

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HIERARCHICAL ONE-CLASS DATA DESCRIPTION VIA PROBABILISTIC GRANULAR-BALL COMPUTING

Anonymous authors

Paper under double-blind review

ABSTRACT

One-class data description aims to model the distribution of target data by constructing a compact representation of the target class. This approach is widely applied in tasks like anomaly detection, where the objective is to differentiate the target data from outliers. Traditional methods typically rely on single-sphere or pre-defined multi-sphere representations. However, these simplistic assumptions often fail to capture the anisotropic structures and intricate patterns present in real-world data, limiting their effectiveness in representing distributions across multiple scales. To address these limitations, we propose Probabilistic Granular-ball Computing (PGBC), a hierarchical framework for one-class data description. PGBC uses ellipsoidal granular-balls to align with the anisotropic geometry of data and recursively refines them through statistical splitting, achieving precise and adaptive data representation. Additionally, PGBC approximates a hierarchical Gaussian mixture model by aggregating data description scores via granular-ball distribution entropy at each layer. This enables PGBC to capture data patterns at multiple levels of granularity, modeling both global structures and fine local variations. Extensive experiments on benchmark datasets demonstrate that PGBC consistently outperforms related strong baselines, offering superior accuracy for hierarchical one-class data description while maintaining a low false positive rate.

1 INTRODUCTION

One-class classification has become increasingly critical in real-world scenarios where acquiring representative anomalous samples are impractical, unpredictable, or even hazardous such as in mechanical failure detection (Pang et al., 2021), arrhythmia diagnosis from ECG signals (Kavya et al., 2024), or cybersecurity intrusion monitoring (Patcha & Park, 2007). In these domains, anomalies are not only rare but also highly diverse in form and origin, making it infeasible to comprehensively define them through labeled datasets. To address these challenges, one-class data description focuses solely on modeling the intrinsic structure of normal data, without requiring labeled anomalies (Pimentel et al., 2014; Ruff et al., 2018). Unlike conventional supervised approaches that rely on both normal and abnormal examples, one-class methods construct a reference model of normality and identify inputs that deviate from this reference as potential anomalies (Schölkopf et al., 2001; Tax & Duin, 2004). By isolating the learning process from the variability and unpredictability of anomalous events, one-class data description offers a robust and versatile framework, particularly well-suited for safety-critical or data-scarce applications where systems must autonomously detect novel or unexpected behaviors (Ruff et al., 2021). Nevertheless, anomaly detection in practice remains highly challenging, as real-world data distributions often demonstrate complex and anisotropic structures, where local density varies significantly with direction. This complexity underscores the need for models that can achieve high detection accuracy while also ensuring low false positive rates.

Traditional one-class data description methods often rely on spherical boundaries. For instance, *Support Vector Data Description (SVDD)* (Tax & Duin, 2004) encloses data in a hypersphere in feature space, and *DeepSVDD* (Ruff et al., 2018) learns deep latent representations to tighten the sphere around normal samples. Extensions such as *MCDD* (Lee et al., 2020) and *THOC* (Shen et al., 2020) employ multiple spheres to enhance flexibility, yet they require the number of spheres to be predefined and still enforce isotropic boundaries.

054 *Granular-ball computing* (Xia et al., 2019; 2020; Xie et al., 2025) offers an adaptive alternative
 055 by automatically generating multiscale hyperspheres without predefining their number. While
 056 more flexible, existing granular-ball methods (e.g., GBDO, GBMOD) also assume isotropic shapes,
 057 which struggle with elongated clusters and lead to redundant overlapping spheres when modeling
 058 anisotropic geometries. As illustrated in Figure 1, isotropic sphere-based granular-ball approaches
 059 approximate clusters using equal-radius contours to define simplified boundaries. In such repre-
 060 sentations, two points that are equidistant from a centroid are always assigned the same anomaly
 061 score, thereby ignoring that real data often concentrates heavily along a principal component direc-
 062 tion. Crucially, this limitation cannot be resolved by simply aggregating geometric distances (e.g.,
 063 average distance to centroids), as iso-probability contours in anisotropic distributions often diverge
 064 from iso-distance contours. This limitation often leads to redundant components for elongated clus-
 065 ters and further increases the number of false positives by misclassifying points aligned with the
 066 dominant geometry.

067 This motivates us to adopt the probabilistic el-
 068 lipsoidal granular-ball depicted in Figure 1(b)
 069 for constructing a one-class data description.
 070 Specifically, this approach allows the granular-
 071 ball to flexibly adjust its shape by stretching
 072 along the principal component directions of the
 073 data. As a result, two points with the same ge-
 074 ometric distance from the centroid may lie on
 075 different σ -level contours of the ellipsoid, lead-
 076 ing to significantly different anomaly scores.
 077 This alignment with the intrinsic data geometry
 078 both reduces redundancy and suppresses false
 079 alarms, thereby providing a more expressive
 080 and reliable framework for anomaly detection.
 081 The formal definition and computational details
 082 of granular-balls are provided in Appendix A.

083 In addition, AutoEncoder (Sakurada & Yairi,
 084 2014) and Deep Autoencoding Gaussian Mix-
 085 ture Model (DAGMM) (Zong et al., 2018) are
 086 also widely used to enhance expressiveness by
 087 learning compact representations. However, this
 088 often comes at the expense of intensive training
 089 requirements and high sensitivity to hyperparam-
 090 eters. Meanwhile, Hierarchical Gaussian Mixture
 091 Normalizing Flow Modeling (HGAD) (Yao et al.,
 092 2024) presents a hierarchical probabilistic approach
 093 that captures anisotropic structures through
 094 component-wise covariances and flows. However,
 095 HGAD’s reliance on a predefined structural de-
 096 sign limits its ability to adapt to the unknown com-
 097 plexity of the data, as both the number of mixture
 098 components and the hierarchical levels are fixed before-
 099 hand, rather than being dynamically learned
 100 from the data’s intrinsic geometry.

101 In this paper, we propose *Probabilistic Granular-ball Computing* (PGBC) for hierarchical one-class
 102 data description. PGBC models data with ellipsoidal granular-balls that adaptively align with prin-
 103 cipal components, overcoming the geometric rigidity of spherical granular-balls. By combining
 104 the geometric flexibility of ellipsoids with the statistical rigor of Gaussian components, PGBC pro-
 105 vides an expressive and statistically grounded representation of data distributions. Moreover, each
 106 granular-ball is refined iteratively using statistical criteria such as the Bayesian Information Criterion
 107 (BIC) and log-likelihood improvement, allowing the model to adjust its complexity automatically
 108 without deep architectures or fixed mixture sizes. For anomaly detection, PGBC organizes granular-
 109 balls into a hierarchical structure resembling a Gaussian mixture model, where anomaly scores are
 110 aggregated across layers using entropy-based weights, enabling detection at multiple levels of gran-
 111 ularity. Overall, this design combines geometric adaptivity with principled statistical refinement,
 112 providing both flexibility and robustness for one-class data description.

