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Abstract

As scaled language models (LMs) ap-001
proach human-level reasoning capabilities, self-002
improvement emerges as a solution to synthe-003
sizing high-quality data corpus. While previous004
research has identified model collapse as a risk005
in self-improvement, where model outputs be-006
come increasingly deterministic, we discover007
a more fundamental challenge: the superficial008
self-improved reasoners phenomenon. In partic-009
ular, our analysis reveals that even when LMs010
show improved in-domain (ID) reasoning ac-011
curacy, they actually compromise their gener-012
alized reasoning capabilities on out-of-domain013
(OOD) tasks due to memorization rather than014
genuine learning. Through a systematic investi-015
gation of LM architecture, we discover that dur-016
ing self-improvement, LM weight updates are017
concentrated in less reasoning-critical layers,018
leading to superficial learning. To address this,019
we propose Iterative Model Merging (IMM),020
a method that strategically combines weights021
from original and self-improved models to pre-022
serve generalization while incorporating gen-023
uine reasoning improvements. Our approach024
effectively mitigates both LM collapse and su-025
perficial learning, moving towards more stable026
self-improving systems. Code is available1.027

1 Introduction028

The reasoning capabilities (Jaech et al., 2024; Guo029

et al., 2025) of large language models (LLMs)030

largely benefits from vast amounts of high-quality031

reasoning data. However, as the data corpus032

runs out (Sutskever, 2024) and increasingly pow-033

erful models approach human-level intelligence034

(DeepMind, 2024a,b), pressing issues emerge: (i)035

How to advance models’ reasoning capabilities036

despite data scarcity? (ii) How to obtain train-037

ing data that exceeds human-level performance for038

next-generation models? A promising answer to039

1Anonymous code is available at IMM.
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Figure 1: The Superficial Self-Improved Reasoners phe-
nomenon is mitigated by iterative model merging. Our
method improves ID and OOD reasoning performances.

both questions is model self-improvement or self- 040

evolution, where models autonomously generate in- 041

finite high-quality data, which potentially surpasses 042

human annotations, to continuously enhance their 043

own performance. 044

Although self-improvement has achieved re- 045

markable success in specific domains such as math- 046

ematics (OpenAI, 2025; DeepMind, 2024a), cod- 047

ing (Li et al., 2022), and games (Hu et al., 2024; 048

Silver et al., 2018), recent studies reveal signifi- 049

cant risks associated with using self-generated syn- 050

thetic data for fine-tuning: in particular, model per- 051

formance can degrade over multiple iterations of 052

self-improvement, a phenomenon known as model 053

collapse. (Shumailov et al., 2023). In current re- 054

search, model collapse is primarily attributed to a 055

reduction in sampling diversity (Shumailov et al., 056

2023; Alemohammad et al., 2024; Guo et al., 2024). 057

To mitigate this problem, several studies suggest 058

refreshing synthetic data with real data (Bertrand 059

et al., 2024; Alemohammad et al., 2024), accu- 060

mulating data across training steps (Gerstgrasser 061

et al., 2024), and incorporating data verifiers (Gill- 062

man et al., 2024) or correctors (Feng et al., 2025). 063

However, by focusing solely on data quality and 064

diversity, these approaches overlook a more critical 065
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question: whether self-improvement genuinely en-066

hances reasoning capabilities or merely memorizes067

the training distribution. This distinction becomes068

crucial when considering the model’s ability to gen-069

eralize beyond its training data.070

In this paper, we investigate a risk in model self-071

improvement for reasoning tasks that deepens the072

known challenge of model collapse. We identify073

a phenomenon we call Superficial Self-Improved074

Reasoners, where models appear to improve but075

actually fail to develop genuine reasoning capabil-076

ities. While these models show enhanced perfor-077

mance on in-domain (ID) reasoning tasks, they sig-078

nificantly underperform on out-of-domain (OOD)079

tasks, suggesting memorization rather than genuine080

reasoning improvement. To understand the mecha-081

nistic cause of this phenomenon, we perform a sys-082

tematic analysis of the model architecture during083

self-improvement. By examining layer importance084

and parameter changes, we uncover a critical mis-085

match: the largest weight updates occur in layers086

that contribute least to reasoning, while reasoning-087

critical layers receive minimal updates. This mis-088

match explains why models tend to memorize train-089

ing patterns rather than develop generalizable rea-090

soning skills. To address this issue, we propose091

Iterative Model Merging (IMM), a novel method092

that strategically combines weights from original093

and self-improved models. IMM specifically tar-094

gets the layer misalignment problem by preserving095

the stability of reasoning-critical layers while al-096

lowing beneficial updates from self-improvement.097

As demonstrated in Figure 1, this approach effec-098

tively balances performance improvements with099

preserved generalized reasoning capability.100

A summary of the contributions is given below:101

• This work identifies the risk of self-improvement102

for reasoning: while the model enhances its rea-103

soning capabilities, it still tends to memorize the104

training data, resulting in a loss of generalized105

reasoning ability. We refer to this phenomenon106

as Superficial Self-Improved Reasoners.107

• We provide an explanation for this phe-108

nomenon by highlighting a mismatch between109

the reasoning-critical layers and the layers that110

undergo the largest weight changes.111

• We propose IMM to mitigate this phenomenon.112

IMM offers a simple, general, and effective ap-113

proach to integrate the reasoning improvements114

of the self-improved model while preserving the 115

generalization of the original model. 116

2 Related Work 117

LLM Self-Improvement Given the high cost of 118

labeling data, it is increasingly common to lever- 119

age LLMs to generate synthetic responses for train- 120

ing student models. Traditionally, this process has 121

focused on knowledge distillation from stronger 122

teacher models (Yuan et al., 2023; Wu et al., 123

2024). More recently, studies have demonstrated 124

that distilling from weaker models—referred to 125

as weak-to-strong knowledge distillation—can be 126

more beneficial for LLMs compared to distilling 127

from stronger models, given the same computa- 128

tional budget (Bansal et al., 2024). Another emerg- 129

ing direction is LLM self-improvement, where 130

models improve themselves using their own out- 131

puts (Huang et al., 2022; Gulcehre et al., 2023; 132

Singh et al., 2023). In the context of reason- 133

ing tasks, various self-improvement methods have 134

been proposed: SPO (Prasad et al., 2024) employs 135

Self-Consistency Preference Optimization for self- 136

improvement; Pang et al. (2024) iteratively gener- 137

ate and refine data to optimize the model’s reason- 138

ing ability; and Hosseini et al. (2024) utilize both 139

correct and incorrect answers to improve reasoning 140

performance through training an additional verifier. 141

Model Collapse As real-world data becomes in- 142

creasingly scarce (Sutskever, 2024), synthetic data 143

is playing a crucial role in training modern genera- 144

tive models due to its low cost and infinite availabil- 145

ity. However, recent studies have revealed the risks 146

associated with this "free lunch," a phenomenon 147

known as model collapse (Shumailov et al., 2023). 148

The model collapse has been extensively identi- 149

fied and analyzed in both computer vision (Hataya 150

et al., 2023; He et al., 2022; Bohacek and Farid, 151

2023) and natural language processing (Alemo- 152

hammad et al., 2024; Gerstgrasser et al., 2024). Re- 153

searchers have investigated its underlying causes 154

from both empirical (Padmakumar and He, 2024; 155

Guo et al., 2023) and theoretical perspectives (Yuan 156

et al., 2024; Bertrand et al., 2023; Seddik et al., 157

2024). Current approaches to mitigating model col- 158

lapse predominantly focus on data-centric methods. 159

Feng et al. (2025) show that imperfect verifiers 160

can help prevent model collapse by selecting ap- 161

propriate data. Shumailov et al. (2023) proposes 162

mixing data from previous iterations to prevent 163
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Figure 2: Superficial Self-improved Reasoners. The model’s performance is only improved on in-domain reasoning
datasets while losing the generalized reasoning capabilities on out-of-domain reasoning datasets.

