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ABSTRACT

Graph Neural Networks (GNNs) have demonstrated remarkable capabilities in
processing graph-structured data, but they often struggle with high-dimensional
features and complex, nonlinear relationships. To address these challenges, we
propose KA-GAT, a novel model that integrates Kolmogorov-Arnold Networks
(KANs) with Graph Attention Networks (GATs). KA-GAT leverages KAN to de-
compose and reconstruct high-dimensional features, enhancing representational
capacity, while a multi-head attention mechanism dynamically focuses on key
graph components, improving interpretability. Experimental results on bench-
mark datasets, including Cora and Citeseer, demonstrate that KA-GAT achieves
significant accuracy improvements compared to baseline models like GAT, with
a relative gain of 4.5% on Cora. These findings highlight KA-GAT’s robustness
and potential as an interpretable and scalable solution for high-dimensional graph
data, paving the way for further advancements in GNN research.

1 INTRODUCTION

Graph-structured data is crucial in fields like social networks and bioinformatics. Graph Neural Net-
works (GNNs) have emerged as powerful tools for learning representations of such data, achieving
success in tasks like node classification and link prediction (Wu et al., 2021). However, traditional
GNNs struggle with high-dimensional features and complex relationships due to their reliance on
fixed functions and linearity. Recent advances in GNNs have introduced improved attention mech-
anisms (e.g. GATv2 (Brody et al., 2022)) and propagation schemes (e.g. APPNP (Klicpera et al.,
2019)), tackle some issues but still fall short in capturing intricate feature interactions.

Kolmogorov-Arnold Networks (KANs), based on Kolmogorov’s theorem, offer a way to decompose
functions into simpler parts, making them ideal for high-dimensional, nonlinear data. However,
integrating KANs into GNNs is largely unexplored. Existing approaches, such as GKAN (Kiamari
et al., 2024; Carlo et al., 2024) and KAGNN (Bresson et al., 2024), have demonstrated potential but
are often limited in scalability, generalizability, and performance on diverse datasets.

To address these limitations, we introduce KA-GAT, a novel GNN model that integrates KANs with
a multi-head attention mechanism. KA-GAT represents an innovative attempt to combine KAN’s
decomposition capabilities with GAT’s dynamic attention framework, enabling the model to effec-
tively process high-dimensional features and capture complex interactions within graph-structured
data. This integration not only enhances the model’s representational power but also improves its
interpretability by dynamically focusing on key graph components. KA-GAT demonstrates signifi-
cant improvements over baseline models and other new models combining KAN and GNN, such as
GAT, GCN, GKAN and KAGCN, and provides a strong foundation for future research.

The main contributions of this study are as follows:

• Model Innovation: We propose KA-GAT, a GNN architecture that combines Kolmogorov-
Arnold layers with multi-head attention, addressing challenges in processing high-
dimensional features and extending the flexibility of traditional GNNs.

• Theoretical Integration: KA-GAT bridges Kolmogorov-Arnold theory with GNN de-
sign, demonstrating how feature decomposition principles can enhance graph represen-
tation learning.
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• Comprehensive Validation: Through extensive experiments on benchmark datasets, we
validate KA-GAT’s effectiveness, achieving consistent performance improvements over
baseline models like GAT, GCN, and GIN.

• Enhanced Interpretability: By integrating feature decomposition with a multi-head atten-
tion mechanism, KA-GAT aligns with the increasing emphasis on explainable models in
GNN research, providing insights into node relationships and decision-making processes.

The remainder of this paper is organized as follows: Section 2 reviews related works, including
advancements in GNNs, KANs, and attention mechanisms. Section 3 details the architecture and
methodology of KA-GAT. Section 4 presents the experimental setup and results, followed by a dis-
cussion in Section 5. Finally, Section 6 concludes the paper and outlines future research directions.

