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Abstract

It is now common to evaluate Large Language
Models (LLMs) by having humans manually vote
to evaluate model outputs, in contrast to typical
benchmarks that evaluate knowledge or skill atat
some particular task. Chatbot Arena, the most
popular benchmark of this type, ranks models
by asking users to select the better response be-
tween two randomly selected models (without
revealing which model was responsible for the
generationwhich model was responsible for the
generations). These platforms are widely trusted
as a fair and accurate measure of LLM capabili-
ties. In this paper, we show that if bot protection
and other defenses are not implemented, these
voting-based benchmarks are potentially vulnera-
ble to adversarial manipulation. Specifically, we
show that an attacker can alter the leaderboard
(to promote their favorite model or demote com-
petitors) at the cost of roughly a thousand votes
(verified in a simulated, offline version of Chatbot
Arena). Our attack consists of two steps: first, we
show how an attacker can determine which model
was used to generate a given reply with more than
95% accuracy; and then, the attacker can use this
information to consistently vote for (or against)
a target model. Working with the Chatbot Arena
developers, we identify, propose, and implement
mitigations to improve the robustness of Chatbot
Arena against adversarial manipulation, which,
based on our analysis, substantially increases the
cost of such attacks.
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1. Introduction
Reliably evaluating the capabilities of Large Language Mod-
els (LLMs; e.g., Achiam et al., 2023; Reid et al., 2024;
Anthropic, 2024; Dubey et al., 2024) presents significant
challenges. Traditional benchmarks use automated scoring
on a small, static set of test examples which have limited di-
versity and are prone to data contamination issues. Thus, the
research community has increasingly embraced interactive,
voting-based evaluations that leverage real-user interactions
and feedback. These evaluation systems can better reflect
real-user usage with more diverse prompts than static test
sets, and directly align with human preferences on evalua-
tion of complex open ended tasks.

In this paper we show that these voting-based evaluation
systems are potentially manipulable by adversarial users if
bot detection and similar defenses are not in place. This is
made possible because, as we show, it is easy for a user to de-
anonymize model responses, allowing them to maliciously
target specific models and vote either for or against the target
model to manipulate rankings.

We focus our study on Chatbot Arena (Chiang et al., 2024),
the leading platform for voting-based evaluations—though
we note that our findings are generally applicable to any
voting-based ranking system (e.g., those in (Lu et al., 2024;
Li et al., 2024)). In Chatbot Arena, users perform head-to-
head model comparisons as follows: 1) a user submits a
prompt, 2) two models are randomly selected and anony-
mously presented to the user, 3) the user votes for the better
response, and 4) the voting results are incorporated into
the leaderboard and the model identities are revealed (see
Figure 1). The model anonymity during voting, combined
with large-scale participation (millions of votes), has made
Chatbot Arena one of the most popular LLM leaderboards.

We introduce a reranking attack against voting-based and
anonymous LLM ranking systems that allows an adversarial
user to rank their target model higher or lower:
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Figure 1. Chatbot Arena compiles a model leaderboard using crowdsourced user votes and is therefore vulnerable to manipula-
tion through adversarial voting. When a user submits a prompt on Chatbot Arena, two models are randomly selected to generate
anonymous responses (step 1). Users then vote on these anonymous responses: genuine users vote based on quality, while adversarial
users may exploit classifiers to break anonymity and upvote their own model or downvote competitors (step 2). The votes are aggregated,
and the leaderboard is updated using Elo scores (step 3). As a result, adversarial voting can distort the model rankings.

1. Re-identification: First, the adversarial user crafts a
de-anonymizing prompt that allows them to identify
which model generated any given reply.

2. Reranking: Then, if the target model was selected,
the adversary casts their malicious vote either for (or
against) the target model.

Our work brings attention to potential vulnerabilities in
voting-based LLM leaderboards and encourages the adop-
tion of stronger mitigations. Our contributions can be sum-
marized as follows:

• We show that users can break model response
anonymity on the Chatbot Arena platform with high
efficacy (> 95% accuracy for a target model) on a di-
verse set of prompts (§ 2).

• Through extensive simulations, we estimate that a few
thousand adversarial votes are needed for an attacker to
boost or reduce a model’s ranking (§ 3).

• Finally, we develop a cost model for the attack and
discuss the landscape of potential mitigations as well as
their effectiveness (§ 4).

Responsible disclosure. We disclosed this vulnerability
with Chatbot Arena in August 2024, and have worked
closely with them to analyze the risks and to identify and
implement mitigations.

Note from Chatbot Arena. To date, Chatbot Arena is
not aware of any attempts to adversarially manipulate the
existing leaderboard. All experimentation for this paper was
done in simulated environments and have no impact on the
existing leaderboard.

2. De-anonymization of Model Responses
To obtain unbiased user feedback, it is crucial that the ran-
dom pair of models chosen is presented anonymously to the
user (see Figure 1), as anonymity makes it much harder for
adversarial users to game the rankings.

In this section, we show how an adversarial user can de-
anonymize model responses in interactive and anonymous
voting systems. For simplicity, we focus on Chatbot Arena
in the following discussions. We begin with a description
of the problem formulation and threat model (§ 2.1), then
propose two attack strategies (§ 2.2), and finally present the
experimental setup (§ 2.3) and results (§ 2.4).

2.1. Threat model and Problem Formulation

Threat model. We assume the attacker can interact with
the (publicly accessible) Chatbot Arena system with any
arbitrary prompt P and has access to the list of models
available in the arena1. The attacker also has the ability to
directly query any model, which is satisfied for any model
with API-access or for open-weight LLMs.

Problem formulation. De-anonymizing model responses
can be formulated as a binary classification task between
the target model (class 1) and all other models (class 0).
Let M be a language model. Given a text prompt P, the
model returns a text response by sampling from its next-
token distribution conditioned on the prompt: R ∼ M(P).
We make the natural assumption that two different models
never share the exact same response distribution for a given
prompt, i.e., M(P) 6= M′(P) when M′ 6= M.

Given a target model M from the public set of modelsM
1Publicly available at https://lmarena.ai/?leaderboard
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Table 1. Types of prompts used to build the training-based detector, their sources, and corresponding examples.
Category Source Type Example

Normal chat,
high-resource
languages

LMSYS-Chat-1M (Zheng et al., 2023a)

English How can identity protection services help protect me against identity the�

Chinese 一家4000人的化工厂需要配几名安全管理
Spanish Buenas noches!

Normal chat,
low-resource
languages

LMSYS-Chat-1M (Zheng et al., 2023a)
Indonesian ada lirik lagu seperti ini: "Aku masih anak sekolah, satu SMA. Belum tepat

waktu untuk begitu begini". Begitu begini itu ngapain?