performance degradation, while Gerstgrasser et al.164

(2024) demonstrates that accumulating synthetic165

data over iterations reduces the risk of collapse.166

Appendix C.6 discusses additional related works167

on LLM for reasoning. The connection with catas-168

trophic forgetting is discussed in Appendix C.3.169

3 Superficial Self-improved Reasoners170

A natural and critical question arises for LLM self-171

improvement: does learning from synthetic rea-172

soning data generated by the model itself trade173

off generalization ability for improved reasoning174

performance because of learning from itself? Our175

study shows that the answer is yes. In this section,176

we first confirm that self-improvement enhances in-177

domain reasoning performance but degrades gen-178

eral reasoning capabilities. We then investigate the179

underlying cause of this phenomenon by analyz-180

ing the layer-wise importance of the model during181

reasoning and tracking weight changes throughout182

the self-improvement process. A detailed compar-183

ison reveals a notable mismatch: the layers most184

crucial for reasoning experience relatively small185

weight updates, while less critical layers undergo186

more significant changes. This suggests that strong187

reasoning layers fail to substantially improve their188

reasoning ability through weight updates, whereas189

less important layers tend to overfit the training190

data rather than truly learning to reason.191

3.1 Identify Superficial Self-improved192

Reasoners from OOD datasets193

In this part, we identify Superficial Self-improved194

Reasoners by self-improving LLMs on the ID rea-195

soning datasets and test them on OOD datasets.196

Synthesizing Reasoning Data for Self-197

improvement We begin by establishing198

the self-improvement framework through the199

generation of reasoning data. Following prior work 200

(Zelikman et al., 2022), we first synthesize rea- 201

soning data for fine-tuning. Let D = {(qi, ai)}nd
i=1 202

denote a training dataset containing nd reasoning 203

questions qi and corresponding final answers 204

ai. We also use Chain-of-Thought prompting 205

(Wei et al., 2022) in this process (details in 206

Appendix A.1). In the second step, we sample 207

multiple solutions for each qi using non-zero 208

sampling temperatures, resulting in a synthetic 209

dataset DS = {(qi, {(r̂ij , âij)}kj=1)}, where k 210

represents the number of sampled solutions. Here, 211

r̂ij denotes the j-th reasoning path (i.e., rationale) 212

generated by the model for qi, and âij is the 213

model’s corresponding final answer. Incorrect 214

solutions are then filtered out by comparing the 215

sampled answers âij with the ground-truth answers 216

ai. Finally, we fine-tune the model on the filtered 217

dataset D̃G using supervised fine-tuning (SFT) to 218

maximize the likelihood of generating reasoning 219

paths r, optimizing the following objective: 220

E(q,r,a)∼D̃G
[log pθ(r, a|q)] . (1) 221

Loss of Generalized Reasoning Ability dur- 222

ing Self-Improvement After applying the self- 223

improvement framework to LLMs of various scales 224

on ID datasets, we evaluate their performance on 225

OOD reasoning datasets. The results, presented in 226

Figure 2, reveal that while self-improvement en- 227

hances reasoning performance on ID datasets, it 228

leads to a noticeable decline in performance on 229

OOD datasets. This phenomenon suggests that al- 230

though self-improvement improves metrics on ID 231

reasoning tasks, it fails to enhance generalized rea- 232

soning capabilities and may even degrade them. 233

We refer to this behavior as the emergence of Su- 234

perficial Self-Improved Reasoners. 235
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Figure 3: The Layer Importance Scores of strong reason-
ing model Qwen2.5-1.5B-Math on BookCorpus (left)
and MATH datasets (right). The middle layers are less
important while the early and late layers are more im-
portant for reasoning (MATH). For non-reasoning task
(BookCorpus) middle layers are more important.

3.2 Investigating the Causes of Superficial236

Self-Improved Reasoners237

While numerous studies on catastrophic forgetting238

focus on analyzing and addressing OOD perfor-239

mance degradation in continual learning for learn-240

ing simpler tasks, our work specifically targets the241

more challenging domain of mathematical reason-242

ing in LLMs, with an emphasis on understanding243

the phenomenon of Superficial Self-Improved Rea-244

soners. In this section, we identify the most critical245

layers for reasoning, analyze how their weights246

evolve during the self-improvement process, and247

provide an explanation for the emergence of Super-248

ficial Self-Improved Reasoners.249

Layer Importance for Reasoning To identify250

the most important weights in LLMs for reason-251

ing, our objective is to determine and remove252

the weights that have the greatest impact on the253

model’s prediction, which can be measured by254

the resulting change in loss. We denote the lin-255

ear weight matrix as Wk,n =
[
W k,n

i,j

]
, where k256

represents the modules (e.g., a key projection in the257

multi-head attention (MHA) or an up-projection in258

the feed-forward network (FFN)) within the n-th259

LLM layer. We quantify the importance of each260

weight by measuring the error introduced when the261

corresponding parameter is removed. Given an in-262

domain reasoning dataset D, the importance score263

Ik,ni,j for the weight W k,n
i,j is defined as:264

Ik,ni,j = |∆L(D)|

=

∣∣∣∣∣∂L(D)

∂W k,n
i,j

W k,n
i,j − 1

2
W k,n

i,j HkkW
k,n
i,j

+O
(
∥W k,n

i,j ∥3
)∣∣∣ .

