

000 001 002 003 004 005 MNEMODYN: LEARNING RESTING STATE DYNAMICS 006 FROM 40K FMRI SEQUENCES 007 008 009

010 **Anonymous authors**
011
012
013
014
015
016
017
018
019
020
021
022
023

024 Paper under double-blind review
025
026
027

028 ABSTRACT

029 We present a dynamical-systems based model for resting-state functional
030 magnetic resonance imaging (rs-fMRI), trained on a dataset of roughly 40K
031 rs-fMRI sequences covering a wide variety of public and available-by-permission
032 datasets. While most existing proposals use transformer backbones, we utilize
033 multi-resolution temporal modeling of the dynamics across parcellated brain
034 regions. We show that **MnemoDyn** is compute efficient and generalizes very well
035 across diverse populations and scanning protocols. When benchmarked against
036 current state-of-the-art transformer-based approaches, MnemoDyn consistently
037 delivers superior reconstruction quality. Overall, we find that with such large-scale
038 pre-training on (non-proprietary) rs-fMRI datasets, we get a highly performant
039 model for various downstream tasks. Our results also provide evidence of the efficacy
040 of the model on small sample size studies which has implications for neuroimaging
041 studies at large where resting state fMRI is a commonly acquired imaging modality.
042
043

044 1 INTRODUCTION

045 Understanding the latent dynamics underlying resting-state hemodynamic signals is central to appli-
046 cations such as surgery planning and epilepsy seizure localization, as well as advancing neuroscience
047 more broadly (Deco et al., 2011; Friston, 2011). Modalities such as resting-state functional Magnetic
048 resonance imaging (rs-fMRI) provide temporal signals that encode rich neural processes (Smith et al.,
049 2013). One important goal is to model these dynamics in a manner that captures the spatial and temporal
050 structures of these signals (Breakspear, 2004), and permits statistical group testing and predictions
051 across subjects, institutions/sites, and protocols (Yamashita et al., 2019). Achieving this goal requires re-
052 producible models capable of learning representations from large-scale neuroimaging data. To this end,
053 recent developments surrounding Foundation models (Bommasani et al., 2021) are particularly relevant.
054 For example, while such models were originally developed for natural language processing, they have
055 been adapted to vision (Dosovitskiy et al., 2020), robotics (Brohan et al., 2022), and beyond (Radova
056 et al., 2025; Wang et al., 2025). Common to most foundation models are attention-based architectures –
057 most prominently, the Transformer module – which allows flexible context modeling via self-attention.
058 Language models (Brown et al., 2020; Chowdhery et al., 2023) achieve strong performance across most
059 natural language tasks and so, Transformer-based architectures have also been extended to sequence
060 modeling problems, including time series data (Zhou et al., 2021; Liu et al., 2023; Chen et al., 2025).
061
062

063 **Rationale for alternatives.** Transformer models serve as a good starting point for building foundation
064 models for fMRI. Recent work (Caro et al.; Dong et al., 2024) has shown that attention-based models
065 can capture temporal dependencies in rs-fMRI sequences (Kim et al., 2023) and model long-range
066 dependencies well. These approaches work well when sufficient computing resources and data are
067 available, particularly for standard acquisition protocols that typically collect 5-7 minutes of resting-
068 state data (Birn et al., 2013). But there are some reasons to explore alternatives. First, emerging
069 use cases in sleep research and clinical neuroscience (Yang et al., 2024) are increasingly utilizing
070 longer acquisitions (e.g., up to 8 hours of continuous rs-fMRI data). Characterizing rs-fMRI dynamics
071 from whole-night fMRI means being able to process much longer sequences without increasing the
072 computation dramatically. Second, the data requirements for fine-tuning foundation models on *smaller*
073 datasets, a common scenario in practice, will be simpler via more sample-efficient architectures. Third,
074 a more compute/parameter efficient architecture will be easier to deploy in the clinic.
075
076

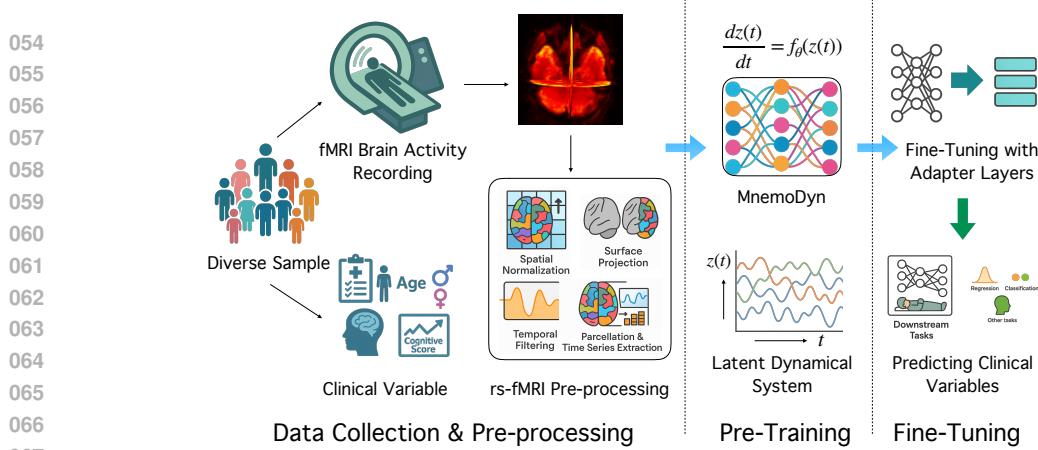


Figure 1: Overview of the **MnemoDyn** framework. Our foundation model for rs-fMRI treats temporal signals as trajectories in a latent dynamical system, parameterized by learnable operators. The pipeline begins with data curation and pre-processing of large-scale **rs-fMRI** cohorts into standardized gray-ordinate representations. The pre-training stage learns a multi-resolution non-linear dynamical operator via $\frac{dz(t)}{dt} = f_\theta((z(t))$, enabling the model to capture cross-scale temporal dependencies while preserving local dynamics. During fine-tuning, lightweight adapter layers adapt the pretrained model to diverse downstream cohorts. The resulting representations support prediction of clinical variables across heterogeneous populations (age, sex, cognitive traits, neurodegeneration markers, etc.), highlighting MnemoDyn’s ability to generalize from large-scale dynamical modeling to scientifically meaningful tasks.

Learning dynamics with operators. In contrast to attention-based sequence modeling, time series data from neuroimaging can benefit from approaches that seeks to model the underlying dynamical structure of brain activity. Instead of learning autoregressive mappings in the raw signal space or latent space, we can attempt to learn the underlying *operator* governing the observed temporal dynamics. This casting treats the brain as if it is generating trajectories in a high-dimensional latent space governed by an unknown but learnable dynamical system. This aligns, at least partially, with neuroscientific understanding of brain activity as arising from complex dynamical processes (Deco et al., 2011; Breakspear, 2004; Sanz-Leon et al., 2015). Recent work in state space models (Gu et al.) and liquid-FM (Hasani et al.) has also highlighted the value of using dynamical system–inspired strategies for sequence modeling. Our architecture, **MnemoDyn**, learns an evolution operator rather than relying on autoregressive sequence modeling and implicitly modeling hidden state recurrence. Specifically, the solution (operator) maps initial conditions and inputs to full latent trajectories and we parameterize the evolution kernel using multi-resolution wavelet bases partly inspired by studies in neuroscience (D’Angelo & Jirsa, 2022; Basar et al., 1999). This way, the operator can process features across multiple temporal scales while maintaining temporal locality. The interaction between wavelets and pseudo-differential operators yields highly sparse representations (bey, 1991), leading to computational efficiency. The **key contributions** are:

- (i) We describe a wavelet-parameterized evolution operator that captures multiscale temporal dependencies without attention mechanisms, and it scales efficiently to long sequences. This design eliminates the need for positional embeddings or tokenization schemes, which are often finicky, domain dependent, and sensitive to hyperparameter tuning.
- (ii) We obtain consistent improvements over state of the art transformer-based baselines across multiple rs-fMRI datasets for reconstruction, classification, and regression tasks.
- (iii) *Open-source rs-fMRI foundation model:* MnemoDyn trained on 40K rs-fMRI sequences will be publicly released for use and fine-tuning on smaller datasets.

Our findings suggest that operator-based models grounded in multi-resolution analysis offer a powerful alternative to attention-heavy architectures for modeling the dynamics associated with rs-fMRI data. They open new avenues for data-driven discovery of brain dynamics that are principled and practically deployable in resource constrained settings.

2 MODELING BRAIN DYNAMICS

We now set up our formulation for modeling the latent dynamics of the rs-fMRI signal. We consider the temporal hemodynamic measurements as if it is generated by a latent dynamical system defined

108 on a low-dimensional multiscale representation of the observed neural signals. We model the evolution
 109 using a latent dynamical system (John et al., 2022) framework, i.e., decomposing the observed signal
 110 into a hidden neural process (McCormick et al., 2022) and a measurement process.

111 Let $x(t) : t \rightarrow \mathbb{R}^n$ denote the observed time series data (e.g., rs-fMRI) which is high-dimensional. We
 112 use $x_t \in \mathbb{R}^n$ to denote the observed signal at the discrete time step t , where n is the number of brain
 113 regions (e.g., parcels, voxels, or channels in case of EEG). Let $z_t \in \mathbb{R}^d$ represent the latent neural state,
 114 which is assumed to evolve according to some (potentially nonlinear) dynamics. The general form
 115 of the state-space model (Gu et al.; Gu & Dao) is given by:

$$z_{t+1} = f(z_t, u_t; \theta) + w_t, \quad (1)$$

$$x_t = h(z_t; \phi) + v_t, \quad (2)$$

119 where $u_t \in \mathbb{R}^m$ is an optional exogenous input (e.g., stimulus or task), which may optionally be zero.
 120 Here, $f : \mathbb{R}^d \times \mathbb{R}^m \rightarrow \mathbb{R}^d$ defines the transition dynamics with parameters θ and $h : \mathbb{R}^d \rightarrow \mathbb{R}^n$ is function
 121 that maps the latent space to the observations with parameters ϕ ; $w_t \sim \mathcal{N}(0, Q)$, $v_t \sim \mathcal{N}(0, R)$ are
 122 potential process and observation noise, respectively.

123 *Remark 2.1.* A growing body of work shows how to extend such state-space models to large-scale
 124 sequence modeling (Gu et al., 2020; Gu et al.). Also related are results describing liquid foundation
 125 models (Hasani et al.) showing excellent results via input dependent adaptivity. While these approaches
 126 also learn state evolution functions, our approach is complementary in that we utilize a special
 127 multi-resolution decomposition, which is compute-efficient and also inspired by empirical studies
 128 in neuroscience.

129 **Benefits of continuous time formulation:** While the state-space formulation in discrete time is widely
 130 used, modeling neural dynamics in continuous time offers some advantages (Billings et al., 2017).
 131 Brain signals are inherently continuous, even though the measurements (such as fMRI) are obtained
 132 at discrete time points. By using a differential equation-based formulation, we seek to better model the
 133 temporal evolution of neural states in a continuous form. We know that ordinary differential equations
 134 (ODEs) (Hartman, 2002) provide a principled way to encode smoothness, locality in time, and known
 135 structural constraints such as linear relaxation, oscillatory components, or conservation laws that
 136 reflect biophysical priors. This continuous-time perspective opens the door to tools from control theory
 137 and operator learning for analyzing the evolution of latent neural processes (Lee et al., 2022; Cai et al.,
 138 2021). This strategy also allows us to circumvent tokenization and patching strategies required for
 139 attention based models.

140 **Parameterized ODEs as Continuous Time Models:** We consider the latent state $\mathbf{z}(t) \in \mathbb{R}^d$ as evolving
 141 according to an ordinary differential equation (ODE) driven by a vector field $F : \mathbb{R}^d \times \mathbb{R}^m \rightarrow \mathbb{R}^d$,

$$\frac{d\mathbf{z}(t)}{dt} = F(\mathbf{z}(t), \mathbf{u}(t); \theta), \quad \mathbf{z}(0) = \mathbf{z}_0, \quad (3)$$

142 where $\mathbf{u}(t) \in \mathbb{R}^m$ denotes an optional external control or input signal, and θ are parameters governing
 143 the dynamics (Chen et al., 2018; Finlay et al., 2020). Starting from state space naturally led us to the
 144 ODE formulation. This may seem restrictive, but we will soon see the more general form that will nicely
 145 deal with non-Markovian dynamics through an integral operator. We note that while f and F are distinct
 146 mathematical objects: one a discrete map and the other a differential operator, they are tightly connected.
 147 f approximates the time- Δt flow of the ODE defined by F . Note that f can often be derived from F
 148 by applying a numerical integration scheme. As an example, the Euler method would yield the update:

$$\mathbf{z}_{t+1} \approx \mathbf{z}_t + \Delta t \cdot F(\mathbf{z}_t, \mathbf{u}_t), \quad \text{s.t.} \quad f(\mathbf{z}_t, \mathbf{u}_t) = \mathbf{z}_t + \Delta t \cdot F(\mathbf{z}_t, \mathbf{u}_t) \quad (4)$$

149 It is well-known that the discrete-time dynamics f can be viewed (in this case) as an Euler step
 150 approximation of the continuous flow generated by F .

151 *Remark 2.2.* More sophisticated numerical integrators (Dahlquist & Björck, 2012) (such as
 152 Runge–Kutta methods) yield more accurate discrete update functions f by evaluating F at multiple
 153 intermediate points. The continuous-time function F defines a vector field that characterizes the
 154 instantaneous rate of change of the latent state $\mathbf{z}(t)$. In contrast, the discrete-time update function
 155 f governs how the latent state evolves from one time step to the next.

156 **ODEs to Operator Learning:** The continuous time formulation treats $\mathbf{z}(\cdot)$ as a function in a suitable
 157 function space (e.g., $C^1([0, T]; \mathbb{R}^d)$) and models the evolution as a map from functions to functions.

