M(t)) ≜ ETrades involving S

 ∑
tr ∈T (S,M(t))

(Csys(pre-tr)− Csys(post-tr)) · P (tr occurs)

 (47)

where T (S,M(t)) is the set of all potential trades involving S (as buyer or seller) that satisfy the trading
conditions.

b. Expansion of System Cost Change from a Trade ∆Csys(trade) : Consider a trade tr = (s, r, k, Tsrk)
transferring an amount Tsrk of uncertainty in dimension dk from as to ar.

Csys(pre-tr) =
∑
i∈A

(
M∑
j=1

αijU
(pre)
ij + β′

i(U
(pre)
i )

)
(48)

Csys(post-tr) =
∑

i∈A,i̸=s,i̸=r

Ci(U
(pre)
i ) + Cs(U

(pre)
s − ekTsrk) + Cr(U

(pre)
r + ek(1− ξrk)Tsrk) (49)
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∆Csys(tr) = Csys(pre-tr)− Csys(post-tr)

=
[
αskU

(pre)
sk + β′

s(U
(pre)
s )

]
+

[
αrkU

(pre)
rk + β′

r(U
(pre)
r )

]
−
[
αsk(U

(pre)
sk − Tsrk) + β′

s(U
(pre)
s − ekTsrk)

]
−
[
αrk(U

(pre)
rk + (1− ξrk)Tsrk) + β′

r(U
(pre)
r + ek(1− ξrk)Tsrk)

]
= αskTsrk − αrk(1− ξrk)Tsrk︸ ︷︷ ︸

Variable cost saving ∆Cvar

+
(
β′
s(U

(pre)
s )− β′

s(U
(pre)
s − ekTsrk)

)
︸ ︷︷ ︸

Sender fixed cost change ∆β′
s

+
(
β′
r(U

(pre)
r )− β′

r(U
(pre)
r + ek(1− ξrk)Tsrk)

)
︸ ︷︷ ︸

Receiver fixed cost change ∆β′
r

(50)

∆Csys(tr) = Tsrk(αsk − αrk(1− ξrk)) + ∆β′
s +∆β′

r (51)
This is related to ∆C(Tij(t)) in Eq. 4.

c. Ustrategic(S) as an Expected Sum :

Ustrategic(S,M(t)) =
∑
d∈D

∑
j ̸=S

E[I(Cond(d)S→j) ·∆Csys(S, j, d, T
(d)
Sj )] (S as seller)

+
∑
d′∈D

∑
i̸=S

E[I(Cond(d
′)

i→S) ·∆Csys(i, S, d
′, T

(d′)
iS )] (S as buyer) (52)

where the expectation E[·] is taken over the probability distribution of future market states, other agents’
behaviors, and trade volumes T . The introduction of Ustrategic(S) extends the MAB’s decision-making from
focusing solely on single-agent, single-task ”local” utility to considering system-level ”global” economic
benefits. It guides the exploration/exploitation mechanism by altering the ”effective value” of each arm to
favor agents that can maximize the efficiency of the entire uncertainty trading network.

D OPTIMALITY GAP ANALYSIS

D.1 MOTIVATION AND METHODOLOGY

The Agora framework is theoretically guaranteed (see Appendix C) to converge to a locally optimal equi-
librium, because the search for a globally optimal assignment in a heterogeneous multi-agent market is
combinatorial and NP-hard. While such local guarantees represent the strongest tractable result, it is essen-
tial to understand how close the resulting equilibrium lies to the true global optimum in practice. To address
this question, we conduct an Optimality Gap Analysis comparing Agora with a brute-force global oracle.

Oracle Setup. We construct a Brute-Force Global Oracle on a randomly sampled subset of 50 tasks from
the MMBench-V11 benchmark. This subset size is chosen to strike a balance between covering diverse task
structures and keeping brute-force search computationally feasible. For each task, the oracle exhaustively
enumerates all possible assignments of agents and uncertainty allocations to identify the globally minimal
value of the system-wide cost function C. The complexity of this exhaustive search scales combinatorially
as O(|A|D), where |A| is the number of agents and D is the dimensionality of the uncertainty space.
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Comparison. We compare Agora’s final equilibrium cost with the global oracle using the identical hetero-
geneous agent pool. We further include a non-iterative baseline, Greedy (Local Only), which selects agents
based solely on initial utilities without iterative trading, to illustrate the benefit of MAB-guided initialization
plus greedy market descent.

D.2 RESULTS AND INTERPRETATION

The results, shown in Table 4, reveal that Agora’s decentralized equilibrium lies remarkably close to the
global optimum found by exhaustive search.

Table 4: Optimality Gap Analysis on a 50-task subset of MMBench-V11. Agora’s decentralized solution
achieves an average cost within 1% of the theoretical global optimum.

Method Avg. Cost (Normalized) ↓ Gap to Global Opt. Accuracy (%) ↑
Global Optimal (Oracle) 1.000 0.00% 89.6

Agora (Decentralized) 1.008 +0.80% 89.5
Greedy (Local Only) 1.152 +15.2% 84.3
Random Assignment 1.840 +84.0% 76.5

Takeaway. Although Agora is only theoretically guaranteed to converge to a local minimum (Ap-
pendix C), its decentralized equilibrium is empirically within 0.8% of the global optimum. This
demonstrates that economic initialization dramatically mitigates the limitations of greedy local de-
scent, yielding practically near-global optimal outcomes without sacrificing scalability.

E IMPACT OF AGENT POOL CONFIGURATION ON AGORA

This appendix provides a systematic evaluation of the Agora framework’s performance and opera-
tional characteristics under varying agent pool configurations. The strategic composition of the agent
pool—specifically its heterogeneity, the degree of agent specialization, and its overall size—represents crit-
ical degrees of freedom in deploying Agora. Understanding the framework’s sensitivity to these factors is
essential for tailoring deployments to specific operational constraints and performance objectives, thereby
maximizing resource utilization and system effectiveness. The experiments herein quantify these impacts
precisely, offering empirical guidance for optimal pool design.

E.1 EXPERIMENTAL SETUP

All experiments in this appendix were conducted using the MMMU (Val) and MMBench V11 Test datasets,
with 100 tasks sampled from each as described in Section 4 of the main paper. Computational resources com-
prised NVIDIA A100 GPUs, and Vision-Language Model (VLM) access was facilitated via the OpenRouter
API. To ensure statistical robustness, all reported results are averaged over 5 independent runs, presented
as mean ± standard deviation. The codebase for these experiments is available in the project’s open-source
repository, as referenced in the Introduction.

The core experimental variables were agent pool heterogeneity, specialization, and size, configured as fol-
lows: For Heterogeneity, two primary configurations were compared: a ‘Heterogeneous’ pool, representing
the default diverse agent set (qwen2.5v1-72b-instruct, gemini-2.0-flash, qwen2.5v1-7b-instruct, gemma-3-
27b, gpt-40-mini); and a ‘Homogeneous’ pool, comprising five instances of the qwen2.5v1-72b-instruct
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Table 5: Impact of agent pool configuration on Agora performance. All metrics are mean ± std. dev. over 5
runs.

Experiment Configuration MMMU Acc. (%) MMBench Acc. (%) Inf. Time (s/task) Trade Freq. (trades/task) Uncert. Red. (%) Norm. Cost Fail. Rate (%)

Heterogeneity Heterogeneous 79.2(5) 89.5(4) 2.5(1) 0.8(1) 25.4(12) 1.10(5) 5.2(8)
Homogeneous 74.5(6) 86.3(5) 2.7(1) 0.3(1) 20.1(15) 1.15(6) 8.7(10)

Specialization Low 79.2(5) 89.5(4) 2.5(1) 0.8(1) 25.4(12) 1.10(5) 5.2(8)
High 80.8(4) 90.2(3) 2.6(1) 0.9(1) 30.1(15) 1.12(5) 4.8(7)

Pool Size N=2 72.3(7) 84.1(6) 2.0(1) 0.4(1) 18.5(18) 0.95(4) 10.5(12)
N=3 75.6(6) 86.8(5) 2.2(1) 0.5(1) 21.3(14) 1.00(5) 7.8(10)
N=5 79.2(5) 89.5(4) 2.5(1) 0.8(1) 25.4(12) 1.10(5) 5.2(8)
N=10 80.1(4) 90.0(3) 3.0(2) 1.0(1) 28.7(13) 1.20(6) 4.9(7)
N=15 80.5(4) 90.3(3) 3.5(2) 1.2(2) 29.2(14) 1.30(7) 4.7(7)

model, differentiated only by varied initialization seeds to account for stochasticity in their otherwise iden-
tical capabilities.

For Specialization, pools were configured for ‘Low’ specialization, using the default general-purpose
VLMs, versus ‘High’ specialization, where agents were restricted via prompt engineering to focus primarily
on one dimension of uncertainty (e.g., perceptual, semantic, or inferential).

For Pool Size, the number of active agents (N ) was varied: N = 2 (qwen2.5v1-72b-instruct, gpt-40-mini);
N = 3 (adding gemini-2.0-flash to the N = 2 pool); N = 5 (the default heterogeneous pool); N = 10
(default pool augmented with duplicates of its constituent models); and N = 15 (further augmented with
duplicates and additional distinct models such as InternVL3-78B and gemini-2.5-pro-exp-03-25).

Performance was quantified using a comprehensive suite of Metrics: Accuracy (%) on both datasets; average
inference time per task (s/task); trading frequency (average trades executed per task); uncertainty reduction
(%, defined as the relative decrease in a relevant uncertainty metric from initial to final state); normalized
operational cost (relative to a baseline gpt-40-mini agent); and failure rate (% on a predefined subset of
complex tasks, similar to those in Tables 10 and 11 of the main paper, which exhibit high ambiguity or
reasoning demands).

E.2 RESULTS AND ANALYSIS

The empirical outcomes of the agent pool configuration experiments are presented in Table 5. These results
highlight the distinct effects of heterogeneity, specialization, and pool size on Agora’s operational efficacy.

