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Abstract001

The recent large multimodal models (LMMs)002
have demonstrated their impressive capabil-003
ity of image understanding. However, they004
still struggle to make complicated reasoning005
for solving a challenging multimodal problem.006
In this paper, we present UnAC (Understand-007
ing, Abstracting, and Checking), a novel multi-008
modal prompting method, to synergize reason-009
ing for complicated problems in the multimodal010
context of LMMs, such as GPT-4o, Gemini-1.5011
and GPT-4V. To improve the understanding of012
the image and capture more details, we propose013
an adaptive visual prompting method to make014
LMMs able to focus on certain regions. An im-015
age abstracting prompting is designed to effec-016
tively extract information from images. Further,017
we propose a gradual self-checking scheme for018
leading to better reasoning by checking each de-019
composed sub-question and its answer. Exten-020
sive experiments on three public benchmarks021
– MathVista, MM-Vet, and MMMU – demon-022
strate the effectiveness of our method.023

1 Introduction024

In recent years, large language models (LLMs)025

have advanced significantly Brown et al. (2020);026

Achiam et al. (2023); Touvron et al. (2023); Bubeck027

et al. (2023); Chowdhery et al. (2023); Zhang et al.028

(2022). From GPT-3 (Brown et al., 2020), PaLM029

(Chowdhery et al., 2023) and Llama (Touvron et al.,030

2023) to GPT-4 (Achiam et al., 2023) and PaLM-2031

(Anil et al., 2023). Notably, Generative Pre-trained032

Transformers (GPTs) (Brown et al., 2020; Achiam033

et al., 2023) have driven numerous breakthroughs034

in both industry and academia. Since the release of035

GPT-4, there has been increasing interest in large036

multimodal models (LMMs) within the research037

community. Many approaches are focused on de-038

veloping powerful multimodal models based on039

open-source frameworks (Liu et al., 2024; Wu et al.,040

2023; Dai et al., 2024; Zhu et al., 2023). Recently,041

the release of GPT-4V(ision) and Gemini-1.5-flash042

(Team et al., 2023) has garnered immediate atten- 043

tion for its impressive capability of understanding 044

images. However, they still struggle to do some 045

complicated multimodal reasoning tasks (Lu et al., 046

2023; Yue et al., 2023). 047

Since approaches (Yao et al., 2024; Wei et al., 048

2022; Yao et al., 2022; Miao et al., 2023; Zheng 049

et al., 2023) of prompting to improve the reason- 050

ing ability with LLMs in only language-context 051

make significant progress, and LMMs can not able 052

to decompose an image easily like decomposing 053

a sentence, it is ineffective to apply the language 054

prompts to improve reasoning in the visual context. 055

For answering a question in the visual context, the 056

major failure cases are due to the misunderstand- 057

ing of the image or imprecisely summarizing the 058

information. The reason for missing or misunder- 059

standing some details is related to the weak ca- 060

pability of getting fine-grained information (Yang 061

et al., 2023a). Visual prompts have also been ex- 062

plored for various multi-modal tasks, especially 063

for enhancing the performance of fine-grained vi- 064

sual tasks. Those methods focus on encoding some 065

masks like points, boxes, and lines combined with 066

the input features or directly applying overlays on 067

the original image. Most recently, Yang et al. pro- 068

posed to build the visual prompting mechanism by 069

partitioning the image into a set of semantically 070

meaningful regions and overlying them to enhance 071

the grounding ability of GPT-4V. However, for the 072

complicated questions that usually need multi-step 073

information extracting and reasoning, only parti- 074

tioning the whole image is not promising to im- 075

prove the reasoning. 076

In this paper, we propose a powerful multimodal 077

prompting method called UnAC (Understanding, 078

Abstracting and Checking) to improve the abilities 079

of complicated multi-modal reasoning for LMMs. 080

UnAC consists of a three-step prompting mecha- 081

nism. In the first step, we present a novel adaptive 082

visual prompting scheme, the second step is ab- 083
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Figure 1: Example of using UnAC. In the original answer from the baseline method, the LMM incorrectly
understands and describe the image which leads to the wrong answer. In UnAC which follows in the orange arrows,
we first ask the LMM to analyze the question and answer what we need from the image. Then we can summarize
the reply as the Objects with semantic meaning. Then employing SEEM to segment and overlay the image as visual
prompts. Then abstracting the information of the image where with the markers, the LMM can correctly describe
the image and abstract the right contexts. Finally, after the checking stage, we can get the right answer.