113 Our main contributions are summarized as follows:

114 i) We introduce probabilistic granular-ball computing (PGBC), a hierarchical one-class data descrip-
 115 tion framework that adaptively captures local data distributions by iteratively splitting and refining
 116 ellipsoidal granular-balls, enabling both anisotropic and probabilistic modeling of the data.

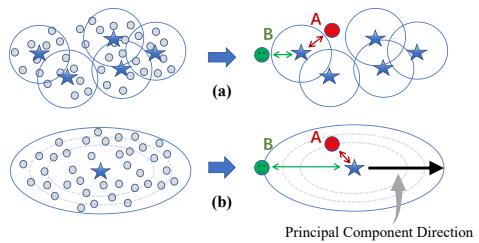


Figure 1: (a) Traditional granular-ball representation uses isotropic spheres, which struggle to fit complex or anisotropic regions without excessive splitting. (b) The proposed probabilistic granular-balls form ellipsoidal regions aligned with the principal component direction, offering adaptive shape and orientation for more efficient coverage.

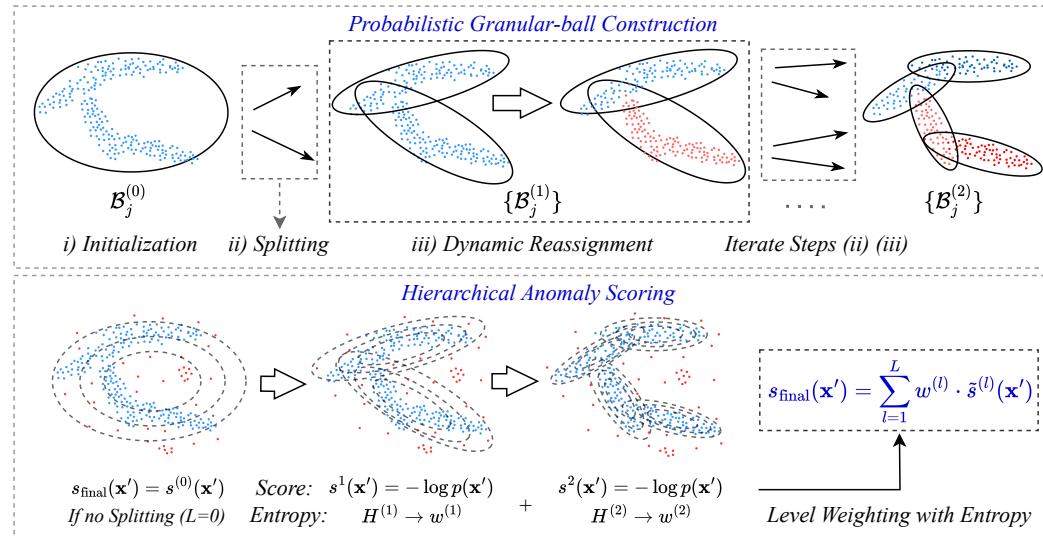


Figure 2: Framework of probabilistic granular-ball computing (PGBC). **For data with a single principal component (no splitting), the model simplifies to a single global Gaussian.**

ii) To complement this, we propose a systematic anomaly scoring mechanism that aggregates likelihoods across hierarchical levels by entropy-based weighting, effectively amplifying consistent abnormality signals while suppressing spurious noise, thereby reducing the false positive rate.

iii) Extensive experiments demonstrate the superiority of PGBC, consistently outperforming recent state-of-the-art baselines in both tabular and time series anomaly detection tasks.

2 METHODOLOGY

Problem definition and notations. In the context of one-class data description, we are given a set of N training samples $\mathcal{X} = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N\}$, where each $\mathbf{x}_i \in \mathbb{R}^d$ is a d -dimensional feature vector representing normal data. The goal is to learn a compact representation of the normal data distribution $p(\mathbf{x})$ based solely on \mathcal{X} . This description serves as the foundation for distinguishing normal samples from anomalies. For a given test sample \mathbf{x}' , its anomaly score is determined by quantifying how much it deviates from the learned description of the normal data. Samples that significantly deviate are identified as anomalies, while those that align closely with the one-class description are classified as normal.

Overview. In this section, we formally present the proposed framework of Probabilistic Granular-Ball Computing (PGBC). As depicted in Figure 2, the PGBC pipeline consists of two main phases: (i) *Probabilistic Granular-Ball Construction* (top) and (ii) *Hierarchical Anomaly Scoring* (bottom).

The first phase, *Probabilistic Granular-Ball Construction*, adaptively builds a hierarchical one-class data description through three core steps: (i) *Initialization*, (ii) *Recursive Splitting Strategy*, and (iii) *Dynamic Reassignment*. Steps (ii) and (iii) are alternated iteratively to progressively refine the description of the underlying data distribution. At each iteration, a probabilistic model is fitted to the data encapsulated within a granular-ball, which is then divided into smaller components. Each granular-ball models a local Gaussian distribution, and this recursive process systematically constructs a data-driven mixture tree. The resulting hierarchy captures both global and local structures of the normal data, providing a comprehensive and adaptive probabilistic one-class description.

The second phase, *Hierarchical Anomaly Scoring*, leverages the constructed hierarchy to compute anomaly scores for test samples of the data. Instead of relying solely on the leaf-level granular-balls, PGBC aggregates scores across multiple levels of the hierarchy. This multilevel aggregation combines both global and local perspectives, enabling robust anomaly detection by capturing coarse-grained and fine-grained patterns in the data. By integrating information from different levels, PGBC

162 ensures that anomalies are ultimately and effectively identified, regardless of whether they deviate
 163 from global trends or local structures.
 164

165 **2.1 PROBABILISTIC GRANULAR-BALL CONSTRUCTION**
 166

167 To capture the anisotropic and locally-varying structures of data, we extend classical granular-balls
 168 into a data-driven hierarchical structure composed of ellipsoidal probabilistic components. Each
 169 region is represented by a Gaussian distribution, with its mean and covariance matrix adaptively
 170 estimated to align with the local data geometry. This approach systematically captures structural
 171 variability and enables flexible density estimation across multiple levels of granularity. Formally,
 172 the definition of a probabilistic granular-ball is provided in Definition 1.

