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Abstract

The recent large multimodal models (LMMs)
have demonstrated their impressive capabil-
ity of image understanding. However, they
still struggle to make complicated reasoning
for solving a challenging multimodal problem.
In this paper, we present UnAC (Understand-
ing, Abstracting, and Checking), a novel multi-
modal prompting method, to synergize reason-
ing for complicated problems in the multimodal
context of LMMs, such as GPT-40, Gemini-1.5
and GPT-4V. To improve the understanding of
the image and capture more details, we propose
an adaptive visual prompting method to make
LMMs able to focus on certain regions. An im-
age abstracting prompting is designed to effec-
tively extract information from images. Further,
we propose a gradual self-checking scheme for
leading to better reasoning by checking each de-
composed sub-question and its answer. Exten-
sive experiments on three public benchmarks
— MathVista, MM-Vet, and MMMU - demon-
strate the effectiveness of our method.

1 Introduction

In recent years, large language models (LLMs)
have advanced significantly Brown et al. (2020);
Achiam et al. (2023); Touvron et al. (2023); Bubeck
et al. (2023); Chowdhery et al. (2023); Zhang et al.
(2022). From GPT-3 (Brown et al., 2020), PaLM
(Chowdhery et al., 2023) and Llama (Touvron et al.,
2023) to GPT-4 (Achiam et al., 2023) and PaLM-2
(Anil et al., 2023). Notably, Generative Pre-trained
Transformers (GPTs) (Brown et al., 2020; Achiam
et al., 2023) have driven numerous breakthroughs
in both industry and academia. Since the release of
GPT-4, there has been increasing interest in large
multimodal models (LMMs) within the research
community. Many approaches are focused on de-
veloping powerful multimodal models based on
open-source frameworks (Liu et al., 2024; Wu et al.,
2023; Dai et al., 2024; Zhu et al., 2023). Recently,
the release of GPT-4V(ision) and Gemini-1.5-flash

(Team et al., 2023) has garnered immediate atten-
tion for its impressive capability of understanding
images. However, they still struggle to do some
complicated multimodal reasoning tasks (Lu et al.,
2023; Yue et al., 2023).

Since approaches (Yao et al., 2024; Wei et al.,
2022; Yao et al., 2022; Miao et al., 2023; Zheng
et al., 2023) of prompting to improve the reason-
ing ability with LLMs in only language-context
make significant progress, and LMMs can not able
to decompose an image easily like decomposing
a sentence, it is ineffective to apply the language
prompts to improve reasoning in the visual context.
For answering a question in the visual context, the
major failure cases are due to the misunderstand-
ing of the image or imprecisely summarizing the
information. The reason for missing or misunder-
standing some details is related to the weak ca-
pability of getting fine-grained information (Yang
et al., 2023a). Visual prompts have also been ex-
plored for various multi-modal tasks, especially
for enhancing the performance of fine-grained vi-
sual tasks. Those methods focus on encoding some
masks like points, boxes, and lines combined with
the input features or directly applying overlays on
the original image. Most recently, Yang et al. pro-
posed to build the visual prompting mechanism by
partitioning the image into a set of semantically
meaningful regions and overlying them to enhance
the grounding ability of GPT-4V. However, for the
complicated questions that usually need multi-step
information extracting and reasoning, only parti-
tioning the whole image is not promising to im-
prove the reasoning.

In this paper, we propose a powerful multimodal
prompting method called UnAC (Understanding,
Abstracting and Checking) to improve the abilities
of complicated multi-modal reasoning for LMMs.
UnAC consists of a three-step prompting mecha-
nism. In the first step, we present a novel adaptive
visual prompting scheme, the second step is ab-
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Figure 1: Example of using UnAC. In the original answer from the baseline method, the LMM incorrectly
understands and describe the image which leads to the wrong answer. In UnAC which follows in the orange arrows,
we first ask the LMM to analyze the question and answer what we need from the image. Then we can summarize
the reply as the Objects with semantic meaning. Then employing SEEM to segment and overlay the image as visual
prompts. Then abstracting the information of the image where with the markers, the LMM can correctly describe
the image and abstract the right contexts. Finally, after the checking stage, we can get the right answer.

