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ABSTRACT

We study LLM routing, the problem of selecting the best model for each query
while balancing user satisfaction, model expertise, and inference cost. We for-
mulate routing as contextual dueling bandits, learning from pairwise preference
feedback rather than absolute scores, thereby yielding label-efficient and dynamic
adaptation. Building on this formulation, we introduce Category-Calibrated Fine-
Tuning (CCFT), a representation-learning method that derives model embeddings
from offline data using contrastive fine-tuning with categorical weighting. These
embeddings enable the practical instantiation of Feel-Good Thompson Sampling
for Contextual Dueling Bandits (FGTS.CDB), a theoretically grounded posterior-
sampling algorithm. We propose four variants of the categorical weighting that
explicitly integrate model quality and cost, and we empirically evaluate the pro-
posed methods on the RouterBench and MixInstruct datasets. Across both bench-
marks, our methods achieve lower cumulative regret and faster convergence, with
better robustness and performance-cost balance than strong baselines built with a
general-purpose OpenAI embedding model.

1 INTRODUCTION

The potential of large language models (LLMs) is so great that they have become a necessary part
of daily life, with applications ranging from office assistance and fashion/dining suggestions to
entertainment. LLM routing refers to a problem of dynamically selecting the most suitable LLM
from a set of candidates for each query in a sequence of questions. Before the emergence of a
universally dominant and affordable foundation model, routing is important because the choice of
LLM must align with user traits, model expertise, and cost. To balance these three key factors,
cascading algorithms such as FrugalGPT (Chen et al., 2024) and AutoMix (Aggarwal et al., 2024)
were first proposed. The idea is to query a cheaper model first and advance the query to a more
expensive one if the current response is unlikely to meet the user’s expectation.

A drawback of cascading is the accumulated cost and latency caused by calling multiple LLM candi-
dates to generate the final response. To avoid this, supervised routing methods (Shnitzer et al., 2023;
Lu et al., 2024; Ding et al., 2024; Hu et al., 2024; Srivatsa et al., 2024) were proposed. In general,
a supervised router reduces the latency by applying a classification or a regression prediction before
the LLM query. The supervised approach has evolved into several branches. A branch studied en-
sembles (Jiang et al., 2023; Maurya et al., 2025; Zhang et al., 2025b;a), which allows the agent to
select a subset or fuse answers. Another branch focused on cost-aware model assignment (Šakota
et al., 2024; Hu et al., 2024; Liu et al., 2024) to balance cost and performance. There are also works
that combine representation learning (Feng et al., 2025b; Zhuang et al., 2025) to strengthen the user
and model’s semantic information before training.

For supervised routing methods, having abundant real-valued annotations with high-quality label
information is critical for successful classification or regression training. Unfortunately, such a re-
quirement is often unrealistic in the context of LLM routing. In some cases, users are either reluctant
or unmotivated to provide feedback. They may also be unable to quantify their satisfaction, espe-
cially when dealing with open-ended questions or when they lack the ability to verify the correctness
of the LLM’s response. To ease the annotation burden, some efforts focused on weak supervision
(Sugiyama et al., 2022; Chiang & Sugiyama, 2025), which only collects binary feedback such as
like/dislike or pairwise comparison (Ong et al., 2025; Zhao et al., 2024; Wang et al., 2025). The
advantage is that one-click feedback is user-friendly, and it is more confident to say response A is
better than B than to assign response A a score out of ten. The reason that makes a weakly supervised
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approach appealing is that, as shown by the referred papers, the binary feedback can be translated
into a model ranking or an estimate of the labeling function.

In addition to the challenge of annotation, adaptivity remains a key challenge to be addressed in
developing a usable routing system. Shifts in query distributions, such as changes in trending topics
like fashion or temporal variations between work hours and leisure time, introduce non-stationary
conditions. Moreover, new LLMs and benchmarks are continuously introduced, resulting in a con-
stantly evolving environment for routing. Because of their static nature, supervised learning-based
routing policies struggle to address multiple adaptation challenges simultaneously. Addressing such
challenges in a dynamic environment is a key motivation for adopting online learning approaches
for LLM routing, as these offer the ability to continuously learn and optimize the routing policy in
real time. The online algorithms adopted in prior work can be categorized into three classes: multi-
armed bandits (Nguyen et al., 2025; Dai et al., 2024; Li, 2025), contextual bandits (Wang et al.,
2025), and reinforcement learning (Sikeridis et al., 2025).

To build a practical routing system that fits the various requests, multiple challenges should be ad-
dressed simultaneously. However, we notice that little effort has been made to jointly solve the
challenges of adaptivity and weak supervision, even if the community has already made significant
progress in respective directions. To the best of our knowledge, Wang et al. (2025) is the only at-
tempt to address adaptivity and pointwise feedback (e.g., like/dislike) at the same time. Therefore,
this paper focuses on investigating LLM routing under a stochastic bandit setting, which captures the
dynamics of a changing environment, and operates under weak supervision in the form of pairwise
preference feedback (e.g., response A is preferred over response B). The advantages of the project
are threefold: First, we introduce the Feel-Good Thompson Sampling for Contextual Dueling Ban-
dits (FGTS.CDB) algorithm (Li et al., 2024) as the core module, which naturally integrates weak
supervision (dueling feedback) and adaptive learning (bandit algorithm) in both input and learning
design, expanding methodological options for future research. Second, FGTS.CDB is theoretically
grounded, providing a clear explanation of how binary feedback relates to a utility function shaped
by user satisfaction, model expertise, and cost. Third, it offers a platform to analyze its strengths
and limitations, enabling development of a practical LLM router that does not rely on high-quality
annotations and remains robust in dynamic environments.

The paper’s contributions are summarized as follows.

• We propose Category-Calibrated Fine-Tuning (CCFT), a generic embedding strategy to
encode LLM expertise. The feature function from CCFT enables the first trainable contex-
tual dueling learner for LLM routing that operates purely on binary preference feedback,
without using per-model scalar performance labels.

• Strong evidence for the efficacy of the proposed strategy is provided by experiments on
two real-world datasets, RouterBench (Hu et al., 2024) and MixInstruct (Jiang et al., 2023).
Four CCFT variants are implemented and evaluated, and the cumulative regret curves show
convergence to the optimal strategy, selecting the best-matching model for each query.

• The proposed methods demonstrate robust generalization on the unseen benchmark and
achieve a balance between performance and cost. They incorporate common practices,
including prompting, embedding model fine-tuning, and the use of both open-source and
black-box text embedding models. Therefore, the experiments contribute to the accumula-
tion of substantial knowledge and expertise in addressing LLM routing challenges.