stracting the image into sentences and the final084

step includes a gradual self-checking prompting.085

Firstly, to reduce misunderstanding or missing de-086

tails, the visual prompts are designed as adaptive087

markers on the image to make LMMs able to focus088

on specific regions. By looking at the image part by089

part, LMMs can find more details and have a bet-090

ter understanding of the image overall. Secondly,091

to solve a problem that needs complex reasoning,092

we need to correctly abstract the information from093

the image based on the question. Inspired by the094

fact that based on the relationship between image095

and question, humans often extract important infor-096

mation form the image locally and globally. We097

propose to find the most related parts of the ques-098

tion and abstract the image into language based on099

the built visual prompts. Then, for a complicated100

question, the LMMs are easily to make mistakes in101

some steps, and asking LMMs to check the overall102

reasoning process is ineffective. However, with103

the visual context introducing, the checking of a104

single step is possible. We introduce a gradual105

self-checking scheme to check each decompsed106

question individually to improve the accuracy of107

the answer.108

We evaluate UnAC on three datasets of evalu-109

ating the ability of complicated problem-solving 110

in the visual context, namely MathVista (Lu et al., 111

2023), MM-Vet (Yu et al., 2023) and MMMU (Yue 112

et al., 2023). To show the generalization of our 113

method, we conduct experiments on two kinds 114

of LMMs: (a) the powerful and large-scale mul- 115

timodal models including GPT-4V and Gemini- 116

1.5-flash; (b) relatively light-weighted models in- 117

cluding LLaVA-v1.6-7B/13B. We achieve improve- 118

ments on all models and all datasets which indi- 119

cates our method is model-agnostic. Notably, our 120

method improves 6.4% on MathVista with Gemini- 121

1.5-flash. 122

To summarize, our main contributions are: 123

• We propose a simple but powerful mul- 124

timodal prompting scheme called UnAC 125

(Understanding, Abstracting and Checking) 126

to improve the abilities of complicated multi- 127

modal reasoning for LMMs. 128

• We introduce an adaptive visual prompt to 129

improve the image understanding and reduce 130

the missing details. Combined with the lan- 131

guage prompting of the image abstraction and 132

the gradual checking scheme, all the modules 133

lead LMMs to better reasoning. 134
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• Extensive experiments on three datasets which135