stracting the image into sentences and the final
step includes a gradual self-checking prompting.
Firstly, to reduce misunderstanding or missing de-
tails, the visual prompts are designed as adaptive
markers on the image to make LMMs able to focus
on specific regions. By looking at the image part by
part, LMMs can find more details and have a bet-
ter understanding of the image overall. Secondly,
to solve a problem that needs complex reasoning,
we need to correctly abstract the information from
the image based on the question. Inspired by the
fact that based on the relationship between image
and question, humans often extract important infor-
mation form the image locally and globally. We
propose to find the most related parts of the ques-
tion and abstract the image into language based on
the built visual prompts. Then, for a complicated
question, the LMMs are easily to make mistakes in
some steps, and asking LMMs to check the overall
reasoning process is ineffective. However, with
the visual context introducing, the checking of a
single step is possible. We introduce a gradual
self-checking scheme to check each decompsed
question individually to improve the accuracy of
the answer.

We evaluate UnAC on three datasets of evalu-

ating the ability of complicated problem-solving
in the visual context, namely MathVista (Lu et al.,
2023), MM- Vet (Yu et al., 2023) and MMMU (Yue
et al., 2023). To show the generalization of our
method, we conduct experiments on two kinds
of LMMs: (a) the powerful and large-scale mul-
timodal models including GPT-4V and Gemini-
1.5-flash; (b) relatively light-weighted models in-
cluding LLaVA-v1.6-7B/13B. We achieve improve-
ments on all models and all datasets which indi-
cates our method is model-agnostic. Notably, our
method improves 6.4% on MathVista with Gemini-
1.5-flash.
To summarize, our main contributions are:

* We propose a simple but powerful mul-
timodal prompting scheme called UnAC
(Understanding, Abstracting and Checking)
to improve the abilities of complicated multi-
modal reasoning for LMM:s.

* We introduce an adaptive visual prompt to
improve the image understanding and reduce
the missing details. Combined with the lan-
guage prompting of the image abstraction and
the gradual checking scheme, all the modules
lead LMMs to better reasoning.



» Extensive experiments on three datasets which
are MathVista, MM-Vet, and MMMU show
the effectiveness of UnAC in evoking com-
plicated reasoning in the visual context of
LMMs.

2 Related Work

Prompting in LLMs. We have observed sig-
nificant advancements in large language models
(LLMs) (Zhang et al., 2022, 2023; Touvron et al.,
2023; Team et al., 2023; Brown et al., 2020). Al-
though the size of LLMs has increased substan-
tially, evoking their reasoning capabilities is still
necessary with the use of more complicated de-
signed queries, or prompting. Recently, various
works have explored prompt engineering to en-
hance LLM capabilities. In-context learning has
become a mainstream approach to instruct LLMs
by providing specific examples (Brown et al., 2020;
Dong et al., 2022). Building on this, techniques
such as chain-of-thought and tree-of-thought (Wei
et al., 2022; Yao et al., 2024) have been introduced
to improve performance in arithmetic, common-
sense, and symbolic reasoning tasks. Most recently,
Zheng et al. (Zheng et al., 2023) proposed the Step-
Back Prompting method which enhances the ability
to retrieve information via abstracting the question.
Miao et al. (Miao et al., 2023) introduced a general-
purpose zero-shot verification schema for recogniz-
ing errors made in the reasoning process of math
problems. However, their methods highly rely on
that the language is easy to be decomposed. It is
hard to be generalized to the question in the visual
context where images are hard to decompose.