173 **Definition 1** (Probabilistic Granular-Ball). *A probabilistic granular-ball \mathcal{B} is a Gaussian approxi-
 174 mation in \mathbb{R}^d defined by the following parameters: i) A mean vector $\mu \in \mathbb{R}^d$, representing the center
 175 of the data distribution within the region. ii) A covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$, encoding the shape,
 176 orientation, and dependencies within the data distribution of the region.*

177 The PGBC framework constructs a hierarchical density representation of the data by sequentially
 178 executing three main steps: i) *Initialization*, ii) *Recursive Splitting*, and iii) *Dynamic Reassignment*.
 179 Steps 2 and 3 are performed alternately to iteratively refine and model underlying data distribution.
 180

181 **Step 1: Initialization.** The construction process begins with an initial probabilistic granular-ball
 182 $\mathcal{B}^{(0)}$ that encapsulates the entire dataset \mathcal{X} . The parameters of $\mathcal{B}^{(0)}$ are computed as follows:

$$183 \quad \mu^{(0)} = \frac{1}{N} \sum_{i=1}^N \mathbf{x}_i, \quad \Sigma^{(0)} = \frac{1}{N-1} \sum_{i=1}^N (\mathbf{x}_i - \mu^{(0)}) (\mathbf{x}_i - \mu^{(0)})^\top, \quad (1)$$

187 where $\mu^{(0)}$ is the empirical mean and $\Sigma^{(0)}$ is the covariance matrix. In practice, $\epsilon > 0$ (set to 10^{-6}
 188 in our implementation) is a small regularization term added to $\Sigma^{(0)}$ to ensure numerical stability. At
 189 this step, $\mathcal{B}^{(0)}$ serves as the root of the tree hierarchy, capturing the global structure of the data.

190 **Step 2: Recursive Probabilistic Granular-ball Splitting.** To refine the density representation,
 191 each granular-ball $\mathcal{B}^{(l)}$ (parent ball) is recursively split into smaller components if the data within
 192 it exhibits sufficient structural variability. **This recursive process systematically decomposes the
 193 complex global data distribution into simpler, statistically validated ellipsoidal components.**
 194 The splitting strategy is governed by a dual-criterion rule, ensuring that the decision to split is both
 195 statistically sound and adaptive to the data structure.

197 **Splitting rule.** A granular-ball $\mathcal{B}^{(l)}$ is split into two child granular-balls $\mathcal{B}_1^{(l+1)}$ and $\mathcal{B}_2^{(l+1)}$ if and
 198 only if the following two criteria are satisfied:

$$200 \quad \text{BIC}(M_2) < \text{BIC}(M_1), \quad \text{and} \quad \Delta \log \mathcal{L} > 0. \quad (2)$$

201 Here, M_1 represents the model of $\mathcal{B}^{(l)}$ as a single Gaussian model, while M_2 represents $\mathcal{B}^{(l)}$ as
 202 a two-component Gaussian Mixture Model (GMM). The splitting rule is designed to ensure that
 203 splitting occurs only when the two-component model offers a statistically significant improvement
 204 over the single Gaussian model.

205 The two criteria used in the splitting rule are defined as follows:

207 *i) Bayesian Information Criterion (BIC).* The Bayesian Information Criterion (Schwarz, 1978) eval-
 208 uates the trade-off between model complexity and data fit. It is computed as:

$$209 \quad \text{BIC}(M) = -2 \log \mathcal{L}(M) + k \log N, \quad (3)$$

211 where $\mathcal{L}(M)$ is the likelihood of model M , k is the number of free parameters in the model, and N
 212 is the number of data points within $\mathcal{B}^{(l)}$. **Crucially, the BIC term acts as a statistical regularizer,**
 213 **penalizing excessive complexity to ensure that splitting is driven by significant structural gains rather**
 214 **than local noise.** A lower BIC indicates a better balance between model simplicity and accuracy.
 215 Splitting is preferred if the two-component model M_2 achieves a lower BIC than the single Gaussian
 model M_1 .

216 *ii) Log-likelihood gain (LLG).* The log-likelihood gain (Fisher, 1922; Wilks, 1938) measures the
 217 improvement in data fit when replacing the single Gaussian model (M_1) with the two-component
 218 GMM (M_2). It is computed as:

$$219 \quad 220 \quad 221 \quad \Delta \log \mathcal{L} = \sum_{i=1}^N [\log p_{M_2}(\mathbf{x}_i) - \log p_{M_1}(\mathbf{x}_i)], \quad (4)$$

222 where $p_{M_1}(\mathbf{x}_i)$ and $p_{M_2}(\mathbf{x}_i)$ are the likelihoods of \mathbf{x}_i under models M_1 and M_2 , respectively. A
 223 positive $\Delta \log \mathcal{L}$ indicates that the two-component GMM (M_2) provides a better fit to the data.

224 If the splitting rule is satisfied, the parent granular-ball $\mathcal{B}^{(l)}$ is divided into two child granular-balls
 225 $\mathcal{B}_1^{(l+1)}$ and $\mathcal{B}_2^{(l+1)}$, each modeled as Gaussian components. After splitting, these child granular-balls
 226 inherit local data properties and are treated as new candidates for further splitting. This recursive
 227 process continues until no granular-ball satisfies the splitting criteria, resulting in a hierarchical rep-
 228 resentation of the data. However, splitting alone may leave some data points assigned to suboptimal
 229 granular-balls. To address this, a *dynamic reassignment step* is performed after each split.

231 **Step 3: Dynamic Reassignment.** To ensure consistency and improve local fit, each data point
 232 $\mathbf{x} \in \mathcal{X}$ is reassigned to the granular-ball that maximizes its log-likelihood:

$$233 \quad 234 \quad \mathcal{B}^*(\mathbf{x}) = \arg \max_{\mathcal{B}_j} \log p_{\mathcal{B}_j}(\mathbf{x}), \quad (5)$$

235 where $p_{\mathcal{B}_j}$ is the Gaussian density parameterized by (μ_j, Σ_j) for granular-ball \mathcal{B}_j . Dynamic re-
 236 assignment ensures that the hierarchical structure adapts to the evolving density distribution. By
 237 reallocating data points to the granular-balls that best represent their local characteristics, the frame-
 238 work maintains an accurate and adaptive representation of the data. After each round of splitting,
 239 dynamic reassignment is performed to refine the data distribution within the granular-balls.

240 This alternating process of splitting and reassignment continues iteratively until the hierarchical
 241 structure stabilizes. The resulting tree hierarchy encapsulates the global structure at the root, pro-
 242 gressively refines intermediate levels, and captures fine-grained local patterns at the leaves. This
 243 hierarchical organization enables the framework to effectively balance global and local density esti-
 244 mation, providing both coarse and fine-grained insights into the data distribution.

245 The whole construction procedure is summarized in Algorithm 1 in Appendix B.

247 2.2 HIERARCHICAL ANOMALY SCORING

249 After constructing the hierarchical structure of probabilistic granular-balls, the PGBC framework
 250 represents the normal data distribution in a coarse-to-fine manner. Each level $l \in \{1, \dots, L\}$ in the
 251 hierarchy contains a set of granular-balls $\{\mathcal{B}_j^{(l)}\}_{j=1}^{K^{(l)}}$. Specifically, the hierarchical scoring aggre-
 252 gates information from levels $l = 1$ to L . The root level ($l = 0$) serves as a fallback representation:
 253 in the degenerate case where no splitting occurs ($L = 0$), the anomaly score is derived exclusively
 254 from the single global Gaussian at $l = 0$.