are MathVista, MM-Vet, and MMMU show136

the effectiveness of UnAC in evoking com-137

plicated reasoning in the visual context of138

LMMs.139

2 Related Work140

Prompting in LLMs. We have observed sig-141

nificant advancements in large language models142

(LLMs) (Zhang et al., 2022, 2023; Touvron et al.,143

2023; Team et al., 2023; Brown et al., 2020). Al-144

though the size of LLMs has increased substan-145

tially, evoking their reasoning capabilities is still146

necessary with the use of more complicated de-147

signed queries, or prompting. Recently, various148

works have explored prompt engineering to en-149

hance LLM capabilities. In-context learning has150

become a mainstream approach to instruct LLMs151

by providing specific examples (Brown et al., 2020;152

Dong et al., 2022). Building on this, techniques153

such as chain-of-thought and tree-of-thought (Wei154

et al., 2022; Yao et al., 2024) have been introduced155

to improve performance in arithmetic, common-156

sense, and symbolic reasoning tasks. Most recently,157

Zheng et al. (Zheng et al., 2023) proposed the Step-158

Back Prompting method which enhances the ability159

to retrieve information via abstracting the question.160

Miao et al. (Miao et al., 2023) introduced a general-161

purpose zero-shot verification schema for recogniz-162

ing errors made in the reasoning process of math163

problems. However, their methods highly rely on164

that the language is easy to be decomposed. It is165

hard to be generalized to the question in the visual166

context where images are hard to decompose.167

Prompting in LMMs Before the growth of large168

multimodal models (LMMs), visual prompting has169

been explored for various vision and multimodal170

tasks (Wang et al., 2023; Zou et al., 2024; Kir-171

illov et al., 2023; Chen et al., 2022; Shtedritski172

et al., 2023). These approaches can be categorized173

into two main types. The first type encodes vi-174

sual prompts, such as points, boxes, and strokes,175

into latent features, which are then used to prompt176

the vision models (Zou et al., 2024; Kirillov et al.,177

2023). The second type overlays visual marks di-178

rectly onto the input images. These marks can be a179

red circle (Shtedritski et al., 2023), a highlighted re-180

gion (Yang et al., 2023a), or multiple circles with ar-181

rows (Shtedritski et al., 2023). While these studies182

show the potential of pixel-level visual prompting,183

they are typically limited to visually referencing184

one or a few objects. So far, prompting LMMs 185

has been rarely explored in academia, partly be- 186

cause most of the recently open-sourced models 187

have limited capacity and are therefore unable to 188

support such advanced capabilities. Recently, GPT- 189

4V was released, accompanied by a comprehen- 190

sive qualitative study (Yang et al., 2023b). The 191

authors in (Yang et al., 2023b) employed a similar 192

prompting strategy as RedCircle (Shtedritski et al., 193

2023) to prompt GPT-4V. Most recently, Yang et al. 194

(Yang et al., 2023a) proposed to partition the image 195

into a set of semantically meaningful regions and 196

overlay them to enhance the grounding ability of 197

GPT-4V. CCoT (Mitra et al., 2023) is designed as 198

a zero-shot Chain-of-Thought prompting method 199

to extract compositional knowledge from an LMM 200

with utilizing scene graphs. However, both of these 201

works can not solve the problem based on the ab- 202

stract images such as geometry problem solving 203

and math word problems. 204

3 UnAC: Understanding, Abstracting, 205

and Checking 206

Consider a general fact when humans face a chal- 207

lenging problem in the visual context. To solve the 208

problem, we first need to understand the image and 209

the question correctly overall. Then based on the 210

question, we will look at the image more carefully, 211

find and abstract the useful information that can be 212

used to solve the problem. Finally, based on the 213

understanding and the abstraction, we infer the fi- 214

nal answer to this challenging problem. Moreover, 215

for a complicated question, we usually need a sec- 216

ond look at the reasoning process and check it with 217

the image to avoid some simple mistakes. Inspired 218

by this common sense, we propose UnAC which 219

means understanding, abstracting, and checking for 220

synergizing the complicated reasoning in the visual 221

context of large multimodal models. 222

3.1 Adaptive Visual Prompts. 223

Precisely capturing the details in the image is not 224

straightforward for LMMs. It is hard to correct the 225

misunderstanding of the image by itself because 226

decomposing the image is not easy. Since LMMs 227

are developed based on the LLMs, their abilities 228

of language reasoning are much better than visual 229

reasoning. It means that LMMs can perform better 230

on analyzing the problem than analyzing the im- 231

age. Therefore, we propose to build effective and 232

adaptive multimodal prompts based on the analysis 233

3



Figure 2: The workflow of gradual checking proceeds
as follows: First, the input question is decomposed into
several sub-questions by the LMMs. Then, the LMMs
answer each sub-question. Both the sub-questions and
their corresponding answers are then fed back into the
LMMs to generate the final answer.

