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Abstract001
Recent advancements in LLMs unlearning have002
shown remarkable success in removing un-003
wanted data-model influences while preserv-004
ing the model’s utility for legitimate knowl-005
edge. Despite these strides, sparse Mixture-of-006
Experts (MoE) LLMs–a key subset of the LLM007
family–have remain unexplored in the context008
of unlearning. As MoE LLMs are celebrated009
for their exceptional performance, we ask: How010
can unlearning be performed effectively and ef-011
ficiently on MoE LLMs? Our pilot study shows012
that the dynamic routing nature of MoE LLMs013
introduces unique challenges, leading to ex-014
cessive forgetting, uncontrolled knowledge era-015
sure and substantial utility drops when existing016
unlearning methods are applied. To address017
this, we propose a novel Selected-Expert Un-018
learning Framework (SEUF). Through expert019
attribution, unlearning is concentrated on the020
most actively engaged experts for the specified021
knowledge. Concurrently, an anchor loss is ap-022
plied to the router to stabilize the active state of023
this targeted expert, ensuring focused and con-024
trolled unlearning. SEUF is compatible with025
various standard unlearning algorithms. Exten-026
sive experiments demonstrate that SEUF en-027
hances both forget quality up to 5% and model028
utility by 35% on MoE LLMs across various029
benchmarks and LLM architectures (compared030
to standard unlearning algorithms), while only031
unlearning 0.06% of the model parameters.032

1 Introduction033

Despite the extraordinary ability in generating034

human-like content (Touvron et al., 2023), the rapid035

development of large language models (LLMs)036

have raised a series of ethical and security concerns,037

such as pretraining on copyrighted data (Sun et al.,038

2024), bias perpetuation (Motoki et al., 2023), the039

generation of toxic, biased, or illegal contents (Wen040

et al., 2023), and facilitating making cyberattacks041

and bio-weapons (Li et al., 2024). As a solution, the042

problem of Machine Unlearning (MU) arises (also043

referred to LLM unlearning) (Liu et al., 2024c),044

aiming to scrub the influence of the undesired train- 045

ing data and removing their corresponding gener- 046

ation abilities, while preserving the influence of 047

other remaining valid data (Jia et al., 2024a; Shi 048

et al., 2024; Jia et al., 2024b). 049

While LLM unlearning has recently become a 050

major research thrust, past efforts have only fo- 051

cused on effective unlearning methods for con- 052

ventional LLMs. In contrast, sparse Mixture-of- 053

Experts LLM (MoE LLM) (Jiang et al., 2024; xAI, 054

2024; Databricks, 2024; Abdin et al., 2024; Liu 055

et al., 2024a), designed to reduce computational 056

burdens during inference, remained unexplored in 057

this context. As a key member of the LLM family, 058

MoE LLMs offer substantial scalability without 059

a corresponding increase in computational costs 060

(Jiang et al., 2024; Team, 2024; Dai et al., 2024). 061

Thanks to their dynamic routing mechanism, MoE 062

LLMs direct inference through different model 063

components, known as ‘experts’. However, it re- 064

mains unclear how LLM unlearning interacts with 065

the sparse MoE architecture and whether unlearn- 066

ing for MoE LLMs presents unique challenges. 067

This leads us to ask: 068

(Q) Can we develop a principled MU method
for MoE LLMs that ensures high forgetting
effectiveness, while maintaining model utility
and efficiency?

069

To the best of our knowledge, the problem (Q) 070

remains unexplored in the current literature. Our 071

investigation begins with a pilot study that applies 072

existing unlearning methods to MoE LLMs. Pre- 073

liminary results indicate that a simple application 074

of these methods can lead to a substantial drop 075

in model utility and even model collapse. This 076

phenomenon is illustrated in Fig. 1(a), which de- 077

picts the performance of the unlearned MoE LLMs 078

predominantly closer to the bottom right corner, in- 079

dicating a significant and unacceptable utility drop 080

compared to conventional dense LLMs. 081
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To look into this phenomenon, we begin by per-082