Prompting in LMMs Before the growth of large
multimodal models (LMMs), visual prompting has
been explored for various vision and multimodal
tasks (Wang et al., 2023; Zou et al., 2024; Kir-
illov et al., 2023; Chen et al., 2022; Shtedritski
et al., 2023). These approaches can be categorized
into two main types. The first type encodes vi-
sual prompts, such as points, boxes, and strokes,
into latent features, which are then used to prompt
the vision models (Zou et al., 2024; Kirillov et al.,
2023). The second type overlays visual marks di-
rectly onto the input images. These marks can be a
red circle (Shtedritski et al., 2023), a highlighted re-
gion (Yang et al., 2023a), or multiple circles with ar-
rows (Shtedritski et al., 2023). While these studies
show the potential of pixel-level visual prompting,
they are typically limited to visually referencing

one or a few objects. So far, prompting LMMs
has been rarely explored in academia, partly be-
cause most of the recently open-sourced models
have limited capacity and are therefore unable to
support such advanced capabilities. Recently, GPT-
4V was released, accompanied by a comprehen-
sive qualitative study (Yang et al., 2023b). The
authors in (Yang et al., 2023b) employed a similar
prompting strategy as RedCircle (Shtedritski et al.,
2023) to prompt GPT-4V. Most recently, Yang et al.
(Yang et al., 2023a) proposed to partition the image
into a set of semantically meaningful regions and
overlay them to enhance the grounding ability of
GPT-4V. CCoT (Mitra et al., 2023) is designed as
a zero-shot Chain-of-Thought prompting method
to extract compositional knowledge from an LMM
with utilizing scene graphs. However, both of these
works can not solve the problem based on the ab-
stract images such as geometry problem solving
and math word problems.

3 UnAC: Understanding, Abstracting,
and Checking

Consider a general fact when humans face a chal-
lenging problem in the visual context. To solve the
problem, we first need to understand the image and
the question correctly overall. Then based on the
question, we will look at the image more carefully,
find and abstract the useful information that can be
used to solve the problem. Finally, based on the
understanding and the abstraction, we infer the fi-
nal answer to this challenging problem. Moreover,
for a complicated question, we usually need a sec-
ond look at the reasoning process and check it with
the image to avoid some simple mistakes. Inspired
by this common sense, we propose UnAC which
means understanding, abstracting, and checking for
synergizing the complicated reasoning in the visual
context of large multimodal models.

3.1 Adaptive Visual Prompts.

Precisely capturing the details in the image is not
straightforward for LMMs. It is hard to correct the
misunderstanding of the image by itself because
decomposing the image is not easy. Since LMMs
are developed based on the LLMs, their abilities
of language reasoning are much better than visual
reasoning. It means that LMMs can perform better
on analyzing the problem than analyzing the im-
age. Therefore, we propose to build effective and
adaptive multimodal prompts based on the analysis
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Figure 2: The workflow of gradual checking proceeds
as follows: First, the input question is decomposed into
several sub-questions by the LMMSs. Then, the LMMs
answer each sub-question. Both the sub-questions and
their corresponding answers are then fed back into the
LMMs to generate the final answer.

of the question. Asking the model to analyze the
question and find what information we need to get
from the image. We conclude the response into two
kinds: Objects with semantic meaning and symbols
with literal meaning. For objects with semantic
meaning, we employ segmentation models to au-
tomatically segment the image. For symbols with
literal meaning, we use optical character recogni-
tion (OCR) methods to detect the texts. Based on
the metadata, we first denoising regions based on
the stability score output by the segmentation/OCR
methods.

In the Figure. 1, we show a successful case. For
this question of subtracting the items, it requires
LMMs to correctly recognizing each item in the
picture which is related to objects with semantic
meanings. Therefore, the visual prompts are de-
signed as the segmentation of the image to help the
LMM to better understand the image.

3.2 Image Abstraction

The visual prompts can make a better understand-
ing of the image since the markers can catch more
attentions on some local information. Partitioning
the image makes it decomposable when LMMs un-
derstand the image. However, only visual prompts
have limited improvements for solving complicated
problems. Except for understanding the image,
LMMs need to correctly abstract the image to filter
the useless information to solve the problem. With-
out prompts of abstraction, the reasoning might
be misdirected due to the markers in the image.
Therefore, to fully utilize the visual prompts and
get better reasoning, we need to abstract the infor-
mation which is the most related to the question.