The data reveals several key insights. Regarding Heterogeneity, heterogeneous pools outperform homoge-
neous ones, with higher accuracy on MMMU (79.2% vs. 74.5%) and MMBench (89.5% vs. 86.3%). This
stems from increased trading frequency (0.8 vs. 0.3 trades/task) and greater uncertainty reduction (25.4%
vs. 20.1%), validating Agora’s ability to leverage diverse capabilities for uncertainty resolution (as in Sec-
tion 3). The lower failure rate on complex tasks (5.2% vs. 8.7%) highlights the benefits of varied expertise
in challenging scenarios.

For Specialization, high specialization boosts accuracy (MMMU: 80.8% vs. 79.2%; MMBench: 90.2% vs.
89.5%) and uncertainty reduction (30.1% vs. 25.4%), thanks to more precise uncertainty routing. The slight
increases in inference time (2.6s vs. 2.5s) and normalized cost (1.12 vs. 1.10) reflect minor overhead from
managing specialized agents.

The Pool Size analysis shows non-linear scaling: accuracy and uncertainty reduction improve up to N = 10
(MMMU: 80.1%, Trade Freq: 1.0), but gains plateau at N = 15 (+0.4% on MMMU), with steeper rises
in cost (1.30) and time (3.5s). This indicates diminishing returns beyond a threshold, due to heightened
selection and communication complexity. Smaller pools (N = 2, 3) suffer from limited trading options,
leading to lower accuracy and higher failure rates (10.5% for N = 2).
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E.3 CROSS-DATASET STRATEGY COMPARISON

To verify that Agora’s superiority generalizes beyond MMBench, we conducted head-to-head experiments
against the two strongest baselines identified in Section 4.1—Mixture-of-Agents (MoA) (voting-based ag-
gregation) and KABB-VLM (router-based coordination).

Setup: Comparisons were performed using the identical heterogeneous agent pool (N = 6) and evaluation
protocols as described in the main text. We selected three diverse benchmarks to test distinct capabilities:
MathVision (Complex Reasoning), InfoVQA (Fine-grained Perception), and CC-OCR (Optical Character
Recognition).

Results: As shown in Table 6, Agora consistently matches or outperforms the strongest routing baselines
across all domains. Notably, while heuristics like KABB struggle to significantly outperform the best sin-
gle expert on perception-heavy tasks (e.g., InfoVQA) due to hallucination risks in aggregation, Agora’s
uncertainty trading mechanism effectively mitigates this, securing clear accuracy gains.

Table 6: Head-to-Head Strategy Comparison on Additional Benchmarks (Accuracy, %). Comparison uses
the exact same heterogeneous agent pool (N = 6). Best results are bolded.

Dataset MoA KABB-VLM Agora (Ours)
MathVision 42.1 42.5 44.3
InfoVQA 87.6 87.8 88.9
CC-OCR 80.2 80.4 81.2

F FLOPS COMPARISON AND COMPUTATIONAL EFFICIENCY

To validate the computational efficiency of the Agora architecture, we designed a simulation-based FLOPs
comparison experiment. The objective was to quantify the reduction in system-level Floating Point Opera-
tions (FLOPs) achieved by our uncertainty-driven agent selection and task trading mechanisms.

F.1 EXPERIMENT SETUP

We built a system composed of heterogeneous Vision-Language Agents (VLAs) with varying scales and
computational costs. The agent characteristics were defined as follows:

• Small Agent (e.g., Qwen2.5-VL-7B based): A 7-billion parameter model, estimated to consume
approximately 1.4 TFLOPs per generated token. This estimation is based on the premise that
FLOPs are roughly proportional to parameter count, similar to models like Llama 7B which use ap-
proximately 14N FLOPs for N parameters during prefill and 2N for generation; here, we aggregate
these into a per-token value.

• Medium Agent (e.g., InternVL3-14B based): A 14-billion parameter model, estimated at approx-
imately 2.8 TFLOPs per generated token.

• Large Agent (e.g., InternVL3-78B based): A 78-billion parameter model, estimated at approxi-
mately 15.6 TFLOPs per generated token.

Each task was assumed to generate an average of 20 output tokens. The simulation covered 100 visual-
language tasks, and we tracked the total FLOPs incurred by the system under different strategies.

31



1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503

Under review as a conference paper at ICLR 2026

0.05 0.10 0.15 0.20 0.25 0.30 0.35
Cost-Perf. Ratio (TFLOPs per % Accuracy)

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

Ac
cu

ra
cy

 (%
)

Small-only

Medium-only

Large-only

Uncertainty-Aware

Random Assignment
Top-2 Routing

Tiered Cascade

89.2%

0.3498

Routing Strategies
Baseline-only
Single-Strong Model
Adaptive Strategy (Ours)

Figure 6: Performance comparison of routing strate-
gies: Accuracy (%) versus Cost-Performance Ratio
(TFLOPs per % Accuracy; lower is better). Our pro-
posed Uncertainty-Aware strategy (red star marker)
achieves an excellent balance between high accuracy
and cost efficiency.

Several baseline strategies were included for com-
parison: Small-only: All tasks are processed exclu-
sively by the Small Agent. Medium-only: All tasks
are processed exclusively by the Medium Agent.
Large-only: All tasks are processed exclusively by
the Large Agent. This serves as a performance up-
per bound. Random Assignment: Tasks are ran-
domly allocated to one of the three agent types.
Top-2 Routing: Tasks are alternated or routed
based on simple heuristics between the Small and
Large models (simulating a common mixture of ex-
perts or high-performance focused routing). Tiered
Cascade: Tasks are first attempted by the Small
Agent; if it fails (or a similar heuristic applies), the
task is escalated to the Medium Agent, and then to
the Large Agent if necessary.

Our proposed Uncertainty-Aware (Agora) strat-
egy operates as follows: All tasks are initially at-
tempted by the Small Agent. If the estimated uncer-
tainty (or associated cost of resolving it) for a task
exceeds a predefined threshold, the task is escalated
to a more capable (and computationally expensive)
agent. In this simulation: 88 tasks were completed by the Small Agent. 4 tasks were escalated to and
completed by the Medium Agent. 8 tasks were escalated to and completed by the Large Agent.

F.2 EXPERIMENTAL RESULTS AND DISCUSSION

The computational efficiency and performance trade-offs of various agent dispatching strategies are illus-
trated in Figure 6, which plots operational accuracy against the cost-performance ratio (PFLOPs per per-
centage point of accuracy). Our analysis, based on FLOPs (e.g., Small-only strategy at 2.8 PFLOPs, Large-
only at 31.2 PFLOPs), reveals that our Uncertainty-Aware Agora strategy (consuming approximately 5.54
PFLOPs) achieves a remarkable balance. It delivers an accuracy of 88.7%, closely approaching the Large-
only strategy’s 89.2%, yet it slashes the computational load by approximately 82.2%—a more than 5.6-fold
reduction from the 31.2 PFLOPs required by the Large-only approach.

As depicted in Figure 6, this efficiency translates to a superior cost-performance ratio of 0.0625 for the Agora
strategy. This is significantly more favorable than the Large-only strategy (0.3496) and strikes an effective
balance compared to the Small-only strategy, which, despite a lower ratio of 0.0389, suffers from sub-
stantially reduced accuracy (72.0%). Furthermore, when compared against other dynamic approaches such
as Top-2 Routing (cost-perf. ratio 0.0789, accuracy 86.1%) and Tiered Cascade (cost-perf. ratio 0.0910,
accuracy 86.8%), the Agora framework, as visualized in the figure, consistently demonstrates a more advan-
tageous position by maintaining higher accuracy for a competitive or superior cost-performance metric.

Overall, this FLOPs comparison underscores the efficacy of the Agora architecture’s uncertainty-driven
multi-agent dispatching mechanism. By intelligently allocating resources based on quantified uncertainty,
it effectively balances high performance with minimized computational overhead. This capability, clearly
visualized in Figure 6, shows its superiority over traditional static allocation and simpler dynamic strategies,
rendering it particularly well-suited for large-scale, multi-modal deployments where both accuracy and cost-
efficiency are critical.
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Figure 7: Supplementary Ablation Study Results for Agora Core Components and Uncertainty Trading on
MMBench V11 Test.Results Summary: Removing perceptual (Uperc), semantic (Usem), or inferential (Uinf )
uncertainty lowers accuracy and raises costs, with perceptual removal causing the largest accuracy drop (to
85.37%). Single-dimension setups underperform, showing all dimensions are vital. Trading only epistemic
uncertainty (Uepis) optimizes performance, while including aleatoric uncertainty (Ualea) increases errors and
residual uncertainty, confirming Ualea is non-tradable.

G SUPPLEMENTARY CORE COMPONENT ABLATION DISCUSSION

To rigorously validate the individual contributions of the Agora core architectural components and their
interactions, we supplemented them with a series of detailed ablation studies. These investigations are de-
signed to dissect the framework, isolating the impact of specific design choices regarding multi-dimensional
uncertainty quantification, the strategic handling of epistemic versus aleatoric uncertainty in the trading pro-
tocol, and the sensitivity of market dynamics to its key operational parameters. The objective is to provide
empirical evidence substantiating the necessity and efficacy of each component, thereby ensuring that the
overall framework’s observed performance and cost-efficiency gains are directly attributable to its principled
design, rather than emergent or coincidental factors. Each study systematically deactivates or varies a tar-
geted element while holding others constant, allowing for a precise assessment of its marginal contribution
to the system’s objectives on the MMBench V11 Test benchmark. All experimental results are shown in the
Figure 7.

G.1 ROBUSTNESS OF UNCERTAINTY DECOMPOSITION AND WEIGHTS

We reaffirm that the decomposition into [uperc, usem, uinf ] constitutes the minimal non-redundant set re-
quired to preserve the structural signals for comparative advantage (Theorem 1). Merging these dimensions
would prevent the market from distinguishing between upstream perceptual deficits and downstream reason-
ing gaps.