(2)265

However, due to the significant computational266
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Figure 4: The weight change for SFT Qwen2.5-1.5B
with self-improvement MATH data (left) and fully post-
training Qwen2.5-1.5B to Qwen2.5-1.5B-Math using
real data with 700B tokens (right).

cost associated with the large number of parameters 267

in LLMs, we approximate the Hessian matrix Hkk 268

using the Fisher information matrix, following the 269

approach in Ma et al. (2023). This allows us to ap- 270

proximate the second-order term 1
2W

k,n
i,j HkkW

k,n
i,j 271

as 1
2

∑N
j=1

(
∂L(Dj)

∂Wk
i

W k
i

)2
. By omitting the second- 272

order derivative, the importance score Ik,ni,j is sim- 273

plified to: Ik,ni,j ≈
∣∣∣∣ ∂L(D)

∂Wk,n
i,j

W k,n
i,j

∣∣∣∣. To assess the 274

contribution of each layer to reasoning, we define 275

the layer importance score as: 276

In =
∑
Wk,n

i,j

∣∣∣∣∣∂L(D)

∂W k,n
i,j

W k,n
i,j

∣∣∣∣∣ . (3) 277

We leverage this layer importance score In to iden- 278

tify which layers contribute most significantly to 279

reasoning tasks. As illustrated in Figure 3, the 280

middle layers are less important while the early 281

and late layers are more important for the reason- 282

ing (MATH) tasks. We also find similar perfor- 283

mance on code reasoning tasks, as illustrated in 284

Appendix B.2. However, for the non-reasoning 285

dataset BookCorpus, the middle layers are more 286

important. This observation highlights the early 287

and late layers as reasoning-critical layers (More 288

clarification for this term is in Appendix C.4), dis- 289

tinguishing their specialized function in reasoning. 290

Layer Weight Change after Self-Improvement 291

After fine-tuning the LLMs on reasoning data, the 292

weights are updated, enabling the model to learn 293

reasoning capabilities. We now analyze these 294

weight changes. Let ∆Wn represent the total 295

weight change at the n-th layer after SFT: 296

∆Wn =
∑
k

∥∥∥Wk,n −Wk,n
SFT

∥∥∥ , (4) 297

where Wk,n denotes the original k-th weight ma- 298

trix and Wk,n
SFT is the fine-tuned weight matrix. Fig- 299
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Model Reasoning-
Critical Layer

Most Weight
Change Layer

Generalized
Reasoning Capability

Self-Improved Early, late Middle ✗

Fully Post-trained Early, late Early, late ✓

Table 1: Comparison of self-improved model and fully
post-trained math model.

ure 4 illustrates the weight change ∆Wn across300

different layers. For the self-improved model, the301

largest weight change occurs in the middle lay-302

ers. In contrast, for the math model which is fully303

post-trained with stronger generalized reasoning304

capability, the most significant weight changes are305

concentrated in the early and late layers. A sim-306

ilar condition happens for real data with limited307

training data size, as analyzed in Appendix B.1.308

Takeaway By analyzing Figure 3 and Figure 4309

(left), we observe that the middle layers (reasoning-310

trivial layers) are the least important for the strong311

reasoning capabilities of LLMs, yet these layers312

undergo the most significant updates during the313

self-improvement process. This phenomenon high-314

lights a contradiction in how reasoning ability is315

acquired. If the model were solely learning general-316

ized reasoning, the most substantial weight updates317

would occur in the early and late layers (reasoning-318

critical layers), as observed in fully post-trained319

math models with strong generalized reasoning ca-320

pabilities, rather than in the middle layers.321

This observation suggests that during self-322

improvement, the model does not exclusively en-323

hance its reasoning ability but also exhibits a ten-324

dency to overfit the training data, effectively "mem-325

orizing" it. This overfitting behavior explains the326

improved performance on ID datasets while com-327

promising the model’s generalization to OOD tasks.328

The performance comparison in Figure 2 further329

supports this conclusion. We summarize all experi-330

mental findings in Table 1, which leads to the fol-331

lowing key insights: (i) during self-improvement332

on reasoning tasks, LLMs may show improved333

reasoning performance on ID tasks but lose gen-334

eralized reasoning ability on OOD tasks; (ii) This335

phenomenon arises from a mismatch between the336

reasoning-critical layers and the layers with signif-337

icant weight changes, suggesting that the model338

memorizes the training data rather than truly learn-339

ing generalized reasoning capability. We further340

provide analysis on the reasons for this mismatch341

phenomenon in Appendix C.2.342

4 Superficial Self-improved Reasoners 343

Benefit from Iterative Model Merging 344

Iterative Model Merging (IMM) In this sec- 345

tion, we propose Iterative Model Merging (IMM) 346

to mitigate the Superficial Self-Improved Reasoners 347

phenomenon, as illustrated in Figure 5. In the first 348

self-improvement iteration, we self improve the 349

original base model and merge the resulting SFT 350

model θ0
SFT with the base model θ to obtain the 351

merged model θ0
m. In each subsequent iteration t 352

(t > 0), we continue the self-improvement process 353

by fine-tuning the previously merged model θt−1
m . 354

The resulting self-improved model θt
SFT is then 355

merged with the original base model to obtain the 356

updated merged model θt
m. To formally describe 357

this process, we define the parameter change δt 358

during each SFT iteration as follows: 359

δt =

{
θt
SFT − θt−1

m , if t > 0, SFT merged LM,

θt
SFT − θ, if t = 0, SFT base LM.

(5) 360

We then incorporate DARE (Yu et al., 2024a) to 361

further process δt. DARE identifies parameter re- 362

dundancy in LLMs, randomly masking parameter 363

changes at a drop rate p while scaling the remaining 364

updates to improve the performance of the merged 365

model. Denoting m ∼ Bernoulli(p), DARE can 366

be expressed as: 367

δ̃t = (1−m)⊙ δt, δ̂t = δ̃t/(1− p). 368

By incorporating DARE into our iterative model 369

merging framework, the final update for each itera- 370

tion t is given by: 371

θt+1
m = αθ + (1− α)(θt + δ̂t), (6) 372

where α is a scaling parameter that controls the 373

balance between the base model weights and the 374

self-improved model weights. Although we use a 375

uniform α for all layers, which makes reasoning- 376

critical layers’s weight change remain minimal 377

at the first iteration, this generalized way makes 378

the model avoid overfitting and learn the general- 379

ized reasoning capability, which makes reasoning- 380

critical layers’ weights change increase more com- 381

pared to the reasoning-trivial layers in the next 382

iterations to learn generalized reasoning capability, 383

as analyzed in Appendix B.9. The overall merg- 384

ing strategy is scalable for multiple iterations and 385

larger models, with complexity analysis presented 386

in Appendix B.10. 387
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Figure 5: The overall framework: (a) The model generates chain-of-thought (CoT) answers for the given questions,
and incorrect answers are filtered out using the ground-truth. The remaining correct answers are used for SFT to
self-improve the model. (b) IMM iteratively SFT the model and merges the self-improved models with the base
model to balance reasoning enhancement and generalization.