2 RELATED WORK

2.1 GRAPH NEURAL NETWORKS

Graph Neural Networks (GNNs) have transformed the processing of graph-structured data by en-
abling effective aggregation of neighborhood information (Gori et al., 2005; Scarselli et al., 2009).
Traditional GNNs, including Graph Convolutional Networks (GCNs) and Graph Attention Networks
(GATs), have shown strong performance in tasks such as node classification and link prediction.
GCNs, introduced by Kipf and Welling (Kipf & Welling, 2017), employ a localized first-order ap-
proximation of spectral graph convolutions to aggregate features from neighboring nodes. How-
ever, GCNs often struggle to capture complex, non-linear relationships due to their reliance on
fixed, linear transformations (Zhou et al., 2020; Xu et al., 2019). Recent GNN variants, such as
APPNP (Klicpera et al., 2019), address these limitations through improved propagation schemes
based on personalized PageRank, extending information flow across larger neighborhoods without
oversmoothing and increasing the model’s capacity for deep feature interactions.

2.2 GRAPH ATTENTION NETWORKS

Graph Attention Networks (GATs) introduced an attention mechanism into GNNs, allowing models
to dynamically weigh the importance of neighboring nodes based on their features (Veličković et al.,
2018). This adaptive weighting mitigates some limitations of GCNs by enabling the model to focus
on the most relevant parts of the graph. The attention coefficients are calculated as:

αij =
exp(LeakyReLU(aT [Whi∥Whj ]))∑

k∈N (i) exp(LeakyReLU(aT [Whi∥Whk]))
(1)

Further advancements, such as GATv2 (Brody et al., 2022), allow the attention mechanism to ad-
just dynamically during training, improving adaptability in noisy or complex graph environments.
However, even with these improvements, GAT-based models often struggle with high-dimensional
features and capturing highly non-linear relationships. These limitations underscore the need for in-
tegrating more sophisticated feature transformation methods, such as Kolmogorov-Arnold Networks
(KANs), to enhance flexibility and expressiveness.

2.3 KOLMOGOROV-ARNOLD NETWORKS

Kolmogorov-Arnold Networks (KANs) have recently emerged as an alternative to traditional Multi-
Layer Perceptrons (MLPs) for approximating non-linear functions (Liu et al., 2024). Inspired by the
Kolmogorov-Arnold representation theorem, KANs place learnable activation functions on edges
rather than nodes, with each weight parameterized as a spline. This configuration enhances the
expressiveness of neural networks, especially for tasks involving complex, high-dimensional data.
The mathematical formulation of KANs is given by:

f(x) =

2n+1∑
q=1

Φq

(
n∑

p=1

ϕq,p(xp)

)
(2)
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where ϕq,p are univariate functions, and Φq are learnable functions representing the nonlinear map-
pings applied to the decomposed features. While KANs offer significant flexibility in feature re-
construction, their application to graph-structured data remains underexplored. Recent studies have
sought to integrate KANs with GNNs, leveraging their decomposition properties to enhance graph
learning (Kiamari et al., 2024; Carlo et al., 2024; Bresson et al., 2024). However, these approaches
face scalability and adaptability challenges for various graph data types.

Our KA-GAT integrates KAN with multi-head attention, addressing these challenges while em-
phasizing both performance and interpretability. By doing so, KA-GAT serves as a foundational
exploration of the potential of KANs in graph representation learning.

2.4 MULTI-HEAD ATTENTION MECHANISMS

The mechanism, initially introduced in the Transformer model, enables models to focus on multiple
aspects of input data concurrently (Vaswani et al., 2017). In GNNs, this mechanism allows the model
to capture different types of relationships between nodes by attending to various graph components
in parallel (Fan et al., 2020; Li et al., 2018). The mechanism is defined as follows:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (3)

where Q,K, V are the matrices of Queries, Keys, and Values, respectively. By integrating multi-
head attention with KAN, KA-GAT is designed to capture intricate dependencies within high-
dimensional graph structures more effectively. This integration enhances the model’s expressive-
ness while also providing greater interpretability by dynamically highlighting key features for each
node’s neighborhood.