Firstly, we ask LMMs to describe the picture to
abstract the global information. Then based on the
analysis of the question and the prompts, we ask
LMMs to find the most related regions to get more
details based on the markers in the image.

3.3 Gradual checking

Moreover, for some complicated questions, we usu-
ally need a second look at the image with the rea-
soning progressing. As discussed in (Ling et al.,
2024), checking the whole reasoning process is
usually ineffective for LLMs and our experiments
show similar results in LMMs. However, to correct
the mistake made in one step is more effective. To
check individual steps of the reasoning process, the
first thing we should note is that the correctness of
each step is highly dependent on its context. For a
question in words, the context includes the question
and previous steps only. So the checking is largely
dependent on the accuracy of the previous steps
which is highly unstable. In the visual question an-
swering, the information from the image becomes
extra contexts which are important references for
self-checking. It can be more reliable when LMMs
have a good understanding of the image.

Then, we design a gradual checking prompt-
ing for better reasoning. Firstly, we let LMMs
decompose the question into multi sub-questions
[Qo,Q1,...,Qy] and give the answer of each
sub-questions. The answers are denoted as
[Ag, A1, ..., Ay]. In the checking stage, we check
gradually. When checking @Q; and A;, we refer
the context of the previous questions and checked
answers [Qo, Q1, ..., Q;] and [Af, A}, ..., Al]. In
the last step of checking, LMMs will infer the final
answer based on all questions and answers.

4 Experiments

4.1 Setup

Tasks and datasets. We experiment with the fol-
lowing two tasks that need complicated reasoning:
(a) Mathematical reasoning in the visual context,
and (b) Complicated VQA. Mathematical reason-
ing: We evaluate MathVista (Lu et al., 2023) for
this task. MathVista is a consolidated mathemati-
cal reasoning benchmark within visual contexts. It
contains various kinds of sub-tasks to evaluate the
model’s visual understanding of mathematical prob-
lems solving in different perspectives of reasoning
skills. Complicated VQA: For this task, we evalu-
ate two datasets called: MM-Vet (Yu et al., 2023)



and MMMU (Yue et al., 2023) respectively. MM-
Vet (Yu et al., 2023) is designed to evaluate large
multimodal models on complex multimodal tasks
that highlight six core vision-language (VL) capa-
bilities: Recognition, Knowledge, Optical Charac-
ter Recognition (OCR), Spatial Awareness, Lan-
guage Generation, and Math. MMMU focuses on
advanced perception and reasoning with domain-
specific knowledge, challenging models to perform
tasks like those faced by experts.

Models. To show the generalization of UnAC,
we use the following state-of-the-art LLMs: close-
source models including GPT4-V and Gemini-1.5-
flash, relatively small LMMs including LLaVA-
v1.6-7B/13B (Liu et al., 2024), LLaVA-OneVision
(Li et al., 2024) and internVL2.0-8B (Chen et al.,
2024). For the closed-source LMMs, we utilize
the official API to make the evaluation. We use
“gptd-turbo’ and ’gemini-1.5-flash’ for GPT4-V
and Gemini respectively. For the open-source mod-
els, we evaluate in a single RTX 6000. We set the
temperature to 0.0 for all LMMs. We use SEEM
(Zou et al., 2024) for segmentation and easyOCR
for building the visual prompts. Moreover, we
also compare with two chain-of-thought methods
including CCoT (Mitra et al., 2024) and SKETCH-
PAD (Hu et al., 2024) to show the superiority of
UnAC as a training-free method.

Evaluation. In all datasets, they have a unique
answer to each question which can be a number, a
word, a phrase, or one of the choices. The accuracy
(ACC) is the only metric we employed in this paper.
Since the LMMs may often generate long-form
answers which are hard to capture. Following Lu
et al. (Lu et al., 2023) and Yu et al. (Yu et al.,
2023), we instead conduct an evaluation using the
GPT-4 model where we few-shot prompt the model
to identify equivalence between target answers and
the model predictions.