of the question. Asking the model to analyze the234

question and find what information we need to get235

from the image. We conclude the response into two236

kinds: Objects with semantic meaning and symbols237

with literal meaning. For objects with semantic238

meaning, we employ segmentation models to au-239

tomatically segment the image. For symbols with240

literal meaning, we use optical character recogni-241

tion (OCR) methods to detect the texts. Based on242

the metadata, we first denoising regions based on243

the stability score output by the segmentation/OCR244

methods.245

In the Figure. 1, we show a successful case. For246

this question of subtracting the items, it requires247

LMMs to correctly recognizing each item in the248

picture which is related to objects with semantic249

meanings. Therefore, the visual prompts are de-250

signed as the segmentation of the image to help the251

LMM to better understand the image.252

3.2 Image Abstraction253

The visual prompts can make a better understand-254

ing of the image since the markers can catch more255

attentions on some local information. Partitioning256

the image makes it decomposable when LMMs un-257

derstand the image. However, only visual prompts258

have limited improvements for solving complicated259

problems. Except for understanding the image,260

LMMs need to correctly abstract the image to filter261

the useless information to solve the problem. With-262

out prompts of abstraction, the reasoning might263

be misdirected due to the markers in the image.264

Therefore, to fully utilize the visual prompts and265

get better reasoning, we need to abstract the infor-266

mation which is the most related to the question.267

Firstly, we ask LMMs to describe the picture to 268

abstract the global information. Then based on the 269

analysis of the question and the prompts, we ask 270

LMMs to find the most related regions to get more 271

details based on the markers in the image. 272

3.3 Gradual checking 273

Moreover, for some complicated questions, we usu- 274

ally need a second look at the image with the rea- 275

soning progressing. As discussed in (Ling et al., 276

2024), checking the whole reasoning process is 277

usually ineffective for LLMs and our experiments 278

show similar results in LMMs. However, to correct 279

the mistake made in one step is more effective. To 280

check individual steps of the reasoning process, the 281

first thing we should note is that the correctness of 282

each step is highly dependent on its context. For a 283

question in words, the context includes the question 284

and previous steps only. So the checking is largely 285

dependent on the accuracy of the previous steps 286

which is highly unstable. In the visual question an- 287

swering, the information from the image becomes 288

extra contexts which are important references for 289

self-checking. It can be more reliable when LMMs 290

have a good understanding of the image. 291

Then, we design a gradual checking prompt- 292

ing for better reasoning. Firstly, we let LMMs 293

decompose the question into multi sub-questions 294

[Q0, Q1, . . . , Qn] and give the answer of each 295

sub-questions. The answers are denoted as 296

[A0, A1, . . . , An]. In the checking stage, we check 297

gradually. When checking Qi and Ai, we refer 298

the context of the previous questions and checked 299

answers [Q0, Q1, . . . , Qi] and [A′
0, A

′
1, . . . , A

′
i]. In 300

the last step of checking, LMMs will infer the final 301

answer based on all questions and answers. 302

4 Experiments 303

4.1 Setup 304

Tasks and datasets. We experiment with the fol- 305

lowing two tasks that need complicated reasoning: 306

(a) Mathematical reasoning in the visual context, 307

and (b) Complicated VQA. Mathematical reason- 308

ing: We evaluate MathVista (Lu et al., 2023) for 309

this task. MathVista is a consolidated mathemati- 310

cal reasoning benchmark within visual contexts. It 311

contains various kinds of sub-tasks to evaluate the 312

model’s visual understanding of mathematical prob- 313

lems solving in different perspectives of reasoning 314

skills. Complicated VQA: For this task, we evalu- 315

ate two datasets called: MM-Vet (Yu et al., 2023) 316
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and MMMU (Yue et al., 2023) respectively. MM-317