255 For a test sample \mathbf{x}' , an anomaly score is calculated by combining information from all levels of the
 256 hierarchy. At each level l , the anomaly score is based on the negative log-likelihood of the sample
 257 under the Gaussian components defined by the granular-balls at that level:

$$259 \quad 260 \quad 261 \quad s^{(l)}(\mathbf{x}') = -\log \left(\sum_{j=1}^{K^{(l)}} \pi_j^{(l)} \cdot \mathcal{N}(\mathbf{x}' \mid \mu_j^{(l)}, \Sigma_j^{(l)}) \right), \quad (6)$$

262 where $\mathcal{N}(\mathbf{x}' \mid \mu_j^{(l)}, \Sigma_j^{(l)})$ is the Gaussian density defined by the j -th granular-ball, and $\pi_j^{(l)}$ represents
 263 the normalized weight of the j -th granular-ball. The weight $\pi_j^{(l)}$ reflects the relative importance of
 264 the granular-ball in the overall probabilistic distribution and is computed as:

$$265 \quad 266 \quad 267 \quad \pi_j^{(l)} = \frac{n_j}{\sum_{k=1}^{K^{(l)}} n_k}, \quad (7)$$

268 where n_j is the number of data points covered by granular-ball $\mathcal{B}_j^{(l)}$. This level-wise score $s^{(l)}(\mathbf{x}')$
 269 evaluates how well the sample aligns with the normal data distribution at level l , with higher scores
 indicating greater deviation.

270 **Level Weighting with Entropy.** To fully utilize the hierarchical structure, anomaly scores are aggregated across all levels. First, the scores at each level are normalized using min-max scaling to
 271 ensure consistency: $\tilde{s}^{(l)}(\mathbf{x}') = \frac{s^{(l)}(\mathbf{x}') - \min(s^{(l)})}{\max(s^{(l)}) - \min(s^{(l)})}$, where $\min(s^{(l)})$ and $\max(s^{(l)})$ are computed
 272 from the training data. The final anomaly score is then calculated as a weighted sum of the normalized
 273 scores across all levels:
 274

$$s_{\text{final}}(\mathbf{x}') = \sum_{l=1}^L w^{(l)} \cdot \tilde{s}^{(l)}(\mathbf{x}'), \quad (8)$$

275 where $w^{(l)}$ is the weight assigned to level l , reflecting its importance in the anomaly scoring
 276 process. Here, the weights $w^{(l)}$ are determined using an entropy-based scheme. The entropy
 277 of level l quantifies its granularity and confidence in representing the data distribution: $H^{(l)} =$
 278 $-\sum_{j=1}^{K^{(l)}} \frac{n_j}{N} \log \left(\frac{n_j}{N} \right)$, where n_j is the number of samples covered by granular-ball $\mathcal{B}_j^{(l)}$, and N is
 279 the total number of samples. Higher entropy indicates a finer-grained partition of the data at that
 280 level. The weight for each level is then computed as: $w^{(l)} = \frac{H^{(l)}}{\sum_{l'=1}^L H^{(l')}}$. Since the root layer
 281 ($l = 0$) encompasses the entire dataset, it yields zero entropy and is inherently excluded from the
 282 weighted sum when $L \geq 1$. This allows the scoring mechanism to focus on the refined structural
 283 information provided by subsequent levels. Consequently, the root node $\mathcal{B}^{(0)}$ contributes to the final
 284 score only in the degenerate case ($L = 0$), as established earlier. By combining information across
 285 levels, the PGBC framework produces a hierarchical anomaly score that effectively captures devia-
 286 tions in both global and local patterns. The detailed pseudocode for the scoring process is provided
 287 in Algorithm 2 in Appendix B.
 288

289 3 EXPERIMENT

290 **Setup.** We evaluate the proposed PGBC framework across three key tasks: (i) tabular anomaly
 291 detection, (ii) time series anomaly detection, and (iii) time series open-set recognition. For each
 292 task, PGBC is systematically compared against a diverse range of classical and deep learning base-
 293 line methods, including Isolation Forest (Liu et al., 2008), Local Outlier Factor (LOF) (Breunig
 294 et al., 2000), k -Nearest Neighbors (k -NN) (Peterson, 2009), AutoEncoder (Sakurada & Yairi, 2014),
 295 DeepSVDD (Ruff et al., 2018), DAGMM (Zong et al., 2018), the hierarchical Gaussian-mixture
 296 method HGAD (Yao et al., 2024), as well as granular-ball-based approaches GBMOD (Cheng et al.,
 297 2025) and GBDO (Su et al., 2025).

298 All experiments are conducted on a single NVIDIA RTX 4090 GPU, with fixed random seeds to en-
 299 sure reproducibility. Model performance is evaluated using the Area Under the Curve (AUC) metric,
 300 averaged over five independent runs for robustness. Detailed descriptions of the datasets, encoder
 301 configurations, baseline implementations, and evaluation protocols are provided in Appendix C.

302 3.1 TABULAR ANOMALY DETECTION

303 **Overall Results.** We evaluate PGBC on 19 tabular datasets spanning manufacturing, cybersecurity,
 304 and medical diagnostics (Cheng et al., 2025). Features are normalized and models are trained only
 305 on normal samples. This evaluation tests PGBC’s ability to model heterogeneous, static data across
 306 a range of anomaly ratios. Table 1 presents the mean AUC scores (averaged over five independent
 307 runs), with standard deviations provided in Appendix D. PGBC achieves the highest mean AUC on
 308 13 out of 19 datasets and consistently ranks among the top-performing methods, highlighting its
 309 robustness and effectiveness across diverse data types.

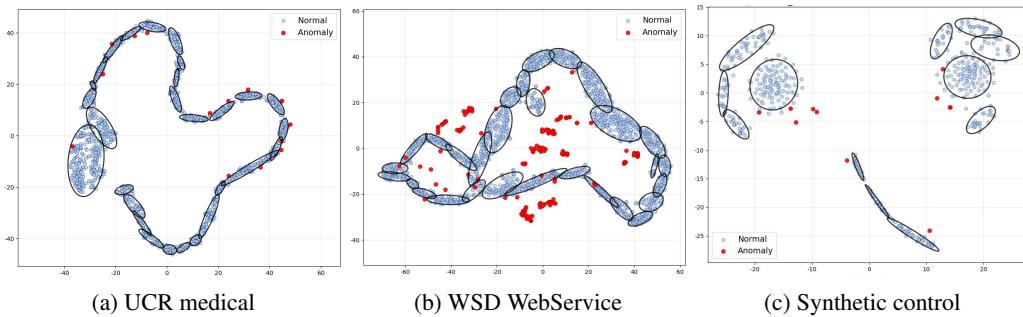
310 **Analysis of Representative Scenarios.** *i) Typical Datasets:* On datasets with clear structures,
 311 such as the Bands and Tic tac variants, PGBC demonstrates exceptional performance by achieving a
 312 perfect AUC score of 100.0%, demonstrating reliable performance even in cases where data exhibit
 313 no significant structural challenges. *ii) Imbalanced Datasets with Low Anomaly Ratios:* PGBC
 314 excels on datasets with extremely low anomaly ratios. On Thyroid (0.81% anomalies), it obtains the
 315 state-of-the-art AUC of 71.2%, surpassing all baselines including GBMOD (69.7%). Similarly, on
 316 Yeast (0.44% anomalies), it scores a perfect 100.0% AUC, matching the strongest competitors. This
 317 robustness stems from its hierarchical scoring strategy, which integrates information across multiple
 318 levels of granularity to mitigate majority-class bias in highly imbalanced settings.