162 Specifically, the solution $\mathbf{z}(t)$ of the ODE (3) can be viewed as the output of a parameterized nonlinear
 163 operator \mathcal{T}_θ acting on function space (Boullé & Townsend, 2024; Subedi & Tewari, 2025):
 164

$$\mathcal{T}_\theta : (\mathbf{z}_0, \mathbf{u}(\cdot)) \mapsto \mathbf{z}(\cdot) \quad (5)$$

166 which maps an initial state and a control function to the full latent trajectory. \mathcal{T}_θ denotes the flow
 167 operator induced by the vector field F under the initial condition $\mathbf{z}(0) = \mathbf{z}_0$ and θ denotes the
 168 parameters. The observation model in continuous time is typically given by
 169

$$\mathbf{x}(t) = H(\mathbf{z}(t); \phi) + \mathbf{v}(t) \quad (6)$$

171 where $H : \mathbb{R}^d \rightarrow \mathbb{R}^n$ is the observation function with parameters ϕ , and $\mathbf{v}(t) \sim \mathcal{N}(0, R)$ denotes
 172 continuous-time observation noise (often modeled as white noise or band-limited noise in practice).
 173 The foregoing perspective aligns naturally with the framework of **operator learning** (Kovachki et al.,
 174 2023; 2024), where the goal is to learn mappings between infinite-dimensional objects—such as
 175 functions or distributions—rather than pointwise predictors. We will now describe our choice of the
 176 operator and check the potential benefits.
 177

Operators for representing rs-fMRI dynamics: We note that (3) can be expressed in integral form
 178 by integrating the vector field F over time. Assuming sufficient regularity of F , the latent trajectory
 179 satisfies the Volterra-type integral equation (Brunner, 2017):
 180

$$\mathbf{z}(t) = \mathbf{z}_0 + \int_0^t F(\mathbf{z}(\tau), \mathbf{u}(\tau); \theta) d\tau \quad (7)$$

183 which defines a non-linear integral transform governed by F . We emphasize the integral from 0
 184 through t is important: at each time point, the operator K_θ has access to the entire history of the input
 185 trajectory $\mathbf{u}(\cdot)$ from the initial time to the current time. To make the operator structure more explicit,
 186 we observe that the integral in (7) can be expressed as a kernel integral operator acting on the control
 187 function $\mathbf{u}(\cdot)$. Suppose that the vector field F admits the decomposition
 188

$$F(\mathbf{z}(t), \mathbf{u}(t); \theta) = P(\mathbf{z}(t); \theta) + K(\mathbf{z}(t); \theta) \mathbf{u}(t) \quad (8)$$

189 where $P : \mathbb{R}^d \rightarrow \mathbb{R}^d$ represents an autonomous drift term, and $K : \mathbb{R}^d \rightarrow \mathbb{R}^{d \times m}$ defines a
 190 control-dependent (Kidger et al., 2020) modulation of the dynamics. Substituting into (7), we obtain
 191

$$\mathbf{z}(t) = \mathbf{z}_0 + \int_0^t P(\mathbf{z}(\tau); \theta) d\tau + \int_0^t K(\mathbf{z}(\tau); \theta) \mathbf{u}(\tau) d\tau \quad (9)$$

194 The final term defines a non-linear integral operator acting on $\mathbf{u}(\cdot)$, with the kernel $K(\mathbf{z}(\tau); \theta)$:
 195

$$(\mathcal{K}_\theta \mathbf{u})(t) := \int_0^t K(\mathbf{z}(\tau); \theta) \mathbf{u}(\tau) d\tau \quad (10)$$

196 which allows the latent trajectory to be compactly represented as
 197

$$\mathbf{z}(t) = \mathbf{z}_0 + \int_0^t P(\mathbf{z}(\tau); \theta) d\tau + (\mathcal{K}_\theta \mathbf{u})(t) \quad (11)$$

200 The above formulation emphasizes the operator-theoretic nature of the system: the trajectory $\mathbf{z}(t)$
 201 results from the action of a parameterized nonlinear integral operator on the control input $\mathbf{u}(\cdot)$,
 202 combined with an autonomous term driven by P . We can re-write (11) as:
 203

$$z(t) = z_0 + \int_0^t P(z(\tau)) d\tau + \int_0^t K(z(\tau)) du^W(\tau), \quad (12)$$

209 where $u^W(\tau)$ is the multi-scale control path associated with the corresponding Controlled Differential
 210 Equation (CDE) (Kidger et al., 2020). In CDE terminology, the wavelet-transformed path serves as
 211 the “rough path” (Morrill et al., 2021) that encodes history beyond point-wise evaluation. **MnemoDyn**
 212 implements CDEs which are a generalization of ODE, and can capture non-Markovian dependencies.
 213

214 *Remark 2.3.* MnemoDyn’s formulation is an integral equation with a learned kernel K . The main design
 215 choice is parameterization of the integral kernel which avoids the use of numerical solvers otherwise
 prominent on Integral Equation (IE) based formulations like (Zappala et al., 2024). MnemoDyn is
 contextualized within the broader operator learning literature in Appendix A.5

216 **Multi-Resolution Kernel Parameterization:** We focus our attention on parameterizing the kernel
 217 $K(\mathbf{z}(\tau); \theta)$ in a manner that captures the multi-scale structure of neural signals discussed in empirical
 218 studies in neuroscience (Friston, 2008; Hilgetag & Goulas, 2020; Vidaurre et al., 2017; Kiebel et al.,
 219 2008). To reflect this hierarchical organization, we adopt a *multi-resolution analysis* (MRA) framework
 220 based on wavelet bases, enabling the kernel to decompose and act on the input \mathbf{u} across multiple temporal
 221 resolutions. Formally, we represent the kernel as a linear combination of separable wavelet bases:

$$223 \quad K(\mathbf{z}(\tau); \theta) = \sum_{j=0}^J \sum_k \phi_{j,k}(\tau) A_{j,k}(\mathbf{z}(\tau); \theta) \quad (13)$$

226 where $\phi_{j,k}(\tau)$ denotes the wavelet basis function (Mallat, 1999) at scale j and translation k , and
 227 $A_{j,k}$ are matrix-valued functions parameterized by θ , modulated by the current state $\mathbf{z}(\tau)$. This
 228 decomposition provides the kernel with both temporal locality and scale adaptivity, allowing the
 229 system to selectively attend to features of $\mathbf{u}(\cdot)$ at different temporal resolutions. Substituting this into
 230 the operator (10), we obtain:

$$231 \quad (\mathcal{K}_\theta \mathbf{u})(t) = \sum_{j=0}^J \sum_k \int_0^t \phi_{j,k}(\tau) A_{j,k}(\mathbf{z}(\tau); \theta) \mathbf{u}(\tau) d\tau \quad (14)$$

234 The functional role of the wavelet basis is better appreciated when we rewrite the operator by
 235 regrouping terms so that the wavelets act directly on the input signal. We can interpret $\phi_{j,k}$ as localized
 236 filters applied to the control signal $\mathbf{u}(\tau)$ at multiple scales and temporal positions. Specifically, we
 237 define the modulated input:

$$239 \quad \mathbf{u}_{j,k}(\tau) := \phi_{j,k}(\tau) \mathbf{u}(\tau) \quad (15)$$

240 and express the integral operator from (14) as:

$$242 \quad (\mathcal{K}_\theta \mathbf{u})(t) = \sum_{j=0}^J \sum_k \int_0^t A_{j,k}(\mathbf{z}(\tau); \theta) \mathbf{u}_{j,k}(\tau) d\tau \quad (16)$$

245 This makes explicit the two-stage nature of the **operator**: the input signal is first filtered by wavelet
 246 functions $\phi_{j,k}$, isolating localized features at different temporal resolutions, and then transformed
 247 by matrix-valued operators $A_{j,k}$ conditioned on the latent state $\mathbf{z}(\tau)$. This decomposition allows the
 248 system to learn dynamic responses that are both temporally localized and state-dependent. **MnemoDyn**
 249 evaluates the operator on wavelet-integrated summaries of the entire past trajectory, giving it a
 250 non-Markovian property. Finally, these nonlocal integrals are coupled across space (different ROIs)
 251 and time together to modulate the latent dynamics of rs-fMRI.

252 **Compute challenge:** While the above formulation is grounded in known priors for brain signal
 253 modeling, there are a few caveats. First, with the parameterization introduced in (16), we notice
 254 that it needs huge matrices (with increasing sequence length) and a large number of them to
 255 cover different scales and locations. Second,
 256 rs-fMRI data is inherently high dimensional, and
 257 hence we need a very large latent dimension to
 258 evolve the dynamics. These two issues would
 259 render the formulation not very useful, especially
 260 if we are targeting compute efficiency. Next, we
 261 will discuss how we circumvent these issues in
 262 practice Fig. 2.

262 **Pseudo-differential operator:** Given the inherently non-local and multiscale structure of neural
 263 signals, we note that pseudo-differential operators
 264 (Hörmander, 2007) are a potential choice
 265 for parameterization of the kernel. Interestingly,
 266 wavelets interact in a very fascinating way with
 267 pseudo differential operators leading to a sparse
 268 representation (bey, 1991). In fact, our choice of representing the signal in wavelet space in (15) and
 269 (16), makes pseudo-differential operators an especially attractive choice: (a) the interaction between

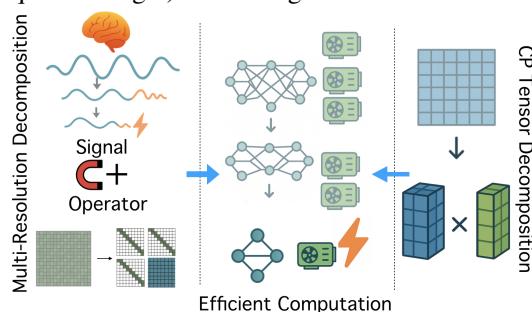
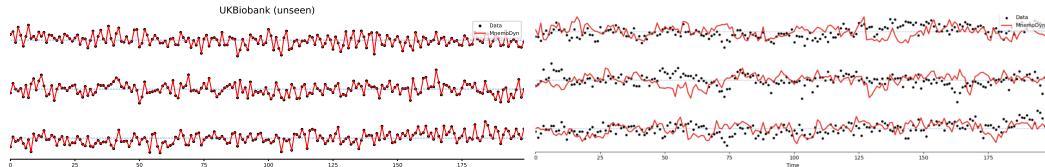


Figure 2: Wavelet-based multi-resolution decomposition of rs-fMRI signals and operator along with CP tensor factorization of model parameters enable efficient computation in **MnemoDyn**.



270
271
272
273
274
275
Figure 3: Reconstruction of rs-fMRI for UK-Biobank. Three parcels of unseen data are shown. We
276 show the output of vanilla auto-encoding on the left and masked auto-encoding on the right.

277 the model parameters and latent dynamics is now fully expressed in the wavelet domain, and (b) the
278 operator admits a highly compact, block diagonal representation in this basis leading to both expressive
279 and computationally efficient modeling, as shown in (bey, 1991; Pal et al., 2023).

280 **Low-Rank parameter decomposition:** Due to the large number of spatial locations (voxels, sensors)
281 dynamics of rs-fMRI, we need a high-dimensional latent space. This dimensionality poses challenges
282 for learning and generalization, especially when the sample size is limited. To address this, we adopt
283 a structured low-rank (Kishore Kumar & Schneider, 2017) representation of the model parameters
284 using tensor decompositions, which provide a principled way to reduce the number of free parameters
285 while preserving expressivity. Specifically, we employ the *Canonical Polyadic* (CP) to parameterize
286 the collection of operators or parameter matrices in our model. The CP decomposition represents a
287 tensor $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times \dots \times I_N}$ as a sum of rank-one outer products:

$$288 \quad \mathcal{X} \approx \sum_{r=1}^R \lambda_r a_r^{(1)} \otimes a_r^{(2)} \otimes \dots \otimes a_r^{(N)} \quad (17)$$

290 where $\lambda_r \in \mathbb{R}$ and $a_r^{(n)} \in \mathbb{R}^{I_n}$ are mode- n factor vectors. Each term captures a separable interaction
291 across modes. This structure is particularly well-suited for representing the parameter tensors associated
292 with our pseudo-differential operators in the wavelet space, enabling scalable and structured modeling
293 of complex latent dynamics associated with brain signals.

294 *Remark 2.4.* We use the standard latent-space dynamical-systems framing for the problem, where
295 BOLD activity is modeled through evolution in a lower-dimensional latent space rather than through
296 explicit neurophysiology. **MnemoDyn** parameterizes via a multi-resolution pseudo-differential operator,
297 which decomposes temporal interactions across scales and offers interpretability in terms of
298 operator spectrum and scale-specific influence. This structure, however, should not be regarded as
299 physiological validation, a limitation shared with existing data-driven baseline rs-fMRI models such as
300 Brain-JEPA (Dong et al., 2024) and BrainLM (Caro et al.).

301 **Implementation details:** While the formulation above describes modeling the dynamics via a single
302 latent space, we observe that stacking multiple such blocks, with varying latent dimensions, helps
303 improve the representation of the model. Furthermore, adding residual connections akin to the design
304 choice in transformer blocks further enhances performance. The block diagonal parameterization arising
305 from the design choice of applying wavelet transforms on pseudo-differential operators (mentioned
306 above) is implemented using multiple convolution filters and computation is parallelized for efficiency.
307 We observe very minor variations when checking the impact of different wavelet families. We use db2
308 for all experimental results presented in the paper.

309 *Remark 2.5.* **MnemoDyn** is positioned as a *foundation model* within rs-fMRI as it exhibits clear scaling
310 trends with model depth and pre-training data, and transfers robustly across heterogeneous datasets
311 and downstream tasks. These are elaborated in Section 3 and in Appendix A.4.

313 3 EXPERIMENTS

315 Here, we describe the end to end pipeline for **MnemoDyn**. We first list the datasets used both in the
316 pre-training and finetuning phases. Then, we describe the training procedure for both stages. Finally,
317 we present empirical evidence showing the efficacy of MnemoDyn. A variety of additional details are
318 included in the Appendix. Our code and pre-trained model will be publicly available.