Vet (Yu et al., 2023) is designed to evaluate large318

multimodal models on complex multimodal tasks319

that highlight six core vision-language (VL) capa-320

bilities: Recognition, Knowledge, Optical Charac-321

ter Recognition (OCR), Spatial Awareness, Lan-322

guage Generation, and Math. MMMU focuses on323

advanced perception and reasoning with domain-324

specific knowledge, challenging models to perform325

tasks like those faced by experts.326

Models. To show the generalization of UnAC,327

we use the following state-of-the-art LLMs: close-328

source models including GPT4-V and Gemini-1.5-329

flash, relatively small LMMs including LLaVA-330

v1.6-7B/13B (Liu et al., 2024), LLaVA-OneVision331

(Li et al., 2024) and internVL2.0-8B (Chen et al.,332

2024). For the closed-source LMMs, we utilize333

the official API to make the evaluation. We use334

’gpt4-turbo’ and ’gemini-1.5-flash’ for GPT4-V335

and Gemini respectively. For the open-source mod-336

els, we evaluate in a single RTX 6000. We set the337

temperature to 0.0 for all LMMs. We use SEEM338

(Zou et al., 2024) for segmentation and easyOCR339

for building the visual prompts. Moreover, we340

also compare with two chain-of-thought methods341

including CCoT (Mitra et al., 2024) and SKETCH-342

PAD (Hu et al., 2024) to show the superiority of343

UnAC as a training-free method.344

Evaluation. In all datasets, they have a unique345

answer to each question which can be a number, a346

word, a phrase, or one of the choices. The accuracy347

(ACC) is the only metric we employed in this paper.348

Since the LMMs may often generate long-form349

answers which are hard to capture. Following Lu350

et al. (Lu et al., 2023) and Yu et al. (Yu et al.,351

2023), we instead conduct an evaluation using the352

GPT-4 model where we few-shot prompt the model353

to identify equivalence between target answers and354

the model predictions.355

4.2 Results356

Mathematical reasoning in the visual context.357

In Table 1, we present results on the MathVista358

benchmark (Lu et al., 2023), where our method con-359

sistently improves performance across all models.360

Specifically, we achieve a 4.9% gain on GPT-4V361

and 3.4% on Gemini-1.5-flash. For LLaVA-v1.6-362

7B/13B, the improvements are 2.6% and 2.0%,363

and for LLaVA-OneVision-7B, we observe a 1.4%364

gain—outperforming SoM (Yang et al., 2023a)365

on the same model. Notably, our method boosts366

InternVL2.0-8B by 4.3%, significantly surpassing 367

chain-of-thought approaches like CCoT (0.9%) and 368

SKETCHPAD (0.8%), which struggle to improve 369

strong baselines. 370

Across sub-tasks, our method shows marked 371

gains on the most challenging ones: a 8.6% im- 372

provement on Geometry Problem Solving (GPS) 373

with GPT-4V and 4.1% on TQA with Gemini. 374

These tasks require complex, multi-step reason- 375

ing, which benefits from better visual abstraction 376

and our self-checking scheme. For simpler tasks 377

like VQA and FQA, the gains confirm the effective- 378

ness of our adaptive visual prompting. Overall, the 379

consistent improvements demonstrate that UnAC 380

is a model-agnostic prompting strategy. However, 381

stronger models like GPT-4V and InternVL benefit 382

more, as the effectiveness of both visual prompting 383

and self-checking depends on the model’s reason- 384

ing capability—further discussed in Sec. 4.3. 385

Complicated VQA. In Table 2, we show the re- 386

sults on the MM-Vet (Yu et al., 2023) and MMMU 387

(Yue et al., 2023). In these two datasets, the ques- 388

tions are more generalized with a relatively sim- 389

ple reasoning process. Our method still makes 390

improvements on all models. We make an im- 391

provement of 3.1% on GPT-4V with our method 392

and make the largest increase of 4.8% on Gemini- 393

1.5-flash on MMMU. Compared to the chain-of- 394

thought methods, UnAC performs better. Also, it 395

indicates the necessity of self-checking that apply- 396

ing SoM (Yang et al., 2023a) on GPT-4V is harmful 397

to answer the complicated question. For LLaVA- 398

OneVision-7B, we achieve the improvements of 399

2.7% on MM-Vet. 400

The gap between the increase on Gemini/GPT4- 401

V and the increase of LLaVA-v1.6-7B is larger 402

compared to that on MathVista. In these two 403

datasets, they require more comprehensive vision- 404

language capabilities and abundant knowledge re- 405

serve on various topics. Therefore, in those two 406

datasets, understanding can be more important than 407

abstracting and reasoning. 408

4.3 Analysis 409

Corrected error analysis. Comparing the origi- 410

nal predictions of UnAC to the baseline GPT-4V 411

model on MathVista and MM-Vet: we find that our 412

methods correct 25.4% errors from the baseline 413

while introducing 5.5% errors on the task of Math- 414

ematical reasoning in the visual context. For com- 415

plicated VQA i.e. MM-Vet, UnAC corrects 20.1% 416
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Table 1: Accuracy scores on the testmini subset of MathVista (Lu et al., 2023). ALL: overall accuracy. Task types:
FQA: figure question answering, GPS: geometry problem solving, MWP: math word problem, TQA: textbook
question answering, VQA: visual question answering. Mathematical reasoning types: ALG: algebraic reasoning,
ARI: arithmetic reasoning, GEO: geometry reasoning, LOG: logical reasoning, NUM: numeric commonsense, SCI:
scientific reasoning, STA: statistical reasoning.

Method ALL FQA GPS MWP TQA VQA ALG ARI GEO LOG NUM SCI STA

Human performance

Human Performance 60.3 59.7 48.4 73.0 63.2 55.9 50.9 59.2 51.4 40.7 53.8 64.9 63.9

Heuristics baselines

Random chance 17.9 18.2 21.6 3.8 19.6 26.3 21.7 14.7 20.1 13.5 8.3 17.2 16.3
Frequent guess 26.3 22.7 34.1 20.4 31.0 24.6 33.1 18.7 31.4 24.3 19.4 32.0 20.9

Closed-sourced Large Multimodal Models (LMMs)