324 Table 1: AUC results (%) on tabular anomaly detection tasks averaged over five runs. Standard devi-
 325 ations are omitted for brevity (see Appendix D for full results). **Bold** indicates the best performance,
 326 and underline indicates the second best. Abbreviations: AE = AutoEncoder, D.SV = DeepSVDD,
 327 DAG = DAGMM, GBM = GBMOD.

Datasets	LOF	IForest	KNN	AE	D.SV	DAG	HGAD	GBM	GBDO	Ours
Abalone	75.6	70.2	69.3	79.9	68.2	57.0	75.2	<u>78.0</u>	76.3	72.1
Bands34	74.8	79.2	77.5	77.8	64.8	53.0	<u>80.7</u>	71.7	71.0	100.0
Bands42	75.9	78.3	76.3	76.1	63.1	51.0	77.9	76.9	70.4	100.0
Cardio	82.6	85.9	80.5	76.5	77.3	70.0	75.8	<u>86.5</u>	66.4	84.0
Ecoli	85.1	84.1	87.6	88.1	86.8	40.0	88.3	85.1	89.8	89.4
Iris	91.6	100.0	97.8	93.8	83.4	<u>99.0</u>	98.5	100.0	74.8	100.0
Musk	100.0	96.9	100.0	100.0	99.7	100.0	100.0	91.1	25.9	100.0
Pageblocks	98.2	98.3	<u>99.6</u>	92.2	98.4	66.0	<u>99.7</u>	99.5	96.2	99.9
Pendigits	99.3	97.5	98.9	94.4	91.1	77.0	<u>99.4</u>	98.4	74.2	99.5
Satellite	84.5	79.4	87.6	80.6	83.3	80.0	82.3	<u>85.5</u>	80.4	83.1
Sick35	73.7	89.3	<u>89.1</u>	85.2	83.8	57.0	88.8	<u>89.1</u>	83.6	87.4
Sick72	61.2	81.4	<u>83.5</u>	81.4	77.3	56.0	82.2	79.1	79.6	87.3
Sonar	98.9	99.4	<u>99.6</u>	99.1	76.3	79.0	98.4	98.9	63.7	100.0
Thyroid	53.5	63.3	65.8	60.3	63.9	44.0	66.0	<u>69.7</u>	68.6	73.0
Tictac12	97.6	98.6	93.6	84.6	75.9	54.0	97.0	96.8	60.7	100.0
Tictac26	92.8	<u>95.6</u>	91.1	76.7	64.3	48.0	95.0	88.1	54.2	100.0
Tictac32	92.2	<u>95.4</u>	93.1	76.1	64.1	46.0	93.2	86.3	55.1	100.0
Waveform	<u>76.5</u>	70.7	76.1	52.5	60.0	56.0	73.7	74.2	65.0	78.1
Yeast	99.1	99.7	99.4	99.6	<u>99.9</u>	43.0	99.7	100.0	99.2	100.0
Average	84.9	87.6	<u>87.8</u>	83.0	78.0	61.9	87.6	87.1	71.4	91.1

345 Table 2: AUC results (%) on time series anomaly detection tasks, averaged over five runs. Standard devi-
 346 ations are omitted here for clarity (full results in Appendix D). **Bold** indicates the best performance,
 347 and underline indicates the second best. AE = AutoEncoder, D.SV = DeepSVDD, DAG =
 348 DAGMM, GBM = GBMOD.

Datasets	LOF	IForest	KNN	AE	D.SV	DAG	HGAD	GBM	GBDO	Ours
NAB Traffic	80.4	78.6	91.2	79.6	83.4	59.2	84.3	80.6	77.5	<u>85.4</u>
WSD WebService	94.3	87.2	<u>97.0</u>	96.0	88.6	68.5	94.0	93.6	75.1	98.8
SMD Facility	93.3	93.4	97.1	98.5	94.5	78.3	96.4	95.1	91.1	<u>97.9</u>
IOPS WebService	<u>91.0</u>	81.7	85.5	77.8	79.3	62.7	87.0	79.3	44.4	96.4
UCR Medical	<u>95.6</u>	90.8	93.0	66.4	93.2	75.5	88.7	88.5	67.7	<u>93.5</u>
YAHOO Synthetic	71.3	77.2	88.6	44.8	71.4	48.1	67.2	67.0	<u>88.9</u>	99.8
Average	87.6	84.8	<u>92.1</u>	77.2	85.1	65.4	86.3	84.0	74.1	95.3



367 Figure 3: Visualization of probabilistic granular-ball coverings on representative time series datasets.
 368 (a) UCR Medical, (b) WSD WebService, and (c) Synthetic Control.

371 **Summary.** The experimental results align with PGBC’s design: covariance-aware, ellipsoidal mod-
 372 eling improves robustness on anisotropic data, while entropy-weighted hierarchical aggregation
 373 helps maintain adaptability across varying anomaly ratios.

375 3.2 TIME SERIES ANOMALY DETECTION

377 We evaluate PGBC on six benchmarks from the TSB-AD suite (Liu & Paparrizos, 2024), which
 contain real-world monitoring data with accurate anomaly labels. Sequences are segmented into

378
 379
 380
 381
 382
 383 Table 3: AUC results (%) on time series open-set recognition tasks, averaged over five runs. Stan-
 384 dard deviations are omitted for brevity (see Appendix D for detailed tables). **Bold** indicates the best
 385 performance, and underline indicates the second best. Abbreviations: AE = AutoEncoder, D.SV =
 386 DeepSVDD, DAG = DAGMM, GBM = GBMOD.
 387
 388

Datasets	LOF	IForest	KNN	AE	D.SV	DAG	HGAD	GBM	GBDO	Ours
Adiac	96.6	98.1	<u>98.2</u>	97.6	98.5	82.7	97.9	98.8	97.3	99.2
CBF	<u>99.7</u>	76.7	<u>99.7</u>	51.0	78.3	52.1	92.7	95.3	61.9	100.0
Synthetic Control	98.8	69.8	100.0	84.4	87.7	75.2	96.5	80.9	66.1	<u>99.5</u>
SwedishLeaf	88.8	95.1	<u>96.3</u>	84.6	94.5	73.9	97.2	95.7	88.6	99.7
Trace	87.3	89.6	94.9	62.9	66.9	80.0	<u>97.1</u>	73.1	72.2	99.6
Average	89.8	85.9	<u>97.8</u>	76.1	85.2	72.8	96.3	88.8	77.2	99.6

389
 390
 391 sliding windows and encoded by a lightweight CNN (Krizhevsky et al., 2012). This evaluation ex-
 392 amines PGBC’s behavior in noisy and dynamic environments. As shown in Table 2, we report mean
 393 AUC over five independent runs (std omitted here for clarity; full tables with std are in Appendix D),
 394 PGBC achieves the highest or second-highest AUC on all datasets. **Furthermore, to demonstrate su-**
 395 **periority over specialized deep time-series methods, we conducted an extended comparison against**
 396 **generative and flow-based models such as OCFlow, and OCSVM. Detailed results are provided in**
 397 **Appendix E.1, where PGBC consistently outperforms these baselines.** Figure 3(a) and (b) further
 398 illustrate the learned granular-ball coverings on the UCR medical and WSD WebService datasets,
 399 where each contour corresponds to a 2σ boundary.