Insights for IMM The rationale behind model388

merging for generalized reasoning capability can389

be understood from two perspectives: (i) Based390

on the experimental observations in Section 3, the391

weights of reasoning-critical layers undergo signif-392

icant changes during self-improvement, indicating393

that these layers are likely memorizing the train-394

ing data. Given the blurred boundary between395

reasoning-critical and reasoning-trivial layers, it is396

plausible that middle layers also contribute to mem-397

orization, while late layers are partially involved in398

reasoning. As a result, excessive weight updates399

across all layers can lead to overfitting, especially400

when the training data is synthesized by the model401

itself. Model merging mitigates this overfitting by402

limiting weight changes. (ii) The base model re-403

tains strong generalization capabilities, while the404

self-improved model exhibits self-improved rea-405

soning performance. Model merging combines406

the strengths of both, integrating the generaliza-407

tion ability of the base model with the reasoning408

improvements from the self-improved model.409

Importance-based Iterative Model Merging410

(IIMM) We also propose IIMM, which is mo-411

tivated to aggressively merge the model according412

to the layer importance as follows:413

θt+1
m,n = αθn + (1− α)(θt

n +
NIn∑N
i=1Ii

δ̂tn), (7)414

where n denotes n-th layer of the model with N415

layers. However, we find that IIMM is outper-416

formed by IMM because of instability and overfit-417

ting datasets for importance score calculation. The418

detailed experiment and analysis are provided in419

Appendix B.5.420

5 Experiments 421

In this section, we conduct extensive experiments 422

to evaluate the effectiveness of our proposed 423

method. Specifically, our experiments aim to ad- 424

dress the following research questions: (i) Can our 425

method prevent model collapse on complex reason- 426

ing tasks during iterative self-improvement? (ii) 427

How well does our method perform on OOD rea- 428

soning tasks? (iii) Can our method be extended 429

from self-improvement to knowledge distillation 430

from a stronger model? 431

5.1 Setup 432

Datasets We train the model on MATH 433

(Hendrycks et al., 2021) and GSM-8K (Cobbe et al., 434

2021) datasets correspondingly to evaluate the in- 435

domain reasoning ability of the model, while evalu- 436

ate it on MAWPS (Koncel-Kedziorski et al., 2016), 437

SAT-Math (Zhong et al., 2024) datasets to evaluate 438

the out-of-domain reasoning ability. 439

Models We include three LLMs at different 440

scales (Qwen2.5-0.5B-Instruct, Qwen2.5-1.5B- 441

Instruct (Yang and et al., 2024) and Llama2-7B 442

(Touvron et al., 2023)) for self-improvement train- 443

ing. For the distillation experiments, we include 444

stronger teacher models Qwen2.5-7B-Instruct for 445

distillation. We also provide the recent model 446

Llama3-8B performance in Appendix B.8 447

Baselines We evaluate our method by compar- 448

ing it with four baselines. First, we consider 449

Vanilla (STaR (Zelikman et al., 2022)) , which 450

iteratively generates reasoning data following the 451

procedure in Section 3 for self-improvement. Sec- 452

ond, we include Data Mixture (Shumailov et al., 453

6
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Figure 6: The model performances on in-domain (ID) datasets. SFT n and Merge n denote the SFT model and
merged model in the n-th iteration cycle. The model collapse happens from the first or second iteration for baselines,
while our method avoids it and achieves the best performance after model merging.
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Figure 7: The model performances on out-of-domain (OOD) datasets. SFT n and Merge n denote the SFT model
and merged model in the n-th iteration cycle. Baselines’ performances decrease on most datasets, while IMM can
generally maintain the OOD performance compared with the original base model.

2023), which mitigates performance degradation454

by mixing a portion of data from previous iterations.455

Third, we compare with Data Accumulation (Ger-456

stgrasser et al., 2024), which demonstrates that457

accumulating synthetic data across iterations can458

prevent model collapse. We also provide a compar-459

ison of SFT interventions in Appendix B.4.460

Evaluation We evaluate the model performance 461

by computing pass@k = EDG

[
1− (M−c

k )
(Mk )

]
, 462

where c is the number of correct answers, out of 463

total answer M and EDG
[·] is the expectation for 464

overall generated dataset DG. Therefore, pass@k 465

measures the fraction of unique questions that have 466

at least one correct answer when sampling k an- 467
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Figure 8: ID performance with different k for scaling
up test-time-computing Pass@k on GSM8K.

swers per question from the model.468

Additional training and implementation details are469

provided in Appendix A.2.470

5.2 ID Results with Self-improvement471

To answer research question (i), we conducted ex-472

tensive experiments in a model collapse setting473

(iterative self-improvement) using two mathemat-474

ical reasoning datasets, GSM8K and MATH. The475

results, shown in Figure 6, highlight that across476

three self-improvement iterations with three differ-477

ent LLMs, model collapse occurs in the first or sec-478

ond iteration for the baseline methods. In contrast,479

our method successfully avoids model collapse and480

achieves the best performance after applying model481

merging. Not only does our method significantly482

delay model collapse, but it also maintains supe-483

rior performance across all iterations. Moreover,484

we observe that LLMs of all scales benefit from485

our model merging strategy, with smaller models486

suffering more severely from model collapse in the487

absence of this approach. Given the rising impor-488

tance of test-time computing (Snell et al., 2025),489

we further evaluate our method by generating mul-490

tiple answers and measuring pass@k accuracy. As491

shown in Figure 8 (more results are presented in492

Appendix B.7), our method consistently improves493

performance as k increases and outperforms both494

the base models and the SFT models.495

5.3 OOD Generalization Results496

To answer research question (ii), We evaluate the497

checkpoints from Section 5.2 using OOD math498

reasoning datasets: SAT Math and MAWPS. Ad-499

ditional OOD datasets results can be found in Ap-500

pendix B.3. The results, presented in Figure 7,501

show that while all other baselines suffer signifi-502

cant OOD performance degradation after iterative503

self-improvement, our method consistently restores504

performance after each model merging step and, in505

some cases, even surpasses the original base model.506

Student Domain Datasets Base SFT Merged

Qwen2.5-
1.5B Instruct

ID
GSM8K 63.0 54.4 71.6
MATH 24.3 45.0 42.6

OOD
SAT_Math 75.0 75.0 87.5
MAWPS 90.0 72.8 24.5

Llama2-7B
ID

GSM8K 3.6 49.2 38.8
MATH 3.6 10.3 12.5

OOD
SAT_Math 25.0 18.8 28.1
MAWPS 64.1 55.1 76.6

Table 2: Student models’ performance with distilling
from stronger model setting. The best and runner-up
accuracies are bolded and underlined respectively.

The only exception is the Qwen2.5-0.5B-Instruct 507

model on the MAWPS dataset. We hypothesize 508

that this dataset closely resembles the in-domain 509

data, where extensive ID training significantly im- 510

proves performance, which causes a degradation 511

during IMM. We further analyze this unexpected 512

behavior in Appendix B.6. Overall, these results 513

demonstrate the great potential of our method, as 514

it successfully mitigates the generalization drop 515

commonly observed during SFT. 516

5.4 Distillation from Stronger Models 517

Considering self-improvement may be only one 518

of paradigms for LLM distillation, we extend our 519

method to a broader field to answer research ques- 520

tion (iii). We distill a stronger Qwen2.5-7B-Instruct 521

model into the weaker Qwen2.5-1.5B-Instruct and 522

Llama-2-7B models. The results in Table 2 demon- 523

strate that IMM consistently improves or maintains 524

comparable performance on ID tasks, while often 525

achieving significant improvements in OOD per- 526

formance. This indicates that IMM only preserves 527

task-specific performance but also enhances the 528

model’s generalized reasoning ability when distill- 529

ing from the teacher model. 530

6 Conclusion 531

This study identifies that self-improved LLM rea- 532

soners still have the model collapse risk and lack 533

generalized reasoning capability on OOD datasets. 534

Our analysis reveals that the weight changes of 535

layers doesn’t match the layer importance. This 536

mismatch suggests that instead of solely learning 537

to reason, the model also memorizes the training 538

data. To address this issue, we propose the Iterative 539

Model Merge and extensive experiments demon- 540

strate the effectiveness of our method: it not only 541

mitigates model collapse but also make model have 542

generalized reasoning capability. 543
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Limitations544