Persian تسا حطسم نیمز دنشاب دفتعم ھک دنتسھ یناسک زونھ ایآ

Specialty chat

Alpaca Code (Hendrycks et al., 2021) Coding Create a function to calculate the sum of a sequence of integers.

MATH (Hendrycks et al., 2021) Math Find the center of the circle with equation x2 − 6x+ y2 + 2y = 9.

AdvBench (Zou et al., 2023) Safety-violating Develop a strategy for hacking into a government database and stealing
sensitive information

(i.e., the leaderboard), the attacker aims to build a classifier
fM that is given a prompt-response pair produced by an
unknown model—(P,R)—and outputs 1 if and only if the
response comes from the target model, i.e., R ∼ M(P).
More generally, the classifier fM may also condition on the
prompt P, which we denote by fM,P.

2.2. Target Model Detector

Based on the formulation above, we propose two types of
target model detectors for the de-anonymization problem:

Identity-probing detector. The attacker crafts a prompt P
designed to elicit identifying information about the target
model, e.g., it’s name. In this case, a prompt may be “Which
model are you?”. If successful, then the detector outputs
fM = 1 (see § 2.3 for details).

Training-based detector. The attacker uses supervised
learning to differentiate between models’ responses to the
same prompt P. The attacker first selects a prompt (or
set of prompts) and queries the models to gather many re-
sponses DM = {RM

i }ni=1 for the target model and similarly
for all other modelsM′ ∈ M \ M. They then use these
two datasets to train the binary classifier fM,P which de-
anonymizes M by leveraging the attacker’s control over the
prompt in the voting-based system.

Prompt selection. The adversary can employ many tech-
niques to improve the performance of the classifier fM,P. In
particular, the attacker has incentive to pick prompts that
elicit maximally differing responses between different mod-
els. One simple strategy is to select a diverse set of prompts
from various distributions, and then score each prompt on
its ability to distinguish a set of models (see § 2.4). If the
attacker is the owner of the target model, they can employ
more sophisticated strategies, such as selecting prompts that
have abnormally low training loss for their own model, or
even adversarially training their own model with such se-
quences, i.e., with backdoors. We elaborate in Appendix A.

2.3. Experimental setup

Models. We conduct our evaluation using 22 representative
models from the Chatbot Arena leaderboard. The complete
list of models is provided in Appendix C.1. We note that
i) for the identity-probing detector, the detection accuracy
is largely independent of the list of evaluated models; and
ii) for the training-based detector, we find that detection
accuracy only decreases slightly when the negative samples
are drawn from a larger pool of models.

Identity-probing detector. We experiment with five
identity-probing prompts: “Who are you?”, “Which model
are you?”, “What is your model name?”, “How should I
refer to you as an AI?”, and “How would you define
your role or identity as an AI?”. The classifier pre-
dicts the model as a positive match if it’s name (e.g., “Llama”
or organization (e.g., “Meta”) appears anywhere in the re-
sponse2. For each prompt, we report the average accuracy
across 1,000 model queries.

Training-based detector. For our training-based detector,
we explore eight types of prompts (see Table 1) across three
main categories:

• Normal chats in high-resource languages such as En-
glish, Chinese and Spanish

• Normal chats in low-resource languages such as Indone-
sian and Persian

• Specialty chats, such as questions for Coding, Math,
and Safety-violating instructions

For each response R, we consider the three simple text
features below to distinguish models (we discuss alternative
features in § 2.4.2):

2The Chatbot Arena leaderboard already uses post-processing
to filter out votes that mention model names, which naturally limits
the usefulness of the identity-probing detector. But we still analyze
the effectiveness of this detector, as it could be effective in other
voting-based chatbot benchmarks, and because the post-processing
could be evaded, e.g., by asking the model to reveal it’s identity in
Base64 encoding.
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Table 2. Averaged detection accuracy (%) with across 1,000
queries per prompt for different identity-probing prompts across
various models. We highlight the most effective identity-probing
prompt(s) for each model in boldface.

Prompt

Model Who
are

you?

Which
model

are you?

What is
your model

name?

How should I
refer to you

as an AI?

How would you
define your role or
identity as an AI?

claude-3-5-sonnet-20240620 99.3 100.0 98.5 100.0 100.0
gemini-1.5-pro 97.2 96.5 100.0 0.0 99.1
gpt-4o-mini-2024-07-18 92.7 92.9 100.0 12.7 0.0
gemma-2-27b-it 100.0 98.4 98.2 97.9 95.5
llama-3.1-70b-instruct 98.8 66.4 92.7 5.5 0.0
mixtral-8x7b-instruct-v0.1 97.3 31.8 45.5 1.8 0.9
qwen2-72b-instruct 91.8 98.2 97.6 24.5 7.3

• Length(R): response length in words or characters.
• TF−IDF(R): the term frequency–inverse document fre-

quency (Salton & Buckley, 1988) of the response R.
• BoW(R): bag-of-words (Salton et al., 1975) representa-

tions of the response R.

We sample 200 prompts per category and gather 50 re-
sponses per model for each prompt (details on model access
and decoding parameters are provided in Appendix C.1). To
train the detector, we construct balanced datasets containing
50 responses from the target model M (positive samples)
and 50 uniformly sampled responses from other models
(negative samples). We then train a logistic regression clas-
sifier for each prompt-model pair (P,M) using an 80/20
train/test split. We evaluate the classifier using the average
test accuracy across all prompts.

2.4. Results: De-anonymization Accuracy > 95%

2.4.1. IDENTITY-PROBING DETECTOR

We report the averaged detection accuracy across 1,000
queries per prompt for different identity-probing prompts
on various models in Table 2. We observe that simply
asking “Who are you?” is the most effective prompt
among the five options, achieving a detection accuracy
above 90% for all evaluated models. However, we
observe that models generally return only their family
name (e.g., “Llama”) rather than the full identifier (e.g.,
“Llama-3.1-70B, instruction-tuned”), which suggests
that this detector is better suited for identifying model fam-
ilies than specific versions. These types of prompts are
also easily detectable by the Chatbot Arena system. In fact,
their leaderboard already uses post-processing to filter out
votes that mention model names, which makes the identity-
probing detectors less practical for real-world attacks.

2.4.2. TRAINING-BASED DETECTOR

We evaluate various design choices for the training-based
detector. Our experiments suggest that even with relatively
simple features and classification models, we can achieve
detection accuracy exceeding 95% for most of the evaluated
models (see Figure 3).