320 3.1 DATASETS

322 We performed large-scale self-supervised pretraining using two different datasets. The first is **UK**
323 **Biobank** (Miller et al., 2016), a public resource that provides the largest publicly available resting-state
fmRI data for $\sim 65K$ samples. We consider subjects in the age range 44 to 69. The data were collected

324 across multiple sites with a temporal resolution of 0.735s. We trained a separate model utilizing
 325 rs-fMRI data from the **Human Connectome Project (HCP)** (Human Connectome Project, 2017) with
 326 temporal resolution of 0.72s. This is a medium size dataset but has much larger sequence lengths, 1200
 327 compared to about 500 in **UK Biobank**. The sample size is ~ 1000 . As we will discuss later, both
 328 these models are comparable in terms of representation capability and improved performance when
 329 fine-tuned for predictive tasks. In each case, we used 80% of this dataset for pretraining (including
 330 computation of normalization statistics) while the remaining 20% was held out for validation purposes
 331 and internal downstream evaluations on age and sex prediction.

332 *Remark 3.1.* Pre-training MnemoDyn (with 92M parameters) can be performed on a single A100
 333 40 GB GPU in ~ 3 hours with maximum memory usage. This is much cheaper compared to the
 334 configuration of 4 GPUs in other baselines (Dong et al., 2024). We attribute this to the efficient design
 335 choice of operators in MnemoDyn implemented using convolution kernels. Further, this also enables
 336 training a sample efficient foundation model utilizing data from **HCP** alone which would otherwise be
 337 insufficient for attention-based models (Caro et al.; Dong et al., 2024).

338 In order to demonstrate the effective representation power of MnemoDyn, we use six additional
 339 rs-fMRI datasets. The choice of these datasets is based on the two important baseline models we
 340 compare with, namely Brain-LM (Caro et al.) and Brain-JEPA (Dong et al., 2024). These datasets
 341 are as follows: (a) **HCP-Aging** (Elam et al., 2021), containing rs-fMRI from 656 elderly participants,
 342 used for trait (Neuroticism and Flanker score) and demographic (age and sex) prediction. (b) **ADNI**
 343 (Jack Jr et al., 2008), which includes rs-fMRI scans for studies of Alzheimer’s disease. Following
 344 (Dong et al., 2024) we used 189 participants for normal control (NC) vs. mild cognitive impairment
 345 (MCI) classification, and 100 cognitively normal participants for amyloid positive vs. negative
 346 (c) **Healthy Brain Network** (Alexander et al., 2017) which is a large-scale pediatric classification.
 347 neuroimaging initiative, was used for the classifica-
 348 tion of age and sex. (d) **ADHD-200** (Bellec et al.,
 349 2016), consisting of rs-fMRI from children and ado-
 350 lesscents, used for sex classification and attention
 351 deficit/hyperactivity disorder vs. typically devel-
 352 oping control classification. (e) **ABIDE (Autism**
 353 **Brain Imaging Data Exchange**) (Di Martino et al.,
 354 2014), which aggregates data across multiple sites,
 355 used for autism spectrum disorder (ASD) versus control classification. (f) **NKIR** (Tobe et al., 2022), a
 356 clinical neuro-imaging resource with diverse populations, used for classification of sex.

357 3.2 PRE-PROCESSING

358 We now describe the pre-processing steps that were performed to convert and standardize the raw
 359 rs-fMRI data to the time-series format on which the foundation model was trained. (a) **NIfTI** \rightarrow
 360 **CIFTI**: Raw BIDS-formatted rs-fMRI volumes were first converted into HCP-style dense time series
 361 (`.dtseries.nii`), aligning cortical and subcortical signals within the 91282-gray-ordinate space.
 362 This step ensures subject-level consistency and enables downstream use of surface-based atlases.
 363 (b) **CIFTI** \rightarrow **Parcellation**: Each `.dtseries.nii` was then parcellated into region-level time series
 364 using the well-established atlases, yielding matrices $\mathbf{X} \in \mathbb{R}^{T \times N}$ where T is the sequence length and
 365 N is the number of parcels. Following (Dong et al., 2024), we used $N = 450$ using Schaefer-400
 366 (Schaefer et al., 2018) for cortical regions and Tian-Scale (Tian et al., 2020) for sub-cortical regions.
 367 (c) **Normalization**: Finally, parcel-wise signals were robustly normalized based only on training data
 368 statistics, using median and interquartile range (IQR). This procedure reduces the influence of outliers
 369 and harmonizes input scales across regions and subjects. Complete algorithmic details, including
 370 projection steps, atlas handling, and normalization equations, are provided in Appendix A.1.

371 3.3 PRE-TRAINING AND FINE-TUNING

372 **Architecture:** Our model **MnemoDyn** were briefly outlined in Sec. 2. Each layer in MnemoDyn
 373 operates at a different wavelet scale, enabling the model to capture both fine-scale fluctuations and long-
 374 range temporal structure in resting-state dynamics. Layers are coupled through residual connections,
 375 which progressively integrates information across scales and helps mitigate vanishing signal issues
 376 common in long sequences. Many of these layers come together to comprise an encoder block which
 377 transforms the data from one function space to another (*operator*). MnemoDyn stacks multiple of these

Foundation Model	UK-Biobank (MSE, R ²)	HCP (MSE, R ²)
MnemoDyn-UKB	2.36e-5, 0.985	4.52e-08, 0.934
MnemoDyn-HCP	1.86e-09, 0.969	3.94e-06, 0.987

378 Table 1: **Validation reconstruction MSE and R² score.** We see good generalization across founda-
 379 tion models trained with different data.

378 blocks. The input data is of sequence length 1200 (for HCP) and 490 (for UK Biobank) with $N = 450$ 379 brain regions (ROIs). The backbone first projects these ROI signals into a hidden space, compresses 380 them into a low-rank bottleneck. Temporal dependencies are modeled using wavelet bases (db2) 381 stacked over multiple resolution levels. Unless otherwise specified, nonlinearities are tanh, chosen for 382 their stability in continuous-time operator approximations.

383 **Pre-Training Strategy:** We evaluated several different strategies. **MnemoDyn-**
 384 **Denoise is trained using denoising auto-encoding objective outlined in Appendix A.2.2.**
 385 MnemoDyn-Mask is a *masked autoencoder* objective that masks temporal and spatial blocks
 386 at random and learns to reconstruct them from surrounding context, forcing the model to learn
 387 long-range dependencies as shown in Fig. 4 and
 388 **Appendix A.2.3.** We also adapt the masking
 389 scheme from (Dong et al., 2024) for MnemoDyn-
 390 Mask-JEPA. We mask 70% of the observed sig-
 391 nal spanning temporal and spatial dimensions in
 392 the models presented here. AdamW is used as
 393 the optimizer with cosine annealing and warm
 394 restarts, gradient clipping, and early stopping.
 395 The objective is a combination of mean squared
 396 error (MSE) and mean absolute error (MAE).
 397

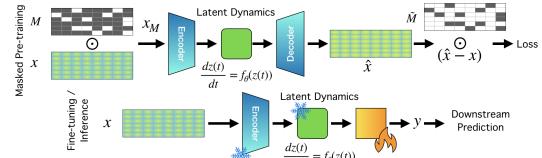
398 **Fine-Tuning:** For downstream tasks, we freeze the pretrained backbone and attach a task-specific
 399 regression/classification head which is trainable. The default head is a multi-layer perceptron (MLP)
 400 applied to pooled backbone features (averaged over time and ROIs). In particular, inputs are mapped
 401 through successive layers, each followed by LayerNorm, GELU, and dropout ($p = 0.1$), before a final
 402 linear layer outputs logits. The training objective depends on the task: mean squared error (MSE) for
 403 regression tasks (e.g., age prediction), and cross-entropy for classification tasks (e.g., sex, diagnosis).
 404 Adam is used as the optimizer with a ReduceLROnPlateau scheduler. Unless otherwise noted, robust
 405 normalization (A.1.3) is retained while extracting features from our pre-trained MnemoDyn.

Methods	NC/MCI (ADNI)		Amyloid +ve/-ve (ADNI)		Age (UKB)	Sex (UKB)	
	ACC(%) \uparrow	F1(%) \uparrow	ACC(%) \uparrow	F1(%) \uparrow		MSE \downarrow	ACC(%) \uparrow
BrainNetCNN	60.00 (3.51)	64.72 (3.18)	59.00 (2.00)	59.43 (1.14)	0.99 (0.03)	77.86 (0.98)	78.17 (0.86)
BrainGNN	67.40 (2.93)	71.42 (2.87)	57.00 (4.00)	62.61 (3.48)	0.93 (0.04)	77.31 (0.33)	79.23 (0.31)
BNT	78.90 (4.12)	83.14 (3.58)	62.00 (2.45)	59.53 (0.58)	0.86 (0.03)	80.78 (0.40)	82.42 (0.36)
BrainLM	75.79 (1.05)	85.66 (1.27)	67.00 (7.48)	68.82 (8.48)	0.61 (0.04)	86.47 (0.74)	86.84 (0.43)
Brain-JEPA	76.84 (1.05)	86.32 (0.54)	71.00 (4.90)	75.97 (3.93)	0.50 (0.03)	88.17 (0.06)	88.58 (0.11)
MnemoDyn-Mask	96.12 (0.31)	95.98 (0.29)	95.27 (0.39)	95.61 (0.37)	0.44 (0.05)	88.40 (0.32)	88.27 (0.41)
MnemoDyn-Mask-JEPA	93.67 (0.89)	93.32 (1.09)	94.89 (1.09)	94.60 (1.23)	0.42 (0.03)	88.30 (0.36)	88.28 (0.41)

416 Table 2: Test set performance in terms of mean (standard deviation) of MnemoDyn when fine-tuned
 417 on separate predictive tasks. Results include disease diagnosis (NC vs. MCI) and biomarker status
 418 prediction (Amyloid +ve/-ve) from ADNI (left), as well as age regression and sex classification from
 419 UK Biobank (right). Different fine-tuned variants of MnemoDyn consistently achieve lower error
 420 and higher/comparable accuracy/F1 compared to prior baselines. We report F1 score in addition to
 421 accuracy to take into account class imbalance.

Methods	Age		Sex		Neuroticism	Flanker
	MSE \downarrow	ACC (%) \uparrow	F1 (%) \uparrow	MSE \downarrow		
BrainLM	1.14 (0.22)	75.27 (1.24)	73.19 (1.12)	1.05 (0.12)	0.77 (0.11)	
Brain-JEPA	1.02 (0.01)	79.17 (1.29)	76.29 (1.17)	0.99 (0.01)	1.28 (0.01)	
MnemoDyn-Denoise	0.91 (0.02)	80.2 (0.12)	80.11 (0.11)	0.91 (0.02)	0.61 (0.02)	
MnemoDyn-Mask	0.90 (0.01)	83.10 (0.57)	82.77 (0.54)	0.90 (0.03)	0.60 (0.01)	
MnemoDyn-Mask-JEPA	0.90 (0.01)	82.57 (0.35)	82.23 (0.41)	0.90 (0.02)	0.60 (0.01)	

431 Table 3: Performance of MnemoDyn when fine-tuned on External tasks of demographics and trait
 432 prediction on HCP-Aging. We report mean (standard deviation) for each metric. Our model achieves
 433 strong improvements in predicting age, sex, and cognitive/behavioral traits (Neuroticism, Flanker) on
 434 the test set. We report F1 score in addition to accuracy account for class imbalance.



435 Figure 4: Masked pre-training and fine-tuning of **MnemoDyn**. We note that the dynamics are
 436 evolved in the latent space followed by the encoder, which is eventually used to fine-tune adapter layers
 437 for downstream tasks. In pre-training phase, loss is
 438 computed only on the unseen spatio-temporal data.
 439

432 3.4 EVALUATION
433

434 We evaluate MnemoDyn for its representation capability as well as fine-tuned performance on multiple
435 benchmarks. Here, we present results for UK-Biobank, HCP, HCP-Aging and ADNI. Additional results
436 on a broad basket of datasets are in the Appendix. Our choice of baselines follow (Caro et al.; Dong
437 et al., 2024) and include existing stand-alone deep learning models (**BrainCNN** (Kawahara et al., 2017),
438 **BrainGNN** (Li et al., 2021), **BNT** Kan et al. (2022)) as well as foundation models (**BrainLM** (Caro
439 et al.), **Brain-JEPA** (Dong et al., 2024)) for rs-fMRI data analysis. **We used graph-based and CNN**
440 **models as our simple baselines for whole-brain rs-fMRI. More reduced models require task-specific**
441 **network extraction or coarse connectivity features, which underperform the baselines reported here.**

442 **Representation capability of MnemoDyn:** We demonstrate the representation capacity of MnemoDyn
443 by evaluating the reconstruction performance on held-out test data. In Fig. 3, we can see that after pre-
444 training on UK-Biobank, MnemoDyn can faithfully recover the signal not only for unseen data. These
445 are further numerically demonstrated in Table 1, where we perform a cross-evaluation of MnemoDyn
446 models trained on UK-Biobank and HCP to reconstruct held-out data from either dataset.

447 **Predictive Performance on Fine-Tuning:** By comparing performance of fine-tuned MnemoDyn on a
448 variety of predictive tasks on a large collection of rs-fMRI datasets, we demonstrate the efficacy of
449 MnemoDyn as a foundation model. We report results from two variants trained on UK-Biobank using
450 pre-training strategies (Mask and Mask-JEPA) described above. Additional results are in Appendix.

451 **(i) Disease Diagnosis and Prognosis (ADNI):** We fine-tune MnemoDyn on external prediction tasks
452 using the ADNI cohort, focusing on (a) differentiating normal controls (NC) from mild cognitive
453 impairment (MCI), and (b) predicting amyloid biomarker status +ve/-ve (Sperling, 2011). Fine-tuned
454 variants of MnemoDyn substantially outperform baselines (Table 2), achieving SOTA accuracy and F1
455 scores, underscoring its robustness and effectiveness for both diagnostic and prognostic settings.

456 **(ii) Demographic Prediction (UK-Biobank):** While MnemoDyn was pre-trained using UK-Biobank,
457 we fine-tuned a model on a held-out set for predicting age and sex. We observe (Table 2) that finetuning
458 has comparable/improved performance over baselines, underscoring the effectiveness of pre-training.