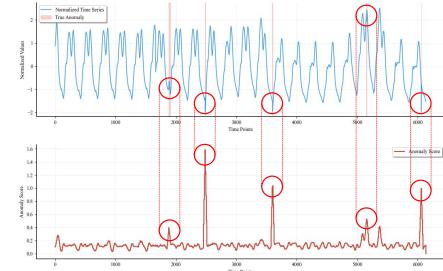
400 On datasets with extremely low anomaly ratios, such as SMD (0.64%) and Yahoo (0.28%), PGBC
 401 remains highly competitive. It achieves an AUC of 97.9% on SMD, slightly below AutoEncoder
 402 (98.5%) but higher than all other baselines, and reaches an AUC of 99.8% on Yahoo, surpassing the
 403 second-best method (88.9%) by over 10 points. These two datasets also span the extremes of se-
 404 quence length in our benchmarks (Yahoo with 1,421 time steps and SMD with 22,700), underscoring
 405 PGBC’s robustness across diverse temporal scales.

406 On WebService datasets such as WSD and IOPS,
 407 the underlying time series exhibit clear periodic
 408 patterns, which pose challenges for distance-based
 409 methods that cannot adapt to recurring fluctuations.
 410 PGBC achieves the highest AUC scores on both
 411 datasets: 98.8% on WSD (surpassing KNN’s 97.0%)
 412 and 96.4% on IOPS (outperforming LOF’s 91.0%).
 413 This demonstrates its ability to effectively align el-
 414 lliptoidal granular-balls with intrinsic temporal struc-
 415 tures. Figure 4 further illustrates this effect on the
 416 IOPS dataset: PGBC produces probabilistic bound-
 417 aries where high anomaly scores closely coincide
 418 with ground-truth anomalies despite the strong pe-
 419 riodicity.

420 Compared with tabular data, time series embeddings
 421 often lie on smooth manifold-like trajectories, where
 422 adjacent segments tend to follow intrinsic orientations. Therefore, modeling such anisotropic and
 423 continuous patterns requires flexible local structures. By orienting ellipsoidal granular-balls along
 424 these directions, PGBC adapts naturally to temporal data and maintains robustness under noisy and
 425 non-stationary conditions.

426 3.3 TIME SERIES OPEN-SET RECOGNITION

427
 428 We further evaluate PGBC on five datasets from the UCR archive (Chen et al., 2015), repurposed
 429 for open-set recognition. The smallest class in each dataset is designated as anomalous; 80% of
 430 the remaining classes are used for training and 20% for testing, with an additional 10% anomalous
 431 samples injected into the test set. This setting explicitly evaluates the ability to recognize previously
 432 unseen categories under distributional shift.

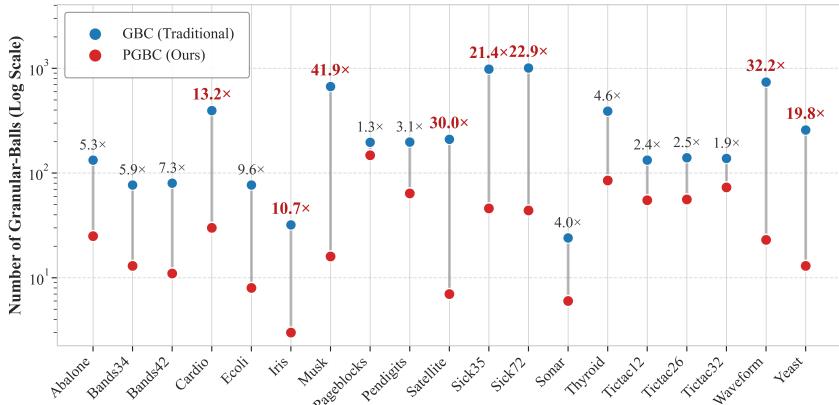


433
 434 Figure 4: Visualization result of PGBC
 435 anomaly detection results on the IOPS Web-
 436 Service dataset.

432 Table 4: **Summary of False Positive Rate (FPR %) and False Negative Rate (FNR %) on 19 tabular**

433 datasets. Full per-dataset results are provided in [Appendix D](#).

Metric	IForest	LOF	KNN	AE	D.SV	DAG	HGAD	GBM	GBDO	Ours
Avg FPR (%) ↓	3.14	3.19	2.54	3.31	3.88	4.29	<u>2.40</u>	3.07	4.57	2.36
Avg FNR (%) ↓	52.8	50.1	46.5	57.2	75.7	84.9	<u>38.7</u>	50.2	77.7	35.9



453 Figure 5: **Comparison of model complexity (number of granular-balls) between traditional GBC and**
454 **PGBC on 19 tabular datasets.**

455
456 As shown in Table 3, PGBC achieves the best performance on four out of five datasets. PGBC
457 achieves the highest AUC on four datasets—reaching 99.2% on Adiac, 100.0% on CBF, 99.7% on
458 SwedishLeaf, and 99.6% on Trace. Even on the more challenging Synthetic Control dataset, PGBC
459 attains 99.5% AUC, remaining competitive with the best baseline (KNN, 100.0%). These results
460 highlight both robustness across sequence lengths (60–275) and reliable detection of unseen classes,
461 enabled by entropy-weighted score aggregation.

462 As illustrated in Figure 3(c), PGBC adapts its ellipsoidal granular-balls to cover the interleaved
463 clusters of the Synthetic Control dataset. Overall, these findings demonstrate PGBC’s capability to
464 generalize to open-set scenarios by forming precise decision boundaries. Specifically, the **ellipsoidal**
465 **modeling** allows PGBC to wrap the complex manifolds of known classes tightly, minimizing the
466 inclusion of void space where out-of-distribution samples might erroneously fall. Furthermore,
467 the **entropy-weighted aggregation** ensures that anomaly scores reflect structural deviations across
468 multiple granularities, preventing the model from overfitting to specific scales. This enables reliable
469 rejection of unseen categories even under distributional shifts.

471 3.4 FALSE POSITIVE AND FALSE NEGATIVE RATE ANALYSIS

472
473 Balancing False Positive (FPR) and False Negative Rates (FNR) is critical for practical deployment.
474 As shown in Table 4 (full details in [Appendix D](#)), PGBC achieves both the lowest average FPR
475 (2.36%) and FNR (35.9%) across 19 datasets. Unlike methods such as DeepSVDD and GBDO,
476 which achieve low FPR by being overly conservative (resulting in high FNR), PGBC’s probabilistic
477 ellipsoidal modeling constructs a precise decision boundary that minimizes false alarms without
478 sacrificing recall, offering a superior trade-off for safety-critical applications.