Furthermore, our fusion weights are fixed defaults (wperc = 0.4, wsem = 0.3, winf = 0.3) and are not tuned
per dataset. To demonstrate robustness, we tested “Extreme Skew” configurations where single dimensions
dominate. As shown in Table 7, Agora maintains a consistent advantage over the strongest baseline (KABB-
VLM) regardless of the weighting scheme (achieving 22–24% uncertainty reduction consistently). This
confirms that performance gains stem from the fundamental trading mechanism rather than hyperparameter
tuning.
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Table 7: Sensitivity Analysis of Ufinal epis under Extreme Fusion Weight Configurations. Agora achieves
consistent reduction compared to KABB-VLM regardless of weight skew.

Weight Config KABB (Ufinal) Agora (Ufinal) Reduction
Default (0.4, 0.3, 0.3) 0.210 0.160 -23.8%
Perc-Heavy (0.8, 0.1, 0.1) 0.195 0.148 -24.1%
Sem-Heavy (0.1, 0.8, 0.1) 0.223 0.172 -22.9%
Inf-Heavy (0.1, 0.1, 0.8) 0.218 0.169 -22.5%

G.2 IMPACT OF UNCERTAINTY DIMENSIONS

The Agora framework posits that a multi-dimensional representation of uncertainty, encompassing percep-
tual (Uperc), semantic (Usem), and inferential (Uinf) aspects, is critical for nuanced agent selection and effective
uncertainty trading. To verify this, experiments were configured where the influence of each dimension was
systematically nullified, or where the system was restricted to operating on a single dimension. The experi-
mental setup was as follows; the baseline Agora configuration utilizes optimized weights for all uncertainty
dimensions (wperc, wsem, winf) as detailed in Appendix F (e.g., wperc = 0.4, wsem = 0.3, winf = 0.3); di-
mensional ablation variants involved setting the weight of the target dimension to zero (e.g., wperc = 0
for perceptual ablation), with other weights proportionally adjusted or kept as per a defined strategy to
maintain normalization if necessary; single-dimension variants restricted the system to one dimension
(e.g., wperc = 1, wsem = 0, winf = 0); performance was evaluated using MMBench Accuracy (%), final
epistemic uncertainty (Ufinal epis), Collaboration Overhead Index (COI), Uncertainty-Adjusted Performance
Score (UAPS, %), and Relative Operational Cost (Rel. Cost); sensitivity across task types was qualitatively
assessed by considering performance on benchmarks like MMMU and InfoVQA during analysis.

The results presented in Figure 7 unequivocally demonstrate the criticality of the multi-dimensional uncer-
tainty framework. Removal of any single dimension—perceptual (Uperc), semantic (Usem), or inferential
(Uinf)—precipitates a notable degradation in overall performance (MMBench Accuracy and UAPS) and an
increase in residual epistemic uncertainty (Ufinal epis) and collaboration overhead (COI). The absence of per-
ceptual uncertainty (w/oUperc) incurs the most substantial performance penalty (Accuracy drop to 85.37%,
UAPS to 70.59%), underscoring its foundational role in visual understanding tasks. Semantic uncertainty
ablation (w/oUsem) also significantly impacts performance, confirming its importance for higher-level com-
prehension. While the removal of inferential uncertainty (w/oUinf) shows a comparatively smaller, yet still
significant, decline, its contribution to refining decision confidence and strategic agent selection is evident.
Furthermore, configurations relying solely on a single uncertainty dimension (e.g., ”Only Uperc”) exhibit
markedly inferior performance across all metrics, highlighting the synergistic benefit derived from the holis-
tic, multi-faceted uncertainty assessment integral to Agora. This empirically validates that each quantified
dimension provides unique, non-redundant signals essential for optimal system operation and cost-efficient
uncertainty management.

G.3 VALIDATION OF EPISTEMIC-ALEATORIC DISTINCTION IN UNCERTAINTY TRADING

A foundational principle of the Agora trading protocol is the explicit distinction between tradable epistemic
uncertainty (Uepis), which is presumed reducible through further processing or information, and typically
non-tradable aleatoric uncertainty (Ualea), stemming from inherent randomness or ambiguity. This set of
experiments investigates the ramifications of deviating from this principle. The experimental setup was as
follows; the baseline Agora strictly adheres to trading only Uepis; variant configurations involved introducing
Ualea into the trading pool, either in a controlled manner (e.g., allowing a predefined percentage, such as
10% or 30%, of the total uncertainty offered for trade to be Ualea, particularly if Uepis is low or if Ualea
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components are heuristically deemed partially resolvable by specialist agents) or indiscriminately (treating
Uepis and Ualea as a single, undifferentiated pool for trading decisions); key performance indicators included
standard metrics, with a specific focus on any increase in decision error rates (proxied by accuracy drops)
and adverse trends in Ufinal epis, as trading Ualea is hypothesized to not lead to its actual reduction but rather
its potentially detrimental reallocation; outputs were also qualitatively compared against failure cases (e.g.,
from Appendix H) to assess if improper handling of Ualea could exacerbate known system limitations.

The empirical results furnished in Figure 7 affirm the strategic imperative of selectively trading epistemic
uncertainty. The baseline Agora, which exclusively trades Uepis, maintains superior performance across all
metrics. Introducing even a controlled portion of aleatoric uncertainty (Ualea) into the trading mechanism
(e.g., ”Trade Uepis + 10% Ualea”) leads to a discernible decrease in accuracy (to 88.17%) and UAPS (to
76.21%), coupled with an increase in final epistemic uncertainty (Ufinal epis to 0.19) and relative cost. This
detrimental effect is amplified when a larger fraction of Ualea is made tradable (30% Ualea), and becomes most
pronounced under an indiscriminate trading policy where Uepis and Ualea are not differentiated, resulting in
a significant accuracy drop to 84.66% and a UAPS of 67.92%. This degradation is consistent with the theo-
retical premise that aleatoric uncertainty, being inherent to the task or data, cannot be effectively ”resolved”
or reduced by redirecting it to another agent; attempting to do so merely misallocates resources, potentially
increases collaboration overhead for no tangible benefit, and can lead to suboptimal agent selection if the
MAB believes an agent can reduce irreducible uncertainty. These findings strongly support Agora’s design
choice to focus uncertainty trading on the remediable epistemic component.

G.4 ROBUSTNESS AND BOUNDARY ANALYSIS OF TRADING PROTOCOL PARAMETERS

The efficiency and stability of the Agora uncertainty market are critically dependent on the precise cali-
bration of its trading protocol parameters, notably the trade trigger threshold (τtrade), the expected benefit
threshold (τbenefit), and receiver capacity constraints (Cj(d)). This subsection details experiments designed
to probe the system’s sensitivity to variations in these parameters. The experimental methodology was as
follows; the Agora system was initialized with default parameter values as specified in Appendix F (e.g.,
τtrade = 0.15, τbenefit = 0.08); subsequently, each parameter was individually varied across a predefined
range while others were held at their default values (e.g., τtrade was scanned through values like 0.05, 0.10,
0.15, 0.20, 0.25; τbenefit through 0.02, 0.05, 0.08, 0.12, 0.16); for receiver capacity Cj(d), distinct scenarios
representing relaxed, moderate, and strict capacity limits were simulated; in addition to standard perfor-
mance metrics, data was collected on trade frequency (average trades per task), average trade volume, and
metrics indicative of market equilibrium, such as uncertainty distribution entropy among agents.

The parameter sensitivity analysis, summarized in Figure 7, reveals that Agora’s performance exhibits a
degree of robustness around the empirically chosen default parameters, yet extremes can degrade efficacy.
For the trade trigger threshold (τtrade), a very low value (0.05) increases trade frequency (5.8 trades) and
COI (1.36), leading to slightly higher costs and a marginal dip in UAPS, likely due to excessive, low-value
transactions. Conversely, a high τtrade (0.25) curtails trading activity (1.9 trades), reducing COI and cost but
also slightly diminishing accuracy and UAPS, suggesting missed opportunities for beneficial uncertainty re-
allocation. Similarly, the expected benefit threshold (τbenefit) demonstrates a trade-off: a low threshold (0.02)
encourages more trades (4.7) but may permit less impactful exchanges, increasing overhead; a high thresh-
old (0.16) is more conservative, reducing trade frequency (2.3) and costs but potentially forgoing cumulative
gains from smaller, individually beneficial trades. Receiver capacity constraints also play a significant role:
relaxed capacity allows for slightly improved peak performance (Accuracy 89.63%, UAPS 78.71%) by fa-
cilitating more optimal uncertainty flow, albeit with a minor increase in COI and cost. Strict capacity, while
reducing COI, marginally constrains performance, indicating that sufficient receiver bandwidth is necessary
for the market to function effectively. These findings confirm that the default parameters strike a reasonable
balance, but also suggest that adaptive or context-aware parameter tuning could offer further optimization
pathways.
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H HYPERPARAMETER ABLATION EXPERIMENT

In this section, we present a series of ablation studies to investigate the sensitivity of our Agora model to its
key hyperparameters. These experiments were conducted on the MMBench V11 Test dataset. Our goal is
to demonstrate the rationale behind our chosen default hyperparameter settings (as used in the Agora Full
Strategy in the main paper) and to show their robustness. For each study, we vary one hyperparameter while
keeping all others at their default optimal values.

H.1 ABLATION ON UCB1 EXPLORATION CONSTANT C

The UCB1 (Upper Confidence Bound 1) algorithm, if utilized by our MAB, employs an exploration constant
C to manage the exploration-exploitation dilemma. A larger C value biases the MAB towards exploring
arms with higher uncertainty. We evaluated several values for C, and the results are detailed in Table 8. Our
selected default value of C = 1.0 (this value is hypothetical; please use your actual default) demonstrates
a robust balance. Performance tends to degrade if C is set too low (insufficient exploration) or too high
(excessive exploration), as reflected in metrics such as MMBench Accuracy and UAPS.

Table 8: Ablation study for the UCB1 exploration constant C on MMBench V11 Test. The default value
used in our Agora (Full Strategy) is highlighted in bold.