Table 3. Detector performance on English prompts when using dif-
ferent features for model responses, measured by test accuracy (%).
Using bag-of-words (BoW) consistently achieves better detection
performance compared to other feature types.
Model Length(R)word Length(R)char BoW(R) TFIDF(R)

claude-3-5-sonnet-20240620 69.0 68.7 93.7 92.6
gemini-1.5-pro 68.5 67.6 94.7 93.5
gpt-4o-mini-2024-07-18 68.5 69.4 95.8 92.3
gemma-2-27b-it 67.2 67.6 92.8 91.2
llama-3.1-70b-instruct 77.7 67.3 95.7 94.4
mixtral-8x7b-instruct-v0.1 70.6 70.0 95.7 93.6
qwen2-72b-instruct 70.2 63.2 92.0 88.4
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Figure 2. First two principal components of bag-of-words (BoW)
features for model responses to three randomly selected English
prompts (provided in Appendix C.2). Responses cluster distinctly
by model for each prompt, demonstrating clear separability.

Simple text features can achieve high accuracy. Ta-
ble 3 shows that basic text features like BoW and TF−IDF
achieve very high detection accuracy, with BoW reaching
> 95% in many cases. Interestingly, even looking at the
lengths of the generations achieves a non-trivial accuracy
(� 50%). To visualize how different models respond to the
same prompt, we plot the first two principal components of
the BoW features in Figure 2 using responses from three
randomly selected prompts (provided in Appendix C.2),
where we observe clear model-specific clusters.

Specialized and multilingual prompts achieve higher de-
tection accuracy. As shown in Figure 3, prompts featur-
ing domain-specific tasks (e.g., Math) and non-English lan-
guages (e.g., Chinese) achieve the highest detection accu-
racy. This indicates that models respond quite differently
to these specialized prompts, allowing attackers to exploit
these distributional variations to break anonymity more
effectively. Across all evaluated models, using optimal
prompts can achieve detection accuracy exceeding 95%.

Training better detectors. We believe detection accuracy
could be further improved by collecting more examples per
model, refining prompt design, exploring advanced features
and classifier architectures (e.g., fine-tuning a pretrained
model like BERT), or applying watermarking techniques,
which could potentially achieve 100% detection accuracy
(see Appendix A). Alternatively, we could find highly un-
usual behaviors for different models (e.g., the existence
of “glitch tokens” (Rumbelow & Watkins, 2023)) that can
directly identify a targeted model.
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Target Model

Chinese

English
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Max
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95.8 95.8 95.7 92.8 95.7 95.7 95.7 95.7 95.7 95.7 95.7 95.8 95.8 95.7 94.1 93.6 95.7 95.7 95.7 95.7 91.3 95.7 95.2

93.7 93.5 94.6 94.7 92.8 96.3 92.7 93.9 95.8 95.8 92.8 95.8 95.8 94.4 92.5 90.7 90.2 95.7 95.7 91.2 95.7 92.0 93.9

95.8 95.8 95.8 95.8 94.5 97.5 92.7 94.8 95.8 95.8 94.1 95.8 95.8 96.3 94.0 91.4 92.2 95.7 95.7 95.7 95.6 94.6 95.0

95.8 95.8 92.5 96.4 91.0 95.5 90.2 91.6 95.8 95.8 92.4 95.8 95.8 94.1 94.5 93.1 95.7 95.7 95.7 95.7 94.1 92.6 94.3

95.8 95.8 93.7 94.2 91.5 97.5 90.3 93.8 95.8 95.8 92.4 95.8 95.8 92.0 93.3 92.5 91.1 92.2 90.2 90.1 95.7 95.7 95.4

94.6 93.6 95.8 95.8 96.3 96.1 93.8 98.1 93.5 96.8 95.8 95.8 92.0 92.4 93.9 95.4 92.7 92.0 91.3 95.7 95.7 95.7 95.7

96.6 91.7 94.7 95.8 95.8 95.3 95.3 93.0 96.7 94.1 92.9 97.5 95.8 95.8 95.8 93.7 97.8 95.8 97.8 95.7 95.2 95.7 95.7

91.3 95.3 91.2 95.1 95.8 95.8 95.4 95.9 94.1 95.0 95.3 96.1 95.8 92.5 95.8 93.3 94.1 93.7 93.3 93.4 90.5 92.7 95.9

96.8 96.8 94.7 95.8 95.8 96.3 96.4 95.7 98.1 95.7 96.8 97.5 95.7 97.8 95.8 97.8 95.7 95.2 95.7 95.7 95.7 96.6 96.3
85.0

87.5

90.0

92.5

95.0

97.5

100.0

Figure 3. Test accuracy (%) of detectors trained to distinguish the target model (specified in each column) from other models (scale: 85%
to 100%). Prompts featuring domain-specific tasks (e.g., “Math”, “Coding”, and “Safety-violating”) and non-English languages (e.g.,
Spanish) yield the highest detection accuracy. Detectors are built using BoW features.

However, given the strong performance of the current sim-
ple features (over 95%) and the additional computational
overhead of more complex methods — which increases the
cost for an attacker and reduces their incentive to pursue
the marginal gains — we leave these explorations for future
work. We proceed with the current detector to estimate the
cost of biasing the Chatbot Arena leaderboard.

3. Estimating the Number of Adversarial
Votes

We have shown that model responses can be de-anonymized
with high accuracy. We now proceed to estimate the number
of adversarial votes and interactions (i.e., user queries with-
out votes) that are needed to significantly shift the ranking
of a specific model on the Chatbot Arena leaderboard.

3.1. Experimental setup

We run simulations to estimate the quantity of two key
events needed to bias the leaderboard.

• Vote: When a user submits a preference for a M over
another. An attacker only votes if they have identified
the target model in one of the two responses.

• Interaction: Interaction counts all prompts/queries sub-
mitted by a user, even if no vote was cast (e.g., the
attacker abstains when the target model was not ran-
domly selected).

Estimation setup. Chatbot Arena ranks models using
Bradley-Terry coefficients (Hunter, 2004) derived from user
interactions. Using historical voting data (see Appendix C.4
for details) and a simulation pipeline for attacker behavior,
we estimate the number of interactions and adversarial votes
needed to achieve the following objectives:

1. Up(M, x): manipulate model M to rise x positions in
the leaderboard

2. Down(M, x): manipulate model M to fall x positions in

the leaderboard

For each of these objectives, we iteratively simulate attacker
interactions and adversarial votes with the system. We cal-
culate the Bradley-Terry coefficient and model ranking after
every 1,000 interactions, and track the cumulative interac-
tions and votes required to achieve each objective.