4.2 Results

Mathematical reasoning in the visual context.
In Table 1, we present results on the MathVista
benchmark (Lu et al., 2023), where our method con-
sistently improves performance across all models.
Specifically, we achieve a 4.9% gain on GPT-4V
and 3.4% on Gemini-1.5-flash. For LLaVA-v1.6-
7B/13B, the improvements are 2.6% and 2.0%,
and for LLaVA-OneVision-7B, we observe a 1.4%
gain—outperforming SoM (Yang et al., 2023a)
on the same model. Notably, our method boosts

InternVL2.0-8B by 4.3%, significantly surpassing
chain-of-thought approaches like CCoT (0.9%) and
SKETCHPAD (0.8%), which struggle to improve
strong baselines.

Across sub-tasks, our method shows marked
gains on the most challenging ones: a 8.6% im-
provement on Geometry Problem Solving (GPS)
with GPT-4V and 4.1% on TQA with Gemini.
These tasks require complex, multi-step reason-
ing, which benefits from better visual abstraction
and our self-checking scheme. For simpler tasks
like VQA and FQA, the gains confirm the effective-
ness of our adaptive visual prompting. Overall, the
consistent improvements demonstrate that UnAC
is a model-agnostic prompting strategy. However,
stronger models like GPT-4V and InternVL benefit
more, as the effectiveness of both visual prompting
and self-checking depends on the model’s reason-
ing capability—further discussed in Sec. 4.3.

Complicated VQA. In Table 2, we show the re-
sults on the MM-Vet (Yu et al., 2023) and MMMU
(Yue et al., 2023). In these two datasets, the ques-
tions are more generalized with a relatively sim-
ple reasoning process. Our method still makes
improvements on all models. We make an im-
provement of 3.1% on GPT-4V with our method
and make the largest increase of 4.8% on Gemini-
1.5-flash on MMMU. Compared to the chain-of-
thought methods, UnAC performs better. Also, it
indicates the necessity of self-checking that apply-
ing SoM (Yang et al., 2023a) on GPT-4V is harmful
to answer the complicated question. For LLaVA-
OneVision-7B, we achieve the improvements of
2.7% on MM-Vet.

The gap between the increase on Gemini/GPT4-
V and the increase of LLaVA-v1.6-7B is larger
compared to that on MathVista. In these two
datasets, they require more comprehensive vision-
language capabilities and abundant knowledge re-
serve on various topics. Therefore, in those two
datasets, understanding can be more important than
abstracting and reasoning.

4.3 Analysis

Corrected error analysis. Comparing the origi-
nal predictions of UnAC to the baseline GPT-4V
model on MathVista and MM-Vet: we find that our
methods correct 25.4% errors from the baseline
while introducing 5.5% errors on the task of Math-
ematical reasoning in the visual context. For com-
plicated VQA i.e. MM-Vet, UnAC corrects 20.1%



Table 1: Accuracy scores on the testmini subset of MathVista (Lu et al., 2023). ALL: overall accuracy. Task types:
FQA: figure question answering, GPS: geometry problem solving, MWP: math word problem, TQA: textbook
question answering, VQA: visual question answering. Mathematical reasoning types: ALG: algebraic reasoning,
ARI: arithmetic reasoning, GEO: geometry reasoning, LOG: logical reasoning, NUM: numeric commonsense, SCI:

scientific reasoning, STA: statistical reasoning.