2 RELATED WORK

LLM selection strategies LLM selection can be organized along two axes: how candidates are
queried and what learning signal is used. On the querying side, cascading systems (Chen et al.,
2024; Aggarwal et al., 2024; Narasimhan et al., 2025; Chuang et al., 2025) issue a sequence of calls,
starting from a cheap model and escalating to stronger ones until a confidence or quality threshold
is met. In contrast, one-shot routers predict a single or two target model(s) before inference. One-
shot routing is preferable when latency must remain small or when a diverse pool of models with
complementary domain strengths is available (Jiang et al., 2023) and we wish to select one (or two,
for preference feedback). Within one-shot routing, offline methods train a classifier or regressor on
a fixed labeled set to map queries to models (e.g., Shnitzer et al., 2023; Lu et al., 2024; Ding et al.,
2024; Hu et al., 2024; Srivatsa et al., 2024; Jitkrittum et al., 2025). Online methods instead adapt

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

the routing policy on the fly using bandits or reinforcement learning to cope with distribution shift
and evolving model pools (e.g., Nguyen et al., 2025; Dai et al., 2024; Li, 2025; Wang et al., 2025;
Sikeridis et al., 2025). Note that in our setting, the algorithm is formulated to output two LLMs but
the same LLM can be chosen twice. In such cases, we naturally only require a single call similar to
a successful cascading system.

On the signal side, many routers rely on pointwise supervision, i.e., correct/incorrect or scalar rat-
ings, while others leverage preference (pairwise) feedback that compares two candidates, which can
be easier to elicit (Ong et al., 2025; Zhao et al., 2024; Wang et al., 2025). Our work lies in the
online, one-shot setting with preference signals: we model routing as contextual dueling bandits
and instantiate a Thompson-sampling-style learner that updates from pairwise comparisons while
balancing performance and cost. Most of previous routers (Jitkrittum et al., 2025; Pulishetty et al.,
2025; Somerstep et al., 2025; Feng et al., 2025a; Zhuang et al., 2025) rely on pointwise supervision
such as correctness labels or scalar scores for each candidate model. By contrast, our algorithm is
trained only from pairwise preferences between two sampled models per query and never observes
absolute performance labels.1

Contextual Dueling Bandits and Feel-Good Thompson Sampling The contextual bandit prob-
lem extends the classical multi-armed bandit setting by leveraging side information (Langford &
Zhang, 2007). It has found widespread applications in areas such as online advertising, recom-
mender systems, and mobile health (Li et al., 2010; Agarwal et al., 2016; Tewari & Murphy, 2017).
A widely used and empirically effective class of algorithms for contextual bandits is Thompson Sam-
pling (TS) (Thompson, 1933), known for its strong empirical performance Chapelle & Li (2011);
Osband & Van Roy (2017). Research on contextual dueling bandits has taken several algorithmic
and theoretical directions. Kumagai (2017) analyzed dueling bandits with a continuous action space
and, under strong convexity and smoothness, established dimension-free regret guarantees. Building
on preference models, Bengs et al. (2022) introduced the CoLSTIM algorithm for stochastic con-
textual dueling bandits under linear stochastic transitivity, providing learning guarantees tailored to
this structure. Recently, Di et al. (2024) proposed VACDB, an action-elimination-based method that
achieves tighter, variance-dependent regret bounds for contextual settings.

Feel-Good Thompson Sampling (FGTS) was proposed to reconcile TS’s strong empirical perfor-
mance with frequentist-style guarantees (Zhang, 2022). Fan & Gu (2023) offered a unified analysis
framework showing how FGTS yields robust guarantees across several linear contextual bandit vari-
ants. The FGTS idea has also been extended to reinforcement learning, e.g., Model-based Optimistic
Posterior Sampling (MOPS) for Markov decision processes (Agarwal & Zhang, 2022). To the best
of our knowledge, our work is the first to apply FGTS to LLM routing, connecting preference-based
bandit principles with practical model-selection pipelines.

3 BACKGROUND

The contextual dueling bandit problem can be seen as a repeated game between a bandit algorithm
and an environment for T rounds. In each round t = 1, 2, . . . T , the algorithm observes a contextual
vector xt from the environment. Then, the algorithm selects two actions a1t , a

2
t ∈ A = {ak}Kk=1

in response to the environment. After presenting the responses, the algorithm observes a preference
feedback yt. The performance of the algorithm is measured by its cumulative regret

Regret(T ) :=

T∑
t=1

[
r∗(xt, a

∗
t )−

r∗(xt, a
1
t ) + r∗(xt, a

2
t )

2

]
, (1)

where r∗(x, a) is the utility function and a∗t = argmaxa∈A r∗(xt, a) is the best action for input xt.

The setting fits seamlessly to the LLM routing problem studied in this paper if we view xt as the
query embedding, a1t and a2t as two LLMs, yt as the preference feedback, and the r∗(x, a) as the
function balancing the user satisfaction and model score2 that we want to optimize. Minimizing
Regret(T ) precisely captures the goal of routing: identifying the optimal LLM a∗t at each round,
rather than committing to a single fixed a∗ across all rounds. The connection between the weak

1This difference in supervision regime is the main reason why existing supervised routers cannot be used as
drop-in baselines for our setting, in § 5.

2The model score is computed based on LLM performance, cost, latency, and other relevant factors.
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supervision of preference feedback y and the ideal supervision provided by r∗(x, a) is captured by
the Bradley–Terry–Luce (BTL) model (Hunter, 2004; Luce, 2005): Given query x and two LLMs
a1 and a2, the probability of observing a1 is preferred over a2 (i.e., y = 1) is

P(y = 1 | x, a1, a2) = exp
(
− σ(r∗(x, a1)− r∗(x, a2))

)
,

where σ(z) = log(1 + exp(−z))3.

Assuming the linear reward model r∗(x, a) = ⟨θ∗, ϕ(x, a)⟩, Li et al. (2024) proposed Alg. 1 and
proved that it achieves E[Regret(T )] = Õ(d

√
T ), where d is the dimension of θ. FGTS.CDB learns

the LLM selection strategies, θ1t and θ2t , in an online fashion. Its success hinges on the posterior
pj(θ | St−1) defined by the likelihood function

Lj(θ, x, a1, a2, y) = η σ
(
y⟨θ, ϕ(x, a1)− ϕ(x, a2)⟩

)
− µmax

ã∈A
⟨θ, ϕ(x, ã)− ϕ(x, a3−j)⟩. (2)

Algorithm 1 FGTS.CDB

1: Given action spaceA and hyperparameters η, µ. Initial-
ize S0 = ∅.

2: for t = 1, . . . , T do
3: Receive query xt.
4: for j = 1, 2 do
5: Sample model parameter θjt from posterior

pj(θ | St−1) ∝ exp
(
−
∑t−1

i=1 L
j(θ, xi, a

1
i , a

2
i , yi)

)
p0(θ)

6: Select LLM ajt = argmaxa∈A ⟨θjt , ϕ(xt, a)⟩
to generate the response.

7: Receive preference feedback yt.
8: Update history St ← St−1 ∪ {(xt, a

1
t , a

2
t , yt)}.