3 METHODS

3.1 KOLMOGOROV-ARNOLD LAYER

The Kolmogorov-Arnold Network (KAN) layer in the KA-GAT model leverages the Kolmogorov-
Arnold representation theorem to decompose complex, high-dimensional node features into simpler
univariate functions, which are then recombined to form richer, more informative representations.
By using univariate functions, the KAN layer effectively captures nonlinear relationships within the
node features, addressing a key limitation in traditional GNNs. This decomposition allows KA-GAT
to process high-dimensional data with greater flexibility, creating an expressive feature space that
enhances the model’s ability to represent complex graph structures.

In our implementation, the KAN layer consists of learnable transformations that map input fea-
tures to a higher-dimensional space, followed by nonlinear activations. The use of splines for the
univariate functions increases the flexibility in capturing intricate patterns, making the KAN layer
especially beneficial for datasets with complex interactions. This decomposition and recombination
process is essential to improving the expressiveness of KA-GAT, particularly for tasks requiring
robust nonlinear transformations.

3.2 MULTI-HEAD ATTENTION GNN LAYER

The multi-head attention mechanism is central to KA-GAT, allowing it to simultaneously focus on
different parts of the graph. Each attention head independently computes attention scores, enabling
the model to learn diverse aspects of node relationships within the graph. The outputs of multiple
attention heads are concatenated as follows:

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO (4)

where each head i is computed by:

3
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Figure 1: Architecture of KA-GAT.

headi = Attention(QWQ
i ,KWK

i , VWV
i ) (5)

This multi-head structure enhances adaptability and interpretability by highlighting distinct features
relevant to various graph regions, aligning with the increasing importance of model explainability.

3.3 GRAPH CONVOLUTIONAL LAYERS

To aggregate neighborhood information effectively, KA-GAT incorporates multiple types of graph
convolutional layers, enabling it to capture both local and global patterns. Specifically, the model
combines custom Multi-Head Attention GNN layers with GATConv and GCNConv layers:

• Multi-Head Attention GNN Layer: This custom layer applies the attention mechanism to
compute scores for neighboring nodes, focusing on key connections and capturing diverse
interactions.

• GCNConv Layer: This layer propagates information across the graph, preserving struc-
tural integrity and capturing local neighborhood patterns, especially useful in densely con-
nected regions.

• GATConv Layer: With its self-attention mechanism, the GATConv layer enables each
node to weigh neighbors’ features based on importance, enhancing the model’s capacity to
capture nuanced local structures.

By combining these layers, KA-GAT learns both local and global graph patterns, making it well-
suited for tasks like node classification and link prediction.
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Figure 2: Architecture of Multi-Head Attention Mechanism.

3.4 FLATTENING AND FULLY CONNECTED LAYERS

To streamline feature processing and prepare for final classification, a flattening operation is applied
after the final graph convolutional layer. This operation converts multi-dimensional feature maps
into a one-dimensional vector, facilitating input to the fully connected layers. The flattened features
are then passed through fully connected layers, which are defined as follows:

Flatten(X) = Reshape(X, shape = (−1)) (6)

FC(X) = Dropout(ReLU(W1 · Flatten(X))) ·W2 (7)

where W1 and W2 are learnable weight matrices, and ReLU is the Rectified Linear Unit activation
function. Dropout is incorporated to mitigate overfitting and improve generalization.

3.5 KA-GAT ARCHITECTURE

The overall architecture of KA-GAT integrates all these components to create a powerful GNN
capable of processing complex graph data. The forward pass of the KA-GAT model proceeds as
follows:

1. KAN Layer: Input node features are processed through the KAN layer, where they are
decomposed and reconstructed into more informative representations.

2. Graph Convolutional Layers: The output from the KAN layer passes through multiple
graph convolutional layers, combining Multi-Head Attention GNN, GCNConv, and GAT-
Conv layers to aggregate local and global information.

3. Flatten and Fully Connected Layers: After the final graph convolutional layer, features
are flattened and processed through fully connected layers to produce the final output.