forming a careful sanity check on unlearning meth-083

ods in MoE LLMs and conduct an in-depth analysis084

of failure cases. Ideally, in MoE LLMs, given an085

input, the routers should evaluate and direct it to086

the most relevant experts, with unlearning targeting087

and erasing the corresponding knowledge in these088

experts. However, by monitoring expert selection089

during unlearning, we find that the process often090

prompts routers to constantly switch the activated091

experts. This behavior persists even when routers092

are fixed. As a result, unlearning algorithms create093

“short-cuts”, where instead of targeting the most rel-094

evant experts, the routers shift to less relevant ones095

to trick for unlearning loss reduction (i.e., irrelevant096

experts are unlearned). This leads to substantial097

drops in model utility (illustrated in Fig. 1(b)).098

To solve the problem, we propose a novel un-099

learning framework specifically tailored for MoE100

LLMs, named SEUF (Selected Experts Unlearning101

Framework). SEUF employs expert attribution to102

pinpoint the experts most actively involved with the103

forget set, which is designated as the primary target104

for unlearning. Unlearning efforts are exclusively105

focused on this identified expert. Concurrently, an106

anchor loss is applied to the router to stabilize the107

active status of the targeted expert throughout the108

unlearning process. This approach prevents the109

frequent switching of expert selection, ensuring110

that unlearning is both focused and controlled. Our111

contributions are summarized below.112

• We for the first time identify the unique chal-113

lenge of unlearning in MoE LLMs. Our analysis114

elucidates the root causes of observed failures, of-115

fering novel insights into how unlearning impacts116

the routers and experts within an MoE LLM.117

• We propose a novel parameter-efficient un-118

learning framework, SEUF, for MoE LLMs.119

SEUF effectively pinpoints, fixates, and unlearns120

the most pertinent experts relative to the forget121

set. SEUF enjoys high flexibility and works in a122

plug-in-and-play mode with any existing unlearn-123

ing methods to boost forget quality, model utility,124

and efficiency at the same time.125

• We conduct extensive experiments to demon-126

strate the effectiveness of SEUF across various127

MoE architectures, MU benchmarks, and unlearn-128

ing methods. Our results show that when integrated129

with SEUF, all tested unlearning methods achieve130

substantial improvements in model utility up to131

35% and concurrently enhance the quality of for-132

getting with only 0.06% parameters being updated.133

2 Related Works 134

Machine Unlearning for LLMs. A growing body 135

of research has investigated the problem of unlearn- 136

ing in LLMs (Yao et al., 2024; Lu et al., 2022; 137

Jang et al., 2022; Kumar et al., 2022; Zhang et al., 138

2023a; Pawelczyk et al., 2023; Eldan and Russi- 139

novich, 2023; Ishibashi and Shimodaira, 2023; Yao 140

et al., 2023; Maini et al., 2024; Zhang et al., 2024; 141

Li et al., 2024; Wang et al., 2024a; Jia et al., 2024b; 142

Liu et al., 2024c,b; Thaker et al., 2024). These 143

studies have practical applications, such as remov- 144

ing sensitive information (Jang et al., 2022; Eldan 145

and Russinovich, 2023; Wu et al., 2023), prevent- 146

ing the generation of harmful or biased content 147

(Jang et al., 2022; Eldan and Russinovich, 2023; 148

Wu et al., 2023; Lu et al., 2022; Yu et al., 2023; 149

Yao et al., 2023; Liu et al., 2024d), memorized 150

sequences (Jang et al., 2022; Barbulescu and Tri- 151

antafillou, 2024), and copyrighted material (Eldan 152

and Russinovich, 2023; Jang et al., 2022). To fa- 153

cilitate unlearning, recent methods aim to bypass 154

the need for retraining models from scratch by ex- 155

cluding the forget set containing the targeted data 156

to be removed (Ilharco et al., 2022; Liu et al., 2022; 157

Yao et al., 2023; Eldan and Russinovich, 2023; Jia 158

et al., 2024b; Zhang et al., 2024; Li et al., 2024; 159

Thaker et al., 2024; Liu et al., 2024b). Techniques 160

like task arithmetic also enable efficient model edit- 161

ing through parameter merging (Hu et al., 2024; 162

Ilharco et al., 2022). Although these methods do 163

not provide exact unlearning akin to full retraining, 164

they remain efficient and effective under empirical 165

unlearning evaluation metrics. Approaches often 166

include model fine-tuning and optimization (Liu 167

et al., 2022; Yao et al., 2023; Eldan and Russi- 168

novich, 2023; Jia et al., 2024b; Zhang et al., 2024; 169

Li et al., 2024), or input prompting and in-context 170

learning (Thaker et al., 2024; Pawelczyk et al., 171

2023; Liu et al., 2024b). Other approaches, such 172

as localization-informed unlearning, identify and 173

locally edit model units (e.g., layers or neurons) 174

closely related to the data or tasks being unlearned 175

(Meng et al., 2022; Wu et al., 2023; Wei et al., 176

2024). Most existing research has focused on dense 177

LLMs, leaving unlearning in MoE LLMs unex- 178

plored. For example, the unlearning of Mixtral- 179

8× 7B discussed in Li et al. (2024) only examined 180

a single method with ad-hoc adjustments. This 181

work aims to fill this gap by conducting a com- 182

prehensive study of various unlearning methods, 183

benchmarks, and MoE models, addressing the spe- 184

cific challenges posed by the MoE architecture. 185
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Figure 1: Overview of the key findings in this paper. (a) Illustration of the ineffectiveness of existing unlearning methods on
MoE LLMs. Four unlearning algorithms—GA (Eldan and Russinovich, 2023), GDIFF (Maini et al., 2024), NPO (Zhang et al.,
2024), and RMU (Li et al., 2024)—were applied to two MoE LLMs (DeepSeek-v2-Lite (Liu et al., 2024a) and Qwen1.5-MoE
(Team, 2024)) and two dense LLMs (Phi3.5 (Abdin et al., 2024) and LLaMA3-8B (Dubey et al., 2024)) using the WMDP benchmark
(Li et al., 2024). The drop in target knowledge (accuracy drop on the forget test set, higher is better) and the drop in model
utility (accuracy drop on MMLU (Hendrycks et al., 2023), lower is better) are plotted. Better-unlearned models should appear
in the top left corner, but unlearning on MoE LLMs was less effective compared to non-MoE modles. (b) Illustration of ideal
versus ineffective MoE LLM unlearning. Target experts—those most frequently activated given the forget set—are identified for
unlearning. However, existing unlearning algorithms tend to cause substantial expert selection shifts, leading to excessive and
unnecessary unlearning of non-target experts, which significantly impairs model utility.