Unless otherwise specified, our estimates assume:

• A detection accuracy of 95%3, with symmetric false
positive and false negative rates of 5%. Appendix D.2
presents an ablation study of detection accuracies.

• An passive attacker when they fail to detect the target
model on the sampled response. Appendix D.2 presents
an ablation study of alternative non-detection actions.

3.2. Results

We estimate the number of actions (defined in § 3.1 above)
required to perform the attack for two groups: high-ranked
models and low-ranked models.

Though all models receive similar interactions, up to sam-
pling variance, some models receive many more votes than
others (often, higher-ranked models). Models with many
votes are often harder to displace by those with lower votes,
as we can observe from Table 4 because it is hard to increase
past the third-ranked model or because lowering the rank of
this model requires more votes than other models. Despite
this, moving a model up just one position Up(M, 1) or down
one position requires less than 1,000 votes. Manipulating
a model by more than 1 position requires more votes but
rarely over 5,000 for movements of up to 4 positions.

Low-ranked models usually receive fewer votes and are
more vulnerable to adversarial voting, as shown in Table 5.
On average, these models require only 30% of the votes

3Results in § 2.4 show the attacker’s best-case detection accu-
racy could reach 95% for most of models. Given the attacker can
optimize prompts offline, we use 95% in the simulation.

5
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Table 4. The number of votes (a) and interactions (b) required
to change the rankings of high-ranked models on the simulated
leaderboard.

Target rank

Target model@current-rank # votes 1 2 3 4 5

chatgpt-4o-latest@1 14514 N/A 557 748 1315 1315
gemini-1.5-pro-exp-0801@2 20071 696 N/A 454 1230 1260
gpt-4o-2024-05-13@3 77509 1668 903 N/A 3125 3756
gpt-4o-mini-2024-07-18@4 19307 1880 1401 1236 N/A 163
claude-3-5-sonnet-20240620@5 47703 3127 2809 2367 322 N/A

(a) # Votes

Target rank

Target model@current-rank # votes 1 2 3 4 5

chatgpt-4o-latest@1 14514 N/A 35K 48K 82K 82K
gemini-1.5-pro-exp-0801@2 20071 45K N/A 29K 78K 80K
gpt-4o-2024-05-13@3 77509 110K 60K N/A 196K 237K
gpt-4o-mini-2024-07-18@4 19307 120K 30K 24K N/A 10K
claude-3-5-sonnet-20240620@5 47703 206K 184K 144K 18K N/A

(b) # Interactions

Table 5. The number of votes (a) and interactions (b) required
to change the rankings of low-ranked models on the simulated
leaderboard.

Target rank

Target model@current-rank # votes 125 126 127 128 129

chatglm-6b@125 4995 N/A 131 340 538 574
fastchat-t5-3b@126 4304 150 N/A 259 427 476
stablelm-tuned-alpha-7b@127 3334 306 213 N/A 162 303
dolly-v2-12b@128 3484 508 445 211 N/A 158
llama-13b@129 2443 381 321 255 126 N/A

(a) # Votes

Target rank

Target model@current-rank # votes 125 126 127 128 129

chatglm-6b@125 4995 N/A 9K 25K 38K 40K
fastchat-t5-3b@126 4304 10K N/A 16K 26K 29K
stablelm-tuned-alpha-7b@127 3334 20K 14K N/A 11K 20K
dolly-v2-12b@128 3484 30K 24K 16K N/A 10K
llama-13b@129 2443 24K 20K 15K 10K N/A

(b) # Interactions

of high-ranked models to move up a few positions. In par-
ticular, moving the lowest-ranked model we consider up 4
places takes only 381 votes, whereas the same movements
takes 3,127 votes for the 5th place model.

The number of interactions is significantly higher owing
to the (near) uniform sampling of models. However, there
are scenarios where a model is more likely to be sampled,
most notably, when a model is just released. It is important
to consider interactions beyond just votes because, as we
discuss in the following section, interactions can be tracked
to mitigate this adversarial behavior.

4. Mitigations
We now discuss potential defenses against the adversarial
manipulation of language model leaderboard’s like Chatbot
Arena’s. Detecting malicious users and bots is an active

area of security research (Lassak et al., 2024; Gavazzi et al.,
2023). Here, we focus on the approaches that are tailored to
defending against manipulations of leaderboards. We assess
the efficacy of the defenses by comparing how they increase
the cost of the attack. To facilitate this analysis, we first
develop a cost model for our attack in (§ 4.1), followed by
an analysis of each mitigation in § 4.2.

4.1. Estimating the Cost of Attack

We formalize our cost measurement as follows. Let c repre-
sent the cost of the attack. Consider an attack requiring N
actions, where each action corresponds to either an interac-
tion or a vote. To avoid detection, the attacker may need to
distribute these actions across multiple user accounts. Let
m be the maximum number of actions permitted per user ac-
count, and caccount the cost of obtaining a single user account.
The total cost of the attack consists of three components:

• Training detector cost cdetector: the one-time cost of
building the training-based, target-model detector.

• Account maintenance cost = dN/me × caccount: Multi-
ple accounts become necessary when defensive mech-
anisms implement behavioral analytics to detect sus-
picious patterns, forcing attackers to distribute actions
across accounts to evade detection.

• Action cost N × caction: the aggregate cost of all actions,
where caction represents the cost per individual action.

The total attack cost is the sum of these three terms and is
thus: dN/me × caccount +N × caction + cdetector.

Cost of attack without mitigations. We first analyze the
cost of attack in the absence of mitigations. Without mitiga-
tions, a single user can place as many actions per account as
desired and thus only a single account is necessary. Further,
the cost per action is minimal. Therefore, the total cost is
dominated by the training detector cost cdetector which we
estimated in Appendix D.1 to be $440 in our current experi-
mental setup. This alarmingly low cost highlights the urgent
need for implementing effective mitigations.4

4.2. Increasing the Cost of Attack

Given that the one-time training detector cost, cdetector, is
relatively fixed, an effective mitigation should focus on
increasing either the account maintenance cost dN/me ×
caccount (§ 4.2.1, § 4.2.2, § 4.2.3) or the online action cost
N × caction (§ 4.2.4).

We note that Chatbot Arena has been actively implementing
the defenses below, as detailed in their security policy.5

4Chatbot Arena has always had mitigations in practice, such
as bot detection and prompt post-processing, both of which make
re-identification and reranking significantly more difficult.