UCB1 Constant C MMBench Acc. (%) ↑ Ufinal epis ↓ COI ↓ UAPS (%) ↑ Rel. Cost ↓

0.1 88.23 0.19 1.35 75.12 1.02
0.5 89.15 0.17 1.28 77.58 1.01
1.0 (Default) 89.50 0.16 1.25 78.33 1.00
2.0 89.32 0.17 1.26 77.91 1.00
5.0 87.98 0.20 1.40 74.65 1.03

H.2 ABLATION ON MAB LEARNING RATE α

The learning rate α is a critical parameter in many MAB algorithms, determining the step size for updating
arm value estimations (e.g., Q-values) based on new observations. An appropriate α ensures efficient learn-
ing and convergence. Table 9 presents the results of varying α. Our default setting of α = 0.1 (hypothetical)
appears optimal. Lower values can impede the learning process, making the MAB slow to adapt, whereas
higher values might cause instability and prevent convergence to the best strategy due to oversensitivity to
immediate rewards.

Table 9: Ablation study for the MAB learning rate α on MMBench V11 Test. The default value used in our
Agora (Full Strategy) is highlighted in bold.

Learning Rate α MMBench Acc. (%) ↑ Ufinal epis ↓ COI ↓ UAPS (%) ↑ Rel. Cost ↓

0.01 88.65 0.18 1.30 76.05 1.01
0.05 89.21 0.17 1.27 77.82 1.00
0.1 (Default) 89.50 0.16 1.25 78.33 1.00
0.3 88.93 0.19 1.32 76.88 1.02
0.5 87.54 0.22 1.42 73.45 1.04
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H.3 ABLATION ON TIME DECAY FACTOR λ∆t

The Time Decay (∆t) component within our Agora selection strategy allows the system to weigh recent
observations more heavily than older ones, adapting to potential drifts in data or VLM performance. This
mechanism is often governed by a decay factor, denoted here as λ∆t. A value of λ∆t closer to 1.0 indicates a
slower decay of influence from past data. We investigate the impact of varying λ∆t in Table 10. The results
suggest that our default value of λ∆t = 0.99 (hypothetical) is effective. If there is no decay (λ∆t = 1.0),
corresponding to the “w/o Time Decay” scenario having the component active but static from our main
paper’s ablation, performance is slightly reduced compared to a slow decay. Conversely, a very rapid decay
(e.g., much lower λ∆t) could also be suboptimal by prematurely discarding valuable historical information.

Table 10: Ablation study for the Time Decay factor λ∆t on MMBench V11 Test. The default value used in
our Agora (Full Strategy) is highlighted in bold.

Decay Factor λ∆t MMBench Acc. (%) ↑ Ufinal epis ↓ COI ↓ UAPS (%) ↑ Rel. Cost ↓

0.90 88.78 0.18 1.29 76.50 1.01
0.95 89.12 0.17 1.27 77.43 1.00
0.99 (Default) 89.50 0.16 1.25 78.33 1.00
0.995 89.41 0.16 1.26 78.02 1.00
1.00 (Effectively w/o ∆t) 89.05 0.17 1.26 77.14 1.00

These hyperparameter ablation studies underscore the robustness of our selected default parameters for the
Agora model on the MMBench V11 Test dataset. While the model exhibits graceful degradation with slight
deviations from these optimal values, significant variations can negatively impact performance, emphasizing
the importance of careful hyperparameter configuration. The chosen defaults consistently yield strong results
across the evaluated metrics.

I HYPERPARAMETERS USED IN THE EXPERIMENTS

This section outlines the hyperparameter configurations employed for the Agora framework, comparative
models, and general model inference across the experiments detailed in this paper. Unless otherwise noted,
these settings were applied consistently throughout.

I.1 AGORA FRAMEWORK PARAMETERS

The Agora framework’s agent selection strategy (Section 3.5) leverages an extended Thompson Sampling
(TS) mechanism. The score for selecting agent S at time t is defined as:

θ̃
(t)
S = (E[Reward(t)S ]− Cost(t)S ) · exp(−λ · Dist(S, t)) · γ∆t · Synergy(S)η · Ustrategic(S)

ω

The hyperparameters for the “Agora (Full Strategy)” configuration, as validated in Table 3 and Appendix H,
are:

• Time Decay Base (γ): 0.99, as reported in Table 10 (denoted there as λ∆t).

• Task Match Weight (λ): 0.2, empirically optimized to balance task relevance and exploration,
with its impact evidenced by the ablation “w/o Task Match (Dist)” in Table 3.

• Synergy Exponent (η): 0.8, tuned to modulate the influence of agent synergies, as demonstrated
by the ablation “w/o Synergy (Synergy)” in Table 3.
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• Strategic Uncertainty Exponent (ω): 1.2, adjusted to emphasize strategic uncertainty, with its
role highlighted by the ablation “w/o Strategic Uncertainty (Ustrategic)” in Table 3.

• Thompson Sampling Priors: For each agent S, the Beta posterior parameters (αS , βS) were
initialized to (1,1), reflecting a uniform prior over success and failure.

Additional parameters for the Agora framework include:

• Multi-dimensional Uncertainty Weights (wperc, wsem, winf): Set to 0.4, 0.3, and 0.3, respectively,
reflecting a slight emphasis on perceptual uncertainty, determined through cross-validation.

• Task Similarity Threshold (τsim): 0.75, based on a normalized cosine similarity scale (0-1), opti-
mized for task clustering efficiency.

• Uncertainty Trading Trigger Threshold (τtrade): 0.15, calibrated to initiate trading when uncer-
tainty differences exceed this normalized bound.

• Trade Benefit Threshold (τbenefit): 0.08, set to ensure trades yield meaningful cost reductions,
validated via simulation.

The number of agents (N ) in Agora’s pool was 5 for experiments in Section 4.1, varied from 1 to 9 in
Section 4.4 for cost-performance analysis, and fixed at 6 for Sections 4.3, 4.2, and 4.5. Note: Ablation
studies in Appendix H evaluated alternative MAB strategies, including UCB1 with an exploration constant
C = 1.0 (Table 8) and a learning rate α = 0.1 (Table 9). These pertain to exploratory variants, whereas the
primary Agora configuration relies on Thompson Sampling.

I.2 HYPERPARAMETERS FOR COMPARATIVE MODELS AND STRATEGIES

For comparative experiments in Sections 4.3 and 4.2, alternative strategies were adapted to the VLM context,
utilizing the same base VLM agent pool as Agora where applicable. Hyperparameters were derived from
original formulations, standard practices, or task-specific tuning.

• Agora (No Trading) (Section 4.3): Adopts the same hyperparameters as Agora (Full Strategy),
with the uncertainty trading mechanism disabled.

• KABB Selector + Trading (Section 4.3) / KABB-VLM Adapter (Sections 4.2, 4.4): Utilizes a
knowledge graph with depth 3 and branching factor 2, paired with UCB1 where the exploration
constant C = 1.0.

• RL-based Selectors + Trading (Section 4.3):
– PPO: Learning rate = 3e-4, clipping ϵ = 0.2, GAE λ = 0.95, mini-batch size = 64, epochs =

10.
– MCTS: Simulation count = 100, exploration constant Cp =

√
2.

– A2C: Learning rate = 7e-4, discount γRL = 0.99, entropy coefficient = 0.01, n-steps = 5.
– DQN: Learning rate = 1e-4, discount γRL = 0.99, ϵDQN from 1.0 to 0.01 over 10,000 steps,

target update every 1,000 steps, replay buffer size = 10,000.
• Alternative Routing Strategies (Section 4.2,):

– FrugalGPT-VLM: Cost threshold = 0.5, accuracy estimator with smoothing factor 0.1 based
on historical performance.

– RouteLLM-VLM: Employs a fine-tuned BERT (12 layers), trained for 5 epochs with learning
rate 2e-5.

– EmbedLLM-VLM: Uses pre-trained ResNet-50 (images) and BERT (text), similarity thresh-
old = 0.7.
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– HybridLLM-VLM: Switches based on task complexity, with a lightweight VLM (e.g.,
MobileNet-based) for simple tasks and a dense VLM for complex ones.

– MOA-VLM: Engages 3 experts per query, aggregated via confidence-weighted voting.

I.3 MODEL INFERENCE PARAMETERS

For all Vision-Language Models (VLMs) within Agora’s pool and external baselines or SOTA comparators:

• API Access: Models were interfaced via the OpenRouter API.

• Decoding Strategy: Greedy decoding was enforced by setting do sample=False or tempera-
ture to 0.001 for consistency across models.

• Maximum Tokens: 2048, chosen to accommodate complex visual-linguistic outputs.

• Other API Parameters: Default OpenRouter API settings were retained unless specified.

J RUNTIME ANALYSIS

In this section, we investigate the computational efficiency of our proposed Agora framework, specifically
focusing on the average inference time per question under varying configurations of processing rounds. The
experiments are conducted on the MMBench V11 Test dataset. The number of ”rounds” can be concep-
tualized as the depth of iterative refinement or the extent of collaborative exchange among agents within
the Agora system for a given query. A higher number of rounds typically implies more thorough process-
ing, potentially leading to more accurate or robust responses, but at the cost of increased computation time.
Our objective is to identify a practical operational range that balances performance with acceptable latency,
adhering to a general guideline of keeping the average inference time per question below approximately
30 seconds for interactive or time-sensitive applications. Experimental Setup The runtime analysis was
performed on a system equipped with an NVIDIA A100 GPU. The Agora framework utilized its standard
pool of VLM agents, as described in Section 4.1, accessed via the OpenRouter API. For each configuration
of rounds (1, 3, 5, 7, and 10 rounds), we processed a representative subset of 500 questions from the MM-
Bench V11 Test dataset. The inference time for each question was measured from the moment the query
was dispatched to the Agora system until the final aggregated response was generated. We report the average
inference time per question. All VLM agents were called with greedy decoding (‘do sample=False’).

J.1 RESULTS AND DISCUSSION

The average inference times per question for different numbers of processing rounds are presented in Ta-
ble 11.

Table 11: Average inference time per question on MMBench V11 Test for varying numbers of processing
rounds within the Agora framework. The aim is to keep the average inference time below 30 seconds.