MoE-based LLMs. Sparse MoE models are186

designed to activate only a subset of expert net-187

works for each input during inference, enabling188

substantial model scaling with minimal computa-189

tional overhead (Shazeer et al., 2017). Current190

MoE model development can be categorized into191

two types: training from scratch (Fedus et al., 2022;192

Zoph et al., 2022a; Shen et al., 2023) and building193

from dense checkpoints (Zhang et al., 2021; Komat-194

suzaki et al., 2022; Zhu et al., 2024). Over recent195

years, MoE models have seen key advancements,196

including improvements in scalability (Riquelme197

et al., 2021; Kim et al., 2021; Zhou et al., 2022;198

Zoph et al., 2022a), efficiency optimization (Fedus199

et al., 2022; Lepikhin et al., 2020; Chowdhery et al.,200

2023), and expert balancing techniques (Cong et al.,201

2024; Zoph et al., 2022b; Dai et al., 2022). The202

implementation of transformer-based MoE mod-203

els has been integrated into LLMs, significantly204

enhancing inference efficiency (Jiang et al., 2024;205

Dai et al., 2024; xAI, 2024; Hong et al., 2024; Ab-206

din et al., 2024; Lieber et al., 2024; Yang et al.,207

2024; Zhu et al., 2024; Databricks, 2024). For ex-208

ample, DeepSeekMoE (Dai et al., 2024) improves209

expert specialization by segmenting experts into210

smaller subsets for flexible activation, while iso-211

lating shared experts to reduce redundancy and212

capture common knowledge. Similarly, Qwen1.5-213

MoE (Team, 2024) partitions a standard FFN layer214

into smaller segments to create multiple experts,215

introducing a fine-grained routing mechanism that216

enables Qwen1.5-MoE to match the performance217

of 7B models with only one-third of parameters218

activated. Despite the efficiency gains provided by219

MoE’s dynamic routing system, existing research220

highlights additional challenges compared to tra- 221

ditional dense models, including unstable training 222

(Zoph et al., 2022a; Dai et al., 2022), robustness 223

issues (Zhang et al., 2023b; Puigcerver et al., 2022), 224

and complications in parallel deployment (Hwang 225

et al., 2023; Gale et al., 2023). In this work, we 226

show that the root cause of the ineffectiveness of 227

existing unlearning methods for MoE LLMs also 228

stems from the dynamic routing system. 229

3 Preliminaries 230

In this section, we present our pilot study to reveal 231

that unlearning methods designed for conventional 232

LLMs are ineffective in unlearning MoE LLMs. 233

Preliminaries on MoE LLM unlearning. 234

Based on the generic formulation outlined in Liu 235

et al. (2024c), the task of LLM unlearning is to 236

eliminate the influence of a specific ‘unlearning 237

target’–whether it is related to data, knowledge, 238

or model capabilities–from a pretrained LLM (de- 239

noted by θo). The unlearning target is typically 240

defined by a forget set Df , which contains the in- 241

formation or knowledge to be removed. To ensure 242

the model retains its generation ability (i.e., utility) 243

after unlearning, a retain set Dr is introduced, con- 244

sisting of data unrelated to the unlearning target. 245

With this setup, the LLM unlearning problem is 246

usually formed as a regularized optimization prob- 247

lem, finetuned from θo using both the forget set Df 248

and the retain set Dr: 249

min
θ

ℓf (θ;Df ) + λℓr(θ;Dr). (1) 250

251Here, θ represents the model parameters to be 252

updated during unlearning, ℓf and ℓr denote the 253

forget loss and retain loss, respectively, with λ ≥ 0 254
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Table 1: Unlearning performance of GA when control-
ling tunable parameters in MoE LLMs.

Tunable Module Forget Efficacy ↓ Utility ↑

Qwen

Original 0.4192 0.5979
Experts & Router 0.2953 0.3393

Routers Only 0.2526 0.2977
Experts Only 0.2536 0.3242

DeepSeek

Original 0.3804 0.5500
Routers & Expert 0.2457 0.3145

Routers Only 0.2375 0.3315
Experts Only 0.2601 0.3435

serving as a regularization parameter to balance255

between unlearning and preserving utility.256

Next, we provide a brief introduction to how the257

routing system operates in the MoE LLM architec-258

ture. In MoE LLMs, e.g., DeepSeek-v2-Lite (Liu259

et al., 2024a), the feed-forward networks (FFNs)260

of Transformers are split into multiple experts and261

activated by the output of the router in front of the262

expert layers, see Fig. 1(b) for illustration. In the263

l-th layer, given the input u(l)
t corresponding to the264

t-th token, router layers calculate the score of each265

token and assign them to the top-K experts:266

s
(l)
i,t = Softmax(Router(u(l)

t ))267

g
(l)
i,t =

{
s
(l)
i,t if s(l)i,t ∈ TopK({s(l)k,t | 1 ≤ k ≤ N})
0 otherwise

268

269 Here, Router(·) denotes the router layer, si,t is270

the token-to-expert affinity, TopK(·) selects the271

highest K value in the set, N is the number of272

experts, and g
(l)
i,t is the score assigned by router273

for the i-th expert. Then, the hidden state h′(l)
t274

of FFNs can be calculated as: h′(l)
t = u

(l)
t +275 ∑N

i=1 g
(l)
i,t FFN(l)