480 3.5 EFFICIENCY AND MODEL COMPACTNESS

481
482 PGBC drastically reduces model complexity compared to traditional isotropic Granular-Ball Com-
483 puting, requiring 1.3× to 41.9× fewer components (see Figure 5). As detailed in [Appendix I](#),
484 this compactness directly translates to computational efficiency. On an NVIDIA RTX 2060 GPU,
485 PGBC achieves an average total runtime of **13.03s**, nearly 2× faster than the deep probabilistic
486 baseline HGAD (24.67s) and striking an optimal balance between expressiveness and speed.

486 Table 5: Average AUC (%) comparison on Visual Datasets. (a) Results on CIFAR-10 and FashionM-
 487 NIST. (b) Results on MVTec-AD. **Bold** indicates the best performance, and underline indicates the
 488 second best. Full details in Appendix F. Abbreviations: AE = AutoEncoder, D.SV = DeepSVDD,
 489 DAG = DAGMM, GBM = GBMOD, U.S=U-student.

(a) Comparison on CIFAR-10 and F-MNIST

Datasets	D.SV	AE	GBM	KNN	HGAD	CutPaste	Ours
CIFAR-10	69.5	94.6	94.6	94.9	<u>95.3</u>	73.3	95.5
FashionMNIST	58.5	94.1	92.5	93.3	<u>94.6</u>	70.1	94.9

(b) Comparison on MVTec-AD

Datasets	KNN	GBM	HGAD	CutPaste	U.S	PSVDD	Ours
MVTec-AD	87.1	81.9	91.2	90.9	<u>92.5</u>	92.1	93.0

3.6 EXTENSION TO VISUAL ANOMALY DETECTION

To further validate the generalization of PGBC, we extended evaluation to visual domains using pre-trained feature embeddings (512-D ViT) following the ADBench protocol (Han et al., 2022). Our comparison includes feature-based baselines (DeepSVDD, AE, GBMOD, KNN, HGAD) on all datasets, and a comprehensive mixed benchmark on MVTec-AD incorporating both feature-based and image-based SOTA methods (e.g., CutPaste (Li et al., 2021), U-student (Bergmann et al., 2020), P-SVDD (Yi & Yoon, 2020)). Full experimental details are provided in [Appendix F](#).

As summarized in Table 5, PGBC consistently achieves the highest average AUC across all benchmarks. On CIFAR-10 and FashionMNIST, PGBC outperforms all feature-based baselines, surpassing the second-best method HGAD (e.g., 95.5% vs. 95.3% on CIFAR-10). Crucially, on the challenging MVTec-AD industrial dataset, PGBC attains a leading AUC of **93.0%**, exceeding both feature-based competitors and specialized image-based SOTA methods such as U-student (92.5%) and P-SVDD (92.1%). This demonstrates that PGBC effectively leverages deep feature representations to model complex visual manifolds, outperforming even methods designed for raw pixel data. The results underscore the advantage of PGBC’s probabilistic ellipsoidal modeling over rigid geometric approaches (e.g., DeepSVDD’s 69.5% on CIFAR-10), confirming its robustness in high-dimensional spaces.

3.7 ABLATION STUDY SUMMARY

We rigorously validate PGBC’s design via component-wise ablations (full details in [Appendix G](#) and [Appendix H](#)). Regarding **Construction**, results confirm that *dynamic reassignment* is critical for refining local fits, while the *BIC criterion* acts as an essential statistical regularizer—removing it leads to severe overfitting (e.g., component explosion from 25 to 668 on *Abalone*). Regarding **Scoring**, comparisons verify four key elements: (1) **Hierarchy**: Hierarchical aggregation consistently outperforms flat “Leaf-only” strategies; (2) **Metric**: Probabilistic log-likelihood significantly surpasses Euclidean distance (preventing $\approx 18\%$ drop on *Bands34*); and (3) **Weighting & Normalization**: Entropy-based weighting and score normalization are proven essential for adaptively prioritizing informative levels and aligning scales across granularities.

CONCLUSION

This work presented Probabilistic Granular Computing (PGBC), a hierarchical framework for one-class data description. By leveraging ellipsoidal granular-balls, PGBC effectively aligns with the anisotropic geometry of data while requiring fewer granular-balls to represent complex distributions. Its recursive refinement process *governed by statistical criteria* ensures precise multi-scale data descriptions. Extensive experiments on tabular, time series, *open-set*, and *visual* benchmarks demonstrate consistent improvements *and robustness* over classical and deep learning baselines, underscoring its effectiveness. Future work could explore extending PGBC to streaming and online anomaly detection, enabling deployment in dynamic, real-world environments.

540
541 ETHICS STATEMENT

542 This work focuses solely on methodological advances in anomaly detection. All datasets employed
 543 are standard, publicly available benchmarks, and no human subjects, sensitive personal information,
 544 or proprietary data were involved. We therefore do not anticipate direct ethical risks arising from
 545 this study. Nonetheless, as with other anomaly detection techniques, the proposed method could
 546 be deployed in domains such as surveillance or security, where ethical considerations regarding
 547 fairness, privacy, and potential misuse must be carefully assessed by practitioners.

548
549 REPRODUCIBILITY STATEMENT
550

551 We ensure reproducibility by providing a precise mathematical description of the proposed PGBC
 552 framework in the main text, including its model formulation, splitting and reassignment rules, and
 553 scoring functions. Additional implementation details, covering datasets, preprocessing procedures,
 554 evaluation metrics, model configurations, and experimental settings, are included in the Appendix.
 555 To assess robustness, three main experimental tables report the mean and standard deviation over
 556 five independent runs. To support transparency and reproducibility, all source code and scripts will
 557 be released upon acceptance of this paper.

558
559 USE OF LARGE LANGUAGE MODELS
560

561 This paper utilized a large language model to aid in the refinement of writing and grammar. Specifically,
 562 the model was used for tasks such as rephrasing sentences for clarity, correcting typographical
 563 errors, and improving overall stylistic coherence. All content, research ideas, and core arguments
 564 remain the sole intellectual property of the authors. The use of the language model was strictly
 565 limited to polishing the written text.

566
567 REFERENCES
568

569 Abhijit Bendale and Terrance E Boult. Towards open set deep networks. In *Proceedings of the IEEE*
 570 *conference on computer vision and pattern recognition*, pp. 1563–1572, 2016.

571 Paul Bergmann, Michael Fauser, David Sattlegger, and Carsten Steger. Uninformed students:
 572 Student-teacher anomaly detection with discriminative latent embeddings. In *Proceedings of the*
 573 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 4183–4192, 2020.

575 Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof: identifying density-
 576 based local outliers. In *Proceedings of the 2000 ACM SIGMOD international conference on*
 577 *Management of data*, pp. 93–104, 2000.