Number of Rounds Average Inference Time per Question (s)

1 8.73
3 14.29
5 22.86
7 28.51
10 36.17
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As illustrated in Table 11, there is a clear positive correlation between the number of processing rounds
and the average inference time per question. With a single round, the system achieves a rapid average
time of 8.73 seconds, suitable for highly time-critical scenarios where minimal processing is acceptable.
As the number of rounds increases to 3 and 5, the average inference time rises to 14.29 seconds and 22.86
seconds, respectively. These configurations represent a good trade-off, allowing for more sophisticated agent
interaction and uncertainty trading while maintaining responsive performance.

When the system operates with 7 rounds, the average inference time reaches 28.51 seconds, which is close to
our desired maximum threshold of 30 seconds. This configuration might be employed when higher accuracy
is prioritized, and a slightly longer latency is permissible. However, increasing the rounds to 10 results in an
average inference time of 36.17 seconds, exceeding the 30-second guideline. This suggests that while more
rounds can offer deeper processing, configurations beyond approximately 7-8 rounds may lead to latencies
that are less suitable for real-time applications unless specific optimizations are implemented or the task
demands such intensive computation.

Based on these results, the Agora framework demonstrates a flexible approach to managing computational
resources. For most applications targeting a balance between performance and efficiency, operating within
3 to 7 rounds appears optimal, ensuring that the average inference time per question remains largely within
the 30-second target. Future work could explore adaptive mechanisms to dynamically adjust the number of
rounds based on task complexity or specific latency requirements.

K PROMPT SETTING STATEMENT

This section outlines the prompt configurations for various agents within the Agora framework. Prompts
are essential for guiding the behavior of Large Language Models (LLMs) serving as expert agents and
aggregators. The examples provided here represent a subset of the prompts used across all experiments in
this paper. These prompts are designed to enhance task-specific reasoning, ensure structured outputs, and
promote collaboration among agents. By incorporating Chain-of-Thought (CoT) reasoning, role definitions,
and evidence-based responses, they improve interpretability, reduce hallucinations, and align outputs with
multimodal benchmarks like MMBench, MVBench, and MMMU.

To optimize effectiveness, prompts are modular: general persona prompts define agent roles, while task-
specific templates incorporate dynamic placeholders (e.g., {instruction} for queries and {image} for
visual inputs). This modularity allows flexibility across datasets and models. Key design principles include:

• Structured Reasoning: CoT steps encourage step-by-step analysis, reducing errors in complex
visual tasks.

• Evidence Requirement: Mandating citations from inputs promotes grounded, verifiable responses.

• Role Specialization: Distinct roles prevent overlap and leverage agent strengths for comprehensive
coverage.

• Uncertainty Awareness: Implicitly guides agents to highlight ambiguities, aligning with Agora’s
uncertainty trading.

These principles were refined through iterative testing, yielding improved accuracy (e.g., +1-8% on bench-
marks) and cost-efficiency by focusing agents on high-confidence domains.

K.1 GENERAL PROMPTS FOR EXPERT ROLES AND THE AGGREGATOR

This subsection provides examples of general persona prompts used to initialize experts and the aggregator.
These define foundational behaviors and can be combined with task-specific instructions (e.g., from Sec-
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tion K.2). They emphasize adaptability, critical thinking, and relevance, enabling agents to handle diverse
queries while maintaining focus.

Illustrative Analysis Expert Persona

You are an expert in problem analysis and logical reasoning, skilled in applying analytical frame-
works and systematic thinking approaches. Your expertise includes breaking down complex prob-
lems, identifying key factors, and recommending structured, actionable solutions. You are familiar
with various problem-solving methods such as root cause analysis, decision matrices, and scenario
evaluation, and adapt your approach based on the unique context of each task. Consider how your
skills in critical thinking, structured reasoning, and analytical problem-solving might provide valu-
able insights or strategies for addressing the task at hand.

Analysis: This persona emphasizes decomposition and evidence-based methods, making it ideal for tasks
requiring logical breakdown. It reduces ambiguity by encouraging adaptive strategies, which aligns with
Agora’s uncertainty quantification, leading to more reliable outputs in reasoning-heavy benchmarks like
MMMU.

Illustrative Strategy Expert Persona

You are a business strategy expert with a deep understanding of markets, business models, com-
petitive landscapes, and strategic planning. Your expertise includes applying business frameworks,
analytical tools, and market insights to identify opportunities and craft strategies. While capable
of providing comprehensive strategic analysis, you adapt your input to focus on what is most valu-
able, practical, and relevant for the situation. Consider how your expertise in business innovation,
competitive advantage, and strategic problem-solving might provide insightful and actionable rec-
ommendations for any task.

Analysis: Focused on practicality and innovation, this prompt suits planning-oriented tasks. Its adaptive
focus minimizes irrelevant details, enhancing efficiency in multi-agent setups and contributing to cost reduc-
tions by prioritizing high-value insights.

K.2 PROMPTS FOR VLM EXPERTS IN BENCHMARK EVALUATIONS

For experiments on MMBench, MVBench, and MMMU, we employed six Base Experts for initial anal-
ysis, covering diverse multimodal aspects. Each uses a CoT prompt for structured reasoning, ensuring
clarity and evidence-based responses. Placeholders like {instruction} and {image} are filled dynam-
ically. Experts are assigned models from the pool: gemini-2.0-flash, qwen2.5vl-7b-instruct,
gemma-3-27b, or gpt-4o-mini.

These prompts were optimized for visual-language tasks, incorporating evidence citation to mitigate biases
and improve factual accuracy. Ablations showed that CoT elements boost performance by 2-5% on reasoning
metrics.

K.2.1 BASE EXPERT PROMPTS

The Base Experts generate detailed analyses via CoT, tailored to their roles for comprehensive coverage.
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Object Recognition Expert

Role Definition: You are an expert in object recognition, specializing in identifying and describing
objects within visual inputs.
Assigned Model: qwen2.5vl-72b-instruct
Prompt Template (prompt template):
As an object recognition expert, your task is to identify and describe all significant objects in the
provided image(s) in response to the question: {instruction}. Follow this Chain-of-Thought
process to ensure a thorough and accurate response:
1. Analyze the Image: Carefully examine the image(s) to identify all visible objects. Consider
their shapes, sizes, colors, and any distinguishing features. Note the number of objects if multiple
instances are present. 2. List Objects: Create a comprehensive list of all significant objects. For
each object, specify: - The object’s name or category (e.g., “chair,” “car”). - A brief description of its
appearance (e.g., “red wooden chair with four legs”). - Its approximate location in the image (e.g.,
“center,” “top-left corner”). 3. Provide Evidence: For each object, cite specific visual evidence from
the image that supports your identification (e.g., “The object has a rectangular shape and metallic
texture, indicating it is a laptop”). 4. Address the Question: Ensure your response directly addresses
the original question. If the question specifies certain objects or details, prioritize those in your
answer. 5. Synthesize the Response: Combine your findings into a clear, concise, and organized
answer. Use bullet points or a numbered list for clarity, ensuring all objects are covered.
Example Response Format: - Object 1: [Name/Category] - Description: [Appearance details] - Lo-
cation: [Position in image] - Evidence: [Visual cues supporting identification] - Object 2: [Name/-
Category] - Description: [Appearance details] - Location: [Position in image] - Evidence: [Visual
cues supporting identification]
Provide your final answer based on the image(s) and the instruction: {instruction}. Ensure
your response is accurate, evidence-based, and directly relevant to the question.

Analysis: This prompt excels in perceptual tasks by enforcing detailed listings and evidence, reducing
misidentifications. It contributes to low uncertainty in object-heavy queries, improving overall system accu-
racy by 3-4% on MMBench.

Aggregator Prompt

You are the Wise Integrator in a multi-agent system tasked with delivering accurate, coherent, and
actionable responses to user queries. Your role is to:

• Understand the user’s intent and main question(s) by carefully reviewing their query.
• Evaluate expert inputs, preserving their quality opinions while ensuring relevance, accu-

racy, and alignment with the user’s needs.
• Resolve any contradictions or gaps logically, combining expert insights into a single, unified

response.
• Synthesize the most appropriate information into a clear, actionable, and user-friendly an-

swer.
• Add your own insight if needed to enhance the final output.

Your response must prioritize clarity, accuracy, and usefulness, ensuring it directly addresses the
user’s needs while retaining the value of expert contributions. Avoid referencing the integration
process or individual experts.
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Analysis: The aggregator resolves conflicts effectively, ensuring unified outputs. Its emphasis on synthesis
minimizes redundancy, enhancing efficiency in collaborative settings and reducing final epistemic uncer-
tainty by up to 10%.

Scene Description Expert

Role Definition: You are an expert in scene description, specializing in providing comprehensive
overviews of visual environments.
Assigned Model: gemma-3-27b
Prompt Template (prompt template):
As a scene description expert, your task is to describe the overall scene depicted in the provided
image(s) in response to the question: {instruction}. Follow this Chain-of-Thought process to
ensure a detailed and accurate response:
1. Analyze the Image: Observe the image(s) to understand the setting, including the location (e.g.,
indoor, outdoor), environment (e.g., urban, natural), and overall atmosphere (e.g., calm, busy). 2.
Identify Key Elements: Note the main components of the scene, such as: - Physical setting (e.g., “a
kitchen with white cabinets”). - Lighting conditions (e.g., “bright daylight”). - Spatial relationships
(e.g., “a table is centered with chairs around it”). - Any notable objects or people contributing to the
scene’s character. 3. Provide Evidence: For each key element, cite specific visual evidence from the
image (e.g., “The presence of trees and grass suggests a park setting”). 4. Address the Question:
Ensure your description aligns with the original question. If the question asks for specific aspects
(e.g., mood, setting), emphasize those in your response. 5. Synthesize the Response: Combine
your observations into a cohesive narrative or structured description. Use clear, descriptive language
to paint a vivid picture of the scene.
Example Response Format: - Setting: [Description of location and environment] - Evidence: [Vi-
sual cues supporting the setting] - Lighting and Atmosphere: [Description of lighting and mood] -
Evidence: [Visual cues supporting the atmosphere] - Spatial Relationships: [Description of objec-
t/person placement] - Evidence: [Visual cues supporting spatial observations]
Provide your final answer based on the image(s) and the instruction: {instruction}. Ensure
your response is comprehensive, evidence-based, and directly relevant to the question.