Gemini-1.0-pro-vision 41.0 36.4 36.5 43.0 57.5 36.3 39.8 37.6 38.0 10.8 29.8 52.4 45.5
Gemini-1.0-pro-vision + UnAC 47.4(+6.4) 49.4 39.5 45.2 62.7 42.5 43.8 44.2 40.1 29.7 36.1 54.9 57.1

Gemini-1.5-flash 53.2 51.6 56.8 52.1 67.5 40.1 59.4 44.0 52.7 25.3 36.4 60.8 57.5
Gemini-1.5-flash + UnAC 56.6(+3.4) 57.3 59.3 54.1 71.6 41.4 62.8 46.6 59.5 30.9 37.7 65.3 65.8

GPT-4V 50.7 43.6 50.5 57.5 65.2 38.4 53.0 49.0 51.0 21.6 20.1 63.1 55.8
GPT-4V +SoM (Yang et al., 2023a) 51.2(+0.5) 50.5 52.9 49.7 64.8 37.2 53.4 44.0 51.2 18.9 32.4 62.8 57.5
GPT-4V + CCoT (Mitra et al., 2023) 51.8(+1.1) 46.2 50.2 58.2 64.2 40.4 55.0 48.2 51.2 21.6 20.1 57.1 59.2
GPT-4V + SKETCHPAD (Hu et al., 2024) 52.0(+1.3) 44.2 52.6 60.5 66.4 37.8 53.5 48.2 51.9 21.2 19.8 63.8 55.6
GPT-4V + UnAC 57.6(+4.9) 47.3 61.1 55.2 69.7 48.9 60.9 50.1 58.5 18.9 35.4 60.7 57.8

Open-sourced Large Multimodal Models (LMMs)

LLaVA-OneVision-7B 34.8 43.6 21.6 27.9 43.4 37.8 26.5 32.0 23.3 19.9 24.9 49.1 44.6
LLaVA-OneVision-7B + SoM 34.6(−0.2) 43.7 19.6 29.6 43.2 37.1 26.9 31.6 20.8 19.6 25.2 50.2 43.9
LLaVA-OneVision-7B + UnAC 36.2(+1.4) 49.5 20.1 28.5 44.4 38.8 32.5 31.2 21.1 18.4 25.1 50.3 44.6

LLaVA-v1.6-13B 35.8 45.3 21.6 29.5 43.0 37.9 24.9 33.9 23.8 13.5 27.7 49.1 48.1
LLaVA-v1.6-13B + UnAC 37.8(+2.0) 37.5 31.7 30.7 53.8 38.5 33.4 34.6 32.2 10.8 25.7 53.3 44.9

InternVL2.0-8B 67.3 72.5 73.6 69.9 66.5 50.3 70.1 57.5 71.5 27.0 43.1 65.6 79.1
InternVL2.0-8B + SoM (Yang et al., 2023a) 67.2 (−0.1) 75.0 72.4 72.0 65.2 51.3 73.2 58.5 72.5 22.5 41.0 65.6 79.1
InternVL2.0-8B + CCoT (Mitra et al., 2023) 68.2 (+0.9) 75.6 76.2 72.3 65.8 49.1 69.5 60.5 70.0 25.2 42.5 68.6 75.2
InternVL2.0-8B + SKETCHPAD (Hu et al., 2024) 69.2(+1.9) 77.2 77.6 72.8 70.1 48.3 73.2 62.1 76.2 28.3 43.2 64.6 79.3
InternVL2.0-8B + UnAC 71.6(+4.3) 77.3 79.6 75.0 72.1 54.0 75.4 62.5 75.5 31.0 44.8 67.2 80.7

Table 2: Accuracy scores on the MM-Vet and the vali-
dation set of MMMU.

Method MM-Vet MMMU

LLaVA-v1.6-7B 47.5 36.9
LLaVA-v1.6-7B + Ours 48.5(+1.0) 37.4(+0.5)

LLaVA-OneVision-7B 57.5 48.8
LLaVA-OneVision-7B + Ours 60.2(+2.7) 51.0(+2.2)

Gemini-1.5-flash 62.2 56.1
Gemini-1.5-flash + Ours 64.9(+2.7) 60.9(+4.8)

InternVL2.0-8B 60.0 51.8
InternVL2.0-8B + UnAC 63.3(+3.3) 54.7(+2.9)

GPT4-V 67.2 57.2
GPT4-V + SoM (Yang et al., 2023a) 66.0(−1.2) 57.2
GPT4-V + CCoT 67.7(+0.5) 58.7 (+1.5)