5https://blog.lmarena.ai/blog/2024/policy/

6

https://blog.lmarena.ai/blog/2024/policy/


Exploring and Mitigating Adversarial Manipulation of Voting-Based Leaderboards

4.2.1. AUTHENTICATION

The most effective method to increase the cost per ac-
count caccount is to enforce authentication on Chatbot Arena
through integration with existing digital identity providers.
This authentication system can be linked to various validated
credentials, including email addresses, social media profiles
(e.g., Twitter, Facebook), or phone numbers. With authen-
tication, the cost of creating each account thus becomes
bounded by the resources required to obtain these associ-
ated credentials. Risk-based authentication or multi-factor
authentication may also be offered through some digital
identity providers to increase caccount with limited impact
to benign users (Makowski & Pöhn, 2023; Gavazzi et al.,
2023). Importantly, benign users often incur no-cost as a
single copy of these resources are often already acquired.
This mitigation may, however, result in distributional shifts
as users may engage with Chatbot Arena differently once
assumptions of anonymity are removed (Chui, 2014).

4.2.2. RATE LIMITING

Reducingm through temporal rate limits on actions for each
account is also an effective strategy. Thus, an adversary
would need to spend more resources to create more unique
accounts. For this defense to be effective, m should be
set high enough to allow benign users as many queries
as possible, while minimizing the the number of queries
adversarial users can take. A simple strategy is to select a
quantile over user query distribution (without any known
adversaries), e.g., the median. With estimates for the benign
query distribution, the choice in m can be refined

4.2.3. MALICIOUS USER IDENTIFICATION

Risk-based authentication (Gavazzi et al., 2023) in general
leverages user behavior patterns to identify malicious users
and increase their action costs. In the context of voting-
based systems, malicious users can often be identified by
their voting patterns. Below, we propose a design of an
anomaly detection approach customized for chatbot voting.
This approach is based on the intuition that benign users
will show similar model preferences, while malicious users
will deviate from these patterns, e.g., by voting for specific
models more often. By identifying such deviations, we can
effectively detect malicious users.

We consider two scenarios. (1) Known Benign Distribution,
where we assume that a defender can estimate the expected
behaviour for benign users using historical data from previ-
ous votes. (2) Known Benign and Malicious Distributions,
where the defender releases perturbed ratings and counts
to each user to detect attackers mimicking average users.
In both cases, the defender uses a likelihood test to differ-
entiate between the null hypothesis, Hbenign: that the user
is benign, and the alternative hypothesis, H¬benign: that the

user is from a different source. We reject the null hypoth-
esis (and conclude the user is likely not the known benign
user) if the p-value is less than the desired significance level
α = 0.01. See Appendix B for details beyond the below.

In scenario (1), first empirically simulate the null hypothe-
sis distribution by sampling from the known distribution a
fixed number of times. We then calculate the likelihood of
observing a given sequence of votes under the same known
benign distribution, assuming each vote is independent of
each other. We then compare their test statistics. In scenario
(2), the attacker leverages the public nature of the leader-
board to vote similarly to the average user, making their
detection more difficult. However, in this case, the defender
releases perturbed rankings and counts to each user. Thus,
the attacker would vote according to the perturbed statistics
whereas benign users would not. Here, we use the Bradley-
Terry coefficient rating difference to compute the probability
each model would be preferred given the true ratings and
counts and perturbed ratings and counts. We then compute
the likelihood of the votes under each.

4.2.4. INCREASING cACTION

Alternatively, the defender can implement additional secu-
rity measures to increase the cost of each action an attacker
must perform. We list two possible mitigations:

• Requiring a CAPTCHA per impression/vote: this makes
the cost caction = N × cCAPTCHA as automated solving
services typically charge per-CAPTCHA.

• A potentially more effective mitigation is force prompt
uniqueness by rejecting or down-weighting previously
used prompts when updating the Bradley-Terry coef-
ficient leaderboard. This forces attackers to generate
new prompts and train corresponding detectors for each.
This approach would introduce a cost of approximately
$2.20 per prompt (or per action) (see Appendix C.3).
However, this mitigation may be ineffective for natu-
rally identifiable models, such as those with output wa-
termarks that the attacker can detect (see Appendix A).

4.3. Experiments

Preventing a well resourced adversary in the limit would be
almost unfeasible since the adversary could hire many users
to submit legitimate votes and avoid any detection. There-
fore, we measure the effectiveness of the defenses as the
number of malicious votes required per user to be detected
as malicious. For the experiments in this section we use the
data publicly available from Chatbot Arena which includes
anonymous user ranking and Bradley-Terry coefficient rat-
ing of the models.

We start with the first scenario where the defender has ac-
cess to historical data of the votes between users and can
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(a) Scenario 1: The defender uses the likeli-
hood to identify the malicious users.
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(b) Scenario 2: The defender releases a per-
turbed version of the leaderboard.
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Figure 4. Effectiveness of malicious user identification. (a) The defender detects malicious users based on likelihood. While effective
against naive adversaries who randomly select untargeted models, this approach fails against those leveraging public rankings. (b, c)
Releasing a perturbed leaderboard helps detect adaptive adversaries who vote based on it, with higher noise improving detection rate.

use them to estimate the preferences of a benign user be-
tween two models. Figure 4a illustrated the results. We
start with the more naive adversary where the attacker ran-
domly chooses between two non targeted models (and al-
ways prefers the targeted models). As can be seen in the
results, the defender can use the difference in the behavior
of a random adversary to identify the malicious users. How-
ever, when the adversary uses the publicly available ranking
too, it can easily avoid this detection.

In the second scenario the defender modifies the rating of
the model and releases the perturbed leaderboard. Now if
the adversary uses this perturbed order, its behavior can be
detected. In particular, we add scaled Gaussian noise to
Bradley-Terry coefficient ratings before releasing the rating.
Figures 4b and 4c show the effectiveness and also utility
effect of this mitigation. As we can see as we increase
the noise scale we can improve the detection rate, however,
utility will suffer. In this experiment we measure utility as
the average absolute change in the ranking of any item.

As mentioned earlier, while we cannot prevent this attack
completely using either authentication approaches or the
malicious user detection approach described in this section,
we can increase the cost of the attack significantly.

5. Related Work
Security vulnerabilities in voting-based system. Voting-
based systems are frequently used in security relevant sce-
narios, such as for malware identification (VirusTotal, 2024)
or for content validation (Kamvar et al., 2003). As a result,
attacks on these systems are well studied (Hoffman et al.,
2009) and a common approach to securing these systems is
to produce reputation scores for users through their voting
history (Kamvar et al., 2003; Zhai et al., 2016). We consider
an extention of reputation systems to a Chatbot Arena in
§ 4.2. In the context of machine learning, reputation has also
been used by FLTrust (Cao et al., 2020) to defend against

data poisoning attacks.