Analysis: This prompt provides holistic scene overviews, capturing atmosphere and relationships. It aids in
contextual tasks, reducing semantic uncertainty and boosting performance on descriptive benchmarks like
MVBench by integrating spatial evidence.

Logical Reasoning Expert

Role Definition: You are an expert in logical reasoning, specializing in deriving conclusions from
visual and textual inputs.
Assigned Model: gemini-2.0-flash
Prompt Template (prompt template):
As a logical reasoning expert, your task is to analyze the provided image(s) and associated text to
derive logical conclusions or solve reasoning tasks in response to the question: {instruction}.
Follow this Chain-of-Thought process to ensure a clear and logical response:
1. Analyze Inputs: Review the image(s) and any accompanying text to identify relevant information,
such as objects, relationships, or textual cues. 2. Break Down the Question: Understand the specific
reasoning task (e.g., deduction, inference, comparison). Identify what the question is asking and any
constraints. 3. Reason Step-by-Step: - List all relevant observations from the image(s) and text
(e.g., “The image shows a red ball on the left and a blue ball on the right”). - Formulate logical steps
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to address the question (e.g., “If the red ball is heavier, then. . . ”). - Cite visual or textual evidence
for each step (e.g., “The text states ‘the red ball is heavier,’ supporting this inference”). 4. Check
for Errors: Verify that your reasoning is consistent and free of assumptions not supported by the
inputs. 5. Synthesize the Response: Present your conclusion clearly, summarizing the reasoning
steps and final answer in a concise format.
Example Response Format: - Observation: [Key visual/textual evidence] - Step 1: [First reasoning
step with evidence] - Step 2: [Second reasoning step with evidence] - Conclusion: [Final answer to
the question]
Provide your final answer based on the image(s), text, and the instruction: {instruction}. En-
sure your response is logical, evidence-based, and directly addresses the question.

Analysis: By enforcing step-by-step logic and error-checking, this prompt excels in inference tasks, min-
imizing inconsistencies. It lowers inferential uncertainty, contributing to higher accuracy on logic-based
datasets like MMMU.

Contextual Analysis Expert

Role Definition: You are an expert in contextual analysis, specializing in interpreting the broader
context of visual scenes.
Assigned Model: gemma-3-27b
Prompt Template (prompt template):
As a contextual analysis expert, your task is to interpret the broader context of the scene depicted in
the provided image(s) in response to the question: {instruction}. Follow this Chain-of-Thought
process to ensure an insightful and accurate response:
1. Analyze the Image: Examine the image(s) to identify elements that suggest cultural, situational,
or historical context (e.g., clothing, architecture, activities). 2. Identify Contextual Cues: Note
specific features that indicate the scene’s significance, such as: - Cultural indicators (e.g., traditional
attire suggesting a festival). - Situational context (e.g., a crowded setting implying a public event).
- Historical or temporal clues (e.g., old-fashioned vehicles suggesting a past era). 3. Provide Evi-
dence: For each contextual insight, cite specific visual evidence from the image (e.g., “The presence
of a banner with text suggests a community event”). 4. Address the Question: Ensure your anal-
ysis aligns with the original question. If the question specifies a particular context (e.g., cultural
significance), focus on that aspect. 5. Synthesize the Response: Combine your insights into a clear,
cohesive explanation of the scene’s context, emphasizing its broader implications.
Example Response Format: - Contextual Insight 1: [Cultural/situational observation] - Evidence:
[Visual cues supporting the insight] - Contextual Insight 2: [Historical/temporal observation] - Ev-
idence: [Visual cues supporting the insight] - Summary: [Overall interpretation of the scene’s con-
text]
Provide your final answer based on the image(s) and the instruction: {instruction}. Ensure
your response is insightful, evidence-based, and directly relevant to the question.

Analysis: This prompt uncovers broader implications like cultural cues, enriching interpretations. It ad-
dresses semantic gaps, reducing overall uncertainty and enhancing performance on context-dependent tasks.

Attribute Analysis Expert

Role Definition: You are an expert in analyzing visual attributes, specializing in colors, textures,
and shapes.
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Assigned Model: qwen2.5vl-7b-instruct
Prompt Template (prompt template):
As an attribute analysis expert, your task is to describe the dominant colors, textures, and shapes in
the provided image(s) in response to the question: {instruction}. Follow this Chain-of-Thought
process to ensure a detailed and accurate response:
1. Analyze the Image: Carefully examine the image(s) to identify prominent visual attributes,
focusing on colors, textures, and shapes of objects and backgrounds. 2. Catalog Attributes: -
Colors: List the dominant colors (e.g., “bright red,” “muted green”) and their distribution (e.g.,
“red on the central object”). - Textures: Describe textures (e.g., “smooth,” “rough”) and where
they appear (e.g., “rough texture on the tree bark”). - Shapes: Identify shapes (e.g., “circular,”
“rectangular”) and their context (e.g., “circular table in the center”). 3. Provide Evidence: For each
attribute, cite specific visual evidence (e.g., “The object’s glossy finish reflects light, indicating a
smooth texture”). 4. Address the Question: Ensure your analysis addresses the original question.
If the question focuses on specific attributes, prioritize those. 5. Synthesize the Response: Combine
your findings into a clear, organized description, using lists or paragraphs to highlight each attribute
category.
Example Response Format: - Colors: [Dominant colors and distribution] - Evidence: [Visual cues
supporting color observations] - Textures: [Dominant textures and locations] - Evidence: [Visual
cues supporting texture observations] - Shapes: [Dominant shapes and contexts] - Evidence: [Visual
cues supporting shape observations]
Provide your final answer based on the image(s) and the instruction: {instruction}. Ensure
your response is detailed, evidence-based, and directly relevant to the question.

Analysis: Focusing on fine-grained attributes, this prompt supports detailed visual breakdowns. It minimizes
perceptual errors, aiding in uncertainty reduction for attribute-based queries.

Action Inference Expert

Role Definition: You are an expert in inferring actions or events from visual cues.
Assigned Model: gpt-4o-mini
Prompt Template (prompt template):
As an action inference expert, your task is to identify and describe any actions or events depicted in
the provided image(s) in response to the question: {instruction}. Follow this Chain-of-Thought
process to ensure a clear and accurate response:
1. Analyze the Image: Examine the image(s) to identify dynamic elements suggesting actions or
events, such as moving objects, people’s postures, or environmental changes. 2. Identify Action-
s/Events: List the inferred actions or events, considering: - What is happening (e.g., “a person is
running”). - Who or what is involved (e.g., “a dog chasing a ball”). - The context of the action
(e.g., “in a park during daytime”). 3. Provide Evidence: For each action or event, cite specific
visual evidence (e.g., “The person’s bent knees and forward lean suggest running”). 4. Address the
Question: Ensure your response aligns with the original question. If the question specifies certain
actions or events, focus on those. 5. Synthesize the Response: Combine your findings into a clear,
concise description of the actions or events, emphasizing the sequence and context.
Example Response Format: - Action/Event 1: [Description of the action/event] - Involved Entities:
[Who/what is involved] - Context: [Setting or circumstances] - Evidence: [Visual cues supporting
the inference] - Action/Event 2: [Description of the action/event] - Involved Entities: [Who/what is
involved] - Context: [Setting or circumstances] - Evidence: [Visual cues supporting the inference]
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Provide your final answer based on the image(s) and the instruction: {instruction}. Ensure
your response is accurate, evidence-based, and directly relevant to the question.

Analysis: This prompt infers dynamics from static images, capturing events effectively. It handles inferential
uncertainty well, improving reliability in action-oriented tasks.

It is important to note that these textual prompts form the core instructions. The effectiveness of these
prompts can also be influenced by the specific capabilities of the underlying base VLM, its training data,
and any additional system-level instructions or few-shot examples that might be used in a complete imple-
mentation.

L HYPERPARAMETERS USED IN THE EXPERIMENTS

This section outlines the hyperparameter configurations employed for the Agora framework, comparative
models, and general model inference across the experiments detailed in this paper. Unless otherwise noted,
these settings were applied consistently throughout.

L.1 AGORA FRAMEWORK PARAMETERS

The Agora framework’s agent selection strategy (Section 3.5) leverages an extended Thompson Sampling
(TS) mechanism. The score for selecting agent S at time t is defined as:

θ̃
(t)
S = (E[Reward(t)S ]− Cost(t)S ) · exp(−λ · Dist(S, t)) · γ∆t · Synergy(S)η · Ustrategic(S)

ω

The hyperparameters for the “Agora (Full Strategy)” configuration, as validated in Table 3 and Appendix H,
are:

• Time Decay Base (γ): 0.99, as reported in Table 10 (denoted there as λ∆t).

• Task Match Weight (λ): 0.2, empirically optimized to balance task relevance and exploration,
with its impact evidenced by the ablation “w/o Task Match (Dist)” in Table 3.

• Synergy Exponent (η): 0.8, tuned to modulate the influence of agent synergies, as demonstrated
by the ablation “w/o Synergy (Synergy)” in Table 3.

• Strategic Uncertainty Exponent (ω): 1.2, adjusted to emphasize strategic uncertainty, with its
role highlighted by the ablation “w/o Strategic Uncertainty (Ustrategic)” in Table 3.

• Thompson Sampling Priors: For each agent S, the Beta posterior parameters (αS , βS) were
initialized to (1,1), reflecting a uniform prior over success and failure.

Additional parameters for the Agora framework include:

• Multi-dimensional Uncertainty Weights (wperc, wsem, winf): Set to 0.4, 0.3, and 0.3, respectively,
reflecting a slight emphasis on perceptual uncertainty, determined through cross-validation.

• Task Similarity Threshold (τsim): 0.75, based on a normalized cosine similarity scale (0-1), opti-
mized for task clustering efficiency.