GPT4-V + SKETCHPAD 69.3(+2.1) 59.7(+2.5)

GPT4-V + Ours 70.3(+3.1) 60.7(+3.5)

errors from the baseline while introducing 6.2%417

errors. To further understand how UnAC corrects418

the errors, we annotate all the wrong predictions419

corrected by our method of baseline methods in420

the test set, and categorize them into 4 classes: (1)421

Misunderstanding: The error is after introducing422

the prompts, the LMMs misunderstand the image423

which is correct in the baseline method; (2) Con-424

text loss: After introducing our method, it causes 425

the missing of some information from the image 426

which does not happen in the baseline answers; (3) 427

Reasoning Error: The retrieved context is relevant, 428

but the model still fails to reason through the con- 429

text to arrive at the right answer. (4) Factual Error: 430

There is at least one factual error when the model 431

recites its own factual knowledge. 432

MathVista. As shown in Figure 3 (left), about 433

35% of corrected errors stem from image misunder- 434

standing, and 23% from missing context. Together, 435

roughly 58% of errors are rectified by our adaptive 436

visual prompts, which help LMMs better perceive 437

image details. In contrast, some errors occur de- 438

spite correct perception—due to flawed reasoning 439

or missing factual knowledge. While SoM’s visual 440

markers aid perception, they do little to improve 441

reasoning, limiting its effectiveness in fixing such 442

errors. Our self-checking scheme addresses this 443

gap, accounting for 42% of corrections through 444

step-by-step validation. 445

MM-Vet. In Figure 3 (right), 49% of corrected 446

errors are due to misunderstanding, and 18% to lost 447
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Figure 3: Corrected error analysis and comparison of UnAC and SoM. The left plot shows the comparison on
MathVista while the right one represents that on MM-Vet: four classes of errors are corrected by the UnAC or SoM.
The baseline model is GPT-4V for both methods.

Table 3: Accuracy scores of employing different visual prompting strategies of UnAC. The results are tested on the
testmini subset of MathVista (Lu et al., 2023) while the baseline model is Gemini-1.5-flash.

Method ALL FQA GPS MWP TQA VQA

Baseline 53.2 51.6 56.8 52.1 67.5 40.1
Segmentation only 54.2 53.2 57.8 53.0 68.4 39.6
OCR only 53.3 51.6 57.3 51.1 68.7 40.1
Segmentation + OCR 54.4 53.2 57.8 53.0 68.4 39.6
Adaptive visual prompts 56.6 57.3 59.3 54.1 71.6 41.4