459 **(iii) Demographic and Trait Prediction (HCP-Aging):** We further evaluate MnemoDyn on demo-
460 graphic (age, sex) and cognitive/behavioral trait prediction (neuroticism, flanker) using the HCP-Aging
461 dataset. Fine-tuned variants of MnemoDyn consistently outperform strong baselines (Table 3), yielding
462 lower MSE and higher correlation for regression tasks (age, neuroticism, flanker) as well as higher
463 accuracy and F1 scores for sex classification. These results highlight the versatility of MnemoDyn
464 across both categorical and continuous prediction settings, suggesting that it works well as a gener-
465 alizable foundation model. **Here, we also check different variants of MnemoDyn in the pre-training**
466 **strategy and observe that despite varying objectives in the pre-training phase MnemoDyn improves**
467 **performance in downstream tasks, asserting that the performance driving factor for MnemoDyn is**
468 **indeed the operator-theoretic parameterization and not merely the pre-training objective**

469 *Summary.* These results show the effectiveness of MnemoDyn as a foundation model which can be
470 fine-tuned for a wide-variety of tasks. We also observe that both pre-training strategies perform equally
471 well suggesting the robustness of MnemoDyn to small changes in the training algorithm.

472 **Discussion.** Our analysis shows that pre-training induces a clear multi-scale organization aligned
473 with our wavelet-domain parameterization. Frobenius norms concentrate in operator kernels. This
474 indicates that the dynamics are driven by structured cross-scale filters rather than dense mappings.
475 Dense components shrink rapidly with depth, suggesting later layers rely increasingly on the global
476 structure encoded by the operator. Sparsity patterns further support this: the wavelet-operator kernels
477 remain fully dense (as expected for smooth, global transforms), while output-projection matrix is
478 $\sim 95\%$ sparse. Additional details in Appendix A.3.

480 4 RELATED WORK
481

482 **Operator Learning and State Space Models:** Operator learning (Kovachki et al., 2023) has recently
483 emerged as a promising paradigm for learning mappings between infinite-dimensional function spaces,
484 particularly for modeling dynamics governed by differential equations. Early works such as DeepONet
485 (Lu et al., 2021) and the Fourier Neural Operator (FNO) (Li et al.) demonstrated the feasibility of

486 learning solution operators to parametric PDEs. These approaches have since been extended to irregular
 487 domains (Li et al., 2020), stochastic dynamics, and implicit formulations. State space models (SSMs)
 488 explicitly factorize latent evolution and observation mechanisms (Gu et al.). Recent works have
 489 focused on combining neural networks with structured transition kernels (Mehta et al.; Gu et al., 2020).
 490 However, majority of existing SSMs are not tailored to the specific properties of neurophysiological
 491 data, nor have they explored multiscale bases such as wavelets for learning dynamics.

492 **Attention-Based Models for Brain Imaging Data:** Transformer architectures have been proposed for
 493 modeling spatiotemporal data in neuroscience, including fMRI (Kan et al., 2022), EEG (Song et al.,
 494 2021), and MEG (Xu et al., 2025). Recent critical evaluations have pointed out several limitations. First,
 495 attention-based models often underperform in scenarios involving long-range, noisy, or irregularly
 496 sampled signals (Zeng et al., 2023). Second, their inductive biases are often mismatched to brain
 497 dynamics, which exhibit strong local temporal correlations, hierarchical structure, and subject-specific
 498 variability. Finally, their memory and compute requirements make them impractical for resource-
 499 constrained settings. While some transformer variants introduce inductive structure (e.g., temporal
 500 sparsity (Gorbatch et al., 2023)), their complexity often remains high compared to classical or recurrent
 501 baselines. Finally, attention based models involve tokenization and patching which is a mismatch for
 502 brain imaging data derived from inherent continuous processes. Our work offers a domain-aligned
 503 alternative, avoiding global attention mechanisms entirely while still capturing long-range structure.
 504

505 **Lightweight Models for Domain-Specific Sequence Modeling:** Recent works advocate against
 506 the overuse of large attention-based or foundation models for structured domains (Xu et al.) such as
 507 time series and brain imaging data. Benchmark studies (Zeng et al., 2023; Tan et al., 2024) show that
 508 compact, domain-aligned models relying on CNNs/RNNs can outperform Transformers on time series
 509 tasks, especially in low-data regimes. Recent evidence also suggests that Transformers can be over-
 510 parameterized and ill-suited for biomedical time series, where long sequences, noise, and multiscale
 511 localized dynamics dominate (Xu et al.; Kim et al.). In biomedical signal processing, convolutional and
 512 recurrent architectures have been preferred for their efficiency and robustness (Kiranyaz et al., 2015;
 513 Faust et al., 2018). In neuroscience, studies show shallow or linear models perform competitively on
 514 fMRI decoding and EEG tasks (Makeig et al., 2004), while offering better interpretability and less risk
 515 of overfitting (Haufe et al., 2014). These findings collectively motivate structure-aware architectures in
 516 domains where data is noisy, multiscale (Vidaurre et al., 2017) and expensive to acquire.
 517

5 CONCLUSIONS

518 Domain-specific inductive biases and compact architectures often surpass large generic foundation
 519 models when data is limited or structured. This is especially true in neuroscience, where brain imaging
 520 data are noisy, heterogeneous, and expensive to acquire. Moreover, neuroimaging signals emerge from
 521 intrinsic dynamical systems with rich multiscale structure, favoring models that emphasize temporal
 522 locality and sparsity. Our work proposed a compact dynamical system based model MnemoDyn tailored
 523 for rs-fMRI. Unlike attention-based approaches, we frame learning as the identification of governing
 524 dynamical laws. We utilize the interaction between wavelets and pseudo-differential operators, and so
 525 MnemoDyn achieves efficiency/sparsity through structured decomposition, maintaining the temporal
 526 locality essential for modeling brain dynamics.
 527

528 While our results of fine-tuning MnemoDyn demonstrate strong performance across diagnostic,
 529 prognostic, and trait prediction tasks, there are some limitations. First, our experiments are limited to
 530 parcellated rs-fMRI data; extending the model to voxel-level or multimodal inputs (e.g., EEG, PET)
 531 is an important future direction. Second, extending the framework to longitudinal studies will be an
 532 important next step in establishing the full potential of MnemoDyn. Addressing these limitations will
 533 help translate compact dynamical system models into robust, domain-adapted foundation models for
 534 neuroscience. **While MnemoDyn provides interpretable multi-scale temporal structure, establishing**
 535 **genuine neurophysiological correspondence remains open and is a natural direction for future work.**
 536

6 REPRODUCIBILITY STATEMENT

537 Details of model architecture, training, and evaluation are provided in the main text and appendix.
 538 Code, pre-processing scripts, and pre-trained model weights will be released publicly via Hugging
 539 Face upon acceptance to ensure full reproducibility.
 540

540 **7 ETHICS STATEMENT**
 541

542 This work uses publicly available, de-identified rs-fMRI datasets under appropriate data usage agree-
 543 ments. No new human or animal data were collected, and the study complies with institutional and
 544 ICLR ethical guidelines. Our methods are designed for scientific research in neuroscience and health-
 545 care, and we do not foresee any direct negative societal impact. Nonetheless, as with any machine
 546 learning model applied to health-care data, risks include potential misuse for inappropriate prediction
 547 or diagnosis outside clinically validated settings. We stress that our approach is a research contribution
 548 and should not be directly applied for medical decision-making without further validation.

549
 550 **REFERENCES**
 551

552 Fast wavelet transforms and numerical algorithms i. *Communications on pure and applied mathematics*,
 553 44(2):141–183, 1991.

554 Lindsay M. Alexander, Jasmine Escalera, Lei Ai, Charissa Andreotti, Karina Febre, Alexander
 555 Mangone, Natan Vega Potler, Nicolas Langer, Alexis Alexander, Meagan Kovacs, Shannon Litke,
 556 Bridget O’Hagan, Jennifer Andersen, Batya Bronstein, Anastasia Bui, Marijayne Bushey, Henry
 557 Butler, Victoria Castagna, Nicolas Camacho, Elisha Chan, Danielle Citera, Jon Clucas, Samantha
 558 Cohen, Sarah Dufek, Megan Eaves, Brian Fradera, Judith Gardner, Natalie Grant-Villegas, Gabriella
 559 Green, Camille Gregory, Emily Hart, Shana Harris, Megan Horton, Danielle Kahn, Katherine
 560 Kabotyanski, Bernard Karmel, Simon P. Kelly, Kayla Kleinman, Bonhwang Koo, Eliza Kramer,
 561 Elizabeth Lennon, Catherine Lord, Ginny Mantello, Amy Margolis, Kathleen R. Merikangas, Judith
 562 Milham, Giuseppe Minniti, Rebecca Neuhaus, Alexandra Nussbaum, Yael Osman, Lucas C. Parra,
 563 Ken R. Pugh, Amy Racanello, Anita Restrepo, Tian Saltzman, Batya Septimus, Russell Tobe, Rachel
 564 Waltz, Anna Williams, Anna Yeo, Francisco X. Castellanos, Arno Klein, Tomas Paus, Bennett L.
 565 Leventhal, R. Cameron Craddock, Harold S. Koplewicz, and Michael P. Milham. An open resource
 566 for transdiagnostic research in pediatric mental health and learning disorders. *bioRxiv*, 2017. doi:
 567 10.1101/149369.

568 Adrien Bardes, Quentin Garrido, Jean Ponce, Michael Rabbat, Yann LeCun, Mahmoud Assran,
 569 and Nicolas Ballas. Revisiting feature prediction for learning visual representations from video.
 570 *arXiv:2404.08471*, 2024.

571 Erol Basar, Tamer Demiralp, Martin Schürmann, Canan Basar-Eroglu, and Ahmet Ademoglu. Os-
 572 cillatory brain dynamics, wavelet analysis, and cognition. *Brain and language*, 66(1):146–183,
 573 1999.

574 Pierre Bellec, Carlton Chu, François Chouinard-Decorte, Daniel S. Margulies, and R. Cameron
 575 Craddock. The neuro bureau adhd-200 preprocessed repository. *bioRxiv*, 2016. doi: 10.1101/037044.

576 Jacob CW Billings, Alessio Medda, Sadia Shakil, Xiaohong Shen, Amrit Kashyap, Shiyang Chen,
 577 Anzar Abbas, Xiaodi Zhang, Maysam Nezafati, Wen-Ju Pan, et al. Instantaneous brain dynamics
 578 mapped to a continuous state space. *Neuroimage*, 162:344–352, 2017.

579 Rasmus M. Birn, Erin K. Molloy, Rémi Patriat, Taurean Parker, Timothy B. Meier, Gregory R. Kirk,
 580 Veena A. Nair, M. Elizabeth Meyerand, and Vivek Prabhakaran. The effect of scan length on the
 581 reliability of resting-state fmri connectivity estimates. *NeuroImage*, 83:550–558, 2013. ISSN
 582 1053-8119. doi: <https://doi.org/10.1016/j.neuroimage.2013.05.099>.

583 Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
 584 Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportunities
 585 and risks of foundation models. *arXiv preprint arXiv:2108.07258*, 2021.

586 Nicolas Boullé and Alex Townsend. A mathematical guide to operator learning. In *Handbook of*
 587 *Numerical Analysis*, volume 25, pp. 83–125. Elsevier, 2024.

588 Michael Breakspear. “dynamic” connectivity in neural systems: theoretical and empirical considera-
 589 tions. *Neuroinformatics*, 2:205–224, 2004.

594 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
 595 Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
 596 transformer for real-world control at scale. *arXiv preprint arXiv:2212.06817*, 2022.

597

598 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 599 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 600 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

601

602 Hermann Brunner. *Volterra integral equations: an introduction to theory and applications*, volume 30.
 603 Cambridge University Press, 2017.

604

605 Weidong Cai, Stacie L Warren, Katherine Duberg, Bruce Pennington, Stephen P Hinshaw, and Vinod
 606 Menon. Latent brain state dynamics distinguish behavioral variability, impaired decision-making,
 607 and inattention. *Molecular psychiatry*, 26(9):4944–4957, 2021.

608

609 Josue Ortega Caro, Antonio Henrique de Oliveira Fonseca, Syed A Rizvi, Matteo Rosati, Christopher
 610 Averill, James L Cross, Prateek Mittal, Emanuele Zappala, Rahul Madhav Dhodapkar, Chadi
 611 Abdallah, et al. Brainlm: A foundation model for brain activity recordings. In *The Twelfth
 International Conference on Learning Representations*.

612

613 Hui Chen, Viet Luong, Lopamudra Mukherjee, and Vikas Singh. SimpleTM: A simple baseline
 614 for multivariate time series forecasting. In *The Thirteenth International Conference on Learning
 615 Representations*, 2025.

616

617 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
 618 differential equations. *Advances in neural information processing systems*, 31, 2018.

619

620 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
 621 Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling
 622 language modeling with pathways. *Journal of Machine Learning Research*, 24(240):1–113, 2023.

623

624 Germund Dahlquist and Åke Björck. *Numerical methods*. Courier Corporation, 2012.

625

626 Gustavo Deco, Viktor K Jirsa, and Anthony R McIntosh. Emerging concepts for the dynamical
 627 organization of resting-state activity in the brain. *Nature reviews neuroscience*, 12(1):43–56, 2011.

628

629 Adriana Di Martino, Chao-Gan Yan, Qingyang Li, Erin Denio, Francisco X Castellanos, Kaat Alaerts,
 630 Jeffrey S Anderson, Michal Assaf, Susan Y Bookheimer, Mirella Dapretto, et al. The autism brain
 631 imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism.
 632 *Molecular psychiatry*, 19(6):659–667, 2014.

633

634 Zijian Dong, Ruilin Li, Yilei Wu, Thuan Tinh Nguyen, Joanna Su Xian Chong, Fang Ji, Nathanael
 635 Ren Jie Tong, Christopher Li Hsian Chen, and Juan Helen Zhou. Brain-jepa: Brain dynamics
 636 foundation model with gradient positioning and spatiotemporal masking. *NeurIPS 2024*, 2024.

637

638 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 639 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is
 640 worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint arXiv:2010.11929*,
 2020.

641

642 Egidio D’Angelo and Viktor Jirsa. The quest for multiscale brain modeling. *Trends in neurosciences*,
 643 45(10):777–790, 2022.

644

645 Jennifer Stine Elam, Matthew F Glasser, Michael P Harms, Stamatis N Sotiroopoulos, Jesper LR
 646 Andersson, Gregory C Burgess, Sandra W Curtiss, Robert Oostenveld, Linda J Larson-Prior, Jan-
 647 Mathijs Schouffelen, et al. The human connectome project: a retrospective. *NeuroImage*, 244:118543,
 2021.