The intuition behind Lj(·) is as fol-
lows: if θ aligns well with the pref-
erence feedback y, that is, when
y⟨θ, ϕ(x, a1) − ϕ(x, a2)⟩ is positive
and large, then θ is more likely to
be chosen. The second term in the
likelihood function serves as a “feel-
good” component, encouraging the
selection of a θ that outperforms past
selections made by the other selec-
tion strategy4. As time t progresses,
the observation history St accumu-
lates, allowing FGTS to dynamically
adjust its samples θ1t+1 and θ2t+1 ac-
cordingly. In an evolving environ-
ment, any changes are reflected in St,
and adaptivity is inherently ensured
by the bandit algorithm.

Being theoretically oriented, Li et al.
(2024) assumes that the feature function ϕ(x, a) is given and perfect. However, this assumption
generally does not hold in real-world applications, as shown in the following section.

4 A GENERIC REPRESENTATION LEARNING STRATEGY
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Figure 1: Failed versus successful ex-
amples.

In § 4.1, we demonstrate how an imperfect ϕ(x, a) can
hinder learning and highlight a key obstacle in apply-
ing FGTS.CDB to the routing problem. Subsequently, in
§ 4.2, we introduce our methods for constructing feature
functions that enable FGTS.CDB to function effectively
in practical LLM routing scenarios.

4.1 THE FAILURE OF NAIVE IMPLEMENTATIONS

This subsection highlights the practical challenges in-
volved in designing an effective feature function. We
construct synthetic simulations based on the MMLU
dataset (Hendrycks et al., 2021). To this end, we
use OpenAI’s text-embedding-3-large model
to implement two straightforward embedding methods:
OpenAItext prompt, which uses prompting, and OpenAItext mean, which relies on av-
eraging embeddings. Their experimental details are defer to App. A.1.

3A more general setting accepting more than two candidates is called the Plackett-Luce (PL) model
(Azari Soufiani et al., 2014; Khetan & Oh, 2016; Ren et al., 2018).

4Specifically, note that, a3−j = a2 for j = 1 and a3−j = a1 for j = 2.
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From Fig. 1, we see that the slopes of OpenAItext mean and OpenAItext prompt almost
do not change with rounds. This means the regret keeps accumulating, and hence the learning does
not progress a lot. In contrast, the red curve resembles the learning behavior we want. The slope of
the red curve reduces as the rounds increase. This results in small cumulative regret, reflecting that
the learning agent is making fewer and fewer mispredictions and converging the behavior toward
the best routing policy. In the next subsection, we propose a generic strategy to construct model
embeddings that aims to achieve behavior similar to the red curve, and we test its implementations
on real-world datasets in experiments.

4.2 THE PROPOSED METHOD

Note that by design, ϕ(xt, ak) combines the information from the user side, xt, and the information
from the LLM side, ak. Since the text models we selected are well-recognized sentence encoders,
the failure cases discussed in § 4.1 are most likely due to careless design of the model embeddings.
Therefore, it is imperative to ensure that ak accurately captures the connection between the prospec-
tive queries and the LLM’s expertise. In this section, we introduce Category-Calibrated Fine-Tuning
(CCFT), a generic strategy for constructing ak through contrastive fine-tuning combined with cat-
egorical weighting. Our working hypothesis is that an LLM’s expertise is characterized by the
categories (or benchmarks) on which it performs well, and that the semantics of each category are
determined by the queries belonging to it. CCFT operationalizes this hypothesis in three steps: (i)
we learn question embeddings that form tight clusters within each category via contrastive fine-
tuning, (ii) we average the resulting question embeddings within each category to obtain category
embeddings, and (iii) we combine these category embeddings into a single LLM embedding using
category-level performance metadata.

Suppose the queries can be divided into M categories. The 2D t-SNE plot of the failure examples
in Fig. 5 shows that the text model tends to cluster queries from the same category. It provides
contrastive fine-tuning a good starting point. Thus, we fine-tune the text model using a small offline
query set that is disjoint from the online testing set. The fine-tuning is applied only to the question
encoder, using a cosine-similarity contrastive loss over positive and negative query pairs constructed
from category or benchmark labels, so that queries from the same category form denser clusters
and separate more clearly from other categories (see App. A.1 for the exact objective and training
details). No additional fine-tuning is performed when constructing category or model embeddings.
Then, for each category m, we compute the category embedding ξm by averaging the embeddings
of offline queries belonging to that category, as generated by the fine-tuned text model. Note that the
category embedding ξm is not the model embedding ak, for which an additional step is required, as
described next.

To capture the unique characteristics of each LLM, we assume that every LLM is associated with
a distinct Kiviat diagram, representing its areas of expertise. Under this assumption, a natural ap-
proach is to compute a weighted combination of the category embeddings, where the weights are
derived from the LLM’s scores on its Kiviat diagram. We refer to this mechanism as “categorical
weighting”. In particular, we propose the following four weighting methods. Denote M category
embeddings (ξ1, ξ2, . . . , ξM ) := ξ. For each LLM, let (sk,1, sk,2, . . . , sk,M )⊤ := sk be the score
vector over the categories. The first weighting method, coined “perf”, defines the model embed-
ding as

ak = ξ softmax(sk), (3)
in which sk,m is the model performance on category m. If the score sk,m is a function of model per-
formance and model cost, we coin the resulting ak “perf cost”. Note that perf and perf cost
take all score values into account. In reality, a common scenario involves a few strong models
that specialize in different categories, alongside several weaker models that perform comparably
within specific domains. In such a case, we could weight an LLM only on categories it is good
at, and leave the other categories handled by other LLMs. Formalizing this idea, we propose
“excel perf cost” as

ak = ξ softmax
(
top(τ)(sk)

)
, (4)

and “excel mask” as

ak = ξ
mask(τ)(sk)

τ
. (5)
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Let τ ∈ {1, 2, . . . ,K}, and let s(τ),m denote the τ -th largest value in {s1,m, s2,m, . . . , sK,m}5.
Function top(τ)(sk) produces a real-valued vector with m-th entry top(τ)(sk)m = sk,m1[sk,m ≥
s(τ),m]. Similarly, function mask(τ)(sk) produces a binary vector with m-th entry mask(τ)(sk)m =
1[sk,m ≥ s(τ),m]. Now, we have proposed four variants for computing an LLM embedding. Under
the linear reward model r∗(x, a) = ⟨θ∗, ϕ(x, a)⟩ introduced in § 3, this construction cleanly sepa-
rates LLM expertise from user preference: ϕ(x, a) encodes how well model a is suited to a query
x based on category-level structure and offline metadata, while θ∗ captures user-specific trade-offs
between performance and cost. In our implementation ϕ is fixed after the offline CCFT step, and the
online bandit learner updates its posterior over θ using only binary preference feedback y through
the likelihood in (2). This separation is what allows us to rely on very small offline question sets
while still adapting online to user preferences.

Categorical Weighting without Scores Note that the weighting mechanisms (3), (4), and (5)
require score information, which might not always be the case. Next, we show that we can still
perform a way of categorical weighting under a mild condition.