i (ut), where FFN(l)
i (·) denotes the276

i-th expert. Then, h′(l)
t is sent to the next layer of277

Transformer blocks for further processing.278

Unlearning for MoE LLM is not trivial: a pi-279

lot study. The goal of unlearning is twofold: (1) to280

ensure the model forgets the targeted information281

and knowledge stored in Df , and (2) to preserve282

the model utility without significant degradation.283

Our pilot study reveals that the special routing sys-284

tem in MoE LLMs introduces additional challenges285

to unlearning, rendering existing methods ineffec-286

tive. We applied four widely used LLM unlearn-287

ing methods: GA (Gradient Ascent) (Eldan and288

Russinovich, 2023), GDIFF (Gradient Difference)289

(Maini et al., 2024), NPO (Negative Preference Op-290

timization) (Zhang et al., 2024), and RMU (Rep-291

resentation Misdirection for Unlearning) (Li et al.,292

2024) with the WMDP benchmark (Li et al., 2024)293

on two MoE LLMs, Qwen1.5-MoE (Team, 2024)294

and DeepSeek-V2-Lite (Liu et al., 2024a), as well 295

as two dense LLMs for reference, LLaMA3-8B 296

(Dubey et al., 2024) and Phi-3.5-mini-instruct (Ab- 297

din et al., 2024), where the task aims to unlearn 298

hazardous knowledge in LLMs. In Fig. 1(a), to 299

ease the comparison, we report the forget qual- 300

ity (performance drop on the forget test set, where 301

higher is better) against retain quality (performance 302

drop on the MMLU (Hendrycks et al., 2020) utility 303

benchmark, where lower is better). Each data point 304

represents the best result of a model-method com- 305

bination with hyper-parameter tuning, with ideal 306

performance located near the top left corner, signi- 307

fying high unlearning effectiveness with minimal 308

impact on model utility. As we can see, most MoE 309

LLM data points cluster in the lower right, indicat- 310

ing severe utility drops and poor unlearning perfor- 311

mance compared to dense models. In Fig. 1(a), all 312

model parameters (including routers and experts) 313

are involved in unlearning. To ensure that these 314

poor results are not due to improper parameter set- 315

tings, Tab. 1 presents additional experiments using 316

two other parameter configurations (routers-only 317

and experts-only) for GA, yet no significant im- 318

provements are observed in either forget or retain 319

quality (more than 20% utility drop). The results 320

above imply the problem of MoE LLM unlearning 321

is more challenging and far from trivial, even if 322

LLM unlearning is well-studied. 323

4 Our Proposal: SEUF 324

In this section, we delve into the failure cases 325

highlighted in Sec. 3 by analyzing the behavior 326

of routers and their expert selection patterns. We 327

then identify two primary root causes underlying 328

the poor unlearning performance in MoE LLMs. 329

Based on these insights, we introduce SEUF, a 330

new unlearning paradigm designed to achieve con- 331

trollable and effective unlearning for MoE LLMs. 332

Uncovering the root cause: ‘short-cut’ in 333

MoE LLM unlearning and expert selection shift. 334

In order to fully understand the failure cases of 335

MoE LLM unlearning, we begin by inspecting and 336

monitoring the expert selection pattern of the un- 337

learned model. In Fig. 2, we show the proportion 338

of tokens assigned to each selected expert on the 339

data samples from WMDP forget dataset (Li et al., 340

2024). For the input of a specific topic, a small 341

portion of experts (around 6 to 9 out of 64 experts) 342

were assigned with the majority of the tokens in 343

each layer, which was also confirmed in Wang et al. 344

(2024b). Thus, we have the following insight: 345
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Figure 2: Proportion of tokens assigned to each expert of the
pre-trained DeepSeek-v2-Lite (K=6 in Topk) with samples
from WMDP forget benchmark (Li et al., 2024), in different
model layers. The dashed horizontal line marks 6/64, i.e., the
proportion expected with uniform expert selection. The ex-
pert selection distribution clearly follows a long-tailed pattern
when the input is sampled from a topic within a narrow scope.
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when controlling parameters to unlearn in MoE LLM.

346
Insight 1: For the inference related to a certain topic within
a narrow scope (e.g., the forget set of an unlearning task),
expert selection by MoE routers follows a long-tailed distri-
bution, with only a few experts being activated significantly
more frequently than others.

347

Based on the insight above, we define the fre-348

quently activated experts as topic-target experts,349

and the others as non-target. Thus, by eliminating350

the knowledge stored in these target experts, MoE351

LLM unlearning can be achieved more effectively.352

Next, we examine how the expert selection pat-353

tern evolves during unlearning. Specifically, we354

track the average expert selection overlap ratio355

across all layers between the unlearned model at356

different stages and the original pretrained model,357

when processing the forget set. The results, shown358

in Fig. 3 (a), reveal a steady decline in the over-359

lap ratio as unlearning progresses, indicating that360

previously selected target experts are gradually re-361

placed by non-target ones that do not contain the362

target knowledge. This shift persists even when363

routers are fixed, as unlearning can still indirectly364

influence router selection: a router’s decision at365

one layer depends on the output of the previous366

layer, which may have been affected by an updated367

expert of this previous layer in unlearning. Mean-368

time, we observe a consistent reduction in forget369

loss, as shown in Fig. 3 (b). Thus, we can derive370

the following insight:371372
Insight 2: Existing unlearning methods tend to prompt routers
to shift selection from target to non-target experts unintention-
ally. This creates unlearning ‘shortcuts’ in expert selection
to trick for low forget loss and lead to fake unlearning.

373

As unlearning proceeds, non-target experts are 374

more frequently activated to handle samples re- 375

lated to the unlearning target, thereby being forced 376

to participate in the unlearning task, even though 377

they did not contain the intended target knowledge. 378

Meanwhile, the true objective of unlearning, i.e., 379

the target experts, remain hidden out of the reach 380

of the forward propagation. Existing literature (Liu 381

et al., 2024c) has already demonstrated that forcing 382

unlearning models that do not contain knowledge 383

related to the unlearning target can cause a signif- 384

icant drop in model utility. This accounts for the 385

sharp decline in model utility observed in Sec. 3, 386

which leads to the following insight: 387
388

Insight 3: The sharp degradation in model utility during MoE
LLM unlearning is primarily due to excessive unlearning
applied to non-target experts caused by expert selection shift.

389

SEUF for effective MoE LLM unlearning. As 390

discussed earlier, a new paradigm tailored for MoE 391

LLM unlearning is urgently needed to address the 392

challenges of unintentional expert selection shifts 393

in routers and excessive unlearning of non-target 394

experts. Therefore, we propose a framework that 395

(1) identifies the most relevant target experts, (2) 396

ensures that these target experts remain highly ac- 397

tivated throughout the unlearning process to avoid 398

selection shifts, and (3) limits the impact of un- 399

learning on non-target experts. Spurred by these, 400

we introduce SEUF, where unlearning is confined 401

to M most relevant target experts. We refer the 402

readers to Alg. 1 for an illustration of SEUF. 403

This approach starts with an expert attribution 404

process to accurately identify the most M relevant 405

experts for the unlearning task (step 1-3). Then, the 406

gradient computation selected experts eM and their 407

corresponding routers ReM are enabled (step 4), 408

while other parameters are frozen. Step 5 performs 409

unlearning using any unlearning approach, as our 410

framework is flexible. For example, gradient as- 411

cent can be applied with our defined loss functions. 412

Next, we present the details of the expert attribution 413

process and define the anchor loss function. 414

Algorithm 1 SEUF Unlearning Algorithm

Output: Unlearned model θu

Input: Pretrained model θo, forget set Df , retain set Dr ,
Setup: Retain loss ℓr , forget loss ℓf , anchor loss Lanchor,

the number of experts to select M
1: Ds ← Sample_Subset(Df )
2: s← Record_Affinity_Score(θo, Ds)
3: eM ←Ranking_And_Select(s,M )
4: Activate_Expert_And_Router(θo, eM ,ReM )
5: θu ←Unlearn(θo, ℓf (Df ), ℓr(Dr), Lanchor)
6: Return θu