648

649 Oliver Faust, Yuki Hagiwara, Tan Jen Hong, Oh Shu Lih, and U Rajendra Acharya. Deep learning for
 650 healthcare applications based on physiological signals: A review. *Computer methods and programs
 651 in biomedicine*, 161:1–13, 2018.

648 Chris Finlay, Jörn-Henrik Jacobsen, Levon Nurbekyan, and Adam Oberman. How to train your neural
 649 ode: the world of jacobian and kinetic regularization. In *International conference on machine*
 650 *learning*, pp. 3154–3164. PMLR, 2020.

651 Karl Friston. Hierarchical models in the brain. *PLoS computational biology*, 4(11):e1000211, 2008.

652 Karl J Friston. Functional and effective connectivity: a review. *Brain connectivity*, 1(1):13–36, 2011.

653 Matt Gorbett, Hossein Shirazi, and Indrakshi Ray. Sparse binary transformers for multivariate time
 654 series modeling. In *Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery*
 655 *and Data Mining*, pp. 544–556, 2023.

656 Evan M. Gordon, Timothy O. Laumann, Babatunde Adeyemo, Jeremy F. Huckins, William M. Kelley,
 657 and Steven E. Petersen. Generation and evaluation of a cortical area parcellation from resting-state
 658 correlations. *Cerebral Cortex*, 26(1):288–303, 10 2014. ISSN 1047-3211.

659 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. In *First*
 660 *Conference on Language Modeling*.

661 Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured state
 662 spaces. In *International Conference on Learning Representations*.

663 Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory with
 664 optimal polynomial projections. *Advances in neural information processing systems*, 33:1474–1487,
 665 2020.

666 Philip Hartman. *Ordinary differential equations*. SIAM, 2002.

667 Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and Daniela
 668 Rus. Liquid structural state-space models. In *The Eleventh International Conference on Learning*
 669 *Representations*.

670 Stefan Haufe, Frank Meinecke, Kai Görgen, Sven Dähne, John-Dylan Haynes, Benjamin Blankertz,
 671 and Felix Bießmann. On the interpretation of weight vectors of linear models in multivariate
 672 neuroimaging. *Neuroimage*, 87:96–110, 2014.

673 Claus C Hilgetag and Alexandros Goulas. ‘hierarchy’ in the organization of brain networks. *Philosophical*
 674 *Transactions of the Royal Society B*, 375(1796):20190319, 2020.

675 Lars Hörmander. Pseudo-differential operators. In *The Analysis of Linear Partial Differential Operators*
 676 *III: Pseudo-Differential Operators*, pp. 63–179. Springer, 2007.

677 Human Connectome Project. Extensively processed fmri data documentation. <https://www.humanconnectome.org/study/hcp-young-adult/document/extensively-processed-fmri-data-documentation>, 2017. Accessed: 2025-09-23.

678 Clifford R Jack Jr, Matt A Bernstein, Nick C Fox, Paul Thompson, Gene Alexander, Danielle Harvey,
 679 Bret Borowski, Paula J Britson, Jennifer L. Whitwell, Chadwick Ward, et al. The alzheimer’s disease
 680 neuroimaging initiative (adni): Mri methods. *Journal of Magnetic Resonance Imaging: An Official*
 681 *Journal of the International Society for Magnetic Resonance in Medicine*, 27(4):685–691, 2008.

682 Yohan J John, Kayle S Sawyer, Karthik Srinivasan, Eli J Müller, Brandon R Munn, and James M
 683 Shine. It’s about time: Linking dynamical systems with human neuroimaging to understand the
 684 brain. *Network Neuroscience*, 6(4):960–979, 2022.

685 Xuan Kan, Wei Dai, Hejie Cui, Zilong Zhang, Ying Guo, and Carl Yang. Brain network transformer.
 686 *Advances in Neural Information Processing Systems*, 35:25586–25599, 2022.

687 Jeremy Kawahara, Colin J Brown, Steven P Miller, Brian G Booth, Vann Chau, Ruth E Grunau, Jill G
 688 Zwicker, and Ghassan Hamarneh. Brainnetcnn: Convolutional neural networks for brain networks;
 689 towards predicting neurodevelopment. *NeuroImage*, 146:1038–1049, 2017.

690 Patrick Kidger, James Morrill, James Foster, and Terry Lyons. Neural controlled differential equations
 691 for irregular time series. *Advances in neural information processing systems*, 33:6696–6707, 2020.

702 Stefan J Kiebel, Jean Daunizeau, and Karl J Friston. A hierarchy of time-scales and the brain. *PLoS*
 703 *computational biology*, 4(11):e1000209, 2008.

704

705 Dongbin Kim, Jinseong Park, Jaewook Lee, and Hoki Kim. Are self-attentions effective for time series
 706 forecasting? In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*.

707

708 Peter Kim, Junbeom Kwon, Sunghwan Joo, Sangyoon Bae, Donggyu Lee, Yoonho Jung, Shinjae Yoo,
 709 Jiook Cha, and Taesup Moon. Swift: Swin 4d fmri transformer. *Advances in Neural Information*
 710 *Processing Systems*, 36:42015–42037, 2023.

711

712 Serkan Kiranyaz, Turker Ince, and Moncef Gabbouj. Real-time patient-specific ecg classification by
 713 1-d convolutional neural networks. *IEEE transactions on biomedical engineering*, 63(3):664–675,
 714 2015.

715

716 N Kishore Kumar and Jan Schneider. Literature survey on low rank approximation of matrices. *Linear*
 717 *and Multilinear Algebra*, 65(11):2212–2244, 2017.

718

719 Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
 720 Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with
 721 applications to pdes. *Journal of Machine Learning Research*, 24(89):1–97, 2023.

722

723 Nikola B Kovachki, Samuel Lanthaler, and Andrew M Stuart. Operator learning: Algorithms and
 724 analysis. *Handbook of Numerical Analysis*, 25:419–467, 2024.

725

726 Byeongwook Lee, Weidong Cai, Christina B Young, Rui Yuan, Sephira Ryman, Jeehyun Kim, Veronica
 727 Santini, Victor W Henderson, Kathleen L Poston, and Vinod Menon. Latent brain state dynamics
 728 and cognitive flexibility in older adults. *Progress in neurobiology*, 208:102180, 2022.

729

730 Xiaoxiao Li, Yuan Zhou, Nicha Dvornek, Muhan Zhang, Siyuan Gao, Juntang Zhuang, Dustin
 731 Scheinost, Lawrence H Staib, Pamela Ventola, and James S Duncan. Braingnn: Interpretable brain
 732 graph neural network for fmri analysis. *Medical Image Analysis*, 74:102233, 2021.

733

734 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
 735 Stuart, Anima Anandkumar, et al. Fourier neural operator for parametric partial differential equations.
 736 In *International Conference on Learning Representations*.

737

738 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik Bhat-
 739 charya, and Anima Anandkumar. Multipole graph neural operator for parametric partial differential
 740 equations. *Advances in Neural Information Processing Systems*, 33:6755–6766, 2020.

741

742 Xin Liu, Daniel McDuff, Geza Kovacs, Isaac Galatzer-Levy, Jacob Sunshine, Jiening Zhan, Ming-Zher
 743 Poh, Shun Liao, Paolo Di Achille, and Shwetak Patel. Large language models are few-shot health
 744 learners. *arXiv preprint arXiv:2305.15525*, 2023.

745

746 Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
 747 nonlinear operators via deeponet based on the universal approximation theorem of operators. *Nature*
 748 *machine intelligence*, 3(3):218–229, 2021.

749

750 Scott Makeig, Stefan Debener, Julie Onton, and Arnaud Delorme. Mining event-related brain dynamics.
 751 *Trends in cognitive sciences*, 8(5):204–210, 2004.

752

753 Stéphane Mallat. *A wavelet tour of signal processing*. Elsevier, 1999.

754

755 Ethan M McCormick, Katelyn L Arnemann, Takuya Ito, Stephen José Hanson, and Michael W
 756 Cole. Latent functional connectivity underlying multiple brain states. *Network Neuroscience*, 6(2):
 570–590, 2022.

757

758 Harsh Mehta, Ankit Gupta, Ashok Cutkosky, and Behnam Neyshabur. Long range language modeling
 759 via gated state spaces. In *The Eleventh International Conference on Learning Representations*.

760

761 Karla L Miller, Fidel Alfaro-Almagro, Neal K Bangerter, David L Thomas, Essa Yacoub, Junqian Xu,
 762 Andreas J Bartsch, Saad Jbabdi, Stamatis N Sotiropoulos, Jesper LR Andersson, et al. Multimodal
 763 population brain imaging in the uk biobank prospective epidemiological study. *Nature neuroscience*,
 764 19(11):1523–1536, 2016.

756 James Morrill, Cristopher Salvi, Patrick Kidger, and James Foster. Neural rough differential equations
 757 for long time series. In *International Conference on Machine Learning*, pp. 7829–7838. PMLR,
 758 2021.

759

760 Samaneh Nemati, Teddy J. Akiki, Jeremy Roscoe, Yumeng Ju, Christopher L. Averill, Samar Fouda,
 761 Arpan Dutta, Shane McKie, John H. Krystal, J.F. William Deakin, Lynnette A. Averill, and Chadi G.
 762 Abdallah. A unique brain connectome fingerprint predates and predicts response to antidepressants.
 763 *iScience*, 23(1):100800, 2020. ISSN 2589-0042. doi: <https://doi.org/10.1016/j.isci.2019.100800>.

764 Sourav Pal, Zhanpeng Zeng, Sathya N Ravi, and Vikas Singh. Controlled differential equations on
 765 long sequences via non-standard wavelets. In *International Conference on Machine Learning*, pp.
 766 26820–26836. PMLR, 2023.

767

768 Mariia Radova, Wojciech G Stark, Connor S Allen, Reinhard J Maurer, and Albert P Bartók. Fine-
 769 tuning foundation models of materials interatomic potentials with frozen transfer learning. *npj*
 770 *Computational Materials*, 11(1):237, 2025.

771 Paula Sanz-Leon, Stuart A Knock, Andreas Spiegler, and Viktor K Jirsa. Mathematical framework for
 772 large-scale brain network modeling in the virtual brain. *Neuroimage*, 111:385–430, 2015.

773

774 Alexander Schaefer, Ru Kong, Evan M Gordon, Timothy O Laumann, Xi-Nian Zuo, Avram J Holmes,
 775 Simon B Eickhoff, and BT Thomas Yeo. Local-global parcellation of the human cerebral cortex
 776 from intrinsic functional connectivity mri. *Cerebral cortex*, 28(9):3095–3114, 2018.

777 Stephen M Smith, Christian F Beckmann, Jesper Andersson, Edward J Auerbach, Janine Bijsterbosch,
 778 Gwenaëlle Douaud, Eugene Duff, David A Feinberg, Ludovica Griffanti, Michael P Harms, et al.
 779 Resting-state fmri in the human connectome project. *Neuroimage*, 80:144–168, 2013.

780

781 Yonghao Song, Xueyu Jia, Lie Yang, and Longhan Xie. Transformer-based spatial-temporal feature
 782 learning for eeg decoding. *arXiv preprint arXiv:2106.11170*, 2021.

783

784 Reisa Sperling. The potential of functional mri as a biomarker in early alzheimer’s disease. *Neurobiology*
 785 of aging, 32:S37–S43, 2011.

786

787 Unique Subedi and Ambuj Tewari. Operator learning: A statistical perspective. *arXiv preprint*
 788 *arXiv:2504.03503*, 2025.

789

790 Mingtian Tan, Mike Merrill, Vinayak Gupta, Tim Althoff, and Tom Hartvigsen. Are language models
 791 actually useful for time series forecasting? *Advances in Neural Information Processing Systems*, 37:
 60162–60191, 2024.

792

793 Ye Tian, Daniel S Margulies, Michael Breakspear, and Andrew Zalesky. Topographic organization of
 794 the human subcortex unveiled with functional connectivity gradients. *Nature neuroscience*, 23(11):
 1421–1432, 2020.

795

796 Russell H Tobe, Anna MacKay-Brandt, Ryan Lim, Melissa Kramer, Melissa M Breland, Lucia Tu,
 797 Yiwen Tian, Kristin Dietz Trautman, Caixia Hu, Raj Sanghi, et al. A longitudinal resource for
 798 studying connectome development and its psychiatric associations during childhood. *Scientific data*,
 799 9(1):300, 2022.

800

801 Diego Vidaurre, Stephen M Smith, and Mark W Woolrich. Brain network dynamics are hierarchically
 802 organized in time. *Proceedings of the National Academy of Sciences*, 114(48):12827–12832, 2017.

803

804 Xinyou Wang, Zaixiang Zheng, Fei Ye, Dongyu Xue, Shujian Huang, and Quanquan Gu. Dplm-2: A
 805 multimodal diffusion protein language model. In *ICLR*, 2025.

806

807 Hui Xu, Li Zheng, Pan Liao, Bingjiang Lyu, and Jia-Hong Gao. Deepreducer: A linear transformer-
 808 based model for meg denoising. *NeuroImage*, pp. 121080, 2025.

809

Zongzhe Xu, Ritvik Gupta, Wenduo Cheng, Alexander Shen, Junhong Shen, Ameet Talwalkar, and
 Mikhail Khodak. Specialized foundation models struggle to beat supervised baselines. In *The*
Thirteenth International Conference on Learning Representations.

810 Ayumu Yamashita, Noriaki Yahata, Takashi Itahashi, Giuseppe Lisi, Takashi Yamada, Naho Ichikawa,
 811 Masahiro Takamura, Yujiro Yoshihara, Akira Kunitatsu, Naohiro Okada, et al. Harmonization of
 812 resting-state functional mri data across multiple imaging sites via the separation of site differences
 813 into sampling bias and measurement bias. *PLoS biology*, 17(4):e3000042, 2019.

814 Fan Nils Yang, Dante Picchioni, Jacco A de Zwart, Yicun Wang, Peter van Gelderen, and Jeff H Duyn.
 815 Reproducible, data-driven characterization of sleep based on brain dynamics and transitions from
 816 whole-night fmri. September 2024. doi: 10.7554/elife.98739.2.