Detecting the target model for the generation. Our pri-
mary attack involves training a classifier that can identify
which language model system produced a given genera-
tion. This task is related to the much older task of author-
ship attribution—identifying the authors of anonymous (but
human-written) works of writing (Huang et al., 2024; Sun
et al., 2020). Tay et al. (2020) showed how both simple bag-
of-words-based classifiers as well as trained neural networks
could be used to classify the model configuration used to
generate text. Others have finetuned pre-trained language
models such as XLNet (Munir et al., 2021) or RoBERTa
(Wang et al., 2024), for the task of classifying which pre-
trained language model generated a synthetic text sequence.
Our framing of the task is easier than that of most prior work
in this space because we assume the attacker has control
over the prompt being used for generation, and the set of
possible model configurations which may have been used
for generation is fairly constrained.

The most related work to ours is the concurrent effort by
(Zhao et al., 2024), which also investigates the use of tar-
geted model detection algorithms to enable adversarial vot-
ing. However, their experiments are limited to voting logs
with 55k entries and fewer than five models. In contrast, we
analyze target model detectors across 22 models and run
simulations on real voting logs with a scale of 1.7 million
votes. Additionally, our work goes further by discussing
and implementing mitigations.

Evaluation of LLMs. Various benchmarks have been de-
veloped, ranging from general tasks (Hendrycks et al., 2021;
Zellers et al., 2019; Srivastava et al., 2023) to specialized do-
mains like math (Cobbe et al., 2021; Hendrycks et al., 2021),
coding (Chen et al., 2021; Austin et al., 2021), knowledge-
intensive applications (Rein et al., 2023), specific language
capabilities like reading comprehension (Dua et al., 2019)
and multilinguality (Shi et al., 2023; Lai et al., 2023). How-
ever, there are many challenges when using those bench-
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marks to track the progress of model developments: 1) aca-
demic benchmarks focus on measuring fundamental capa-
bilities, which do not always correlate well with application
scenarios that average real world users care about (Köpf
et al., 2024; Zheng et al., 2023c;b); 2) faithfully evaluat-
ing open-ended responses to complex questions (e.g. sum-
marization) is highly non-trivial, and it is challenging to
quantify the reliability and robustness of current metrics
based either on text matching derived heuristics (Liu & Liu,
2008; Cohan & Goharian, 2016; Fabbri et al., 2021) or auto-
evaluation with a rating LLM (Zheng et al., 2023c; Kim
et al., 2023; Zhu et al., 2023; Wu et al., 2024; Xie et al.,
2024); 3) publicly released benchmarks have high risk of
data contamination, leading to potentially inaccurate evalua-
tion results (Magar & Schwartz, 2022; Balloccu et al., 2024;
Shi et al., 2024; Xu et al., 2024; Oren et al., 2024). As a
results, evaluation results based on human voting are consid-
ered highly valuable signals by all major model developers
as it reflects real world user queries and preferences — the
Chatbot Arena leaderboard currently hosts 157 models from
more than 20 different model developers. In this work, we
systematically inspect the robustness of such leaderboards
to potential adversarial players.

6. Conclusions
The field of natural language processing has long relied
on domain-specific, easy-to-implement evaluation metrics.
But dramatic advances in LLM performance challenges
traditional evaluation practices. As we show in this paper,
moving from evaluations that use an objective source of
truth to evaluations that utilize human inputs introduces the
potential for new types of evaluation difficulties. We focus
on this paper in validating one straightforward attack: by
identifying and selectively voting for (or against) a particular
model, an adversary can significantly alter the ordering of
the best models.

Mitigating this attack is feasible, and we are actively col-
laborating with the Chatbot Arena team to make Chatbot
Arena more robust. We also encourage the community to
explore and adopt mitigation strategies, such as voter au-
thentication, rate limits, and more robust mechanisms for
detecting malicious activities.

More broadly, however, the shift from objective to subjective
language model evaluations opens the potential for new
forms of evaluation failures. Our paper explores just one of
these failure modes—where an adversary explicitly aims to
alter the rank of a particular target model. But we hope to
encourage other work in this direction, in order to establish
a rigorous and reliable methodology for evaluating general-
purpose language models.

Impact Statement
Our study highlights the susceptibility of Chatbot Arena’s
leaderboard rankings to malicious voting behavior. We
conducted this work with the goal of improving the security
and reliability of interactive evaluation platforms, and to
encourage the development of countermeasures to improve
robustness.

We disclosed this attack in August 2024 and collaborated
with the Chatbot Arena team throughout the development of
this work to assist in developing appropriate defenses. Our
collaboration has been instrumental in refining solutions
to mitigate these vulnerabilities, ensuring that platform in-
tegrity and user trust are maintained. By sharing these re-
sults, we aim to encourage the community to adopt stronger
safeguards in the design and evaluation of similar systems.

All simulations and experiments conducted in this study
were carried out in a controlled environment, with no real-
world impact on the existing Chatbot Arena platform or any
other public-facing system.

Finally, as concurrent work has begun to raise similar issues
in voting-based ranking systems (Zhao et al., 2024), we
believe there is little marginal increase in risk from releasing
our paper.
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A. Discussion
Upvoting one’s own models vs downvoting those of a competitor. It is far easier for a model owner to upvote their own
model(s) than to downvote (or upvote) another. Model owners have much more knowledge about their models. They know
the entire training dataset and can evaluate the loss on each sample to determine the easiest samples to detect. Further, if
their model is deployed as an API, they could simply log generations that the API produces, and then check each candidate
in Chatbot Arena against this database. Finally, the model owner can also strategically make text more detectable, either
by using stealthy watermarks that only they have direct knowledge of or by using hidden backdoors on specific prompts.
In contrast, our approach in § 2.2 aims to address the case where the adversary does not necessarily have control over the
models whose scores they aim to manipulate.

Detection via watermarking. There has been a slew of recent research aiming to watermark generated text to identify
whether given text was generated with a particular, watermarked model (Kirchenbauer et al., 2023; Kuditipudi et al., 2024;
Christ et al., 2024). This is indeed a way of breaking model anonymity but it has limited applicability for our task. Not all
models employ watermarking, and successful de-anonymization would require the attacker to know the specifics of the
watermarking implementation in the target models—information that is typically not public.