415
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✦ Expert attribution. While the token assign-416

ment ratio for each expert (shown in Fig. 2), can417

serve as a basic attribution metric, it overlooks finer418

details that are important for precise comparisons,419

due to the hidden states in each layer summed by420

weighted average. To address this, we adopt a gat-421

ing score-based task affinity calculation method422

from (Wang et al., 2024b). Specifically, the affinity423

score for the i-th expert e(l)i in the l-th layer of an424

MoE LLM is defined as:425

s
(l)
i =

1

Z

Z∑
j=1

1

Lj

Lj∑
t=1

g
(l)
i,t (2)426

where Z is size of the calibration dataset used for427

expert attribution, Lj represents the length of the428

j-th input sequence xj , and g
(l)
i,t is the probability429

score assigned to expert e(l)i for the t-th token. Fol-430

lowing Wang et al. (2024b), the attribution data can431

be a subset universally sampled from the original432

forget set. We find that a subset containing over433

100,000 tokens is robust enough to select the most434

relevant experts for an unlearning task. For each435

layer, we rank the experts based on their affinity436

score and then finally select the top M experts as437

the target expert for unlearning (eM in Algo. 1).438

✦ Router anchor loss. A key challenge in un-439

learning is the expert selection shift, where the true440

target experts are hidden by the routers, while less441

relevant experts are activated during inference and442

inadvertently involved in the unlearning process.443

To mitigate this, we propose the router anchor loss,444

which encourages the previously identified target445

expert to remain consistently activated throughout446

unlearning. The loss is formulated as:447

L
(l)

anchor = ∥g
(l) − [a

(l)
1 , a

(l)
2 , . . . , a

(l)

E(l) ]∥
2
2, (3)448

where E(l) is the total number of experts in the449

l-th layer, g(l) = [g
(l)
1 , g

(l)
2 , . . . , g

(l)
i ] is the output450

of router, and a
(l)
i = 1 if the i-th expert is identi-451

fied as the target expert, otherwise a
(l)
i = 0. The452

unlearning loss can then be formularized as:453

min
θ

ℓf (θ;Df ) + λℓr(θ;Dr) + αL
(l)

anchor, (4)454

where α controls the strength of anchor loss. Its455

sensitivity is analyzed in Appendix Sec. B.456

✦ Selection of top M experts. When forming457

eM of the top M experts, there are two approaches:458

1) selecting the top M experts from all experts459

across all layers based on the affinity score s
(l)
i460

in Eq.2; and 2) to mitigate selection shift from461

previous layers, another approach is to choose the462

Table 2: Model utility (UT↑) comparison at the same level
of forget efficacy (FE≈ 0.25), when the top M experts from
either the same layer or different layers in DeepSeek are un-
learned using GA on WMDP benchmark, also when 4 shared
experts are included.

Selected experts Top-1 Top-3 Top-6 Top-1+4-shared

Same layer 0.5100 0.4856 0.4652 0.3554

Different layers 0.5100 0.2852 0.2567 -

top M experts from the same layer. We examined 463

both approaches under different settings M=1,3,6, 464

and present the results in Tab. 2. We observe 465

that unlearning a single expert (M=1) yields bet- 466

ter performance than unlearning multiple experts, 467

regardless of whether they come from the same 468

layer or different layers. This trend of single-expert 469

unlearning yielding the best performance is also 470

observed across other unlearning tasks (see Tab. 7 471

in Appendix). This suggests: 472
473

Insight 4: Unlearning top-1 expert is the most effective. 474

From Tab. 2, we also observe that unlearning 475

multiple experts across different layers leads to a 476

substantial performance decline. To further analyze 477

the Insight 4, let the total gradient update during 478

unlearning be: ∆W =
∑

i∈eM λi∇Li, where eM 479

is the set of selected experts being unlearned, λi 480

denotes their contribution weight, and ∇Li is their 481

corresponding gradient update in Eq. (4). When 482

only the top-1 expert is selected for unlearning, the 483

modification to the weights remains minimal, ensur- 484

ing low gradient interference. For multiple experts 485

within the same layer, the gradient updates may 486

partially cancel out, leading to moderate disrup- 487

tion. However, for multiple experts across different 488

layers, the gradient updates affect distinct feature 489

hierarchies, resulting in an unstable gradient flow 490

and widespread model disruption. 491

This analysis also explains the deficiency of un- 492

learning shared experts. In a given layer, shared 493

experts are activated for all tokens, making them 494

intuitively suitable targets for unlearning. How- 495

ever, Tab. 2 shows that unlearning the top-1 expert 496

along with 4 shared experts causes a greater util- 497

ity drop than unlearning top-6 experts in the same 498

layer. Shared experts influence a broader range 499

of token representations, so making them active 500

for unlearning triggers high-magnitude gradient up- 501

dates across multiple pathways. Also, since shared 502

experts consolidate common knowledge across di- 503

verse contexts (Liu et al., 2024a), their modification 504

disrupts the model more severely, making them sub- 505

optimal for unlearning. 506
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Table 3: Performance comparison of existing unlearning methods equipped w/ and w/o SEUF on WMDP (Li et al., 2024)
and RWKU (Jin et al., 2024) benchmarks on two MoE LLMs, namely Qwen1.5-MoE-A2.7B-Chat (Qwen) (Team, 2024) and
DeepSeek-V2-Lite (DeepSeek) (Dai et al., 2024). Additionally, a group of baselines applying PEFT (LoRA and ESFT) on GA is
included to evaluate our method’s effectiveness in selecting a suitable subset of parameters for unlearning, along with a baseline
using random expert selection with RMU. The occurrence of significant utility drop (over 10% drop in UT compared to the
pretrained model) are marked in red.