The term label here refers to the index of the LLM that is most preferred for a query (for example,
the model that wins the majority of pairwise comparisons for that query); it is distinct from the
category or benchmark that the query comes from6. We do not require explicit category labels in the
dataset, and categories can be interpreted as latent subpopulations of queries.

Suppose that for each query we know which LLM is currently the best match, and we record this
as its label k ∈ {1, 2, . . . ,K}. Thus, we use fkm to denote the proportion of queries in (latent)
category m whose label is k.

We assume the offline data is generated as follows: From each category m, a set of query embed-
dings Qm of size n is sampled. The offline data is {Gk}Kk=1, formed by regrouping {Qm}Mm=1
according to the labels. Given the offline data, we propose to compute the model embedding, for
each k ∈ {1, 2, . . . ,K}, as

ak =
∑
q∈Gk

q/|Gk|. (6)

The following proposition justifies the proposed mechanism; the proof is deferred to App. A.2,
where we also provide a simple two-category example to illustrate its intuition.
Proposition 1. Let fkm, {Qm}Mm=1, and {Gk}Kk=1 be defined as above. Let E[Qm] denote the
expected embedding of queries in category m. Assume the embedding distribution within category
m is independent of label k7. Then, for each k ∈ {1, 2, . . . ,K}, the average embedding (6) is an
unbiased estimate for

∑M
m=1

fkm∑M
j=1 fkj

E[Qm].

Viewing E[Qm] as ξm, the proposition shows that, even if there is no score information available,
averaging over query embeddings still offers a way of categorical weighting in terms of label propor-
tions: the weighting coefficients are fkm∑M

j=1 fkj
,m = 1, . . . ,M . Note that a constraint is the constant

n over categories. The constraint can be relaxed if we know the number of samples from each cat-
egory. Furthermore, when a pool of pairwise comparison results is gathered, one can build a rank
over LLMs to determine the best matching model. Therefore, the {Gk} setting and the proposed
model embedding mechanism in this section fit naturally into many industrial applications.

5 EXPERIMENTS

We implemented FGTS.CDB shown in Alg. 1. Sampling from the posterior pj(θ |
St−1) in Step 5 is implemented by Stochastic Gradient Langevin Dynamics (Welling & Teh

5Sorting {s1,m, s2,m, . . . , sK,m} results in s(1),m ≥ s(2),m ≥ . . . ≥ s(K),m, and s(τ),m will be located at
the τ -th position.

6Since different settings and datasets are discussed in this paper, the word “label” refers to various types
of information associated with a question. It may represent the question’s category (the category label), the
performance or correctness of each LLM (the performance or correctness label), the pairwise comparison result
(the pairwise comparison label), or the model that best responds to the question (the label in this context).

7This is a reasonable assumption, for instance, when preferences are determined by user traits.
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(2011); SGLD). Four text embedding models are chosen to generate embeddings for queries.
They are: OpenAI’s text-embedding-3-large (OpenAI, 2024), all-MiniLM-L6-v2
(Sentence-Transformers, 2021a), all-mpnet-base-v2 (Sentence-Transformers, 2021b), and
intfloat/e5-base (Wang et al., 2022). In this paper, we refer to the models as OpenAItext,
MiniLM, mpnet, and e5b, respectively. OpenAItext serves as a strong and general-purpose
embedding model. We compare its embeddings with those generated by the fine-tuned MiniLM,
mpnet, and e5b models to examine their impact on the feature function ϕ(x, a) derived from a text
model. The fine-tuning for an open-sourced text embedding model is implemented by contrastive
learning (Khosla et al., 2020; Reimers & Gurevych, 2019). We first build similar and dissimilar
query pairs according to their source category or benchmark. Then, the cosine-similarity loss is
used to fine-tune the model. For instance, eb5 E4 means that eb5 is fine-tuned for four epochs,
and mpnet E2 represents mpnet fine-tuned for two epochs. 8

5.1 ROUTERBENCH

RouterBench (Hu et al., 2024) is a comprehensive benchmark designed for evaluating LLM routing
methods. It provides over 405k precomputed inference outputs from eleven diverse LLMs across
seven tasks (MMLU, MT-Bench, MBPP, HellaSwag, Winogrande, GSM8K, ARC). The dataset
includes detailed performance and cost metadata, enabling systematic analysis of routing strategies.
The metadata, organized into a table in Hu et al. (2024) is included as Tab. 3 in App. B.1.

In the following, we describe how to use the metadata and the queries in each benchmark to construct
an LLM embedding ak. The learning process is divided into two phases: an offline fine-tuning phase,
during which the model embeddings are learned, and an online testing phase, where a realization
of FGTS.CDB is evaluated through a sequence of queries. To apply the proposed method, we
need to compute sk and ξ. Each benchmark m is treated as a distinct category. To compute the
corresponding category embedding ξm, we apply a text embedding model to five queries sampled
from benchmark m, and then take the average of their embeddings. These sampled queries are
excluded from the online learning phase to prevent data leakage. Suppose e5b E4 is applied to
generate the embeddings. Then, we obtain ξ(e5b E4) =

(
ξ
(e5b E4)
MMLU , ξ

(e5b E4)
MT-Bench, . . . , ξ

(e5b E4)
ARC

)
.

Table 1: Scores of Perf cost, Excel perf cost, and Excel mask

LLM MMLU MT-Bench MBPP HellaSwag Winogrande GSM8k ARC
(i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

WizardLM 13B 0.562 0 0 0.796 0 0 0.363 0 0 0.600 0 0 0.510 0 0 0.492 0 0 0.657 0 0
Mistral 7B 0.558 0 0 0.779 0 0 0.349 0 0 0.517 0 0 0.561 0 0 0.399 0 0 0.640 0 0
Mixtral 8x7B 0.721 0.721 1 0.920 0.920 1 0.572 0.572 1 0.634 0 0 0.673 0.673 1 0.485 0 0 0.837 0.837 1
Code Llama 34B 0.553 0 0 0.795 0 0 0.464 0 0 0.431 0 0 0.612 0 0 0.424 0 0 0.635 0 0
Yi 34B 0.727 0.727 1 0.937 0.937 1 0.331 0 0 0.834 0.834 1 0.743 0.743 1 0.509 0.509 1 0.873 0.873 1
GPT-3.5 0.700 0.700 1 0.907 0.907 1 0.649 0.649 1 0.695 0.695 1 0.623 0.623 1 0.543 0.543 1 0.844 0.844 1
Claude Instant V1 0.368 0 0 0.862 0 0 0.547 0 0 0.704 0.704 1 0.507 0 0 0.561 0.561 1 0.812 0 0
Llama 70B 0.629 0 0 0.853 0 0 0.300 0 0 0.627 0 0 0.498 0 0 0.486 0 0 0.784 0 0
Claude V1 0.312 0 0 0.920 0.920 1 0.497 0 0 -0.131 0 0 0.516 0 0 0.099 0 0 0.798 0 0
Claude V2 0.456 0 0 0.840 0 0 0.567 0.567 1 -0.554 0 0 0.392 0 0 -0.011 0 0 0.454 0 0