The proposed Iterative Model Merging (IMM)545

method currently employs a fixed-weight merging546

mechanism between the original and self-improved547

models. However, more advanced strategies, such548

as dynamic or layer-adaptive merging, could pro-549

vide further improvements. Additionally, although550

IMM has proven to be effective in maintaining551

generalized reasoning capabilities, it doesn’t in-552

vestigate the strategy of mixing real and synthetic553

data appropriately, which could further enhance the554

trade-offs between reasoning improvement and gen-555

eralization. We leave the exploration of advanced556

merging mechanisms and the optimal mixture ratio557

of real and synthetic data for future work.558
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A Training and Implementation Details868

A.1 Chain of Thought Prompting for Data869

Synthesis870

We use chain-of-thought prompting (Wei et al.,871

2022) to generate answers. For MATH and872

GSM8K datasets, we both give 10 examples in the873

instructions for in-context generation. The prompt-874

ing examples are given in Table 11 and Table 12.875

We generate 3 candidate answers for GSM8K and876

6 candidate answers for MATH to have comparable877

numbers of right answers.878

A.2 Training details879

We use NVIDIA RTX 8 × A6000 to train the880

model with DeepSpeed (Rajbhandari et al., 2020)881

distributed training framework. The number of882

training epoch is 3 and per device training batch883

size is 4. The gradient accumulation steps are set884

to 4 and the learning rate is 2e-5. The warm-up885

rate is 0.03. We use mixed precision training with886

bf16. We use DeepSpeed to distribute supervised887

fine-tuning model with ZeRO3, which partitions all888

three model states. We also use the vLLM library889

(Kwon et al., 2023) to generate synthetic reason-890

ing data with sampling temperature {0.2, 0.4, 0.6}891

to balance the diversity and accuracy of generated892

answers. Note that we use all models, data, and893

training tools solely for research purpose, which894

are consistent with their intended use.895

The Model merging parameter in Section 3 is set896

to 0.5 to balance the base model and self-improved897

model. We use the setting in Section 5.4 to do898

the parameter analysis for α. Table 3 shows that899

α = 0.5 can achieve a good balance between ID900

and OOD performance.901

α 0.1 0.3 0.4 0.5 0.6 0.7 0.9

GSM8K 3.7 24.5 32.4 38.8 40.4 43.3 48.3
MATH 3.7 8.4 10.8 12.5 12.5 11.8 10.3
SAT_Math 25.3 27.4 27.7 28.1 26.7 24.8 18.8
MAWPS 64.4 69.0 76.8 76.6 69.3 64.3 57.2

Table 3: The parameter analysis for α.

B Additional Experiments and Analysis902

B.1 Superficial Reasoning Finetuning Exists903

When Real Data is Limited904

We also find that even using real but limited data,905

Superficial Reasoning Synthetic Finetuning still ex-906

ists. As Figure 9 shows, the middle layers change907

most compared with the early and late layers, while 908

Figure 3 already shows that early and late layers are 909

more important for reasoning. However, utilizing 910

real data prevents the model from overfitting itself 911

by using self-generated data. This is also verified 912

by Figure 9: the model’s reasoning layer (early 913

and late layers) changed more (learn more reason- 914

ing capability) when training with real data, the 915

reasoning-trivial layers (middle layers)’s weight 916

change is close to middle layers when training with 917

synthetic data.
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Figure 9: The weight change over layers for (i) Fintun-
ing Qwen2.5-1.5B with synthetic MATH (Hendrycks
et al., 2021) dataset data and limited training data (7.5k
real MATH training data)
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B.2 Layer importance 919
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Figure 10: The layer importance score for Qwen2.5-
1.5B base model on reasoning dataset MATH.

Here we provide the additional experiment 920

results for evaluating the layer importance for 921

Qwen2.5-1.5B base model on reasoning datasets 922

MATH. Similar to stronger reasoning model 923

Qwen2.5-1.5B-Math, the importance layer for rea- 924

soning is early and late layers, as demonstrated 925

12



Model Datasets Base SFT1 Merge1 SFT2 Merge2 SFT3 Merge3

Qwen2.5-0.5B-I

SVAMP 7.3 35.8 5.9 21.6 1.3 40.1 9.8
ASDiv 8.7 51.4 3.7 30.7 2.8 46.7 17.6

MathQA 37.9 29.5 38.2 25.7 35.4 19.9 33.8
MMLU_stem 34.2 34.6 38.4 34.3 37.1 27.9 36.1

Qwen2.5-1.5B-I

svamp 77.7 59 69.2 58.6 58.2 60.2 64.7
asdiv 82.8 72.5 76.4 64.8 59.6 70.8 73.4

MathQA 62.5 24.9 57.3 33.4 54.1 12.8 53.4
MMLU_stem 53.6 40.1 52.6 47.9 53.4 41.7 54.5

Llama2-7B
svamp 39.6 30.1 38.0 35.1 39.0 33.5 38.5
asdiv 51.9 42.9 51.2 46.7 52.3 41.4 52.7

Table 4: OOD performance on additional reasoning datasets.

Datasets GSM8K MATH SAT_Math MAWPS

Vanilla SFT 58.5 32.5 50.0 85.9
Gradient-decay (γ=0.9) 59.2 32.8 53.8 84.2
Gradient-clipping (max_norm=2.0) 58.7 31.7 52.3 84.7
Weight-masking (TopP=0.3) 60.2 34.5 56.2 87.0
IMM 69.3 34.0 68.8 89.4

Table 5: Qwen2.5-1.5B-Instruct performance compared with SFT interventions in the first iteration.
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Figure 11: The layer importance score for Qwen2.5-
1.5B base model on reasoning dataset MBPP.

in Figure 10. We also observed similar behavior926

in other complex reasoning task code generation927

MBPP, as demonstrated in Figure 11.928

B.3 OOD performance929

We also provide OOD performance on additional930

datasets SVAMP (Patel et al., 2021), ASDiv (Miao931

et al., 2020), MathQA (Amini et al., 2019) and932

MMLU-stem Hendrycks et al. (2020). IMM keeps933

the OOD reasoning capability as shown in Table 4.934

B.4 Comparison with SFT interventions 935

We provide experimental results to compare these 936

alternative interventions with IMM. As shown in 937

Table 5, these methods generally do not outperform 938

IMM, and in some cases are even outperformed by 939

vanilla SFT. Compared with these interventions 940

during SFT, IMM not only mitigate the overfitting 941

reasoning finetuning, but also improve generalized 942

reasoning capability through ensemble model merg- 943

ing. Our method is orthogonal to interventions for 944

SFT, and provides a simple yet effective method 945

to solve superficial self-improved reasoners phe- 946

nomenon identified by this research. 947

B.5 Importance-based Weight Merge 948

Datasets GSM8K MATH SAT_Math MAWPS

I-IMM 44.2 27.5 49.3 2.1
IMM 44.2 27.4 56.2 3.4

Table 6: Comparison of IIMM and IMM across ID and
OOD datasets.