Method Qwen (WMDP) DeepSeek (WMDP) Qwen (RWKU) DeepSeek (RWKU)
FE↓ UT↑ FE↓ UT↑ FE↓ UT↑ FE↓ UT↑

Pretrained 0.4192 0.5979 0.3804 0.5548 0.4243 0.5979 0.5376 0.5548

GA 0.2953 0.3393 0.2457 0.3145 0.0078 0.4849 0.0839 0.5195
GA+SEUF 0.2987 0.5012 0.2700 0.5100 0.0060 0.5709 0.0000 0.5485

GDIFF 0.2964 0.2965 0.2898 0.3929 0.0700 0.5296 0.1901 0.3495
GDIFF+SEUF 0.2445 0.5295 0.2677 0.4895 0.0010 0.5987 0.0000 0.5253

NPO 0.3447 0.4612 0.3200 0.4700 0.0000 0.3718 0.0970 0.5388
NPO+SEUF 0.3200 0.5468 0.2898 0.4790 0.0020 0.5428 0.0000 0.5479

RMU 0.2612 0.3560 0.2530 0.4540 0.0200 0.2420 0.0010 0.5109
RMU+SEUF 0.2536 0.5351 0.2859 0.5424 0.0723 0.5975 0.0130 0.5388

GA+LoRA 0.2459 0.2689 0.2657 0.2295 0.0000 0.2689 0.0000 0.2302
GA+ESFT 0.3145 0.4514 0.2737 0.5108 0.001 0.4433 0.0200 0.5001

RMU+Random 0.3505 0.5947 0.2722 0.5183 0.2110 0.5924 0.1176 0.5182

5 Evaluation Experiments507

To demonstrate the effectiveness of our proposed508

method, we evaluate and compare it against dif-509

ferent baselines on two widely accepted LLM un-510

learning benchmarks: WMDP (Li et al., 2024) and511

RWKU (Jin et al., 2024). The detailed experimental512

setup, such as unlearning tasks, datasets selection,513

targeted MoE models, unlearning baselines and514

hyper-parameter setting, is provided in Appendix515

Sec. A, due to space limitation. We next present516

results of several key experiments.517

✦ Effectiveness of SEUF across benchmarks518

and unlearning methods. In Tab. 3, we present519

the FE (forget efficacy) and UT (utility) of our pro-520

posed SEUF when integrating different unlearn-521

ing methods GA, GDIFF, NPO, and RMU. In522

this evaluation, SEUF selects only the top-1 ex-523

pert for unlearning. There are two notable find-524

ings. First, SEUF effectively enhances unlearn-525

ing, either by further reducing FE or maintaining a526

similar level compared to baselines without SEUF.527

Second, SEUF consistently improves model util-528

ity (UT) across all tested methods. Notably, for529

methods where UT drops by more than 10% (com-530

pared to the pretrained model), highlighted in red,531

SEUF mitigates the decline. For example, the532

utility of GA on Qwen for the WMDP task drops533

from 0.5979 to 0.3393, but with SEUF, the utility534

improves to 0.5012, This demonstrates SEUF’s ef-535

fectiveness in balancing unlearning performance536

and model retention. Notably, methods such as537

GDIFF and RMU, which experience notable utility538

Table 4: Tunable parameter ratio, PEFT vs SEUF.

Method Tunable Parameter Ratio
Qwen DeepSeek Mixtral

LoRA 0.87% 0.92% 0.26%
ESFT 3.13% 2.86% 14%

SEUF 0.06% 0.06% 0.41%

loss when used alone, benefit greatly from the appli- 539

cation of SEUF, achieving near-pretrained utility 540

levels while still maintaining effective unlearning. 541

✦ SEUF outperforms parameter-efficient 542

fine-tuning (PEFT) methods when used for un- 543

learning. Tab. 3 also includes a set of baselines 544

that apply PEFT on GA. It is used to evaluate 545

whether our method unlearns more effectively a 546

subset of parameters (top-1 expert) compared to 547

PEFT. Tab. 4 shows a comparison of the param- 548

eter efficiency involved in tuning. The key con- 549

clusion from these results is: SEUF achieves far 550

better parameter efficiency, with only 0.06% of 551

tunable parameters, compared to LoRA (0.92%) 552

and ESFT (2.86%), while still maintaining a com- 553

parable level of forget efficacy and outperform- 554

ing them in utility preservation. For instance, 555

in RWKU, GA+SEUF achieves utility scores of 556

0.5709 on Qwen and 0.5485 on DeepSeek, signifi- 557

cantly higher than LoRA (0.2689 and 0.2302) and 558

ESFT (0.4433 and 0.5001). 559

✦ Top-1 expert selection outperforms ran- 560

dom selection in unlearning. In the last row of 561

Tab. 3, we compare the performance of the affinity 562

score-based expert selection in SEUF with a ran- 563

dom expert selection approach. The results show 564
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Table 5: Model utility (UT) comparison across unlearned
experts with different affinity scores (si) in SEUF+RMU on
the RWKU benchmark. UT is compared at a consistent level of
forget efficacy (FE ≈ 0.25).

Rank #1 #2 #3 #13 #20 #23 #26

si 0.2110 0.1957 0.1695 0.1115 0.0942 0.0844 0.0618

UT (↑) 0.5485 0.5475 0.5453 0.5445 0.5441 0.4262 0.2355

that while random selection can sometimes pre-565

serve utility at a comparable level, it falls short in566

achieving effective unlearning. For instance, on567

Qwen (WMDP), random selection yields a higher util-568

ity score (0.5947 vs. 0.5351 for SEUF), but its569

forget efficacy (FE) remains significantly higher570

(0.3505 vs. 0.2536 for SEUF), indicating incom-571

plete unlearning. This suggests that selecting the572

top-1 expert based on affinity scores is crucial for573

reducing FE while maintaining utility, making it a574

superior approach to random selection.575

✦ Experts with higher affinity scores play a576

more significant role in unlearning. To further577

examine the impact of selecting experts based on578

their affinity scores, we analyze the layer-wise Top-579

1 expert in DeepSeek on RWKU dataset. In Tab. 5,580

we present their affinity scores along with the util-581

ity (UT) when the expert is involved in unlearn-582

ing. Due to space constraints, we highlight the583

top-ranked layer-wise experts (1st to 3rd) and also584

include several lower-ranked ones (13th to 26th) for585

comparison. From the results, we observe that the586

first-ranked expert (with the highest affinity score587

0.211) yields the highest UT (0.5485). Overall, UT588

remains stable at 0.5445 or higher when selecting589

experts with affinity scores above 0.1. However,590

when affinity scores drop further (e.g., the 23rd and591

26th ranked experts), utility declines more sharply592

to 0.4262 and 0.2355. These findings emphasize593

the importance of selecting experts with sufficiently594

high affinity scores to maintain utility while achiev-595

ing effective unlearning.596

✦ Unlearning resilient to jailbreak attacks.597

The unlearned model is expected to refuse harmful598

queries. The forgotten knowledge should not be599

recovered even through adversarial means. We thus600

examine the behavior of MoE LLMs unlearned by601

SEUF under adversarial prompting. Specifically,602

we test whether SEUF effectively mitigates unau-603

thorized responses by employing the Greedy Co-604

ordinate Gradient (GCG) attack (Zou et al., 2023)605

in a white-box setting. This attack optimizes at-606

tack prompts to elicit responses that begin with607

“Sure, here is the answer:”. To increase attack608
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0.4
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Figure 4: Comparison of affinity scores for all experts in the
target layer of DeepSeek unlearned by SEUF + GA on the
RWKU dataset, with and without the GCG attack. The target
expert is marked as red.