We then use the metadata in Tab. 3 and the induced Tab. 1 to calculate the scores sk. The
most straightforward way is to take only the performance columns in Tab. 3, which corresponds
to Perf. For instance, taking the performance values in the fifth row of Tab. 3, we obtain
s
(Perf)
Yi 34B = (0.743, 0.938, . . . , 0.882). We also implement three other scoring ways, Perf cost,
Excel perf cost, and Excel mask. Using the Perf and the Cost columns in Tab. 3, scores
of Perf cost is calculated by Perf − λCost with λ = 0.05 being a balance parameter. The
resulting values are listed in the columns of Tab. 1 indexed by (i). With Perf cost in hand,
Excel perf cost keeps the original Perf cost score if it is ranked as the top-τ in the col-
umn and assigns 0 otherwise. Here we choose τ = 3. The Excel perf cost scores are
listed under index (ii). Excel mask further masks the nonzero values of Excel perf cost

8Note that we do not assume access to per-model scalar performance labels during training of the router.
Prior high-accuracy LLM routers we are aware of, including universal and cross-attention routers, CARROT,
GraphRouter, and EmbedLLM (Jitkrittum et al., 2025; Pulishetty et al., 2025; Somerstep et al., 2025; Feng
et al., 2025b; Zhuang et al., 2025), require such labels to train a classifier or regressor. In our preference-only
setting these labels are intentionally unavailable, so these methods cannot be applied directly as baselines.
Instead, we treat OpenAI’s text-embedding-3-large as a strong representation-learning baseline and
compare it against CCFT-based representations within the same FGTS.CDB framework.
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as 1 and lists them under (iii) in Tab. 1. Finally, we feed the scores sk and the model embed-
dings ξ to (3), (4), and (5) to obtain the model embedding ak Specifically, Perf and Perf cost
are fed to (3), Excel perf cost to (4), and Excel mask to (5). Using the above sym-
bols, we can denote, for instance, the model embedding of Yi 34B calculated via text embedding
model e5b E4, scoring method Perf cost, and weighting equation (3) as a(e5b E4 Perf cost)

Yi 34B =

ξ(e5b E4) softmax
(
s
(Perf cost)
Yi 34B

)
9. In addition, we append all 14 metadata (Perf and Cost over

seven benchmarks) of an LLM at the end of its embedding. Finally, the feature function ϕ(x, ak)
is computed as the normalized Hadamard product x ∗ ak. To compare the effectiveness of fine-
tuning, we use a suffix to indicate whether a fine-tuned model or an original model generates
an embedding. For instance, the string “e5b E4 Excel perf cost exp” means “belonging
to the experimental group, each embedding is generated by e5b fine-tuned with four epochs
with the Excel perf cost weighting mechanism”, and “e5b E4 Excel perf cost ctrl”
means “belonging to the control group, each embedding is generated by the original e5b with
the Excel perf cost weighting mechanism. Since we cannot fine-tune OpenAItext, we use
handcraft prompts to generate LLM embeddings. We plug the offline query samples and the meta-
data of the dataset into the prompt (Listing 3 in App. D) to get the model description, and then
feed it to OpenAItext to obtain a model embedding. We use performance metadata as the utility
function, from which we generate online feedback via the BLT protocol and compute regret at each
round.

We run OpenAItext with one, three, and five queries, each for five runs, and average the cu-
mulative regrets to plot three curves10 in Fig. 2a. For open-sourced embdeeing models, we fine-
tune to obtain e5b E2, e5b E4, mpnet E2, mpnet E4, MiniLM E2, and MiniLM E4. For
each embedding model, four weighting mechanisms (Perf, Perf cost, Excel perf cost,
Excel mask) are implemented. The corresponding control group also undergoes the online test-
ing phase. There are a total of 8 curves for one embedding model. The best performed e5b E4 is
shown in Fig. 2b. Results for all models can be found in Fig. 6, App. B.2.
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Figure 2: Regret curves for RouterBench (a, b) and robust generalization (c, d).

We obtain the following observations from the regret curves. In Fig. 2a, the number of queries
in the prompt does not affect OpenAItext too much. Thus, we choose the best version,
OpenAItext 5, to compare with the results generated by our proposed CCFT in Fig. 2b.
First, the experimental group outperforms the control group, showing the advantage of fine-
tuning. Second, e5b E4 Excel perf cost exp and e5b E4 Excel mask exp outperform
OpenAItext 5, showing that even an open-sourced model, with a careful design, can generate bet-
ter embeddings than a strong general-purpose model. Third, when examining all plots in Fig. 6b – 6f,
the previous two observations hold for all other embedding models, showing convincing evidence for
the effectiveness of CCFT we proposed. Fourth, by comparing e5b E4 Excel perf cost exp
with e5b E4 Perf cost exp, we observe that weighting via Excel perf cost yields better
performance than weighting via Perf cost. This suggests that, instead of weighting over all cate-
gories, it is more effective to weight only the categories in which the LLM demonstrates expertise. In
addition to achieving lower accumulated regret, both Excel perf cost and Excel mask incor-
porate a performance-cost trade-off, enhancing their practical applicability and flexibility through

9Note that e5b, mpnet, and MiniLM are text models that generate embeddings. They need to be dis-
tinguished from the LLMs, listed in the leftmost column of Tab. 1, which are candidates selected to generate
responses in online learning.

10Unless mentioned, each regret curve reported is the average of 5 runs.
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the tunable parameter λ. App. B.3 presents a comparison between our approach and the closely
related MixLLM (Wang et al., 2025).

5.1.1 GENERALIZATION TO AN UNSEEN BENCHMARK

Although an online learning setting evaluates an algorithm’s adaptivity by providing sequentially
and randomly shuffled inputs, the algorithm may still access metadata from all benchmarks during
the offline stage. To more rigorously assess adaptivity to an unseen benchmark, we modify the data-
generation pipeline to ensure that one benchmark remains completely hidden from the algorithm
throughout both the offline and online phases. The queries and metadata of MT-Bench are removed,
as its dataset is not large enough to induce a distribution shift scenario in the coming experiment. For
the remaining six benchmarks, the metadata for ARC is removed from Tab. 3, ensuring that the al-
gorithm is oblivious to it from the outset. An online learning sequence is composed of two sections.
First, we sample 60 queries from each benchmark, excluding ARC (i.e., five benchmarks in total),
resulting in 300 queries. These are randomly shuffled to form the first section of the sequence. Next,
for the second section, we sample 120 queries from ARC and an additional 300 non-overlapping
queries from the other five benchmarks, following the same procedure as in the first section. These
420 (i.e., 120 + 300) queries are then shuffled to form the second section of the learning sequence.
This setup introduces a shift in the query distribution during the second section of online learning,
as queries from a previously unseen benchmark are added to evaluate the robust generalization capa-
bility of the proposed method. Due to the modification in how metadata is accessed, we introduce an
additional suffix, ideal, which allows the model to access ARC’s metadata. Although the ideal
case is not realistic in practice, comparing results from configurations ending with ideal and those
ending with exp enables us to assess the adaptivity strength of our method. For the rest of the
experimental setting, we follow the same fine-tuning protocol in the last section to generate embed-
dings. Based on the observations from figures 2b and 6, we implement the Excel perf cost and
Excel mask weighting schemes due to their consistently strong performance.