817 Emanuele Zappala, Antonio Henrique de Oliveira Fonseca, Josue Ortega Caro, Andrew Henry Moberly,
 818 Michael James Higley, Jessica Cardin, and David van Dijk. Learning integral operators via neural
 819 integral equations. *Nature Machine Intelligence*, 6(9):1046–1062, 2024.

820 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 821 forecasting? In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp.
 822 11121–11128, 2023.

823 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
 824 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings of
 825 the AAAI conference on artificial intelligence*, volume 35, pp. 11106–11115, 2021.

826

827 A APPENDIX

828 A.1 PRE-PROCESSING PIPELINE

829 A.1.1 NIFTI → CIFTI DTSERIES.

830 We converted raw BIDS-formatted fMRI volumes (ADHD-200) into HCP-style dense time series
 831 (dtseries) to enable analysis in a standardized grayordinate framework. For each subject/session,
 832 volumetric BOLD runs were first mapped to cortical surfaces using ribbon-constrained volume-to-
 833 surface projection onto the fs_LR 32k left/right midthickness meshes, with corresponding white
 834 and pial surfaces providing anatomical constraints. Subcortical structures were handled separately
 835 by resampling the functional volumes to the Atlas_ROIs.2 subcortical grid. These surface and
 836 subcortical representations were then integrated using the HCP 91,282-grayordinate template, pro-
 837 ducing .dtseries.nii files that preserve the full temporal resolution of each scan while aligning
 838 all cortical and subcortical signals to a common anatomical space. This standardized conversion
 839 ensures subject-level consistency and facilitates direct comparability with HCP-derived methods and
 840 parcellations.

841 A.1.2 CIFTI DTSERIES → PARCELLATION

842 All fMRI dense time series (.dtseries.nii) were parcellated into N regions of interest (ROIs)
 843 using one of three brain atlases: the Gordon atlas ($N = 333$; Gordon et al., 2014), the Schaefer atlas
 844 ($N = 424$; Nemat et al., 2020), and the Tian atlas ($N = 450$; Tian et al., 2020; Schaefer et al., 2018).
 845 Each dtseries is first loaded and oriented as $T \times G$ (timepoints \times grayordinates), transposing when
 846 the first dimension equals $G = 91,282$. Given an atlas .dlabel.nii with integer parcel labels over
 847 the same grayordinate space, we exclude background (0) and, for each parcel label $\ell > 0$, compute
 848 the parcel time series as the mean of all grayordinates assigned to ℓ . This yields a parcellated matrix
 849 $\mathbf{X} \in \mathbb{R}^{T \times N}$. We verify that the atlas and dtseries share the same grayordinate dimension and abort
 850 otherwise.

851 A.1.3 NORMALIZATION

852 Normalization constants are estimated *solely on the training split*. Let $X^{(i)} \in \mathbb{R}^{T \times D}$ denote the i -th
 853 training sample ($T = 1200$ by default), and let

$$854 X = \begin{bmatrix} X^{(1)} \\ X^{(2)} \\ \vdots \\ X^{(N)} \end{bmatrix} \in \mathbb{R}^{(N \cdot T) \times D}$$

864 be the concatenation of all training samples across subjects and time. For each ROI/feature $r \in \{1, \dots, D\}$,
 865 define the empirical distribution
 866

$$867 \quad \mathcal{X}_r = \{X_{t,r} \mid t = 1, \dots, N \cdot T\}.$$

868 From \mathcal{X}_r we compute:
 869

$$\begin{aligned} 870 \quad \text{median}_r &= \text{quantile}(\mathcal{X}_r, 0.5), \\ 871 \quad Q_{25,r} &= \text{quantile}(\mathcal{X}_r, 0.25), \\ 872 \quad Q_{75,r} &= \text{quantile}(\mathcal{X}_r, 0.75), \\ 873 \quad \text{IQR}_r &= Q_{75,r} - Q_{25,r}, \\ 874 \quad Q_{99,r} &= \text{quantile}(\mathcal{X}_r, 0.99). \\ 875 \end{aligned}$$

876 The robust scaler retains $\{\text{median}_r, \text{IQR}_r\}_{r=1}^D$ as fitted statistics. At transform time, a new sample
 877 $x \in \mathbb{R}^{T \times D}$ is normalized ROI-wise as
 878

$$879 \quad \tilde{x}_{t,r} = \frac{x_{t,r} - \text{median}_r}{\text{IQR}_r + \varepsilon}, \quad \varepsilon = 10^{-6},$$

880 for all $t \in \{1, \dots, T\}, r \in \{1, \dots, D\}$.
 881

882 A.2 EXTENDED TRAINING DETAILS

883 A.2.1 FOUNDATIONAL TRAINING

884 **Backbone:** We employ *MnemoDyn*, a stacked foundation model based on wavelet multiresolution
 885 analysis. The backbone is composed of $L = 4$ blocks, each operating at a different latent dimension and
 886 coupled through residual refinement. Inputs of dimension $N = 450$ are projected to a hidden space of
 887 size 150, compressed to a low-rank bottleneck of dimensionality 5. Temporal structure is modeled with
 888 $n_{\text{levels}} = 6$ wavelet (db2) decompositions. Where required interpolation in continuous-time operators
 889 is spline-based, and nonlinearities are tanh.
 890

891 **Training:** We pre-train for 50 epochs using the AdamW optimizer with learning rate 10^{-3} , weight
 892 decay 0.01, and $(\beta_1, \beta_2) = (0.9, 0.95)$. A cosine annealing schedule with warm restarts ($T_0 =$
 893 10, $T_{\text{mult}} = 2$) reduces the learning rate, with $\eta_{\text{min}} = 10^{-5}$. Batch sizes are fixed at 8/16/16 for
 894 training/validation/test, respectively. The objective defaults to a composite loss, combining mean
 895 squared error (MSE) and mean absolute error (MAE). Training employs gradient clipping at 1.0, and
 896 checkpoints the two best models (lowest validation MAE) throughout training. Early stopping with
 897 patience 30 epochs is applied to prevent overfitting. Below, we describe different strategies used for
 898 self-supervised pre-training.
 899

900 **Hyperparameter Tuning:** We tuned the core architectural hyperparameters that govern the capacity,
 901 multiscale structure, and locality of the operator using grid search in the range of values that are
 902 plausible based on the dimensionality of the data. The parameter controlling the hidden low-rank
 903 dimension of the operator which determines how much compression is applied during the learned
 904 integral transform was varied between $\{3, \dots, 8\}$. The number of wavelet decomposition levels, which
 905 determine the granularity of the multiscale representation was varied between $\{4, 5, 6, 7, 8\}$. The coarse
 906 dense operator applied in each block that refines features at each scale was varied in $\{4, 6, 8, 12\}$.
 907 The parameter that governs governs how many locally-connected filters remain active within each
 908 diagonally banded structure was varied in $\{4, 6\}$.
 909

910 A.2.2 DENOISING AUTOENCODER

911 To encourage robustness and prevent overfitting, we employ a denoising autoencoding objective.
 912 Specifically, we corrupt the input signal by adding stochastic Gaussian noise. Given an input sequence
 913 x , we construct the noisy version $\tilde{x} = x + 0.1 \cdot \epsilon$, where $\epsilon \sim \mathcal{N}(0, I)$. The autoencoder is trained to
 914 reconstruct the original clean input x from \tilde{x} . This setup forces the encoder to learn representations that
 915 are invariant to small perturbations, improving generalization.
 916

918 A.2.3 MASKED AUTOENCODER
919

920 We additionally adopt a masked autoencoding strategy. For each training sample, we randomly select
921 five disjoint starting indices within the temporal dimension of the sequence. From each starting index,
922 we mask a contiguous block of 80 time steps. The model is trained to reconstruct the masked portions
923 of the input given the unmasked context. This approach encourages the encoder to capture long-range
924 dependencies and contextual relationships, since successful reconstruction requires leveraging both
925 local and global sequence information.

926 **Temporal-Dimensional Masking.** Given a sequence of length T with D feature channels, we
927 construct a binary mask $M \in \{0,1\}^{T \times D}$ by placing non-overlapping temporal windows independently
928 for each feature. For a window length L (patch_length) and masking ratio mask_ratio, the
929 method computes

$$930 K_{\text{req}} = \lceil T \cdot \text{mask_ratio} \rceil, \quad K_{\text{cap}} = \lfloor T/L \rfloor, \quad (18)$$

931 and uses $K = \min(K_{\text{req}}, K_{\text{cap}})$ windows. Each feature dimension then samples K disjoint start indices
932 from $\{0, \dots, T - L\}$, masking the interval $[s, s + L]$, resulting in structured temporal occlusion while
933 keeping feature channels independent.

935 **Masked Reconstruction Loss.** The model is trained using a masked reconstruction objective that
936 evaluates errors *only* on the occluded regions. Let $x \in \mathbb{R}^{T \times D}$ be the original input, \hat{x} the model's
937 reconstruction, and $M \in \{0,1\}^{T \times D}$ the binary mask. Here, $M_{t,d} = 1$ indicates a *masked* position
938 where the loss will be computed. Before feeding the sequence into the model, all masked positions are
939 replaced with zeros, i.e.,

$$941 x_{\text{masked}} = (1 - M) \odot x, \quad (19)$$

942 so the model receives no information from the occluded intervals. The reconstruction loss is then
943 defined as

$$944 \mathcal{L}_{\text{mask}} = \frac{1}{\|M\|_0} \|M \odot (\hat{x} - x)\|_2^2, \quad (20)$$

947 where \odot denotes element-wise multiplication and $\|M\|_0$ counts the number of masked entries. By
948 supervising the model solely on the masked regions, the learning objective forces the operator to infer
949 the missing dynamics from surrounding temporal context, encouraging the extraction of meaningful
950 temporal dependencies and multiscale structure rather than trivial copying from visible inputs.

951 A.2.4 BRAIN-JEPA STYLE SCHEME
952

953 We also adopt the training strategy from the Brain-JEPA framework (Dong et al., 2024), which
954 generalizes the masked prediction objective across multiple domains of the input. Concretely, given
955 an input sequence $x \in \mathbb{R}^{T \times D}$, we define a masked subset of indices $\Omega \subseteq \{1, \dots, T\} \times \{1, \dots, D\}$ and
956 construct masked views $x_{\setminus \Omega}$ by replacing entries in Ω with zeros. Masked views are sampled along
957 three complementary axes: (i) *temporal masking*, where contiguous blocks of time steps are removed;
958 (ii) *spatial masking*, where subsets of brain regions (ROIs) are occluded; and (iii) *cross spatio-temporal*
959 *masking*, where both temporal segments and ROI subsets are jointly masked. This design compels the
960 encoder to capture dependencies across both spatial and temporal dimensions, rather than overfitting to
961 a single axis of variation.

962 Following the predictive coding paradigm of V-JEPA (Bardes et al., 2024), we train a student encoder
963 f_{θ} against targets produced by a teacher encoder $f_{\theta'}$, where the teacher parameters are updated as an
964 exponential moving average (EMA) of the student:

$$965 \theta' \leftarrow \tau \theta' + (1 - \tau) \theta,$$

966 with momentum coefficient $\tau \in [0, 1]$. Given a masked view $x_{\setminus \Omega}$, the student produces predictions
967 $\hat{x}_{\Omega} = f_{\theta}(x_{\setminus \Omega})$, while the teacher provides the reference $x_{\Omega}^{(\text{target})} = f_{\theta'}(x)$. The loss is the mean squared
968 error (MSE) over the masked indices:

$$969 \mathcal{L}_{\text{mask}}(\theta) = \frac{1}{|\Omega|} \sum_{(t,r) \in \Omega} \|\hat{x}_{t,r} - x_{t,r}^{(\text{target})}\|_2^2.$$

Methods	Sex		Age
	ACC(%) \uparrow	F1(%) \uparrow	MSE \downarrow
Brain-JEPA	58.52 (3.72)	29.12 (1.64)	1.02 (0.01)
MnemoDyn	82.37 (2.1)	82.19 (1.9)	0.84 (0.01)
MnemoDyn-Mask	81.55 (1.6)	81.35 (1.6)	0.80 (0.01)

Table 4: Performance of fine-tuned MnemoDyn on Healthy Brain Network (HBN). We report mean(standard deviation) on the test set. For both regression and classification, we get better performance than baseline.

By unifying temporal, spatial, and cross spatio-temporal masking, this scheme encourages the emergence of latent representations that capture both local and global structure in rs-fMRI time series.

A.2.5 DOWNSTREAM HEAD

For downstream tasks, we freeze the pretrained backbone and attach a task-specific regression/classification head. The default head is a multi-layer perceptron (MLP) applied to pooled backbone features (averaged over time and ROIs). Concretely, inputs are mapped through successive layers, each followed by LayerNorm, GELU, and dropout ($p=0.1$), before a final linear layer outputs logits.

The training objective depends on the task: mean squared error (MSE) for regression tasks (e.g., age prediction), and cross-entropy for classification tasks (e.g., sex, diagnosis). Optimization uses Adam ($\text{lr}=10^{-3}$, $\text{wd}=10^{-4}$) with a ReduceLROnPlateau scheduler (factor 0.5, patience 5). Batch sizes are set to 8/4 for train/test. We use robust normalization from (Sec. A.1.3) is retained.