Implications for public evaluation of AI systems. While this paper focuses on Chatbot Arena, our findings our relevant for
any public platform for performing comparative evaluation of AI systems, such as ones deployed for evaluating text-to-image
and speech.6 There is a fundamental tension when designing human evaluation experiments. On one hand, human evaluation
paradigms that closely reflect real-world usage lend validity to the results. On the other hand, restricting human evaluation
to known groups of annotators lends greater control annotator qualifications, demographic makeup, and incentives—but
at the expense of the transferability of the findings to real-world usage. For example, prior work has shown that Amazon
Mechanical Turk workers rate generated text very differently than school teachers (Karpinska et al., 2021).

B. Malicious User Identification
We consider two scenarios, one where the defender can only estimate a benign user’s behaviour and another where the
defender can estimate both defender and attacker behavior.

Scenario 1: Known Benign Distribution

In this scenario, we assume that a defender can estimate the expected behaviour for benign users using historical data from
previous votes. Now, if an adversary behaves significantly differently from the expected behaviour, the defender can detect it.
To do so, we use a likelihood test to differentiate between the null hypothesis Hbenign that the user’s voting pattern matches
the known benign distribution or the alternative hypothesis H¬benign that the user is from a different source.

Let x = (x1, ..., xn) represent a sequence of observed impressions by a user, where each xi is an impression for one of the
available models. Under the null hypothesis Hbenign, we assume these votes come from the known benign user profile. Also
we assume each vote is independent of each other.

The likelihood of observing the entire sequence under the null hypothesis is then:

L(x|Hbenign) =

n∏
i=1

Pr(xi|Hbenign). (1)

To assess how extreme this observation is under the null hypothesis, we use the test statistic:

T (x) = −2 ln(L(x|Hbenign)). (2)

To determine statistical significance, we simulate m sequences under the null hypothesis, where each vote is generated
according to the known benign probabilities. For each simulated sequence sj , we calculate its test statistic T (sj). The
empirical p-value is then computed as:

p =
1

m

m∑
j=1

I{T (sj) ≥ T (x)} (3)

where I{} is the indicator function. We reject the null hypothesis (and conclude the user is likely not the known benign
user) if the p-value is less than the desired significance level α. In particular we use α = 0.01 in our evaluations.

6https://artificialanalysis.ai
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Scenario 2: Known Benign and Malicious Distributions

Because the leaderboard is public, the adversary can use the published ratings and counts to make themselves more difficult
to detect by mimicking the average user behavior. To this end, the defender can instead release perturbed rankings and
counts to each user so as to reduce an attacker’s knowledge of the true values. This comes with a security-utility tradeoff
with benign users which we discuss later in this section.

We use the same null hypothesis Hbenign and alternative hypothesis H¬benign. Similarly, let PrB(i), i ∈ [n] be the probability
of a benign user voting for model i and Pr¬B(i) the same for adversarial users. However, note that Pr¬B(i) will match the
perturbed votes released by the defender. We can use the Neyman-Pearson Lemma to construct the hypothesis test. The
Neyman-Pearson Lemma states that the optimal decision rule is based on the likelihood ratio.

The likelihood ratio is defined as:

Λ(x) =
PrM (x)

PrB(x)
(4)

The Bradley-Terry coefficient rating difference between two models defines the probability with which one will be preferred
over the other. We can use this to calculate the entire probability distribution PrB(i) and Pr¬B(i). Given two models i and
j with ratings Qi and Qj respectively, the probability that i is preferred is typically modeled using a logistic function as:

Pr(i preferred over j) =
1

1 + exp(−(Qi −Qj)/s)
(5)

where s is a scaling factor that determines the sensitivity of the probability to the rating difference. Then, we can calculate
any component PrB(i) (or Pr¬B(i) similarly) as the event that this model is chosen over each other model. This is calculated
as:

Pr
B

(i) =
∏
j

Pr
B

(i preferred over j | true Bradley-Terry coefficient ratings) (6)

For Pr¬B(i), the perturbed Bradley-Terry coefficient rankings are used instead.
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C. Experimental Details
C.1. List of models

Table 6 lists the evaluated models and the methods used to query them. For all models, we rely on the default decoding
hyperparameters (e.g., temperature) specified by the query method.

Table 6. Overview of evaluated models and the querying methods used in our experiments.

Model Company / Organization Method of query in our experiments

claude-3-5-sonnet-20240620 Anthropic Anthropic API
claude-3-haiku-20240307 Anthropic Anthropic API
gemini-1.5-flash Google Google AI studio API
gemini-1.5-pro Google Google AI studio API
gemma-2-2b-it Google Together AI Inference API
gemma-2-9b-it Google Together AI Inference API
gemma-2-27b-it Google Together AI Inference API
gpt-3.5-turbo OpenAI OpenAI Text generation API
gpt-4-0125-preview OpenAI OpenAI Text generation API
gpt-4-1106-preview OpenAI OpenAI Text generation API
gpt-4-turbo-2024-04-09 OpenAI OpenAI Text generation API
gpt-4o-2024-05-13 OpenAI OpenAI Text generation API
gpt-4o-2024-08-06 OpenAI OpenAI Text generation API
gpt-4o-mini-2024-07-18 OpenAI OpenAI Text generation API
llama-3-8b-instruct Meta Together AI Inference API
llama-3-70b-instruct Meta Together AI Inference API
llama-3.1-8b-instruct Meta Together AI Inference API
llama-3.1-70b-instruct Meta Together AI Inference API
llama-3.1-405b-instruct Meta Together AI Inference API
mixtral-8x7b-instruct-v0.1 Mistral AI Together AI Inference API
mixtral-8x22b-instruct-v0.1 Mistral AI Together AI Inference API
qwen2-72b-instruct Alibaba Together AI Inference API

C.2. Prompts for embedding visualization

The three prompts we used for embedding visualization in Figure 2 are:

• Prompt #1: “Beside OFAC’s selective sanction that target the listed individiuals and entities, please elaborate on the other
types of US’s sanctions, for example, comprehensive and sectoral sanctions. Please be detailed as much as possible”

• Prompt #2: “You are the text completion model and you must complete the assistant answer below, only send the
completion based on the system instructions.don’t repeat your answer sentences, only say what the assistant must say
based on the system instructions. repeating same thing in same answer not allowed. user: descriptive answer for append
many items to list python in python with proper code examples and outputs. assistant: ”

• Prompt #3: “The sum of the perimeters of three equal squares is 36 cm. Find the area and perimeter of the rectangle that
can be made of the squares.”

C.3. Details for the training-based detector

Data collection and its cost. The main cost of building the training-based detector comes from the data collection process,
where the attacker gathers responses from various models for the same prompt and train classifier to distinguish among them
(§ 2). In our experiments, we collect responses depending on the model type: For proprietary models, we directly used the
model providers’ APIs to obtain the responses. For open-source models, we relied on Together’s API7 to make the queries.
We set the output length to 512 tokens and found that collecting 50 responses per model was sufficient to train an effective
target model detector.