strength, we extend the number of optimization 609

steps to 5,000, while keeping other hyperparame- 610

ters at their default settings. Given the computa- 611

tional cost (∼ 1 GPU hour on an A100 per soft 612

prompt), we optimize 400 prompts across 400 sam- 613

ples in RWKU for attacking DeepSeek unlearned 614

by SEUF+GA. Since not all responses explicitly 615

begin with "Sure, here is the answer:", we filter 616

for outputs containing the word "answer" and eval- 617

uate forget efficacy (FE) both with and without 618

GCG-generated prompts. Our results show that 619

despite being one of the strongest prompt-level at- 620

tacks, GCG fails to recover forgotten knowledge, 621

as FE remains at 0.01 before and after the at- 622

tack. To further understand how the GCG attack 623

affects expert selection, we visualize the affinity 624

score of experts in DeepSeek, and compare it with 625

GCG-attacked DeepSeek. Fig. 4 shows that while 626

the GCG attack reduces the affinity score of the tar- 627

get expert, the expert remains ranked as the top-1 628

in affinity score. This suggests that SEUF main- 629

tains stable expert selection even under adversarial 630

influence, ensuring robustness in the unlearning 631

process. 632

Additionally, we also perform a sensitivity anal- 633

ysis on hyperparameter α in Sec. B in Appendix. 634

The results in Tab. 6 in Appendix indicate that 635

α = 1 achieves the best performance. 636

6 Conclusion 637

In this paper, we for the first time examine the 638

challenges of applying existing MU techniques 639

to MoE LLMs and carefully investigate the syn- 640

ergy between the dynamic routing system of MoE 641

LLM and the unlearning effects. To address these 642

issues, we proposed SEUF, a novel framework 643

that unlearns most related experts while stabiliz- 644

ing expert selection through a router anchor loss. 645

This approach mitigates expert selection shifts and 646

achieves efficient unlearning with minimal param- 647

eter updates. Extensive experiments show that 648

SEUF significantly outperforms traditional un- 649

learning methods and other parameter-efficient fine- 650

tuning techniques, providing a robust solution for 651

MoE LLM unlearning tasks. 652
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7 Limitation653

While this study offers valuable insights into un-654

learning of MoE LLMs, it has certain limitations.655

First, the evaluation was limited to two datasets due656

to the scarcity of standardized benchmarks in un-657

learning. We have used two widely accepted LLM658

unlearning benchmarks: WMDP (Li et al., 2024) and659

RWKU (Jin et al., 2024). WMDP. We acknowledge660

the existence of other commonly used benchmarks,661

such as TOFU (Maini et al., 2024) and MUSE662

(Shi et al., 2024). However, these benchmarks663

are less suitable for our study, as they require664

models to undergo fine-tuning before unlearn-665

ing. This additional training step introduces biases666

in MoE LLMs due to known instability in train-667

ing, sensitive hyperparameter tuning, and the risk668

of training collapse (Jiang et al., 2024; Zoph et al.,669

2022a). These factors make it challenging to isolate670

the effects of unlearning from the broader impact671

of model fine-tuning. Expanding the evaluation672

to a broader range of datasets could enhance the673

generalizability of the findings. In future work,674

we plan to explore additional benchmarks, includ-675

ing those that do not require fine-tuning before676

unlearning, to ensure a more comprehensive as-677

sessment of unlearning effectiveness across diverse678

tasks and model architectures. Second, the study679

did not apply the unlearning algorithm to Mixtral680

8×7B with all parameters unlearned and excluded681

larger MoE LLM models like DeepSeek-R1 due682

to computational constraints. Due to the computa-683

tion limitation, Mixtral is only applied on SEUF684

and other parameter-efficient fine-tuning unlearn-685

ing baselines. In future work, we could explore686

scaling the approach to larger models to evaluate687

its effectiveness in more complex architectures.688
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A Experiment Setups1013