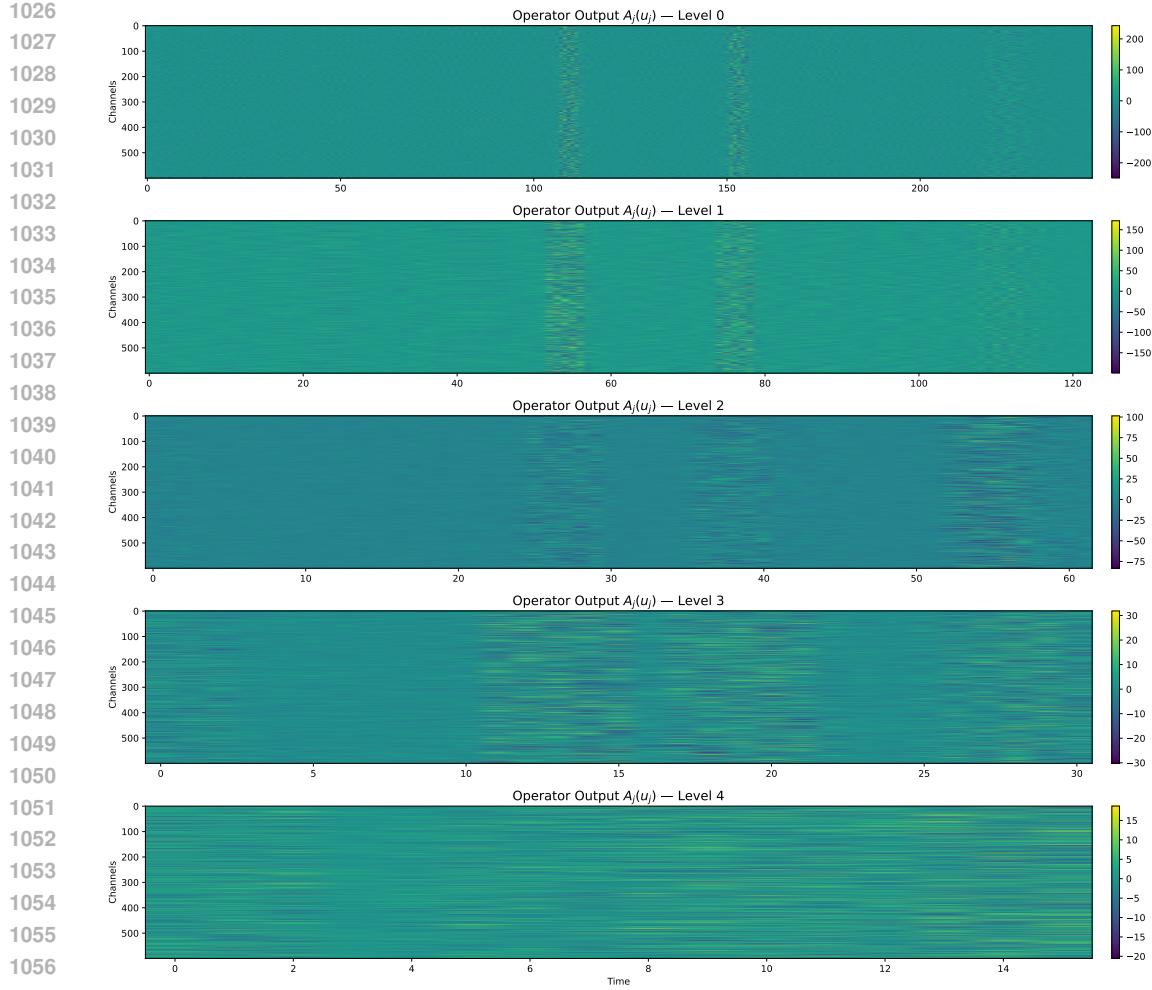
A.3 ANALYSIS OF PRE-TRAINED OPERATOR

To better understand how **MnemoDyn** uses its multi-resolution operator parameterization, we decomposed the learned operator into banded, level-wise components and a small dense residual, and examined their Frobenius norms and sparsity patterns after pre-training. The results expose a highly stable multi-scale structure.

Norm structure. Across MnemoDyn layers, the Forbenius norm mass is concentrated in the pseudo-differential operator kernels derived from the wavelet domain. These components dominate by an order of magnitude (~ 1500), indicating that the learned dynamics are primarily mediated by structured, cross-scale interactions. Dense layers exhibit rapidly decreasing norms (~ 20), showing that deeper blocks rely less on local, single-scale corrections and more on the global structure encoded by the operator. Components that directly process the raw input diminish steadily with depth, consistent with hierarchical abstraction.

Sparsity structure. The wavelet-operator kernels remain uniformly dense across layers, which is expected for smooth, global transformations that do not benefit from element-wise pruning. In contrast, the output-projection layer is over 95% sparse, revealing a highly selective readout from an otherwise rich, distributed multi-scale representation. This is consistent with the interpretation that the learned dynamics evolve on a structured, lower-dimensional manifold induced by the operator geometry.

Activation and L_2 norm visualizations. In Fig. 5 we illustrate the operator output $A_j(u_j)$ across wavelet levels $j = 0$ through $j = 4$, capturing how the learned operator responds to progressively coarser temporal representations. Level 0 exhibits the highest temporal resolution and displays large, high-magnitude activation bursts concentrated around specific time segments, reflected by the yellow bands. As the scale increases (levels 1 through 4), the temporal length shortens and the operator responses become smoother and notably lower in magnitude. We observe similar behavior, in Fig. 6 where we visualize the L_2 norm at each time step over all channels across multiple resolution(s) in the latent space of the operator output. Overall, this highlights a clear multiscale pattern: strong, localized operator activity at fine scales and progressively weaker, more diffused responses at coarser scales.

Figure 5: Operator output $A_j(u_j)$ across wavelet levels $j=0$ to 4 .

A.4 MNEMODYN AS A FOUNDATION MODEL FOR RS-FMRI

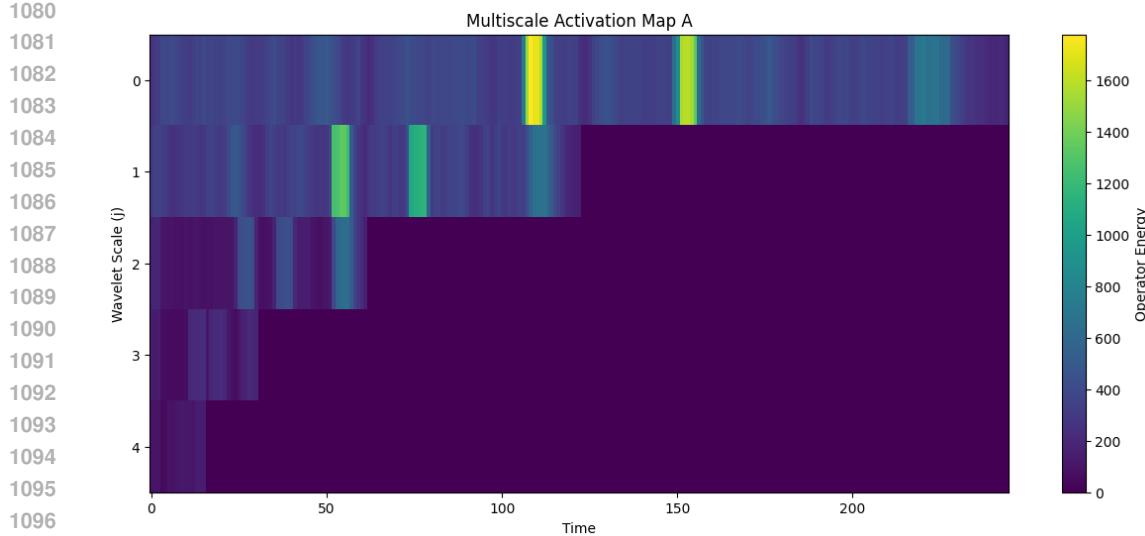
In this section, we elaborate how **MnemoDyn** exhibits foundation-model like characteristics. We include (i) empirical evidence of scaling behavior with model size and pre-training data size, (ii) a precise delineation of generality and transfer within the rs-fMRI modality, and (iii) an explicit framing of what is and is not claimed in terms of modality breadth.

A.4.1 SCALING BEHAVIOR: MODEL SIZE AND DATA SIZE

We conducted controlled ablations to quantify the effect of increasing (a) the depth of the model and (b) the size of the pre-training dataset.

Model-size scaling. MnemoDyn consists of stacked operator blocks, analogous to depth scaling in transformer-based architectures. Increasing the number of operator blocks from *two* to *four* yields consistent improvements across regression and classification tasks on multiple downstream datasets. This trend aligns with standard foundation-model behavior, where additional representational capacity improves both pre-training objectives and fine-tuning performance. The results are summarized in Table 5.

Data-size scaling. We additionally pre-train MnemoDyn on different subsets of UK-Biobank available subjects. Models trained with more data show uniformly stronger performance across downstream

Figure 6: L_2 norm of operator output $A_j(u_j)$ across wavelet levels $j=0$ to 4.

evaluations (Table 6). This confirms that MnemoDyn benefits from increased pre-training data coverage, another key requirement for foundation-model-style scaling.

The combined findings provide direct, quantitative evidence that both model depth and pre-training data size contribute to improved representational quality.

# Blocks	Age (MSE \downarrow)	Sex (Acc; F1 \uparrow)
1	0.914(0.012)	0.768(0.013); 0.763(0.011)
2	0.903(0.014)	0.8010(0.016); 0.807(0.014)

Table 5: Model-size scaling: downstream task performance for different numbers of operator blocks for HCP-Aging .

# Subjects	Age (MSE \downarrow)	Sex (Acc; F1 \uparrow)
1000	1.023(0.019)	0.706(0.017); 0.707(0.019)
10000	1.021(0.014)	0.753(0.013); 0.743(0.011)
20000	1.012(0.013)	0.793(0.013); 0.790(0.011)

Table 6: Data-size scaling: downstream performance when pre-trained on different fraction of UK-Biobank and finetuned for HCP-Aging.

A.4.2 SCOPE OF TRANSFER: WITHIN-MODALITY GENERALITY AND REUSE

We clarify the exact empirical scope of generality and transfer supported by our experiments.

Within-modality transfer (rs-fMRI). All experiments in the present work are conducted within the rs-fMRI modality. MnemoDyn is pre-trained once and evaluated across multiple heterogeneous datasets (HBN, ADNI, ABIDE), which differ in scanner hardware, acquisition protocols, demographics, and health conditions. This cross-dataset robustness is non-trivial: each dataset required separate institutional approvals, data-use agreements, and constrained compute environments governed by the respective data custodians. Within these practical constraints, MnemoDyn functions as a *general-purpose, reusable backbone* for rs-fMRI, consistently outperforming strong baselines across scientifically relevant tasks. This evaluation strategy is aligned with the protocols established by recent rs-fMRI foundation models such as Brain-LM (Caro et al.) and Brain-JEPA (Dong et al., 2024).

1134 **Task generality.** Our evaluation setup of supervised regression and classification matches the
 1135 dominant protocol for rs-fMRI foundation-model research. These task types enable direct, fair
 1136 comparison with prior work while focusing on scientifically meaningful variables such as age, cognitive
 1137 scores, and disease status. Although we do not include non-label pretext tasks (e.g., trajectory
 1138 forecasting, contrastive objectives, or clustering) in this paper, MnemoDyn is architecturally designed
 1139 to accommodate them: the latent trajectories z produced by the model capture multi-scale temporal
 1140 dependencies and spatial interactions, and can easily be used with lightweight task-specific heads for a
 1141 broad family of downstream objectives.

1142 **Cross-modality transfer.** We explicitly do *not* claim empirical cross-modality generalization here.
 1143 Extending MnemoDyn to EEG or MEG requires its own elaborate process for dataset acquisition,
 1144 access approval, pre-processing, and compute scheduling. While the architecture is compatible with
 1145 other modalities in principle, we restrict our claims to demonstrated within-modality transfer and
 1146 identify cross-modality extensions as future work.

1147
 1148 To conclude, we define MnemoDyn as a *foundation model for rs-fMRI*, characterized by the following
 1149 properties:

- 1150 • **Large-scale, self-supervised pre-training** on tens of thousands of rs-fMRI sequences.
- 1151 • **General-purpose, reusable representations** that support multiple downstream tasks using
 1152 lightweight heads.
- 1153 • **Cross-dataset robustness** across diverse scanners, sites, acquisition protocols, demographics,
 1154 and health conditions within rs-fMRI.
- 1155 • **Empirical scaling** in both model size and data size, as demonstrated in Tables 5 and 6.

1156
 1157 This framing reflects the prevailing modality-specific definition used by baseline rs-fMRI foundation
 1158 models.

1161 A.5 DISTINCTIONS BETWEEN MNEMODYN AND CLASSICAL OPERATOR-LEARNING 1162 FRAMEWORKS

1163
 1164 Here we discuss the conceptual and architectural differences between MnemoDyn and canonical
 1165 operator-learning frameworks such as the Fourier Neural Operator (FNO) and DeepONet.

1166
 1167 **Fundamentally different problem formulations.** Classical operator-learning methods are designed
 1168 for *supervised* operator regression, where the goal is to learn a map between input–output function pairs,
 1169 typically arising from PDE solution operators (e.g., mapping a forcing function to its corresponding
 1170 solution field). These methods assume access to explicit operator evaluations: given an input function
 1171 u , predict the output function $\mathcal{G}(u)$, where \mathcal{G} is the unknown operator to be learned.

1172 MnemoDyn addresses a categorically different learning problem. We observe long rs-fMRI time series
 1173 generated by an unknown dynamical system, with *no* paired input–output fields, no PDE solution maps,
 1174 and no access to ground-truth operator evaluations. The learning objective is fully *self-supervised*,
 1175 relying on reconstructing or modeling the evolution of observed sequences. While MnemoDyn contains
 1176 an operator-theoretic flavor through its integral formulation of latent dynamics, the learned operator is
 1177 *latent*: it parameterizes the evolution rule of the hidden trajectory rather than mapping one function to
 1178 another. The kernel governs temporal modulation of the latent state, not supervised operator-valued
 1179 regression.

1180
 1181 **Architectural mismatch induced by the problem setting.** The architectural choices in FNO and
 1182 DeepONet naturally follow from their reliance on paired function data, but they become ill-suited when
 1183 directly applied to long, nonstationary rs-fMRI sequences.

1184 FNO parameterizes global Fourier symbols, inducing dense global interactions across the entire
 1185 domain. This is well-aligned with PDE solution operators, which are typically smooth, globally
 1186 coupled mappings. However, global Fourier bases are less suitable for multi-scale, nonstationary,
 1187 and locally temporal dynamics which are commonplace in rs-fMRI data. In contrast, MnemoDyn
 1188 operates in a wavelet domain and parameterizes a scale-varying pseudo-differential operator whose

symbol adapts across resolutions. The compact support of wavelets induces approximate banded-diagonal sparsity for long sequences, yielding both computational benefits and modeling flexibility for scale-dependent, nonstationary behavior that Fourier parameterizations do not provide.

DeepONet, on the other hand, constructs operators through two subnetworks (branch and trunk), but does not provide a clear interpretability of the resulting basis functions. This makes it difficult to justify its representational structure for multi-scale spatio-temporal brain dynamics and limits alignment with domain-specific inductive biases required for rs-fMRI modeling.