visual context—both improved by UnAC. Reason-448

ing and factual errors account for another 23% and449

10%, respectively. Since MM-Vet emphasizes fine-450

grained image understanding over complex reason-451

ing, visual prompts play a larger role. As a result,452

both UnAC and SoM mainly correct perception-453

related errors. Still, UnAC demonstrates a no-454

table 33% improvement in reasoning-related cases,455

thanks to its self-checking mechanism.456

Discussion. Compared to the first two classes and457

the last two classes, the number of errors removed458

by correctly understanding the image and capturing459

more useful contexts is more than that removed by460

the accurate reasoning process. It indicates that461

the reasoning step is still a bottleneck of how well462

UnAC can perform for tasks such as MathVista463

which requires more complex reasoning.464

How the abstraction and self-checking affect the465

final answer? As we discussed in Sec 4.2, the466

improvements made by UnAC are influenced by467

the original capability of the baseline LMMs. Al-468

though it makes sense, we want to find out how it469

influences our method. We conduct experiments on470

changing the models which is used in abstracting,471

checking, and final reasoning mainly with LLaVA-472

v1.6-7B and GPT-4V. As shown in Figure 4 (left),473

we replace the LLaVA-v1.6-7B with GPT-4V on474

different roles in our prompting process. Compar-475

ing the first Four rows, the final conclusion per- 476

forms much better when replacing LLaVA-v1.6- 477

7B with GPT-4V for performing abstracting, and 478

checking respectively. The best performance is 479

contributed by using GPT-4V to make both ab- 480

stracting and checking among these three ablations. 481

It indicates that better abstracting and checking 482

are helpful for increasing the overall performance. 483

However, comparing the four rows and the bottom 484

row, although GPT-4V may provide the accurate 485

answer to the question in the checking stage, the 486

LLaVA-v1.6-7B still infers bad reasoning in the 487

last step. Moreover, comparing the fourth row and 488

fifth row, we can find that even LLaVA-v1.6-7B 489

provides the bad prompts, GPT-4V still has the 490

ability of self-correction in conclusion. Although 491

improving the abstracting and checking can lead 492

to better performance, the reasoning abilities of 493

LMMs are still the bottleneck of how well UnAC 494

can perform in solving complicated questions. 495

Why do visual prompts need to be adaptive? 496

In this ablation, we want to show the effect of mak- 497

ing the visual prompts adaptive. As shown in Table 498

3, we conduct experiments on applying different 499

types of visual prompts. Comparing the first two 500

lines, the improvements when employing the seg- 501

mentation or OCR only are very limited. Although 502

partitions can help the LMMs to focus on a certain 503

7



Table 4: Accuracy scores using GPT-4V on the testmini subset of MathVista (Lu et al., 2023) under different
checking. For the global checking, we use a simple prompt of ‘Please check your answer if there are any errors.’

Method ALL FQA GPS MWP TQA VQA

w/o Checking 52.7 55.5 53.4 49.2 65.8 37.7
Global Checking 53.4 55.5 53.4 49.2 65.0 42.7
Gradual Checking 57.6 47.3 61.1 55.2 69.7 48.9

Figure 4: Left: The overall accuracy of changing differ-
ent part of UnAC on the textmini dataset of MethVista
(Lu et al., 2023). L means LLaVA-v1.6-7B and G means
GPT-4V. Abs, Che and Con represent the abstracting,
checking and conclusion stages respectively. Right:
The error analysis on MethVista with Gemini-1.5-flash
using global checking.

part of the image, they also increase the risk of504

focusing on the wrong regions on the image. Since505

the whole picture has been overlayed everywhere, it506

may confuse the attention of LLMs. Adding boxes507

on the image to let LMMs focus on certain parts,508

it also increase the risk of incorrect regions which509

are useless for the question answering. Moreover,510

for some tasks, markers of segmentation or boxes511

from OCR is not helpful such as solving a geome-512

try problem or understanding a function plot. Both513

prompts can not provide much useful information.514

Global checking or gradual checking. To prove515

that LMMs can not perform the global checking516

in an effective way like LLMs (Ling et al., 2024),517

we conduct experiments on comparing the perfor-518

mance of global checking prompting with the pro-519

posed one-step checking method. As shown in520

Table 4, compared to UnAC without checking, the521

performance of using the global checking shows522

very limited improvement overall. Although it in-523

crease the accuracy of the textbook question an-524

swering and visual question answering tasks, it525

makes the qualities on tasks of math word prob-526

lem and geometry problem solving worse. We also527

conduct experiments on analyzing the errors made528

by the global checking. As shown in Figure. 4529

(right), we define another set of errors which are530

related to the reasoning process only. The classes 531

of errors are (1) Math error: The additional mathe- 532

matical errors like computation and mathematical 533

inference; (2) Misdirection: Leading to focusing 534

the wrong regions of the images. (3) Context error: 535

Incorrectly understanding the images or solutions 536

in the previous steps. Misdirection and Math errors 537

are the most frequent errors occurring which have 538

50% and 39%. It indicates that the global checking 539

easily makes the reasoning process into the wrong 540

direction due to the limitation of the reasoning abil- 541

ity of LMMs. 542

5 Limitations 543

Nevertheless, visual prompts are neither necessary 544

nor possible to work in all scenarios. For instance, 545

when facing highly abstract problems like geometry 546

problem solving, the understanding of the image 547

mostly depends on the original capability or the 548

trained dataset of the LMMs since even a simple 549

shape like a heptagon might be misidentified. How 550

to effectively develop visual prompts for such prob- 551

lems is still a challenging topic and that’s one of 552

the future works we will target on. 553

6 Conclusion 554

In this paper, we propose a novel multimodal 555

prompting method, namely UnAC (Understand- 556

ing, Abstracting, and Checking), to synergize rea- 557

soning for complicated problems in visual context 558

of LMMs. UnAC consists of an adaptive visual 559

prompting building, the prompts of image abstrac- 560

tion and a gradual checking scheme. Suffecient 561

experiments show the effectiveness of UnAC on 562

improving the ability of complicated multimodal 563

reasoning. 564
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