Unlearning tasks and datasets. To demonstrate1014

the effectiveness of our proposed method, we eval-1015

uate and compare it against different baselines on1016

two widely accepted LLM unlearning benchmarks:1017

WMDP (Li et al., 2024) and RWKU (Jin et al., 2024).1018

WMDP assesses the model’s ability to unlearn and1019

prevent the generation of hazardous knowledge in1020

biosecurity, cybersecurity, and chemical security1021

contexts. RWKU, on the other hand, evaluates the1022

model’s capability to eliminate knowledge about1023

200 real-world celebrities, simulating a private in-1024

formation protection task. We follow the original1025

study by selecting 100 individuals as unlearning1026

targets. The train_original_passage set, which in-1027

cludes Wikipedia descriptions of these 100 individ-1028

uals as provided in the paper, is used as the forget1029

set. We note that other commonly used bench-1030

marks, such as TOFU (Maini et al., 2024) and1031

MUSE (Shi et al., 2024), are less appropriate in this1032

work. These benchmarks require models to be fine-1033

tuned before unlearning, which introduces addi-1034

tional biases to the results for MoE LLMs due to the1035

known instability in training and the tricky hyper-1036

parameter tuning involved (Jiang et al., 2024), often1037

leading to training collapse (Zoph et al., 2022a).1038

Target MoE models to unlearn. We evalu-1039

ate different unlearning methods on two MoE1040

LLMs: Qwen1.5-MoE-A2.7B-Chat (Qwen),1041

mistralai/Mixtral-8x7B-Instruct-v0.1 (Mixtral),1042

and DeepSeek-V2-Lite (DeepSeek), representing1043

the two mainstream MoE LLM training schemes:1044

upcycle-from-dense and train-from-scratch, respec-1045

tively. Qwen has a total of 14.3 billion parameters,1046

with 2.7 billion activated during inference, while1047

DeepSeek has 16 billion parameters, of which 2.41048

billion are activated during inference. Mixtral has1049

45 billion parameters, of which 12.9 billion are1050

activated.1051

Evaluation setup. We evaluate the performance1052

of the unlearned LLMs based on two key metrics:1053

forget efficacy (FE) and preserved model utility1054

(UT). For the WMDP task, FE is measured using the1055

WMDP-Cyber subsets provided by the benchmark.1056

Specifically, we use the accuracy of the forget set1057

after unlearning as the measure of FE. A lower FE1058

indicates better unlearning. Given the four-option1059

multiple-choice format of the test set, the ideal FE1060

is 0.25, equivalent to random guessing. UT is as-1061

sessed using the zero-shot accuracy on the MMLU1062

dataset (Hendrycks et al., 2020), which reflects the1063

model’s ability to retain general knowledge. For 1064

the RWKU task, we use the Rouge-L recall score 1065

to evaluate performance on fill-in-the-blank and 1066

question-answer tasks, with lower scores indicating 1067

more effective unlearning. Since the task follows 1068

a question-answer format, the ideal FE is 0.0, in- 1069

dicating no overlap between the generated answer 1070

and the ground truth. The UT evaluation for RWKU 1071

is the same as for WMDP, using the MMLU bench- 1072

mark. By default, during the unlearning process, 1073

we select the model checkpoint that achieves the 1074

best balance between FE and UT as the optimal 1075

checkpoint. 1076

We utilize the LM Evaluation Harness (Gao 1077

et al., 2024) to measure zero-shot accuracy on the 1078

MMLU and WMDP cyber datasets. The mean 1079

accuracy across all tasks in MMLU serves as a 1080

measure of model utility. For the RWKU dataset, 1081

we adhere to the original settings, using the prompt 1082

“Please complete the blank in the following ques- 1083

tion. Question:" for fill-in-the-blank tasks and 1084

“Please briefly answer the following question. Ques- 1085

tion:" for generation tasks. 1086

Unlearning Baselines. We demonstrate the ef- 1087

fectiveness of our proposed SEUF framework by 1088

comparing it against the LLM unlearning baselines: 1089

Gradient Ascent (GA) (Eldan and Russinovich, 1090

2023), Gradient Difference (GDIFF) (Maini et al., 1091

2024) and most recent unlearning algorithm Nega- 1092

tive Preference Optimization (NPO) (Zhang et al., 1093

2024) and Representation Misdirection for Unlearn- 1094

ing (RMU) (Li et al., 2024). For each method, 1095

we compare the original results with those ob- 1096

tained when incorporating SEUF. Given the pa- 1097

rameter efficiency of SEUF, we also compare it 1098

with two state-of-the-art parameter-efficient fine- 1099

tuning (PEFT) methods for MoE LLMs: the low- 1100

rank adaptation scheme (LoRA) (Hu et al., 2021) 1101

and the Expert-Specialized Fine-Tuning method 1102

(ESFT) (Wang et al., 2024b), which is specifically 1103

designed for MoE LLMs. 1104

Hyperparameter selection. We consider typi- 1105

cal unlearning algorithm as baselines. For RMU, 1106

due to the original parameters settings for MoE 1107

models fail to unlearn both in DeepSeek and Qwen. 1108

We adapt its settings to target all expert MLP lay- 1109

ers in fifth, sixth, seventh layers, which align with 1110

the settings in the dense model. For the hyperpa- 1111

rameters, the retain effect parameter is set to 1200, 1112

and c is set to 30000 and 3000 in DeepSeek and 1113

Qwen, respectively. We set the learning rate to 5e-5 1114

for GA, NPO, and GD while setting it to 1e-4 for 1115
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SEUF. The batch size is 4 for GA, NPO, and GD,1116

while it is set to 16 for SEUF. In NPO, the beta1117

value is set to 0.001. The λ for the retain loss is1118

set to 1 in both GD and NPO. For RMU, we follow1119

the hyperparameters specified in the original work.1120

We configure the steering coefficients as 8000 for1121

Qwen and 32000 for Deepseek, as SEUF targets1122

deeper layers in these models. For ESFT, we set1123

the threshold p = 0.15. According to Insight 4 in1124

Sec. 4, we set M = 1 in the experiment section1125

by default. All experiments were conducted in a1126

single run without multiple trials.1127

B Sensitivity Analysis of α1128

The hyperparameter α is used for ancho loss in1129

our loss function minθ ℓf (θ;Df ) + λℓr(θ;Dr) +1130

αL
(l)
anchor, for introducing the anchor loss Lanchor.1131

We conduct experiments on Deepseek unlearned1132

by GA with RWKU dataset to explore the perfor-1133

mance of different α. As shown in Tab. 6, the1134

results indicate that SEUF is robust to a wide1135

range of α and achieves the best performance when1136

α = 1.

Table 6: Sensitivity Analysis of hyperparameter α for
the strength of anchor loss. The experiment is conducted
on Deepseek unlearned by GA with RWKU dataset.

α 0 1 100 1000

FE (↓) 0.0 0.0 0.0 0.0
UT (↑) 0.5435 0.5485 0.5471 0.5468

1137

C Selection of top M experts in different1138

tasks1139

We also conduct experiments on Qwen unlearned1140

by GA with RWKU dataset to investigate the optimal1141

selection of M . The results in Tab. 7 indicate that1142

SEUF achieves the best performance when only1143

one expert is unlearned M = 1, which is consistent1144

with the Insight 4.

Table 7: Model utility (UT↑) comparison at the same level
of forget efficacy (FE≈ 0.25), when the top M experts from
either the same layer or different layers in Qwen are unlearned
using GA on RWKU benchmark, also when 4 shared experts are
included.

Selected experts Top-1 Top-3 Top-6 Top-1+4-shared

Same layer 0.5709 0.3695 0.2572 0.2445

Different layers 0.5709 0.4224 0.3872 -1145
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