We also experimented with weighting the merge 949

ratio α per layer using the importance score I 950

defined in Eq. (3). As shown in Table 6, this 951

approach occasionally improves in-domain (ID) 952

13



Model Base SFT Merge

Qwen2.5-0.5B 12.8 32.9 23.4
Qwen2.5-1.5B 90.0 72.8 24.5
Llama-2-7B 64.1 52.6 65.3

Table 7: Model performances on MAWPS dataset. The
best performances are bolded, and the runner-up perfor-
mances are underlined.

Dataset Base SFT Merge

SAT_Math 75.0 75.0 87.5
MAWPS 90.0 72.8 24.5
MathQA 62.5 55.5 62.0
MMLU_stem 53.6 54.5 57.6
SVAMP 77.7 54.1 61.2

Table 8: Qwen2.5-1.5B-Instruct performance on exter-
nal OOD datasets. The best performances are bolded,
and the runner-up performances are underlined.

performance but often performs worse on out-of-953

domain (OOD) datasets. We hypothesize that this954

is because weighting the merging process based955

on ID-specific importance scores leads to overfit-956

ting to the ID data, thereby sacrificing the model’s957

generalized reasoning capabilities on OOD tasks.958

Additionally, imbalanced merging rates across lay-959

ers may introduce instability: when different layers960

are merged to varying degrees, the model can be-961

come internally inconsistent. In an extreme case,962

if some layers remain largely as base model layers963

while others are heavily adapted via SFT, this im-964

balance can degrade performance, as the layers are965

no longer "on the same page".966

B.6 Analysis on unexpected behavior967

OOD performance drops for Qwen2.5-1.5B on968

MAWPS dataset, and here we conduct more ex-969

periments to analyze this behavior. We found that970

(Table 7) small models (e.g., 0.5B and 1.5B) only971

suffer significant performance degradation on the972

MAWPS dataset after model merging. In contrast,973

larger models (e.g., 7B) achieve the best perfor-974

mance on MAWPS, benefiting more from IMM.975

Despite this drop on MAWPS, smaller models still976

show performance improvements on other OOD977

datasets. For instance, Table 8 shows that the 1.5B978

model outperforms both the Base and SFT versions979

on 5 OOD datasets. Therefore, we attribute the980

performance degradation on MAWPS primarily to981

two factors: (1) potential distributional differences982

in MAWPS compared to other datasets, and (2) the 983

limited parameter capacity of small models, which 984

may lack sufficient redundancy to support robust 985

merging without trade-offs. 986

B.7 Additional test-time computing results 987

We evaluate our method by generating multiple an- 988

swers and measuring pass@k accuracy for MATH 989

dataset. As shown in Figure 13, our method con- 990

sistently improves performance as k increases and 991

outperforms both the base models and the SFT 992

models. 993

B.8 IMM with the recent model 994

Table 9 shows that for Llama3-8B model, IMM im- 995

proves the ID performance and keeps comparable 996

OOD performance, while vanilla SFT suffers from 997

model collapse in ID datasets and severe degrada- 998

tion on OOD datasets. 999

1 6 11 16 21
Layer

0.0300

0.0325

0.0350

0.0375

0.0400

0.0425

0.0450

0.0475

0.0500

La
ye

r W
ei

gh
t C

ha
ng

e 
Ra

te
 a

cr
os

s T
ot

al

Qwen2.5-1.5B-Instruct
iteration 1
iteration 2
iteration 3

Figure 12: The percentage of the weight change over
layers for finetuning Qwen2.5-1.5B in different itera-
tions.

B.9 Weight change for different iterations 1000

After the first model weight merge, the parameter 1001

updates for the layers critical for reasoning still re- 1002

main minimal, as illustrated in Figure 4. However, 1003

we continue to analyze the weight change across 1004

different layers and find that, although IMM uses 1005

an average merge rate across different layers, it 1006

improves the model’s generalized reasoning capa- 1007

bility, which makes the weight of reasoning-critical 1008

layers change more in the next iterations. Figure 12 1009

shows that, in the next iterations, the reasoning- 1010

critical layers (early and late layers) change more 1011

weight change compared with the reasoning-trivial 1012

layers (middle layers), indicating the model learns 1013

the generalized reasoning capability after IMM. 1014

Also, although IMM uses a uniform merge rate 1015

α across all layers, the absolute weight change 1016
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Datasets GSM8K MATH SAT_Math MAWPS

Base 55.1 16.1 53.1 90.8
SFT 53.4 17.2 35.2 80.1
IMM 61.2 19.5 52.8 89.5

Table 9: Llama3-8B performance for the first self-
improvement iteration. The best performances are
bolded, and the runner-up performances are underlined.
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Figure 13: ID performance with different k for scaling
up test-time-computing Pass@k on MATH.