Method ALL ‘ FQA GPS MWP TQA VQA ‘ ALG ARI GEO LOG NUM SCI STA
Human performance
Human Performance 60.3 ‘ 59.7 484 730 63.2 559 ‘ 50.9 59.2 514 40.7 538 64.9 639
Heuristics baselines
Random chance 17.9 182 21.6 3.8 19.6  26.3 | 21.7 147 20.1 135 83 172 16.3
Frequent guess 26.3 22.7 341 204 31.0 246 | 33.1 187 314 243 194 320 209
Closed-sourced Large Multimodal Models (LMMs)
Gemini-1.0-pro-vision 41.0 364 36.5 430 575 363 | 39.8 376 380 108 29.8 524 455
Gemini-1.0-pro-vision + UnAC 47.4(+6.1) | 494 395 452  62.7 425 | 43.8 442 401 29.7 36.1 549 57.1
Gemini-1.5-flash 53.2 51.6 56.8 52.1 67.5 40.1 | 59.4 44.0 527 253 364 60.8 57.5
Gemini-1.5-flash + UnAC 56.6(+3.1) | 57.3 59.3 b54.1 T71.6 414 | 628 46.6 59.5 309 377 653 658
GPT-4V 50.7 43.6 50.5 57.5 652 384 | 53.0 49.0 51.0 21.6 20.1 63.1 558
GPT-4V +SoM (Yang et al., 2023a) 51.2(+0.5) | 50.5 529 49.7 64.8 372 | 53.4 440 512 189 324 628 575
GPT-4V + CCoT (Mitra et al., 2023) 51.8(+1.1) | 46.2 50.2 582 64.2 404 | 55.0 48.2 51.2 21.6 20.1 57.1 59.2
GPT-4V + SKETCHPAD (Hu et al., 2024) 52.0(+13) | 44.2 526 60.5 664 37.8 | 53.5 482 519 212 198 63.8 55.6
GPT-4V + UnAC 57.6(+19) | 473 61.1 552 69.7 489 | 60.9 50.1 585 189 354 60.7 578
Open-sourced Large Multimodal Models (LMMs)
LLaVA-OneVision-7B 34.8 43.6 21.6 279 434 378 | 26,5 320 233 199 249 49.1 44.6
LLaVA-OneVision-7B + SoM 34.6(-02) | 43.7 196 296 432 371 | 269 31.6 208 196 252 50.2 439
LLaVA-OneVision-7B + UnAC 36.2(+1.4) | 49.5 20.1 285 444 388 | 325 31.2 21.1 184 251 50.3 44.6
LLaVA-v1.6-13B 35.8 453 21.6 295 43.0 379|249 339 238 135 27.7 49.1 481
LLaVA-v1.6-13B + UnAC 37.8(+20) | 375 31.7 307 53.8 385 | 334 34.6 322 108 257 53.3 449
InternVL2.0-8B 67.3 725 736 699 665 503 | 70.1 575 715 270 431 656 79.1
InternVL2.0-8B + SoM (Yang et al., 2023a) 672 (-01) | 750 724 720 652 513 | 732 585 725 225 410 656 79.1
InternVL2.0-8B + CCoT (Mitra et al., 2023) 682 (+09) | 756 762 723 658 49.1 | 69.5 60.5 700 252 425 68.6 752
InternVL2.0-8B + SKETCHPAD (Hu et al., 2024)  69.2(+1.9) | 772 77.6 728 70.1 483 | 732 62.1 762 283 432 646 793
InternVL2.0-8B + UnAC 71.6(+13) | 773 79.6 750 721 540 | 754 625 755 31.0 448 672 80.7

Table 2: Accuracy scores on the MM-Vet and the vali-
dation set of MMMU.

Method | MM-Vet ~MMMU
LLaVA-v1.6-7B 47.5 36.9
LLaVA-v1.6-7B + Ours 48.5(+1.0) 37.4(+0.5)
LLaVA-OneVision-7B 57.5 48.8
LLaVA-OneVision-7B + Ours 60.2(12.7) 51.0(12.2)
Gemini-1.5-flash 62.2 56.1
Gemini-1.5-flash + Ours 64.9(127) 60.9(145)
InternVL2.0-8B 60.0 51.8
InternVL2.0-8B + UnAC 63.3(133) 54.7(12.9)
GPT4-V 67.2 57.2
GPT4-V + SoM (Yang et al., 2023a) | 66.0(-1.2) 57.2
GPT4-V + CCoT 67.7(+0.5) 5.7 (+1.5)
GPT4-V + SKETCHPAD 69.3(+2.1)  59.7(+2.5)
GPT4-V + Ours 70.3(+3.1) 60.7(+3.5)