4. Multi-Head Attention: Throughout the graph convolutional layers, the attention mecha-
nism enables KA-GAT to attend to different graph regions, capturing diverse node relation-
ships.

5
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This architecture enables KA-GAT to learn and interpret complex graph-structured data effectively.
By integrating Kolmogorov-Arnold decomposition with multi-head attention, KA-GAT enhances
feature processing, making it highly suitable for tasks such as node classification and link prediction.

4 EXPERIMENTAL RESULTS

4.1 DATASETS AND EXPERIMENTAL SETUP

To evaluate KA-GAT’s performance, we conducted experiments on three widely used benchmark
datasets: Cora, Citeseer, and Pubmed (McCallum et al., 2000; Giles et al., 1998; Sen et al., 2008).
These datasets represent diverse graph structures, feature dimensions, and node relationships, en-
abling a comprehensive assessment of KA-GAT’s capabilities in comparison with both standard
GNNs and existing KAN-GNN hybrids (Li et al., 2018; Fan et al., 2020; Alon & Yahav, 2021).

• Cora: This dataset consists of 2,708 scientific publications categorized into 7 classes, with
5,429 citation links. Each node is represented by a 1,433-dimensional feature vector, de-
rived from a bag-of-words model. Cora is widely used to evaluate models’ capacity to
capture high-dimensional and sparse features.

• Citeseer: Comprising 3,327 scientific publications grouped into 6 categories, Citeseer fea-
tures 4,732 citation links. Its 3,703-dimensional feature vectors make it one of the most
challenging datasets for models due to its sparse and high-dimensional nature.

• Pubmed: This dataset includes 19,717 publications from the medical domain, classified
into 3 categories, with 44,338 citation links. Each node is described by a 500-dimensional
TF-IDF feature vector, providing a contrast to the high-dimensional features in Cora and
Citeseer by emphasizing scalability.

We adopted PyTorch Geometric’s (PyG) Planetoid class for standardized data loading and parti-
tioning. The datasets were split using the ’public’ split for consistency. Experiments utilized the
AdamW optimizer with an initial learning rate of 0.01, and early stopping was applied to prevent
overfitting. All experiments were conducted with multiple random seeds to ensure robustness. The
performance was assessed with standard metrics: Accuracy, Precision, Recall, and F1-score.

4.2 RESULTS

Table 1 presents the performance of KA-GAT compared with baseline models, including standard
GNNs (GCN, GAT, GIN, and GraphSAGE) and existing KAN-GNN hybrids (e.g., GKAN). The
results demonstrate that KA-GAT consistently outperforms most baseline models across the Cora
and Citeseer datasets, highlighting its ability to effectively handle high-dimensional and sparse graph
data. On the Pubmed dataset, KA-GAT achieves competitive results, with performance close to the
best-performing GKAN2 model.

4.3 ANALYSIS OF RESULTS

4.3.1 PERFORMANCE ACROSS DATASETS

On the Cora dataset, KA-GAT achieves the highest accuracy of 82.27%, surpassing both standard
GNNs and the KAN-GNN hybrid models. This improvement demonstrates the effectiveness of KA-
GAT’s Kolmogorov-Arnold (KAN) layer in capturing high-dimensional features while maintaining
strong graph structural representation.

For the Citeseer dataset, KA-GAT shows a notable improvement, achieving an accuracy of 73.04%.
The multi-head attention mechanism in KA-GAT proves instrumental in dynamically focusing on
key graph components, addressing the challenges posed by Citeseer’s sparse feature space.