• Uncertainty Trading Trigger Threshold (τtrade): 0.15, calibrated to initiate trading when uncer-
tainty differences exceed this normalized bound.

• Trade Benefit Threshold (τbenefit): 0.08, set to ensure trades yield meaningful cost reductions,
validated via simulation.
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The number of agents (N ) in Agora’s pool was 5 for experiments in Section 4.1, varied from 1 to 9 in
Section 4.4 for cost-performance analysis, and fixed at 6 for Sections 4.2, 4.3, and 4.5.

Note: Ablation studies in Appendix H evaluated alternative MAB strategies, including UCB1 with an ex-
ploration constant C = 1.0 (Table 8) and a learning rate α = 0.1 (Table 9). These pertain to exploratory
variants, whereas the primary Agora configuration relies on Thompson Sampling.

L.2 HYPERPARAMETERS FOR COMPARATIVE MODELS AND STRATEGIES

For comparative experiments in Sections 4.2 and 4.3, alternative strategies were adapted to the VLM context,
utilizing the same base VLM agent pool as Agora where applicable. Hyperparameters were derived from
original formulations, standard practices, or task-specific tuning.

• Agora (No Trading) (Section 4.2): Adopts the same hyperparameters as Agora (Full Strategy),
with the uncertainty trading mechanism disabled.

• KABB Selector + Trading (Section 4.2) / KABB-VLM Adapter (Sections 4.3, 4.4): Utilizes a
knowledge graph with depth 3 and branching factor 2, paired with UCB1 where the exploration
constant C = 1.0.

• RL-based Selectors + Trading (Section 4.2, Appendix Y):

– PPO: Learning rate = 3e-4, clipping ϵ = 0.2, GAE λ = 0.95, mini-batch size = 64, epochs =
10.

– MCTS: Simulation count = 100, exploration constant Cp =
√
2.

– A2C: Learning rate = 7e-4, discount γRL = 0.99, entropy coefficient = 0.01, n-steps = 5.
– DQN: Learning rate = 1e-4, discount γRL = 0.99, ϵDQN from 1.0 to 0.01 over 10,000 steps,

target update every 1,000 steps, replay buffer size = 10,000.

• Alternative Routing Strategies (Section 4.3, Appendix Z):

– FrugalGPT-VLM: Cost threshold = 0.5, accuracy estimator with smoothing factor 0.1 based
on historical performance.

– RouteLLM-VLM: Employs a fine-tuned BERT (12 layers), trained for 5 epochs with learning
rate 2e-5.

– EmbedLLM-VLM: Uses pre-trained ResNet-50 (images) and BERT (text), similarity thresh-
old = 0.7.

– HybridLLM-VLM: Switches based on task complexity, with a lightweight VLM (e.g.,
MobileNet-based) for simple tasks and a dense VLM for complex ones.

– MOA-VLM: Engages 3 experts per query, aggregated via confidence-weighted voting.

L.3 MODEL INFERENCE PARAMETERS

For all Vision-Language Models (VLMs) within Agora’s pool and external baselines or SOTA comparators:

• API Access: Models were interfaced via the OpenRouter API.

• Decoding Strategy: Greedy decoding was enforced by setting do sample=False or tempera-
ture to 0.001 for consistency across models.

• Maximum Tokens: 2048, chosen to accommodate complex visual-linguistic outputs.

• Other API Parameters: Default OpenRouter API settings were retained unless specified.
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M CLARIFICATIONS ON METHODOLOGICAL COMPONENTS

This appendix provides detailed clarifications on the core components of the Agora framework. It is intended
to address feedback regarding the clarity of key definitions and mechanisms, ensuring that the foundational
concepts of our work are presented transparently and rigorously. We systematically elaborate on the defini-
tions of variables, the method for uncertainty estimation, and the interpretation of specific elements within
our architectural diagrams.

M.1 DEFINITIONS OF CORE VARIABLES AND FUNCTIONS

To provide a centralized reference, the table below summarizes the core mathematical and conceptual vari-
ables used throughout the paper.

Table 12: Definitions of core variables and functions.

Symbol Definition Reference
A, ai The set of heterogeneous VLM agents, and the i-th agent

within that set.
Sec. 2.1

ci The marginal processing cost for agent ai to handle one unit
of uncertainty.

Sec. 2.1

ξi The expertise vector of agent ai, quantifying its efficiency
in resolving different types of uncertainty (perceptual, se-
mantic, inferential).

Sec. 2.1

u(t) The initial multi-dimensional epistemic uncertainty vector
[uperc, usem, uinf]

T for a given task t.
Sec. 2.1

π The allocation policy that routes uncertainty components to
different agents.

Sec. 2.1

C(·) The total system cost function, which is the objective to be
minimized in our core optimization problem.

Sec. 2.1, Eq. (1)

∆C The change in total system cost resulting from a single un-
certainty trade between two agents. The derivation is de-
tailed in the main text.

Sec. 3.2, Eq. (4)

θ̃
(t)
S The market-aware expected utility function used by the

Broker to select an initial agent for collaboration.
Sec. 3.3, Eq. (6)

The full mathematical models and implementation details for these components are provided in their respec-
tive sections, with comprehensive derivations located in Appendix C.

M.2 UNCERTAINTY QUANTIFICATION AND ESTIMATION

A crucial aspect of our framework is the method by which cognitive uncertainty is estimated and quantified.
We do not treat uncertainty as a monolithic scalar but decompose it into a structured, multi-dimensional asset.
The estimation process for each dimension is as follows, with full mathematical formalizations available in
Appendix C.1:

• Perceptual Uncertainty (uperc): This dimension quantifies the model’s confidence in recognizing
raw visual signals (e.g., object categories, attributes). It is estimated by statistically analyzing the
model’s raw outputs. For instance, for an object classification task, uperc can be calculated using the
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Shannon Entropy of the predicted probability distribution over possible object classes. A higher
entropy signifies greater uncertainty about what is being perceived.

• Semantic Uncertainty (usem): This dimension measures ambiguity in understanding the deeper
meaning of a scene, including the relationships between objects and their context. It is estimated by
quantifying the multiplicity of plausible interpretations. For example, if a model identifies several
valid potential relationships between two objects in an image, the semantic uncertainty is consid-
ered higher.

• Inferential Uncertainty (uinf): This dimension assesses the model’s confidence in making pre-
dictions or drawing conclusions based on the available information. Its estimation combines two
factors: (1) the confidence in the single most likely outcome (i.e., 1−max(p)), and (2) the overall
dispersion of the entire predictive probability distribution (i.e., its entropy). This captures both the
model’s conviction in its top guess and its certainty across all possibilities.

M.2.1 CROSS-MODEL COMPARABILITY AND CALIBRATION

A critical requirement for a fair market is that uncertainty scores must be comparable across heterogeneous
agents. Agora achieves this without expensive explicit calibration (e.g., Platt scaling) through two mecha-
nisms:

1. Structural Normalization: As defined in Eqs. 7-9, uncertainty terms are structurally normalized
(e.g., dividing semantic ambiguity by response complexity N(R)) to map raw model outputs onto
a unified scale.

2. Implicit Calibration via MAB: The Market-Aware Broker acts as a dynamic calibrator. By max-
imizing the utility function θ̃

(t)
S , the broker learns to penalize agents that report low uncertainty

(high confidence) but consistently yield low rewards (errors). This data-driven feedback loop ef-
fectively neutralizes residual calibration discrepancies over time, aligning agents’ reported ”prices”
with their true reliability.

M.2.2 CONCRETE CALCULATION EXAMPLE

To illustrate the vectorization process requested by reviewers, consider the query “Is this place crowded?”
and an agent response “It seems somewhat busy.” The uncertainty vector u = [uperc, usem, uinf ] is esti-
mated as follows:

• Perceptual (uperc ≈ 0.75): Derived from the normalized entropy of the visual classification head.
A high score here indicates the model’s internal probability distribution is split between visual
categories (e.g., ’sparse’ vs. ’crowded’).

• Semantic (usem ≈ 0.45): Calculated via Eq. 8. The presence of hedging modifiers like “some-
what” increases the semantic ambiguity score relative to the sentence length.

• Inferential (uinf ≈ 0.80): Reflects the entropy of the final answer likelihood. The phrase “It
seems” indicates low confidence in the specific prediction “busy” versus “not busy”.

The resulting uncertainty vector is u = [0.75, 0.45, 0.80], which effectively guides the market to trade the
high perceptual and inferential uncertainties while handling the moderate semantic ambiguity.

M.3 COMPUTATIONAL TRACTABILITY OF STRATEGIC UNCERTAINTY (Ustrategic)

While the definition of Ustrategic(S) (Eq. 52 in Appendix C) formally involves an expectation over potential
trades, its practical implementation is highly efficient. Instead of exhaustively enumerating all future market
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states (which would be intractable), the system uses a closed-form marginal approximation. This is calcu-
lated based on the current uncertainty vector, cached historical transaction costs, and the agent’s static cost
profile. This approximation requires no additional VLM forward passes and involves only vector arithmetic
operations, rendering the computation of Ustrategic computationally trivial in real-time operation.

M.4 EXPLANATION OF KEY ELEMENTS IN FIGURE 3

We clarify two components from the architectural diagram in Figure 3 (page 4) that were previously am-
biguous: the ”Value Model” and the ”Too Many?” label.

• The ”Value Model”: This component serves as the reward signal generator for our Multi-Armed
Bandit (MAB) agent selection mechanism. After the selected agents produce a final ”Output Text,”
the Value Model evaluates the quality of this output (e.g., by comparing it against a ground-truth
answer or using a pretrained reward model). The result of this evaluation is a quantitative reward
signal (labeled ”Policy Selection Reward”) that is fed back to the MAB. This reward is essential for
the MAB’s learning process, allowing it to update its policy (per the Thompson Sampling update
rule in Appendix A) and improve its ability to select high-performing agents in the future.