The results of OpenAItext and e5b are shown in figures 2c and 2d. Results for mpnet
and MiniLM can be found in Fig. 7 from App. B.2. We choose OpenAItext 1 to com-
pare with the results generated by e5b E4 according to Fig. 2c. First, obviously, the fine-
tuning group outperforms the control group. Second, e5b E4 Excel perf cost exp and
e5b E4 Excel mask exp, the fine-tuning results via our CCFT strategy outperform that of
OpenAItext 1. The case in the second observation holds for Fig. 7b through Fig. 7f, justifying
the effectiveness of the proposed method. Third, interestingly, we find that it is not always the case
that an ideal curve outperforms the corresponding exp curve. This can be found by comparing
the pair (e5b E4 Excel perf cost exp, e5b E4 Excel perf cost ideal) with the pair
(e5b E4 Excel mask exp, e5b E4 Excel mask ideal). The situation also can be found in
Fig. 7. This phenomenon suggests weighting less may be better than weighting more, and it may be
related to the last observation we have in the original RouterBench experiments that weighting over
all benchmark embeddings is not a good idea. Maybe the metadata alone is not enough to make a
weighting judgment; we might need to look into other aspects of the benchmarks in future work.

5.2 MIXINSTRUCT

MixInstruct (Jiang et al., 2023) is a 110K-example instruction-following benchmark built to evalu-
ate LLM routing methods. It mixes data from four sources (Alpaca-GPT4, Dolly-15K, GPT4All-
LAION, ShareGPT) with a 100k/5k/5k train/dev/test split. The authors run eleven popular open-
source LLMs on the full set, then derive oracle pairwise preferences by prompting ChatGPT to
compare every candidate pair per example.

Table 2: Models Ranked First by Percentage of Examples

Model Vicuna MOSS Open Assistant Alpaca Baize ChatGLM MPT Koala Dolly V2 StableLM FLAN-T5

Percentage (%) 21.22 12.91 12.61 11.61 11.61 8.51 7.61 6.71 4.50 1.90 0.80

Tab. 2, adapted from Figure 1 of Jiang et al. (2023), underscores the importance of LLM routing:
selecting the best-matching LLM for each query is crucial, as any fixed-LLM strategy will yield
no more than 22% accuracy. A distinctive characteristic of the MixInstruct dataset is the absence
of an explicit category label, rendering the proposed methods in (3), (4), and (5) infeasible. Since
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this challenge can naturally arise in practical settings, we use MixInstruct to evaluate our alternative
formulation presented in (6), thereby validating its applicability under such a realistic constraint.
Moreover, the pairwise comparison labels in MixInstruct make it closely resemble datasets com-
monly encountered in industrial applications.

To make the regret defined in (1) computable, we reconstruct the utility function r∗(x, a). Pairwise
comparisons between LLM candidates are translated into scores by adding a win value of 1, a tie
0.5, and a loss 0. For each query we then take the LLM with the highest score as its “label” in
the sense of § 4.2; queries sharing the same top-scoring LLM are grouped into Gk, and the model
embeddings ak are computed via (6). During the translation process, a Condorcet winner may
emerge (Black, 1958; Wikipedia contributors, 2025). To ensure it receives the highest score, we
assign the Condorcet winner a top score with an additional bonus. During the data analysis stage,
we found the existence of ambiguous queries. We applied the OpenAI API to assign an ambiguity
score to each query and removed the most ambiguous 8% and 15% of queries. The ambiguity
removal process introduces additional sub-strings 8 and 15 in the naming of regret curves. Using
(6), the rest of the experiment setup follows the procedure described in § 5.1. We obtain Fig. 3 and
deferred all results to App. C.
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Figure 3: Regret curves for MixInstruct.

In Fig. 3a, we again observe that
implementations of the proposed (6)
outperform OpenAItext variants,
demonstrating that our approach re-
mains effective even when the dataset
lacks metadata information. When
comparing results under different de-
grees of ambiguity removal, we ob-
serve a consistent pattern in Fig. 3b
across e5b E4, mpnet E4, and
OpenAItext 5: removing the top
15% of ambiguous queries is worse than removing only the top 8%. This highlights the risk of
discarding learnable information when too many queries are removed.

6 CONCLUDING REMARKS AND FUTURE WORK

We proposed CCFT, an embedding learning strategy that aligns prospective queries with model ex-
pertise through category-calibrated representations. Four variants of CCFT were implemented and
combined with the theoretically grounded FGTS.CDB algorithm to form the first trainable contex-
tual dueling learner for LLM routing. The proposed methods were systematically evaluated on two
real-world datasets, RouterBench and MixInstruct, demonstrating their effectiveness. Our approach
also exhibits robust generalization and achieves a performance-cost balance, both of which are crit-
ical for practical deployment.

Looking forward, we highlight three promising directions for future work. First, as noted in § 5.1.1,
our current model representation is effective but may not fully capture the potential of LLM exper-
tise. Enhancing this alignment between query semantics and model capabilities could lead to even
better routing performance. We plan to further pursue this direction by exploring new factors and
techniques for representing model expertise. Second, although our method is designed for pairwise
feedback, we conjecture that it can be adapted to work with pointwise feedback as well. However,
building a unified system that can effectively integrate both types of supervision remains an open
challenge. Addressing this would offer both practical value and deeper academic understanding. Fi-
nally, while our work is based on Feel-Good Thompson Sampling for contextual dueling bandits (Li
et al., 2024) (because of the strong empirical performance shown in Li et al. (2024) over other
approaches), our approach could be combined with alternative algorithms such as UCB-style con-
textual dueling bandits, and systematically comparing these variants is also an interesting direction
for future work.
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Ethics statement This work represents an original contribution derived from our research on LLM
routing. We have made an honest and balanced effort to report both the strengths and limitations
of the proposed methods. The study is primarily methodological and theoretical in nature. The text
embedding models used are either open-source academic resources or publicly available commercial
products. All datasets employed are publicly accessible and widely accepted within the research
community. Therefore, we do not anticipate any immediate risks of misuse or harm to human
society arising from this work.

Reproducibility statement We list below the datasets and text embedding models used in the
experiments reported in this submission.

• MMLU https://openreview.net/forum?id=d7KBjmI3GmQ

• RouterBench https://openreview.net/forum?id=IVXmV8Uxwh
• MixInstruct https://aclanthology.org/2023.acl-long.792/
• text-embedding-3-large of OpenAI https://platform.openai.com/docs/
guides/embeddings

• all-MiniLM-L6-v2 of Sentence-Transformers https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2

• all-mpnet-base-v2 of Sentence-Transformers https://huggingface.co/
sentence-transformers/all-mpnet-base-v2

• intfloat/e5-base https://arxiv.org/abs/2212.03533

We will release the code necessary to reproduce the experiments, including data processing, em-
bedding learning, and algorithm evaluation. To ensure reproducibility, we have seeded all random
processes using the following code block.