Nature of the learned operator in MnemoDyn. Although MnemoDyn incorporates an operator through its integral representation of latent dynamics, it does not aim to approximate a supervised PDE solution operator. Instead, the kernel acts internally to dictate the evolution of the hidden state trajectory in continuous time. This quantity cannot be interpreted as the same object learned by FNO or DeepONet, because no input–output functional mapping is being approximated. The operator in MnemoDyn is, by construction, a latent dynamical operator extracted from unpaired, noisy observational sequences.

Why direct comparison is non-trivial. Constructing a version of FNO or DeepONet suited for rs-fMRI would require a substantial redesign, including: (a) developing new objectives tailored to self-supervised sequence modeling rather than supervised operator regression; (b) replacing global Fourier bases or trunk/branch decompositions with structures that respect multi-scale temporal variability, brain parcellations, and nonstationary dynamics; (c) incorporating architectural modifications to accommodate irregular sampling and domain-specific masking used in neuroimaging; and (d) introducing neuroimaging-specific regularization schemes and inductive biases.

Such modifications amount to designing an entirely new operator-learning architecture for rs-fMRI, rather than applying an existing method unchanged. For this reason, our comparisons focus on strong, domain-appropriate rs-fMRI foundation-model baselines that align with MnemoDyn’s problem setting and data assumptions.

Summary of conceptual novelty. The contribution of MnemoDyn does not lie in proposing a new operator-learning formalism, but in *adapting* operator-theoretic principles to rs-fMRI in a way that is both effective and computationally efficient. The key innovations arise from the integration of (i) wavelet-domain pseudo-differential operators, (ii) structured low-rank parameterization suited to high-dimensional time series, and (iii) continuous-time evolution of latent trajectories. Taken together, these components differentiate MnemoDyn architecturally and functionally from FNO and DeepONet, whose problem formulations, assumptions, and training pipelines are fundamentally different.

A.6 IMPORTANCE OF THE MULTI-RESOLUTION ANALYSIS AND LOW RANK STRUCTURE

To assess the contribution of the wavelet-based multi-resolution analysis (MRA), we trained a version of MnemoDyn in the raw latent space, removing all wavelet transforms and scale-structured operators. The “no-wavelet” variant shows a consistent degradation across all downstream tasks as shown in Table 7.

Task	Metric	No-Wavelet	MnemoDyn-Mask
NC/MCI (ADNI)	ACC / F1	$75.12 \pm 1.02 / 74.39 \pm 1.01$	$96.12 \pm 0.31 / 95.98 \pm 0.29$
Amyloid (ADNI)	ACC / F1	$72.19 \pm 2.01 / 71.23 \pm 1.78$	$95.27 \pm 0.39 / 95.61 \pm 0.37$
Age (UKB)	MSE	0.67 ± 0.07	0.44 ± 0.05
Sex (UKB)	ACC / F1	$76.16 \pm 0.13 / 75.14 \pm 0.23$	$88.40 \pm 0.32 / 88.27 \pm 0.41$

Table 7: Comparison of MnemoDyn with and without multi-resolution wavelet decomposition.

The improvements from reintroducing the wavelet-based multi-resolution structure are substantial: classification accuracy increases by **20–23 points** on ADNI tasks and by **12 points** on UKB sex prediction, while age regression error decreases by more than **34%**. These consistent gains highlight that MRA is not merely an architectural detail but a crucial inductive bias suitable for modelling the dynamics associated with rs-fMRI data.

Methods	ADHD/TDC	
	ACC(%)↑	F1(%)↑
Brain-JEPA	45.7 (0.89)	46.5 (0.78)
MnemoDyn	54.24 (0.3)	54.07 (0.42)
MnemoDyn-Mask	54.36 (1.24)	54.26 (1.27)
MnemoDyn-Mask-JEPA	54.70 (0.75)	54.55 (0.80)

Table 8: Performance comparison on the ADHD200 dataset for ADHD vs. TDC classification. Mean accuracy (ACC) and F1-score (F1) with standard deviations are reported. Fine-tuned variants of MnemoDyn consistently outperform the Brain-JEPA baseline.

When we remove the low-rank decomposition in the latent space, we observe immediate memory blow up for the dimensionality required to encode the latent dynamics faithfully.

A.7 ADDITIONAL DOWNSTREAM EVALUATION ON RS-FMRI DATASETS

To assess the efficacy of **MnemoDyn** as a foundation model for brain imaging, we evaluate its fine-tuned variants across four different neuroimaging datasets spanning both regression and classification tasks. Our goal is to establish whether MnemoDyn provides consistent performance improvements over existing baselines, such as Brain-JEPA, while maintaining robustness across heterogeneous datasets. We report mean accuracy (ACC), F1-score (F1), and mean squared error (MSE), depending on the task, with standard deviations in parentheses. Across all datasets, MnemoDyn demonstrates clear advantages over the baseline, underscoring its utility as a versatile foundation model for downstream brain-related prediction tasks.

Healthy Brain Network (HBN): On the HBN dataset, which includes both sex classification and age regression tasks, fine-tuned variants of MnemoDyn achieves significant performance gains as shown in Table 4. For sex classification, MnemoDyn reaches an accuracy of 82.37% and F1 of 82.19%, compared to 58.52% and 29.12% for Brain-JEPA. For age prediction, the mean squared error reduces to 0.84, outperforming the baseline error of 1.0163. The masked variant (MnemoDyn-Mask) yields similar results, further highlighting the robustness of the approach. These results indicate that MnemoDyn effectively supports both categorical and continuous prediction settings within developmental datasets.

ADHD200: On the ADHD200 dataset, we evaluate the classification of Attention-Deficit/Hyperactivity Disorder (ADHD) vs. Typically Developing Controls (TDC) as shown in Table 8. Here, MnemoDyn consistently surpasses the Brain-JEPA baseline, achieving an accuracy of 54.24% and F1 of 54.07%, relative to 45.7% and 46.5% for Brain-JEPA. The masked variants further improve performance, with MnemoDyn-Mask-JEPA reaching the best scores (54.70% ACC, 54.55% F1). Despite the relatively challenging nature of the ADHD/TDC classification task, MnemoDyn when fine-tuned provides a clear and reproducible advantage, validating its utility across clinical cohorts.

NKIR: On the NKIR dataset for sex classification, fine-tuned variants of MnemoDyn again yields substantial improvements over Brain-JEPA as shown in Table 9. While the baseline achieves 66.52% accuracy and 63.97% F1, MnemoDyn boosts performance to 87.52% for both metrics. The masked variant (88.37% ACC, 88.36% F1) offers an additional increase, demonstrating the effectiveness of the masking strategy. Overall, the NKIR results show that MnemoDyn generalizes strongly across independent cohorts, providing state-of-the-art performance on demographic prediction tasks.

ABIDE: On the ABIDE dataset for Autism vs. (TSC) classification, we report results for fine-tuned variants of MnemoDyn. Due to reproducibility issues, we were unable to obtain reliable Brain-JEPA baselines on this dataset. Nevertheless, MnemoDyn achieves consistent performance, with the base model reaching 60.32% accuracy and 59.26% F1, and the masked variant obtaining 58.93% accuracy and 58.57% F1. While the margins are narrower compared to other datasets, these results underscore MnemoDyn’s robustness on a highly heterogeneous clinical cohort.

Methods	Sex	
	ACC(%)↑	F1(%)↑
Brain-JEPA	66.52 (0.27)	63.97 (0.40)
MnemoDyn	87.52 (0.49)	87.52 (0.48)
MnemoDyn-Mask	88.37 (0.45)	88.36 (0.45)
MnemoDyn-Mask-JEPA	87.70 (0.29)	87.70 (0.27)

Table 9: Performance comparison on the NKIR dataset for sex classification. We report mean accuracy (ACC) and F1-score (F1) with standard deviations in parentheses. Finetuned MnemoDyn significantly outperform the Brain-JEPA baseline.

Methods	Autism / TSC	
	ACC(%)↑	F1(%)↑
MnemoDyn	60.32 (1.44)	59.26 (2.04)
MnemoDyn-Mask	58.93 (1.25)	58.57 (1.24)

Table 10: Classification performance on the ABIDE dataset for Autism vs. TSC for fine-tuned MnemoDyn. The table reports mean accuracy (ACC) and F1-score (F1) with standard deviations in parentheses, averaged across multiple runs.

Methods	NC/MCI		Amyloid +ve/-ve	
	ACC(%)↑	F1(%)↑	ACC(%)↑	F1(%)↑
BrainNetCNN	60.00 (3.51)	64.72 (3.18)	59.00 (2.00)	59.43 (1.14)
BrainGNN	67.40 (2.93)	71.42 (2.87)	57.00 (4.00)	62.61 (3.48)
BNT	78.90 (4.12)	83.14 (3.58)	62.00 (2.45)	59.53 (0.58)
BrainLM	75.79 (1.05)	85.66 (1.27)	67.00 (7.48)	68.82 (8.48)
Brain-JEPA	76.84 (1.05)	86.32 (0.54)	71.00 (4.90)	75.97 (3.93)
MnemoDyn-HCP-Mask	87.34 (2.1)	89.7 (2.2)	88.20 (1.09)	88.1 (1.23)
MnemoDyn-HCP-Mask-JEPA	89.87 (1.09)	89.74 (1.0)	93.87 (4.05)	93.48 (3.07)

Table 11: Performance of MnemoDyn pre-trained on HCP and fine-tuned on ADNI tasks of NC/MCI diagnosis and Amyloid +ve/-ve classification. Results are reported as mean (standard deviation) for accuracy (ACC) and F1-score (F1). F1 is included to account for class imbalance across cohorts. MnemoDyn variants substantially outperform prior baselines, highlighting the benefits of pretraining on HCP before transfer to clinical tasks.

A.8 ZERO-SHOT GENERALIZATION TO SMALLER DATASETS

To further assess how **MnemoDyn** behaves in low-data regimes and to complement the main experimental results, we conducted additional analyses examining its zero-shot transfer performance. These experiments evaluate whether the pre-trained model and simple downstream heads retain predictive or reconstruction capability when applied to substantially smaller datasets without any fine-tuning.

We performed two analyses feasible within the rebuttal time frame. First, we trained simple downstream MLP heads on the larger HCP-Aging dataset and applied them directly to the dataset collected as part of the Healthy Brain Network (HBN) study. For sex classification, the zero-shot performance reached an accuracy of 0.6393 and an F1 score of 0.6390, while for age prediction the MLP achieved an MSE of 0.8516(0.02), indicating moderate transfer for categorical variables but limited transfer for age due to distributional differences.

Methods	Age		Sex		Neuroticism	Flanker
	MSE ↓	ACC (%) ↑	F1 (%) ↑	MSE ↓	MSE ↓	
BrainLM	1.14 (0.22)	75.27 (1.24)	73.19 (1.12)	1.05 (0.12)	0.77 (0.11)	
Brain-JEPA	1.02 (0.01)	79.17 (1.29)	76.29 (1.17)	0.99 (0.01)	1.28 (0.01)	
MnemoDyn-HCP-Mask	0.90 (0.03)	80.90 (0.13)	80.70 (0.12)	0.90 (0.09)	0.58 (0.09)	
MnemoDyn-HCP-Mask-JEPA	0.90 (0.04)	80.98 (2.13)	80.63 (2.12)	0.90 (0.57)	0.60 (0.06)	

Table 12: Performance of MnemoDyn pre-trained on HCP and fine-tuned on external tasks from HCP-Aging, including age regression, sex classification, and trait prediction (Neuroticism, Flanker). Results are reported as mean (standard deviation) for MSE, accuracy (ACC), and F1-score (F1). F1 is included for classification tasks to account for class imbalance. MnemoDyn variants achieve consistent improvements over prior baselines across both demographic and cognitive trait prediction.

Second, we evaluated the representation capability of pre-trained MnemoDyn on small datasets by measuring reconstruction quality without any adaptation. A model pre-trained on UK Biobank achieved an R^2 of 0.98 on HBN and 0.96 on HCP-Aging, with corresponding MSEs of 7.89×10^{-8} and 4.52×10^{-8} , respectively. These results show that **MnemoDyn**’s learned temporal operators generalize extremely well to small datasets, maintaining high reconstruction accuracy even in the absence of fine-tuning.

Overall, these findings demonstrate that the architectural design allows the model to retain and transfer a substantial portion of its representational benefits even in zero-shot, low-data settings.

A.9 ABLATIONS

We pre-trained **MnemoDyn** on rs-fMRI data from the HCP dataset, which contains only ~ 1000 subjects with sequence length 1200. Despite the modest scale of this dataset compared to conventional foundation model pretraining regimes, our operator learning formulation allows MnemoDyn to extract transferable dynamical representations that generalize strongly to downstream settings. This highlights one of the key advantages of our approach: rather than relying on massive data curation, MnemoDyn leverages inductive biases from multi-resolution operator learning to capture the underlying structure of brain dynamics in a highly data-efficient manner.

Table 11 reports results on ADNI, where we evaluate clinical tasks such as NC/MCI diagnosis and amyloid +ve/-ve prediction. Fine-tuned variants of MnemoDyn substantially outperform a wide range of prior baselines. In particular, MnemoDyn-HCP-Mask-JEPA achieves up to 89.9% accuracy and 89.7% F1 on NC/MCI classification, and 93.9% accuracy and 93.5% F1 on amyloid prediction, representing a sizable improvement over all baselines. These results underscore the benefits of pretraining on HCP, even with limited sample size, before transfer to downstream clinical cohorts.

We further assess transfer to external demographic and cognitive prediction tasks from HCP-Aging (Table 12). Here, MnemoDyn consistently surpasses prior methods on age regression, sex classification, and trait prediction tasks (neuroticism and flanker). Importantly, these gains are observed across both demographic and cognitive dimensions, illustrating the broad generalization capacity of MnemoDyn.

Taken together, these ablations highlight that **MnemoDyn** can be effectively pretrained on a relatively small dataset such as HCP and still transfer with strong performance to diverse downstream tasks. This data efficiency is a direct consequence of the operator learning setup, which allows the model to learn evolution rules over brain dynamics rather than memorizing dataset-specific patterns. As such, MnemoDyn offers a principled path toward building foundation models for neuroscience without requiring prohibitively large pretraining corpora.