On the Pubmed dataset, KA-GAT delivers competitive results, achieving an accuracy of 78.9%,
slightly below the GKAN2. Pubmed’s lower feature dimensionality and large scale emphasize scal-
ability, suggesting potential areas for further optimization in KA-GAT’s decomposition strategy.
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Table 1: Performance for KA-GAT and Standard GNNs on Benchmark Datasets
DATASET MODEL ACCURACY MODEL ACCURACY

Cora GCN 0.8100 ± 0.0067 GAT 0.7766 ± 0.0108
GIN 0.7727 ± 0.0052 GraphSAGE 0.745
GKAN1 0.6766 GKAN2 0.812
KAGCN 0.7826 ± 0.0177 KAGIN 0.7620 ± 0.0077
KA-GAT 0.8227 ± 0.0125

Citeseer GCN 0.7085 ± 0.0070 GAT 0.6890 ± 0.0107
GIN 0.6883 ± 0.0040 GraphSAGE 0.672
GKAN1 - GKAN2 0.694
KAGCN 0.6409 ± 0.0185 KAGIN 0.6837 ± 0.0117
KA-GAT 0.7304 ± 0.0096

Pubmed GCN 0.7910 ± 0.0021 GAT 0.7805 ± 0.0046
GIN 0.7738 ± 0.0059 GraphSAGE 0.768
GKAN1 - GKAN2 0.81
KAGCN - KAGIN -
KA-GAT 0.789 ± 0.0056

Note: ”-” indicates results are unavailable due to experimental constraints or insufficient data.

Visualize Attention of Layer 1 Visualize Attention of Layer 2 Visualize Attention of Layer 3

Figure 3: Layer-wise attention visualization on Citeseer.

4.3.2 COMPARISON WITH KAN-GNN HYBRIDS

The comparison with GKAN highlights the advancements made by KA-GAT. While GKAN2 ex-
hibits strong performance on Pubmed due to its optimized design for dense graphs, KA-GAT’s gen-
eralizability across Cora and Citeseer underscores its broader applicability. These results confirm
the advantages of integrating multi-head attention with KAN for handling diverse graph datasets.

4.3.3 ABLATION STUDY ON CITESEER

An ablation study on the Citeseer dataset was conducted to isolate the contributions of KA-GAT’s
components. Table 2 demonstrates that both the KAN layer and the multi-head attention mecha-
nism are crucial for achieving high accuracy. The KAN layer’s decomposition strategy particularly
excelled in handling Citeseer’s sparse and high-dimensional feature vectors.

4.3.4 VISUALIZATION ON CITESEER

Figures 3 and 4 illustrate KA-GAT’s attention distribution and key node relationships. The multi-
head attention mechanism effectively highlights influential nodes and pathways, offering insights
into the model’s decision-making process.

7
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Table 2: Ablation Study Results on Citeseer Dataset

Component Removed Accuracy Precision Recall F1-Score
KAN Layer 0.694 0.662 0.656 0.653
Multi-head Attention 0.716 0.684 0.681 0.679
Flatten Layer 0.735 0.701 0.696 0.695

Figure 4: Key path of Citeseer node 1701 using multi-head attention.

These results confirm KA-GAT’s robustness and versatility, establishing it as a leading candidate for
tackling complex graph data.

5 DISCUSSION

In this study, we introduced KA-GAT, a model that integrates Kolmogorov-Arnold Networks
(KANs) and multi-head attention mechanisms to effectively address high-dimensional and com-
plex graph-structured data. The experimental results indicate that KA-GAT outperforms traditional
GCN and GAT models on benchmark datasets like Cora and Citeseer, showcasing its robustness
in handling intricate graph structures. In this section, we discuss the key findings, strengths, and
limitations of KA-GAT and outline potential avenues for future research.

5.1 KEY INSIGHTS AND PERFORMANCE ANALYSIS

KA-GAT demonstrated strong performance on high-dimensional datasets such as Cora and Cite-
seer, achieving consistent improvements over baseline models and KAN-GNN hybrids. These re-
sults highlight the effectiveness of the Kolmogorov-Arnold (KA) layer in capturing nonlinear rela-
tionships and decomposing complex high-dimensional features into more learnable representations.
Additionally, the multi-head attention mechanism dynamically focuses on key graph components,
enhancing the model’s ability to capture diverse and critical node relationships. These characteristics
position KA-GAT as a robust solution for tasks requiring rich feature representations and improved
interpretability, especially in scenarios with sparse or high-dimensional data.