1 def set_seed(seed):
2 random.seed(seed)
3 np.random.seed(seed)
4 torch.manual_seed(seed)
5 if torch.cuda.is_available():
6 torch.cuda.manual_seed_all(seed)
7 torch.backends.cudnn.deterministic = True

Listing 1: A Python function to ensure reproducibility.
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A SUPPLEMENTARY MATERIALS FOR SECTION 4

A.1 EXPERIMENTAL DETAILS OF MMLU
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Figure 4: Two failed examples (OpenAItext mean and OpenAItext prompt) versus a suc-
cessful example (MiniLM).

This section explains how the curves in Fig. 4 are constructed. We chose five topics, abstract algebra,
anatomy, astronomy, international law, and machine learning, from MMLU (Hendrycks et al., 2021).
Queries are sampled to form two disjoint offline learning and online testing sets. For each topic, ten
queries are sampled for offline learning. The online samples for each topic are drawn in proportion
to the dataset, forming an online test set of 595 queries in total.

The Construction of OpenAItext prompt and OpenAItext mean Since MMLU does not
involve LLMs, we need to construct our own LLM experts and the corresponding performance val-
ues. A straightforward way is to assume there are five LLMs, each with expertise in one of the
topics. Using offline queries, we explore two approaches to generate the model embeddings ak

11.
In the first way, we encode the model description via OpenAI’s text-embedding-3-large,
where the model description is the combination of our handcrafted prompt with offline queries (List-
ing 2 in App. D). We use OpenAItext prompt to denote its results. In the second way, we
first generate offline query embeddings of a topic using text-embedding-3-large and then
take their average as the model embedding. OpenAItext mean is used to denote its results.
The intuition behind both approaches is to represent a model using the sample queries it excels
at. It is rather simple to generate a query embedding x, as we simply feed the query string into
text-embedding-3-large. We tested the Hadamard product (element-wise multiplication)
ϕ(x, a) = x ∗ a with normalization and vector addition (element-wise addition) ϕ(x, a) = x + a
with normalization to construct ϕ and keep the first one based on the experimental outcomes. To
construct performance values, we compute a similarity matrix using the average query embeddings
for each topic and the cosine similarity function. Given the topic of the current query and the algo-
rithm’s selections, we can retrieve the corresponding similarity scores from this matrix to quantify
the algorithm’s performance. These similarity scores are then used both to sample feedback via the
BTL model and to generate the performance values needed for computing regret at each round.

The Construction of MiniLM MiniLM is an abbreviation of all-MiniLM-L6-v2. Its con-
struction follows the procedure as OpenAItext mean, with two modifications. First, the embed-
ding model is replaced with all-MiniLM-L6-v2. Second, contrastive learning (Khosla et al.,
2020; Reimers & Gurevych, 2019) is applied to fine-tune the model. To do so, we construct similar
and dissimilar query pairs based on their source category, and fine-tune the model using a cosine
similarity loss for four epochs. The regret curve corresponding to this model is labeled as MiniLM.

We note that Fig. 1 is identical to Fig. 4, and that MiniLM is omitted from the main text. The
goal there is to illustrate how a successful routing method should behave, rather than to define the

11For consistency, we use ak both to index an LLM (as in § 3) and to denote its embedding (as explained
next), with the intended meaning clear from context.
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method itself. Since MiniLM is not the final version of our proposed approach, and MMLU is not
an ideal benchmark for evaluating routing strategies, we chose to defer these details to the appendix.
Nonetheless, MMLU is sufficiently simple to serve as a synthetic simulation for demonstrating our
motivation.

A.2 PROOF OF PROPOSITION 1

Proof of Proposition 1. Let k be fixed. Assume without loss of generality that each fkmn is an
integer, the size of Gk is

∑M
j=1 fkjn. Then,∑

q∈Gk
q

|Gk|
=

∑M
m=1

∑
q∈Gk∩Qm

q∑M
j=1 fkjn

=

M∑
m=1

fkmn∑M
j=1 fkjn

(∑
q∈Gk∩Qm

q

fkmn

)
.

The term in the parentheses is the sample average of fkmn independent embeddings drawn from
category m. Hence, it is an unbiased estimator of E[Qm] and we have the proposition.

Example (Interpretation of Prop. 1). To illustrate Prop. 1, consider M = 2 latent categories,
each containing n queries. Suppose that for a fixed LLM k we have fk1 = 0.75 and fk2 = 0.25,
i.e., model k is the best-matching LLM for 75% of the queries in category 1 and for 25% of the
queries in category 2. Then |Gk| = (0.75 + 0.25)n and Eq. 6 averages the embeddings of these
(0.75 + 0.25)n queries. Prop. 1 tells us that, in expectation as n grows, this average converges to

ak ≈
0.75

0.75 + 0.25
E[Q1] +

0.25

0.75 + 0.25
E[Q2],

that is, a convex combination of the category-level mean embeddings weighted by how often model
k is preferred in each category. This is precisely the kind of categorical reweighting we aimed to
achieve, but obtained here without explicitly observing category labels or performance scores.

A.3 T-SNE VISUALIZATIONS
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Figure 5: 2D t-SNE visualization of the embeddings generated by the fine-tuned MiniLM model
discussed in Appendix A.1 (left), compared to those without fine-tuning (right). Each point repre-
sents an embedding projected into 3D space, with colors indicating cluster membership.

B ROUTERBENCH SUPPLEMENTARY MATERIALS

B.1 TABLE 1 OF HU ET AL. (2024)

Tab. 3 is identical to Table 1 in Hu et al. (2024). We include it here for completeness.
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Table 3: Performance and cost across benchmarks

LLM MMLU MT-Bench MBPP HellaSwag Winogrande GSM8k ARC
Perf↑ Cost↓ Perf↑ Cost↓ Perf↑ Cost↓ Perf↑ Cost↓ Perf↑ Cost↓ Perf↑ Cost↓ Perf↑ Cost↓