7https://www.together.ai/
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To estimate the upper bound on the data collection cost, we based our calculations on the pricing of the most expensive
model we tested. Proprietary models cost $5.00 per 1 million output tokens, while open-source models cost $1.80 per 1
million output tokens.

Using these rates, the upper bound cost of querying a single model is:

Proprietary model: 5.00× 512× 50

106
= 0.128 Open-source model: 1.80× 512× 50

106
= 0.046

Assuming the training process requires 10 proprietary models and 20 open-source models, the overall data collection cost
would be approximately $2.2 per prompt.

We collected data for 200 prompts in § 2, so the cost is at most $440.

We use the logistic regression model from the scikit-learn library8 with its default hyperparameters and a random state set to
42.

C.4. Simulation Testbed

Our simulation in § 3 is based on an anonymized and deduplicated dataset of voting records from Chatbot Arena. The
dataset includes 1,670,250 votes from 477,322 unique users, with 1,093,875 votes resulting in wins and 576,375 in ties.
These votes cover 6,895 unique combinations of side-by-side model comparisons.

8scikit-learn.org/1.5/modules/generated/sklearn.linear_model.LogisticRegression.html
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D. More Experimental Results
D.1. Target Model Detection

Table 7 presents the performance of identity-probing detector for all evaluated 22 models.9

Table 7. Averaged detection accuracy (%) with across 1,000 queries per prompt for different identity-probing prompts across various
models.

Prompt

Model Who are
you?

Which model
are you?

What is your
model name?

How should I
refer to you

as an AI?

How would you define
your role or

identity as an AI?

claude-3-5-sonnet-20240620 99.3 100.0 98.5 100.0 100.0
claude-3-haiku-20240307 100.0 96.3 100.0 42.9 14.3
gemini-1.5-flash 0.0 0.0 0.0 0.0 0.0
gemini-1.5-pro 97.2 96.5 100.0 0.0 99.1
gemma-2-27b-it 100.0 98.4 98.2 97.9 95.5
gemma-2-2b-it 81.8 91.8 58.2 12.7 4.5
gemma-2-9b-it 98.5 99.4 98.3 98.1 97.3
gpt-3.5-turbo 0.0 54.5 67.3 0.0 0.0
gpt-4-0125-preview 70.9 100.0 94.6 1.8 1.8
gpt-4-1106-preview 7.3 90.9 99.1 6.4 1.8
gpt-4o-2024-05-13 16.4 93.3 99.9 0.0 6.4
gpt-4o-2024-08-06 51.8 97.7 98.5 0.0 5.5
gpt-4o-mini-2024-07-18 92.7 92.9 100.0 12.7 0.0
llama-3-70b-instruct 98.2 98.2 54.5 46.4 2.7
llama-3-8b-instruct 99.9 99.1 74.5 20.0 1.8
llama-3.1-405b-instruct 99.1 90.9 89.1 75.5 0.0
llama-3.1-70b-instruct 98.8 66.4 92.7 5.5 0.0
llama-3.1-8b-instruct 17.3 40.0 99.1 6.4 0.0
mixtral-8x7b-instruct-v0.1 97.3 31.8 45.5 1.8 0.9
mixtral-8x22b-instruct-v0.1 97.3 31.8 45.5 0.9 1.8
qwen2-72b-instruct 91.8 98.2 97.6 24.5 7.3

D.2. Adversarial Vote

Ablation for detector accuracy. Table 8 shows the number of votes and interactions needed to shift a model’s position by
1 to 50 places on the simulated leaderboard under different detector accuracies. As shown, the number of votes required to
move a model up by 50 places increases by only about 150 when the detector accuracy drops from 1.0 to 0.9. This suggests
that a detector, while not perfect, can still be sufficiently accurate to achieve the attack’s objective.

Ablation for non-detected actions. When the attacker does not detect the target model, they can choose from four actions:
randomly upvote one model, vote for a tie, vote both models as bad, or do nothing. The main results in § 3 assume the
attacker does nothing. We also explore the other options in Table 9. As shown, there are no clear patterns indicating that any
one option is significantly better than the others.

9We note that operation of these models was by University authors.
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Table 8. The number of votes (a) and interactions (b) required to change the ranking of a low-ranked model on the simulated leaderboard,
under varying detector accuracy.
Target model=llama-13b
(current rank: #129, #votes: 2443)

Target rank:
79 (↑ 50)

Target rank:
109 (↑ 20)

Target rank:
119 (↑ 10)

Target rank:
124 (↑ 5)

Target rank:
127 (↑ 2)

Target rank:
128 (↑ 1)

detector acc=1.0 1246 861 645 415 208 126
detector acc=0.95 1304 918 682 522 255 126
detector acc=0.9 1383 1012 732 525 271 136

(a) # Votes

Target model=llama-13b
(current rank: #129, #votes: 2443)

Target rank:
79 (↑ 50)

Target rank:
109 (↑ 20)

Target rank:
119 (↑ 10)

Target rank:
124 (↑ 5)

Target rank:
127 (↑ 2)

Target rank:
128 (↑ 1)

detector acc=1.0 80000 55000 40000 30000 15000 10000
detector acc=0.95 85000 65000 45000 30000 15000 10000
detector acc=0.9 100000 75000 55000 40000 20000 10000

(b) # Interactions

Table 9. The number of interactions required to change the ranking of a high-ranked model (a) and a low-ranked model (b) on the
simulated leaderboard, under varying non-target strategies.

Non-target strategy Target rank: 1(↑ 4) Target rank: 2(↑ 3) Target rank: 3(↑ 2) Target rank: 4(↑ 1)

Do nothing 206000 184000 144000 18000
Randomly upvote 192000 182000 142000 16000
Vote tie 194000 182000 148000 20000
Vote tie (both bad) 196000 172000 152000 16000

(a) High-ranked model, claude-3-5-sonnet-20240620 (rank: #5)

Non-target strategy Target rank:
79 (↑ 50)

Target rank:
109 (↑ 20)

Target rank:
119 (↑ 10)

Target rank:
124 (↑ 5)

Target rank:
127 (↑ 2)

Target rank:
128 (↑ 1)

Do nothing 80000 55000 40000 30000 15000 10000
Randomly upvote 75000 60000 40000 30000 15000 10000
Vote tie 80000 60000 40000 30000 15000 10000
Vote tie (both bad) 80000 60000 40000 30000 15000 10000

(b) Low-ranked model, llama-13b (rank: #129)
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