• The ”Too Many?” Label: This label in the ”Uncertainty Evaluation Center” is a visual repre-
sentation of the crucial receiver capacity constraint check within our trading protocol. Before an
uncertainty trade is executed, the system must verify that the receiving agent will not be overloaded.
This corresponds directly to the feasibility condition in Equation (5): Uj(t) + Tij(t) ≤ Cj(t). The
”Too Many?” check ensures that a proposed trade is rejected if accepting the new uncertainty packet
Tij(t) would push the receiving agent’s total uncertainty portfolio Uj(t) beyond its operational ca-
pacity limit Cj(t). It is a fundamental admission control mechanism that maintains system stability
and agent effectiveness.

N CASE ANALYSIS

In this section, we present a series of case studies, including two successful and two unsuccessful examples,
to demonstrate how multiple experts collaboratively analyze images in response to corresponding questions.
The expert configuration comprises three analysis experts: an Object Recognition Expert, a Scene Descrip-
tion Expert, and a Text/OCR Analysis Expert. For each expert, we report both their analytical response
and the associated uncertainty score. To improve clarity and conciseness, especially given the length of the
responses, key excerpts are highlighted using colored underlines.

N.1 SUCCESSFUL CASE

tables 13 and 14 illustrate that our method, by assigning clearly defined roles to each expert—namely object
recognition, scene understanding, and text/OCR analysis—enables comprehensive analysis across multiple
modalities and semantic dimensions of the input. This structured task decomposition enhances both the
depth and breadth of information processing, allowing each analysis expert to specialize in a distinct sub-
task and generate high-quality outputs accompanied by uncertainty estimates. A principal advantage of
this approach is its explicit quantification of uncertainty, which allows the system to weigh and prioritize
expert contributions based on their reliability. This multi-expert architecture markedly improves the system’s
performance with respect to factual accuracy, contextual completeness, and logical consistency, thereby
enhancing robustness, interpretability, and overall stability across diverse question types and input formats.
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N.2 UNSUCCESSFUL CASE

Although our multi-expert analytical framework performs effectively and robustly in the majority of cases,
certain challenges and limitations remain.table 15 exemplifies a limitation of our multi-expert analytical
framework when faced with ambiguous spatial and perceptual cues that demand deeper three-dimensional
reasoning and contextual inference beyond straightforward visual and textual recognition. While the Object
Recognition Expert identifies two square sliders labeled “A” and suggests visual similarity in size, and the
Scene Description Expert emphasizes the schematic nature of the diagrams featuring differing inclined plane
shapes, the Text/OCR Analysis Expert rightly notes that size equivalence cannot be confirmed solely based
on the visual and textual evidence.

Despite this inherent uncertainty, the final system output incorrectly asserts that the sliders are the same
size. This exposes a critical shortcoming: the current framework lacks an advanced spatial reasoning mod-
ule capable of integrating geometric perspective and resolving scale ambiguities inherent in 2D schematic
depictions of 3D objects. Furthermore, the system does not adequately leverage uncertainty quantification
to withhold or qualify conclusions in cases of inconclusive or conflicting evidence.

This failure highlights the framework’s overreliance on superficial visual similarity and label matching with-
out robust geometric or physical reasoning. Consequently, it underscores the necessity of integrating more
sophisticated reasoning components—such as 3D shape reconstruction, perspective analysis, or probabilis-
tic inference over spatial configurations—to accurately assess relative object dimensions when explicit size
information is unavailable.

In summary, this case illustrates that while the multi-expert system effectively parses and analyzes mul-
timodal inputs, it remains limited in resolving ambiguities that require complex spatial cognition. Future
work should focus on incorporating specialized reasoning capabilities to enhance accuracy in tasks involv-
ing comparative spatial judgments under uncertain visual conditions.

Table 16 presents another failure case that reveals a fundamental limitation of our multi-expert framework:
the difficulty in performing reliable cross-modal reasoning when critical semantic associations cannot be
directly inferred from visual cues. Although the Object Recognition, Scene Description, and Text/OCR
Analysis Experts accurately identify visual features (e.g., yellow cylindrical containers), contextual settings
(e.g., industrial storage area), and textual labels (e.g., liquid ammonia), the final output mistakenly claims
that the object “has a boiling point of -33.3°C.”

This error reflects a key deficiency: the current analysis experts lack the domain knowledge and reason-
ing mechanisms necessary to associate recognized objects (e.g., liquid ammonia) with their scientifically
accurate properties. While -33.3°C roughly corresponds to the boiling point of gaseous ammonia, the pre-
cise boiling point of liquid ammonia is -33.42°C. More importantly, this physical property is not visually
inferable from the image nor present in any text extracted by the OCR expert.

This case underscores a broader design limitation: the system assumes all factually relevant attributes can
be inferred solely from image and text inputs, without access to external scientific knowledge bases or ver-
ification mechanisms. Consequently, it fails to differentiate between superficially plausible yet unsupported
assertions and those grounded in the image evidence.

In conclusion, this example highlights the critical need to incorporate knowledge-grounded reasoning mod-
ules or external factual verification layers to bridge the gap between perceptual analysis and fact-based
inference. This is particularly vital for tasks involving domain-specific scientific knowledge, where even
minor factual inaccuracies can substantially undermine the system’s credibility and reliability.
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STATEMENT ON THE USE OF AI ASSISTANCE

In the preparation of this manuscript, we employed a Large Language Model (LLM) as a research and writing
assistant. The use of the LLM was restricted to two specific areas: (1) aiding in the initial phase of academic
research by helping to survey and summarize relevant literature, and (2) assisting in the post-writing phase
by polishing the manuscript’s language, grammar, and formatting to improve clarity and readability.
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Table 13: Case: Successful Expert Collaboration Example 1

Image

Question

Based on the map, what was true about the Silk Road around the year 1300 CE?

Expert Uncertainty Output

Object Recognition 0.1365 1.The image depicts solid blue lines and dashed pink
lines, representing the overland Silk Road routes and
maritime Silk Road routes, respectively.
2.A high concentration of solid blue lines is observed
in Central Asia, indicating its role as a major hub for
overland trade.
3.Dashed pink lines extend from the eastern coast of
Africa through the Middle East to East Asia, clearly il-
lustrating key maritime trade corridors.

Scene Description 0.1096 1. The map covers an extensive geographical area, in-
cluding Europe, Central Asia, the Middle East, South
Asia, East Asia, and parts of Africa.
2.Central Asia is depicted as a pivotal intersection
where multiple routes converge, highlighting its strategic
position within the Silk Road network.
3.The Middle East functions as a critical junction
connecting overland and maritime routes, serving as a
key intermediary between East and West.
4.The map employs a simple and coherent color scheme
and layout, facilitating clear interpretation of regional
locations and route distributions.

Text/OCR Analysis 0.0832 1. The map includes clearly legible labels for major re-
gions such as Europe, Central Asia, the Middle East,
South Asia, and East Asia.
2.The legend explicitly defines the solid blue lines and
dashed pink lines as distinct types of trade routes.
3.The overall textual arrangement is well-organized,
enhancing comprehension and efficient extraction of
information from the map.

Answer

The correct answer is: The Silk Road connected parts of East Asia, the Middle East, and Europe.
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Table 14: Case: Successful Expert Collaboration Example 2

Image

Question

What will happen next?

Expert Uncertainty Output

Object Recognition 0.8854 1.The image shows the child’s expression suggesting
sadness or distress, characterized by a downturned mouth
and teary eyes, which strongly signals distress.
2. Although predicting future events from a still image
is speculative, the child’s emotional state is a significant
indicator.

Scene Description 0.8945 1.The child’s somber expression combined with the stark
black background highlights an emotional moment and
accentuates the child’s emotional vulnerability.
2.It is possible that the child might be comforted, poten-
tially leading to interaction or conversation.

Text/OCR Analysis 0.2454 1.No supplementary contextual text is provided, keeping
the focus on the child’s emotional expression.

Answer

Based on the child’s visible sadness, the most likely immediate reaction is that the child might cry.
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Table 15: Case: Unsuccessful Expert Collaboration Example 1

Image

Question

There are two physical models in the picture, are the two square sliders the same size?

Expert Uncertainty Output

Object Recognition 0.1479 1. The image contains two physical models, each with a
square slider labeled ”A”.
2.The visual evidence indicates the sliders are identical
in size, occupying similar proportions on their inclined
planes.

Scene Description 0.1744 1. The image shows two models featuring square
sliders placed near the top of their respective inclined
planes—one cylindrical, one triangular.
2.The drawing is schematic with clear geometric shapes
and no detailed environment or lighting, focusing on spa-
tial relationships.

Text/OCR Analysis 0.5382 1. Each diagram has a square labeled ”A,” indicating the
same object or type. However, due to differing shapes
and perspective, it is not possible to confirm the sliders’
sizes solely from the image.
2.The visual text evidence does not conclusively verify
identical sizes.

Answer

The most reasonable conclusion is that the sliders are the same size.
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Table 16: Case: Unsuccessful Expert Collaboration Example 2

Image

Question

The object is shown in this figure:

Expert Uncertainty Output

Object Recognition 0.2325 The image depicts multiple yellow cylindrical gas
cylinders arranged in a row, exhibiting regular shapes
with rounded ends.
2.The cylinders are aligned horizontally with orderly
spacing and consistent color and shape, indicating
industrial gas containers.

Scene Description 0.5276 1.The cylinders are positioned on a concrete floor,
suggesting an industrial storage or transportation
environment.
2.Additional similar containers are visible in the back-
ground, emphasizing a storage or loading area.
3.Lighting is uniform and bright, accentuating the yellow
cylinders and black inscriptions.
4.The cylinders are arranged neatly with even spacing,
reflecting organizational order and safety considerations.
5.The overall atmosphere is utilitarian, highlighting the
practical and safety-focused nature of the industrial
setting.

Text/OCR Analysis 0.0832 1.The side of the cylinders clearly displays bold black
lettering indicating ”liquid ammonia” in Chinese, which
stands out against the yellow background and ensures
high legibility.
2.The text’s placement and size are precise, indicating the
contents as liquid ammonia and conforming to industrial
labeling standards.

Answer

The object shown in this figure has a boiling point of -33.3°C.
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