On the Pubmed dataset, which features lower-dimensional attributes and a larger graph scale, KA-
GAT’s performance gains were more limited. This discrepancy can be attributed to the dataset’s low
feature dimensionality, which reduces the advantages of the KA layer’s decomposition capabilities.
Furthermore, the dense graph structure of Pubmed places greater demands on the multi-head atten-
tion mechanism, making it challenging to scale effectively within resource-constrained conditions.
Increasing the number of attention heads to address Pubmed’s scale and complexity was infeasible
due to hardware limitations, as the training process already approached the full memory capacity of
an NVIDIA A100 GPU.

8
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Despite these challenges, the reported results represent the best achievable performance under our
current experimental setup, reflecting KA-GAT’s robustness and adaptability across diverse graph
datasets. Future work will focus on optimizing the model for low-dimensional features and large-
scale graphs, potentially by integrating sparse attention mechanisms or lightweight feature decom-
position techniques to enhance scalability without sacrificing representational power.

5.2 ADVANTAGES AND INNOVATIONS OF KA-GAT

KA-GAT’s primary innovation lies in its integration of Kolmogorov-Arnold feature decomposition
with a multi-head attention mechanism, creating a dynamic framework for feature transformation
and aggregation. The KAN layer’s ability to map high-dimensional features into univariate functions
reduces feature space complexity while preserving intricate nonlinear relationships. This decompo-
sition is especially advantageous for complex graph data, as reflected in the improved performance
on feature-rich datasets like Cora and Citeseer.

The multi-head attention mechanism further extends KA-GAT’s capabilities by processing multiple
feature subspaces in parallel, enabling the model to selectively focus on distinct node relationships.
This approach enhances KA-GAT’s flexibility and robustness by capturing diverse facets of graph
relationships, contributing to a more interpretable model. These features align KA-GAT with recent
trends in improving GNN interpretability, offering valuable insights into model decision-making.

5.3 COMPLEXITY ANALYSIS

5.3.1 TIME COMPLEXITY ANALYSIS

• KolmogorovArnoldNetwork:The time complexity of the KolmogorovArnoldNetwork
layer is primarily determined by the square of the feature dimension, i.e., O(ND2), where
N is the batch size and D is the input feature dimension.

• KAGNNConv: The time complexity of each KAGNNConv layer is O(EHD), where E
is the number of edges, H is the number of heads, and D is the hidden dimension.

5.3.2 SPACE COMPLEXITY ANALYSIS

• KolmogorovArnoldNetwork:The space complexity is O(ND2), suggesting that this layer
may require more storage resources when the dimension is large.

• KAGNNConv:The space complexity of the KAGNNConv layer is also O(EHD), empha-
sizing potential storage challenges when the number of edges is substantial.

Considering all layers and components, the overall time and space complexity of the KA-GAT model
is primarily determined by the O(ND2) and O(EHD) terms. This indicates that the model’s com-
putational and storage requirements increase significantly when dealing with data that has high-
dimensional features and large-scale graph structures.

5.4 LIMITATIONS AND FUTURE DIRECTIONS

While KA-GAT demonstrates strong performance on high-dimensional datasets like Cora and Cite-
seer, its computational cost increases significantly with model complexity. This results in a dimin-
ishing return effect, where the accuracy gains are not proportional to the increase in memory and
computational demands. For example, increasing the number of attention heads to improve scalabil-
ity and capture long-range dependencies was infeasible due to hardware constraints on Pubmed. The
training process already utilized nearly the full memory capacity of an NVIDIA A100 GPU, making
it challenging to explore more computationally intensive configurations. Despite these constraints,
the reported results represent the best performance achievable under our current experimental setup,
validated through multiple runs with varying random seeds to ensure robustness.

This observation highlights a critical trade-off in the current design of KA-GAT: while the integra-
tion of Kolmogorov-Arnold Networks (KANs) and multi-head attention mechanisms provides en-
hanced representational power, it comes at the cost of increased computational and memory require-
ments. Addressing this trade-off is essential for improving the model’s scalability and efficiency,

9
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particularly for larger datasets like Pubmed, where adding complexity does not yield proportionate
accuracy improvements.