errors from the baseline while introducing 6.2%
errors. To further understand how UnAC corrects
the errors, we annotate all the wrong predictions
corrected by our method of baseline methods in
the test set, and categorize them into 4 classes: (1)
Misunderstanding: The error is after introducing
the prompts, the LMMs misunderstand the image
which is correct in the baseline method; (2) Con-

text loss: After introducing our method, it causes
the missing of some information from the image
which does not happen in the baseline answers; (3)
Reasoning Error: The retrieved context is relevant,
but the model still fails to reason through the con-
text to arrive at the right answer. (4) Factual Error:
There is at least one factual error when the model
recites its own factual knowledge.

MathVista. As shown in Figure 3 (left), about
35% of corrected errors stem from image misunder-
standing, and 23% from missing context. Together,
roughly 58% of errors are rectified by our adaptive
visual prompts, which help LMMs better perceive
image details. In contrast, some errors occur de-
spite correct perception—due to flawed reasoning
or missing factual knowledge. While SoM’s visual
markers aid perception, they do little to improve
reasoning, limiting its effectiveness in fixing such
errors. Our self-checking scheme addresses this
gap, accounting for 42% of corrections through
step-by-step validation.

MM-Vet. In Figure 3 (right), 49% of corrected
errors are due to misunderstanding, and 18% to lost
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Figure 3: Corrected error analysis and comparison of UnAC and SoM. The left plot shows the comparison on
MathVista while the right one represents that on MM-Vet: four classes of errors are corrected by the UnAC or SoM.

The baseline model is GPT-4V for both methods.

Table 3: Accuracy scores of employing different visual prompting strategies of UnAC. The results are tested on the
testmini subset of MathVista (Lu et al., 2023) while the baseline model is Gemini-1.5-flash.

Method ALL | FQA GPS MWP TQA VQA
Baseline 53.2 51.6 56.8 52.1 67.5 40.1
Segmentation only 54.2 53.2 57.8 53.0 68.4 39.6
OCR only 53.3 51.6 57.3 51.1 68.7 40.1
Segmentation + OCR 54.4 53.2 57.8 53.0 68.4 39.6
Adaptive visual prompts 56.6 57.3 59.3 54.1 71.6 41.4

visual context—both improved by UnAC. Reason-
ing and factual errors account for another 23% and
10%, respectively. Since MM-Vet emphasizes fine-
grained image understanding over complex reason-
ing, visual prompts play a larger role. As a result,
both UnAC and SoM mainly correct perception-
related errors. Still, UnAC demonstrates a no-
table 33% improvement in reasoning-related cases,
thanks to its self-checking mechanism.

Discussion. Compared to the first two classes and
the last two classes, the number of errors removed
by correctly understanding the image and capturing
more useful contexts is more than that removed by
the accurate reasoning process. It indicates that
the reasoning step is still a bottleneck of how well
UnAC can perform for tasks such as MathVista
which requires more complex reasoning.

How the abstraction and self-checking affect the
final answer? As we discussed in Sec 4.2, the
improvements made by UnAC are influenced by
the original capability of the baseline LMMs. Al-
though it makes sense, we want to find out how it
influences our method. We conduct experiments on
changing the models which is used in abstracting,
checking, and final reasoning mainly with LLaVA-
v1.6-7B and GPT-4V. As shown in Figure 4 (left),
we replace the LLaVA-v1.6-7B with GPT-4V on
different roles in our prompting process. Compar-

ing the first Four rows, the final conclusion per-
forms much better when replacing LLaVA-v1.6-
7B with GPT-4V for performing abstracting, and
checking respectively. The best performance is
contributed by using GPT-4V to make both ab-
stracting and checking among these three ablations.
It indicates that better abstracting and checking
are helpful for increasing the overall performance.
However, comparing the four rows and the bottom
row, although GPT-4V may provide the accurate
answer to the question in the checking stage, the
LLaVA-v1.6-7B still infers bad reasoning in the
last step. Moreover, comparing the fourth row and
fifth row, we can find that even LLaVA-v1.6-7B
provides the bad prompts, GPT-4V still has the
ability of self-correction in conclusion. Although
improving the abstracting and checking can lead
to better performance, the reasoning abilities of
LMMs are still the bottleneck of how well UnAC
can perform in solving complicated questions.