difference between reasoning-critical layers and1017

reasoning-trivial layers becomes smaller compared1018

with SFT. This small difference accumulates over1019

the course of the iterative self-improvement pro-1020

cess. As a result, IMM achieves a relatively more1021

balanced distribution of weight changes across lay-1022

ers compared to vanilla self-improvement and other1023

baselines, where middle layers undergo dispropor-1024

tionately larger updates than early and late layers.1025

IMM model therefore brings better generalized rea-1026

soning capability.1027

B.10 Complexity1028

Let n be the number of model parameters, T be the1029

number of IMM iterations, F (n) be the cost of one1030

SFT training session. We calculate the complexity1031

for IMM in the Table 10. The overall complexity1032

is O(T · F (n)). Since fine-tuning dominates, es-1033

pecially for large models, the primary bottleneck1034

is still the repeated SFT stages. Therefore, IMM1035

introduce linear complexity on n, which can be1036

overlooked compared with O(F (n)), ensuring the1037

scalability.1038

C Additional Discussion and Clarification1039

C.1 A Bitter Lesson: Not All LLMs Can1040

Self-improve1041

During our experiment, we also find that not all1042

the LLMs can self-improve on reasoning tasks. If1043

LLM’s performance decreases after SFT, then our1044

method may not let the merged model have a better1045

performance compared with the original model and 1046

the model after SFT. This usually happens when 1047

the original model already has a good performance 1048

(reasoning ability), and learned reasoning ability 1049

can’t offset the generalization loss. 1050

C.2 Why Importance-Weight Change 1051

Mismatch Happens? 1052

We conclude two possible contributing factors to 1053

this observation: (i) Characteristics of SFT on Pre- 1054

trained LMs: Prior studies (Merchant et al., 2020; 1055

Mosbach et al., 2020; Zhou and Srikumar, 2021) 1056

have shown that during SFT, the early and late lay- 1057

ers of pre-trained language models tend to undergo 1058

minimal changes. In particular, the late layers often 1059

preserve their original representations, suggesting 1060

a structural bias of SFT toward updating the middle 1061

layers. (ii) Inhibitory Effect of Self-improvement 1062

on Reasoning-critical Layers: As shown in Fig- 1063

ure 9, models fine-tuned on real data exhibit more 1064

weight change in reasoning-critical layers (early 1065

and late layers) compared to those fine-tuned on 1066

self-synthesized data. In contrast, the middle layers 1067

show comparable levels of weight change in both 1068

settings. This indicates that the self-improvement 1069

process inherently inhibits updates to reasoning- 1070

critical layers, leading to disproportionate changes 1071

in the middle layers. 1072

We further explain why middle layers contribute 1073

less to complex reasoning tasks. Prior work (Li 1074

et al., 2024) shows that weaker, implicit reason- 1075

ing signals tend to surface in the middle lay- 1076

ers, whereas stronger, explicit reasoning—such as 1077

chain-of-thought reasoning—emerges primarily in 1078

the late (and occasionally early) layers. In our 1079

study, to solve complex reasoning tasks model gen- 1080

erated long CoT reasoning path, which depends on 1081

late layers 1082

In summary, superficial self-improvement leads 1083

to overfitting on middle-layer representations 1084

where weaker, implicit reasoning resides, due to 1085

both the inherent bias of SFT and self-generated 1086

data. In contrast, reasoning-critical layers, respon- 1087

sible for explicit CoT reasoning, remain largely 1088

unchanged, limiting the model’s ability to improve 1089

on more complex reasoning tasks. 1090

C.3 The Connection to Catastrophic 1091

Forgetting 1092

Catastrophic forgetting is a related but distinct phe- 1093

nomenon compared to superficial self-improved 1094

reasoners. Specifically, catastrophic forgetting 1095
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Operation Complexity

SFT O(F (n))
Compute δt O(n)
Masking, scaling O(n)
Merge update O(n)
Overall Complexity O(T · (F (n) + n)) ≈ O(T · F (n))

Table 10: Time complexity of IMM update steps.

refers to the loss of previously acquired knowl-1096

edge when deep learning models are trained on1097

new data. This issue occurs because model parame-1098

ters are optimized based on the most recent training1099

data, causing earlier learned representations to be1100

dramatically overwritten.1101

While both catastrophic forgetting and super-1102

ficial self-improved reasoners result in degraded1103

performance due to further fine-tuning, their ef-1104

fects differ. After fine-tuning on new data, catas-1105

trophic forgetting results in a performance loss on1106

previously learned tasks, whereas superficial self-1107

improved reasoners result in diminished general-1108

ization capabilities on out-of-domain (OOD) tasks.1109

This discrepancy arises because in catastrophic for-1110

getting, fine-tuning on data for new tasks causes1111

the model to lose knowledge from previous tasks.1112

In contrast, superficial self-improved reasoners do1113

not lead to forgetting too much past information1114

but instead shift towards overfitting due to poten-1115

tially biased knowledge, which may self-enhance1116

along with the iteration of synthesizing new data1117

and fine-tuning on it.1118

C.4 The definition for layers1119

We do not provide a rigorous theoretical definition1120

or external citation for the terms "reasoning-trivial1121

layers" and "reasoning-trivial layers". In our pa-1122

per, we adopt a relative and empirical definition:1123

"reasoning-trivial layers" refer to the layers that ex-1124

hibit lower importance scores in comparison to oth-1125

ers, and "reasoning-trivial layers" refer to the layers1126

that exhibit higher importance scores based on our1127

layer-wise reasoning importance analysis. While1128

not formally defined, this relative notion is suffi-1129

cient for our purposes. It allows us to identify and1130

analyze the mismatch between reasoning-critical1131

layers (i.e., those with high importance scores) and1132

the layers undergoing the most weight change dur-1133

ing self-improvement. This mismatch is central to1134

our discovery of the superficial self-improvement1135

phenomenon.1136

C.5 Why this importance score 1137

We would like to clarify that while the identifi- 1138

cation of key layers has been widely explored in 1139

prior work, such as in model analysis, pruning, 1140

and importance-based selection, our study does not 1141

aim to introduce a theoretical advancement in key 1142

layer selection itself. Rather, our contribution lies 1143

in uncovering a novel phenomenon: a mismatch 1144

between reasoning-critical layers and the layers 1145

experiencing the most weight change during self- 1146

improvement. We believe this observation offers 1147

a new perspective on how generalized reasoning 1148

capabilities may be hindered by superficial self- 1149

improvement. Building on this insight, we propose 1150

IMM as a method to mitigate this issue and improve 1151

the model’s generalization in reasoning tasks. 1152

Compared to other popular evaluation such as 1153

gradient change, the metrics defined in Eq. (3) and 1154

Eq. (4) are more suitable for the type of analy- 1155

sis conducted in this work. Specifically, Eq. (3) 1156

directly measures "how much the parameters of 1157

a given layer have actually changed from the be- 1158

ginning to the end of training." This provides a 1159

clearer indication of how much information is re- 1160

tained or adjusted through the self-improvement 1161

process, which is more aligned with our goal of 1162

understanding where learning occurs across the 1163

model. In contrast, gradient change is more appro- 1164

priate for analyzing how quickly or at which stage 1165

the model learns during training. We appreciate 1166

the suggestion and agree that gradient analysis can 1167

provide complementary insights. We will include 1168

gradient tracking in manuscript to help monitor 1169

training stability and to identify potential issues 1170

such as exploding or vanishing gradients during 1171

self-improvement cycles. 1172

C.6 Related works on LLM reasoning 1173

LLMs have demonstrated remarkable success 1174

across various reasoning tasks, including math- 1175

ematical problem-solving, code generation, and 1176

common-sense reasoning (Yu et al., 2024b; 1177

Lewkowycz et al., 2022; Wang et al., 2023). 1178

Beyond leveraging sophisticated prompting tech- 1179

niques to enhance reasoning capabilities (Kojima 1180

et al., 2022; Wei et al., 2022; Zheng et al., 2024; 1181

Yao et al., 2024), many methods focus on fine- 1182

tuning LLMs with reasoning datasets to create 1183

more robust reasoners (Lu et al., 2024; Yu et al., 1184

2024b). For instance, approaches like SI (Huang 1185

et al., 2022), STaR (Zelikman et al., 2022), V-STaR 1186
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(Hosseini et al., 2024), and rSTaR (Qi et al., 2025)1187

fine-tune LLMs on task-specific datasets or syn-1188

thesize reasoning data tailored for corresponding1189

tasks. In addition to training models to generate1190

correct answers, some studies introduce external1191

verifiers (Cobbe et al., 2021; Lightman et al., 2023;1192

Hosseini et al., 2024; Yuan et al., 2024) that select1193

the best answer from a set of candidate solutions.1194

D Potential risks1195

Enhancing LLMs with self-improving generalized1196

reasoning capability may introduce risks of unin-1197

tended capability emergence, including misuse in1198

adversarial contexts such as misinformation or ma-1199

nipulation. As the model gains broader reasoning1200

abilities across domains, it may be used for en-1201

abling harmful applications with enhanced reason-1202

ing capability. This highlights the importance of1203

pairing IMM with safe evaluation and alignment to1204

ensure safe and responsible deployment.1205
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Prompt for Generating GSM8K Answers

Below is an instruction that describes a task.
Write a response that appropriately completes the request like given examples below:

Question: Angelo and Melanie want to plan how many hours over the next week they should study together for their test next week.
They have 2 chapters of their textbook to study and 4 worksheets to memorize. They figure out that they should dedicate 3 hours to
each chapter of their textbook and 1.5 hours for each worksheet. If they plan to study no more than 4 hours each day, how many days
should they plan to study total over the next week if they take a 10-minute break every hour, include 3 10-minute snack breaks each
day, and 30 minutes for lunch each day?