To overcome these challenges, future research could focus on the following directions:

• Sparse Attention Mechanisms: Incorporating sparsity into the multi-head attention mech-
anism could significantly reduce memory consumption by focusing only on the most rele-
vant node relationships, enabling KA-GAT to handle larger datasets more efficiently.

• Dynamic Model Adjustment: Developing adaptive strategies to dynamically adjust atten-
tion heads and other parameters would help balance resource utilization and performance,
ensuring that model complexity scales appropriately with dataset requirements.

• Lightweight Feature Decomposition: Exploring more efficient feature decomposition
methods in the KAN layer could reduce computational overhead while maintaining or even
enhancing the model’s ability to capture complex, nonlinear relationships.

Despite the computational limitations, KA-GAT’s results on Cora and Citeseer demonstrate its po-
tential as a robust model for high-dimensional and complex graph datasets. Its consistent perfor-
mance across multiple runs underscores the reliability of the proposed architecture. These findings
suggest that with further optimization and access to additional computational resources, KA-GAT
could achieve even greater performance, particularly on large-scale datasets like Pubmed.

Looking ahead, KA-GAT could also benefit from domain-specific applications, such as recommen-
dation systems or molecular interaction networks, where interpretability and scalability are critical.
These domains often demand highly explainable models, and KA-GAT’s integration of feature de-
composition and attention mechanisms positions it as a promising candidate. By addressing its
current limitations, KA-GAT can evolve into a more efficient tool for real-world graph analysis.

6 CONCLUSION

Introducing KA-GAT, a groundbreaking GNN that fuses Kolmogorov-Arnold Networks (KAN)
with multi-head attention to handle complex, high-dimensional graph data. This model revolu-
tionizes feature decomposition in GNNs, offering an interpretable and adaptable framework that
connects theory with practical use. KA-GAT tackles traditional GNN limitations by harnessing
KAN’s decomposition and multi-head attention’s dynamic focus, excelling in representing intricate
graph structures and capturing nonlinear relationships.

Our thorough testing on Cora, Citeseer, and Pubmed datasets confirms KA-GAT’s robustness and
versatility, consistently surpassing GCN and GAT baselines on high-dimensional tasks. Though
computational constraints on Pubmed limited exploration, KA-GAT still showed competitive per-
formance. KA-GAT’s innovations include:

• Flexible Feature Decomposition: Enabled by the Kolmogorov-Arnold layer, which re-
duces feature space complexity while preserving nonlinear relationships.

• Dynamic Attention Mechanism: Provided by multi-head attention, which selectively fo-
cuses on distinct graph components, enhancing both interpretability and adaptability.

Despite higher computational needs, especially for large datasets, KA-GAT offers opportunities for
optimization through techniques like pruning and sparse attention. Adjusting model complexity
dynamically could also improve efficiency.

Future work could broaden KA-GAT’s scope to various graph types and domains, including social
networks, bioinformatics, and recommendation systems. It could also refine its adaptability on
simpler datasets and develop visualization tools for better understanding of learned representations.

In conclusion, KA-GAT represents a significant step forward in GNN research, offering a novel
framework that combines expressiveness, flexibility, and interpretability. While the current work
serves as an initial exploration, the promising results and identified areas for improvement pave the
way for future innovations in processing complex graph data. We believe KA-GAT has the potential
to inspire further advancements in both theoretical and applied graph neural network research.
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Figure 5: t-SNE visualization of the Cora dataset before and after processing with the Kolmogorov-
Arnold (KA) layer. The KA layer enhances class separability by transforming raw feature distribu-
tions into more structured representations.

Figure 6: t-SNE visualization of the augmented Cora dataset. The combination of data augmentation
and the KA layer further improves class separability, as shown by tighter clustering and reduced
overlap between node classes.
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