WizardLM 13B 0.568 0.122 0.796 0.006 0.364 0.011 0.636 0.727 0.512 0.040 0.510 0.354 0.660 0.068
Mistral 7B 0.562 0.081 0.779 0.003 0.349 0.006 0.541 0.485 0.562 0.027 0.409 0.210 0.642 0.046
Mixtral 8x7B 0.733 0.245 0.921 0.012 0.573 0.023 0.707 1.455 0.677 0.081 0.515 0.594 0.844 0.137
Code Llama 34B 0.569 0.317 0.796 0.015 0.465 0.021 0.525 1.882 0.617 0.104 0.462 0.752 0.644 0.177
Yi 34B 0.743 0.326 0.938 0.018 0.333 0.031 0.931 1.938 0.748 0.107 0.552 0.867 0.882 0.182
GPT-3.5 0.720 0.408 0.908 0.026 0.651 0.044 0.816 2.426 0.630 0.134 0.601 1.170 0.855 0.228
Claude Instant V1 0.384 0.327 0.863 0.030 0.550 0.064 0.801 1.943 0.512 0.108 0.626 1.300 0.821 0.183
Llama 70B 0.647 0.367 0.854 0.022 0.302 0.039 0.736 2.183 0.504 0.121 0.529 0.870 0.794 0.205
Claude V1 0.475 3.269 0.938 0.361 0.527 0.607 0.841 19.43 0.570 1.077 0.653 11.09 0.889 1.829
Claude V2 0.619 3.270 0.854 0.277 0.605 0.770 0.421 19.50 0.446 1.081 0.664 13.49 0.546 1.833
GPT-4 0.828 4.086 0.971 0.721 0.682 1.235 0.923 24.29 0.858 1.346 0.654 19.08 0.921 2.286

B.2 ADDITIONAL RESULTS FOR ROUTERBENCH

Fig. 6 presents the cumulative regret curves for e5b E4, e5b E2, mpnet E4, mpnet E2,
MiniLM E4, MiniLM E2, and the OpenAItext variants. Fig. 6h compares all embedding mod-
els under the Excel perf cost and Excel mask mechanisms, which represent the most ef-
fective weighting methods in most cases. Note that Fig. 6a is identical to Fig. 2b, and Fig. 6g is
identical to Fig. 2a. They are included here for completeness.

B.3 COMPARISON WITH MIXLLM

We compare our work with the most relevant related method, MixLLM, proposed by Wang et al.
(2025). Both approaches adopt online learning frameworks with binary feedback. However, there
are three fundamental differences between the two.

First, MixLLM uses pointwise feedback (e.g., like/dislike) as input, whereas our method relies on
pairwise feedback (i.e., preference comparisons). As a result, the problem settings are inherently
different. Second, MixLLM employs an upper confidence bound (UCB)-based strategy, where un-
certainty is managed via the matrix Al (see (9) in their paper). In contrast, our approach is based
on TS, where uncertainty is governed by posterior sampling and the likelihood function Lj (2).
Third, our method requires significantly fewer offline training samples. Specifically, we use only
five queries per benchmark (thirty-five in total) for offline learning. According to Table 1 in Wang
et al. (2025), MixLLM requires at least 30% of the dataset for offline training. This sample efficiency
is an appealing feature of our approach.12

B.4 ADDITIONAL RESULTS FOR ROBUST GENERALIZATION

Fig. 7 shows how e5b E4, e5b E2, mpnet E4, mpnet E2, MiniLM E4, MiniLM E2, and the
OpenAItext variants adapt to the unseen ARC benchmark. Fig. 7h collects the regret curves of
all models implemented by Excel mask and Excel perf cost weighting mechanisms. Note
that Fig. 7a is identical to Fig. 2d, and Fig. 7g is identical to Fig. 2c. They are included here for
completeness.

B.5 ADDITIONAL RESULTS OF FINE-TUNING WITHOUT CATEGORICAL WEIGHTING

Fig. 8 shows the regret curves for e5b E4, e5b E2, mpnet E4, mpnet E2, MiniLM E4,
MiniLM E2, and the OpenAItext without categorical weighting. To remove categorical weight-
ing, we take Excel mask and set τ = 1.

C MIXINSTRUCT SUPPLEMENTARY MATERIALS

C.1 ADDITIONAL RESULTS

Figure 9a, which is identical to Figure 3a, compares all text models with the top 8% most ambiguous
queries removed. Figure 9b presents results with the top 15% of ambiguous queries removed. Fig-

12In particular, we use five queries per category in the current section, fifteen for robust generalization eval-
uation (§ 5.1.1), and ten queries for the MixInstruct experiments (§ 5.2).
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ure 9c, identical to Figure 3b, compares the effects of removing different proportions of ambiguous
queries.

D PROMPTS FOR OPENAI’S TEXT-EMBEDDING-3-LARGE MODEL

The prompt in Listing 2 is used to generate model embeddings in § 4.1. The prompt in Listing 3 is
used to generate model embeddings in § 5.

1 prompt = (
2 f"This model is very good at solving questions regarding {category}."
3 f"Example questions it excels at: "
4 f"1. {example_questions[0]}"
5 f"2. {example_questions[1]}."
6 )

Listing 2: The Python code block including the prompt used in MMLU.

1 avg_perf = np.mean(aggregated_data[model_benchmark]["Perf"])
2 avg_cost = np.mean(aggregated_data[model_benchmark]["Cost"])
3 cost_efficiency = 1 / avg_cost if avg_cost > 0 else float("inf")
4

5 qs = example_qs[:return_id+1]
6

7 if len(qs) > 1:
8 questions = ", ".join(qs[:-1]) + f", and {qs[-1]}"
9 else:

10 questions = qs[0]
11

12 prompt = (
13 f"This is {model_name}, a language model with "
14 f"average performance score of {avg_perf:.3f} "
15 f"and cost efficiency rating of {cost_efficiency:.3f}."
16 f"It has shown particular strength in {model_benchmark} type

questions."↪→
17 f"Example question(s) it handles: {questions}."
18 )

Listing 3: The Python code block including the prompts used in RouterBench and MixInstruct.

E THE USE OF LARGE LANGUAGE MODELS

We used ChatGPT-4o and ChatGPT-5 to assist with the following tasks:

• Writing support, including wording suggestions, sentence smoothing, and grammar check-
ing

• Table generation
• Figure arrangement and layout improvement, including tips for enhancing visualization
• Literature review during the initial and drafting stages of the project
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(a) e5b E4 results.
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(b) e5b E2 results.
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(c) mpnet E4 results.
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(d) mpnet E2 results.
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(e) MiniLM E4 results.
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(f) MiniLM E2 results.
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(g) OpenAItext results.
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(h) Compare against all text models.

Figure 6: Cumulative regret curves for RouterBench.
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(a) e5b E4 results.
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(b) e5b E2 results.
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(c) mpnet E4 results.
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(d) mpnet E2 results.
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(e) MiniLM E4 results.
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(f) MiniLM E2 results.
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(g) OpenAItext results.
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(h) Compare against all text models.

Figure 7: Cumulative regret curves for robust generalization.
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(a) e5b E4 results.
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(b) e5b E2 results.
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(c) mpnet E4 results.
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(d) mpnet E2 results.
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(e) MiniLM E4 results.
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(f) MiniLM E2 results.
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(g) Compare against all text models.

Figure 8: Cumulative regret curves for fine-tuning without categorical weighting.
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(a) All text models with top 8% ambiguous queries
removed.
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(b) All text models with top 15% ambiguous queries
removed.
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(c) Ambiguity removal: 8% versus 15%.

Figure 9: Cumulative regret curves for MixInstruct.
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