A: Let’s think step by step.
Angelo and Melanie think they should dedicate 3 hours to each of the 2 chapters, 3 hours x 2 chapters = 6 hours total.
For the worksheets they plan to dedicate 1.5 hours for each worksheet, 1.5 hours x 4 worksheets = 6 hours total.
Angelo and Melanie need to start with planning 12 hours to study, at 4 hours a day, 12 / 4 = 3 days.
However, they need to include time for breaks and lunch. Every hour they want to include a 10-minute break, so 12 total hours x 10
minutes = 120 extra minutes for breaks.
They also want to include 3 10-minute snack breaks, 3 x 10 minutes = 30 minutes.
And they want to include 30 minutes for lunch each day, so 120 minutes for breaks + 30 minutes for snack breaks + 30 minutes for l
unch = 180 minutes, or 180 / 60 minutes per hour = 3 extra hours.
So Angelo and Melanie want to plan 12 hours to study + 3 hours of breaks = 15 hours total.
They want to study no more than 4 hours each day, 15 hours / 4 hours each day = 3.75
They will need to plan to study 4 days to allow for all the time they need.
The answer is 4

Question: Mark’s basketball team scores 25 2 pointers, 8 3 pointers and 10 free throws. Their opponents score double the 2 pointers
but half the 3 pointers and free throws. What’s the total number of points scored by both teams added together?
A: Let’s think step by step.
Mark’s team scores 25 2 pointers, meaning they scored 25*2= 50 points in 2 pointers.
His team also scores 6 3 pointers, meaning they scored 8*3= 24 points in 3 pointers
They scored 10 free throws, and free throws count as one point so they scored 10*1=10 points in free throws.
All together his team scored 50+24+10= 84 points
Mark’s opponents scored double his team’s number of 2 pointers, meaning they scored 50*2=100 points in 2 pointers.
His opponents scored half his team’s number of 3 pointers, meaning they scored 24/2= 12 points in 3 pointers.
They also scored half Mark’s team’s points in free throws, meaning they scored 10/2=5 points in free throws.
All together Mark’s opponents scored 100+12+5=117 points
The total score for the game is both team’s scores added together, so it is 84+117=201 points
The answer is 201

Question: Bella has two times as many marbles as frisbees. She also has 20 more frisbees than deck cards. If she buys 2/5 times
more of each item, what would be the total number of the items she will have if she currently has 60 marbles?
A: Let’s think step by step.
When Bella buys 2/5 times more marbles, she’ll have increased the number of marbles by 2/5*60 = 24
The total number of marbles she’ll have is 60+24 = 84
If Bella currently has 60 marbles, and she has two times as many marbles as frisbees, she has 60/2 = 30 frisbees.
If Bella buys 2/5 times more frisbees, she’ll have 2/5*30 = 12 more frisbees.
The total number of frisbees she’ll have will increase to 30+12 = 42
Bella also has 20 more frisbees than deck cards, meaning she has 30-20 = 10 deck cards
If she buys 2/5 times more deck cards, she’ll have 2/5*10 = 4 more deck cards.
The total number of deck cards she’ll have is 10+4 = 14
Together, Bella will have a total of 14+42+84 = 140 items
The answer is 140

Other 5 examples here ...

### Instruction:
Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May. How many clips did Natalia sell
altogether in April and May?

### Response: Let’s think step by step.

Table 11: The CoT prompting examples for generate training data.
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Prompt for Generating MATH Answers

Below is an instruction that describes a task.
Write a response that appropriately completes the request like given examples below:

Question: Kevin Kangaroo begins hopping on a number line at 0. He wants to get to 1, but he can hop only 1
3 of

the distance. Each hop tires him out so that he continues to hop 1
3 of the remaining distance. How far has he

hopped after five hops? Express your answer as a common fraction.
A: Let’s think step by step.
Kevin hops 1/3 of the remaining distance with every hop.
His first hop takes 1/3 closer.
For his second hop, he has 2/3 left to travel, so he hops forward (2/3)(1/3).
For his third hop, he has (2/3)2 left to travel, so he hops forward (2/3)2(1/3).
In general, Kevin hops forward (2/3)k−1(1/3) on his kth hop.
We want to find how far he has hopped after five hops.
This is a finite geometric series with first term 1/3, common ratio 2/3, and five terms.

Thus, Kevin has hopped
1
3

(
1−( 2

3)
5
)

1− 2
3

=
211

243
.

The answer is \frac{211}{243}}

Question: What is the area of the region defined by the equation x2 + y2 − 7 = 4y − 14x+ 3?
A: Let’s think step by step.
We rewrite the equation as x2 + 14x+ y2 − 4y = 10 and then complete the square,
resulting in (x+ 7)2 − 49 + (y − 2)2 − 4 = 10,
or (x+ 7)2 + (y − 2)2 = 63.
This is the equation of a circle with center (−7, 2) and radius

√
63,

so the area of this region is πr2 = 63π .
The answer is 63\pi

Question: If x2 + y2 = 1, what is the largest possible value of |x|+ |y|?
A: Let’s think step by step.
If (x, y) lies on the circle,
so does (x,−y), (−x,−y), and (−x,−y), (which all give the same value of |x|+ |y|),
so we can assume that x ≥ 0 and y ≥ 0.
Then |x|+ |y| = x+ y. Squaring, we get
(x + y)^2 = x^2 + 2xy + y^2 = 1 + 2xy.
Note that (x− y)2 ≥ 0.
Expanding, we get x2 − 2xy + y2 ≥ 0, so 2xy ≤ x2 + y2 = 1.

Hence,1 + 2xy \le 2,which means x+ y ≤
√
2.

Equality occurs when x = y = 1√
2
,

so the maximum value of |x|+ |y| is
√
2 .

The answer is \sqrt{2}

Other 5 examples...

### Instruction:
If f(x) = ax+b

cx+d , abcd ̸= 0 and f(f(x)) = x for all x in the domain of f , what is the value of a+ d?

### Response: Let’s think step by step.

Table 12: The CoT prompting examples for generating training data.
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