Why do visual prompts need to be adaptive?
In this ablation, we want to show the effect of mak-
ing the visual prompts adaptive. As shown in Table
3, we conduct experiments on applying different
types of visual prompts. Comparing the first two
lines, the improvements when employing the seg-
mentation or OCR only are very limited. Although
partitions can help the LMM:s to focus on a certain



Table 4: Accuracy scores using GPT-4V on the festmini subset of MathVista (Lu et al., 2023) under different
checking. For the global checking, we use a simple prompt of ‘Please check your answer if there are any errors.’

Method ALL ‘ FQA GPS MWP TQA VQA
w/o Checking 52.7 55.5 53.4 49.2 65.8 37.7
Global Checking 53.4 55.5 53.4 49.2 65.0 42.7
Gradual Checking 57.6 47.3 61.1 55.2 69.7 48.9
dbs  Che  Con  ACC Mathvista related to the reasoning process only. The classes
(L] t t ::: of errors are (1) Math error: The additional mathe-
L G L 484 | 5o matical errors like computation and mathematical
& G L 516 | £, inference; (2) Misdirection: Leading to focusing
L L 6 | 516 | w . the wrong regions of the images. (3) Context error:

Figure 4: Left: The overall accuracy of changing differ-
ent part of UnAC on the textmini dataset of MethVista
(Luetal., 2023). L means LLaVA-v1.6-7B and G means
GPT-4V. Abs, Che and Con represent the abstracting,
checking and conclusion stages respectively. Right:
The error analysis on MethVista with Gemini-1.5-flash
using global checking.

part of the image, they also increase the risk of
focusing on the wrong regions on the image. Since
the whole picture has been overlayed everywhere, it
may confuse the attention of LLMs. Adding boxes
on the image to let LMMs focus on certain parts,
it also increase the risk of incorrect regions which
are useless for the question answering. Moreover,
for some tasks, markers of segmentation or boxes
from OCR is not helpful such as solving a geome-
try problem or understanding a function plot. Both
prompts can not provide much useful information.

Global checking or gradual checking. To prove
that LMMs can not perform the global checking
in an effective way like LLMs (Ling et al., 2024),
we conduct experiments on comparing the perfor-
mance of global checking prompting with the pro-
posed one-step checking method. As shown in
Table 4, compared to UnAC without checking, the
performance of using the global checking shows
very limited improvement overall. Although it in-
crease the accuracy of the textbook question an-
swering and visual question answering tasks, it
makes the qualities on tasks of math word prob-
lem and geometry problem solving worse. We also
conduct experiments on analyzing the errors made
by the global checking. As shown in Figure. 4
(right), we define another set of errors which are

Incorrectly understanding the images or solutions
in the previous steps. Misdirection and Math errors
are the most frequent errors occurring which have
50% and 39%. It indicates that the global checking
easily makes the reasoning process into the wrong
direction due to the limitation of the reasoning abil-
ity of LMMs.

5 Limitations

Nevertheless, visual prompts are neither necessary
nor possible to work in all scenarios. For instance,
when facing highly abstract problems like geometry
problem solving, the understanding of the image
mostly depends on the original capability or the
trained dataset of the LMMs since even a simple
shape like a heptagon might be misidentified. How
to effectively develop visual prompts for such prob-
lems is still a challenging topic and that’s one of
the future works we will target on.

6 Conclusion

In this paper, we propose a novel multimodal
prompting method, namely UnAC (Understand-
ing, Abstracting, and Checking), to synergize rea-
soning for complicated problems in visual context
of LMMs. UnAC consists of an adaptive visual
prompting building, the prompts of image abstrac-
tion and a gradual checking scheme. Suffecient
experiments show the effectiveness of UnAC on
improving the ability of complicated multimodal
reasoning.
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