579 Yanping Chen, Eamonn Keogh, Bing Hu, Nurjahan Begum, Anthony Bagnall, Abdullah Mueen,
 580 and Gustavo Batista. The ucr time series classification archive, July 2015. www.cs.ucr.edu/~eamonn/time_series_data/.

582 Yixuan Cheng, Hongmei Chen, and Tianrui Li. Gbmod: A granular-ball mean-shift outlier detector.
 583 *Pattern Recognition*, 147:110320, 2025.

585 Ronald A Fisher. On the mathematical foundations of theoretical statistics. *Philosophical transactions of the Royal Society of London. Series A, containing papers of a mathematical or physical character*, 222(594-604):309–368, 1922.

588 Songqiao Han, Xiyang Hu, Hailiang Huang, Minqi Jiang, and Yue Zhao. Adbench: Anomaly de-
 589 tector benchmark. *Advances in neural information processing systems*, 35:32142–32159, 2022.

591 Lakkakula Kavya, Yepuganti Karuna, Saladi Saritha, Allam Jaya Prakash, Kiran Kumar Patro,
 592 Suraj Prakash Sahoo, Ryszard Tadeusiewicz, and Paweł Pławiak. A review of shockable arrhyth-
 593 mia detection of ecg signals using machine and deep learning techniques. *International Journal*
 of *Applied Mathematics and Computer Science*, 34(3), 2024.

594 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. *Advances in neural information processing systems*, 25, 2012.

595

596

597 Dongha Lee, Sehun Yu, and Hwanjo Yu. Multi-class data description for out-of-distribution detection. In *Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining*, pp. 1362–1370, 2020.

598

599

600 Chun-Liang Li, Kihyuk Sohn, Jinsung Yoon, and Tomas Pfister. Cutpaste: Self-supervised learning 601 for anomaly detection and localization. In *Proceedings of the IEEE/CVF conference on computer 602 vision and pattern recognition*, pp. 9664–9674, 2021.

603

604 Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In *2008 eighth ieee international 605 conference on data mining*, pp. 413–422. IEEE, 2008.

606

607 Qinghua Liu and John Paparrizos. The elephant in the room: Towards a reliable time-series anomaly 608 detection benchmark. *Advances in Neural Information Processing Systems*, 37:108231–108261,

609

610 Łukasz Maziarka, Marek Śmieja, Marcin Sendera, Łukasz Struski, Jacek Tabor, and Przemysław 611 Spurek. Oneflow: One-class flow for anomaly detection based on a minimal volume region. 612 *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 44(11):8508–8519, 2022. doi: 613 10.1109/TPAMI.2021.3108223.

614

615 Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. Deep learning for 616 anomaly detection: A review. *ACM computing surveys (CSUR)*, 54(2):1–38, 2021.

616

617 Animesh Patcha and Jung-Min Park. An overview of anomaly detection techniques: Existing solutions and latest technological trends. *Computer networks*, 51(12):3448–3470, 2007.

618

619 Leif E Peterson. K-nearest neighbor. *Scholarpedia*, 4(2):1883, 2009.

620

621 Marco AF Pimentel, David A Clifton, Lei Clifton, and Lionel Tarassenko. A review of novelty 622 detection. *Signal processing*, 99:215–249, 2014.

623

624 Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui, Alexander 625 Binder, Emmanuel Müller, and Marius Kloft. Deep one-class classification. In *International 626 conference on machine learning*, pp. 4393–4402. PMLR, 2018.

627

628 Lukas Ruff, Jacob R Kauffmann, Robert A Vandermeulen, Grégoire Montavon, Wojciech Samek, 629 Marius Kloft, Thomas G Dietterich, and Klaus-Robert Müller. A unifying review of deep and 630 shallow anomaly detection. *Proceedings of the IEEE*, 109(5):756–795, 2021.

631

632 Mayu Sakurada and Takehisa Yairi. Anomaly detection using autoencoders with nonlinear dimensionality reduction. In *Proceedings of the MLSDA 2014 2nd workshop on machine learning for 633 sensory data analysis*, pp. 4–11, 2014.

634

635 Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and Robert C Williamson. 636 Estimating the support of a high-dimensional distribution. *Neural computation*, 13(7):1443–1471, 637 2001.

638

639 Gideon Schwarz. Estimating the dimension of a model. *The annals of statistics*, pp. 461–464, 1978.

640

641 Lifeng Shen, Zhuocong Li, and James Kwok. Timeseries anomaly detection using temporal hierarchical 642 one-class network. *Advances in neural information processing systems*, 33:13016–13026, 643 2020.

644

645 Xinyu Su, Xiwen Wang, Dezhong Peng, Xiaomin Song, Huiming Zheng, and Zhong Yuan. Identifying 646 outliers via local granular-ball density. *IEEE Transactions on Neural Networks and Learning 647 Systems*, 2025.

648

649 David MJ Tax and Robert PW Duin. Support vector data description. *Machine learning*, 54(1): 650 45–66, 2004.

651

652 Samuel S Wilks. The large-sample distribution of the likelihood ratio for testing composite hypotheses. 653 *The annals of mathematical statistics*, 9(1):60–62, 1938.

648 Shuyin Xia, Yunsheng Liu, Xin Ding, Guoyin Wang, Hong Yu, and Yuoguo Luo. Granular ball
649 computing classifiers for efficient, scalable and robust learning. *Information Sciences*, 483:136–
650 152, 2019.

651 Shuyin Xia, Daowan Peng, Deyu Meng, Changqing Zhang, Guoyin Wang, Elisabeth Giem, Wei
652 Wei, and Zizhong Chen. A fast adaptive k-means with no bounds. *IEEE Transactions on Pattern
653 Analysis and Machine Intelligence*, 2020.

654 Jiang Xie, Yuxin Cheng, Shuyin Xia, Chunfeng Hua, Guoyin Wang, and Xinbo Gao. Aw-gbgae: an
655 adaptive weighted graph autoencoder based on granular-balls for general data clustering. *IEEE
656 Transactions on Pattern Analysis and Machine Intelligence*, 2025.

657 Xincheng Yao, Ruoqi Li, Zefeng Qian, Lu Wang, and Chongyang Zhang. Hierarchical gaussian
658 mixture normalizing flow modeling for unified anomaly detection. In *European Conference on
659 Computer Vision*, pp. 92–108. Springer, 2024.

660 Jihun Yi and Sungroh Yoon. Patch svdd: Patch-level svdd for anomaly detection and segmentation.
661 In *Proceedings of the Asian conference on computer vision*, 2020.

662 Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki Cho, and Haifeng
663 Chen. Deep autoencoding gaussian mixture model for unsupervised anomaly detection. In *Inter-
664 national conference on learning representations*, 2018.

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 A PRELIMINARIES: GRANULAR-BALL COMPUTING

704 We briefly review the basic concepts of traditional granular-ball computing (GBC), which form the
 705 foundation for our probabilistic extension.

706 **Definition 2** (Granular-ball). *A granular-ball gb is defined by its center \mathbf{c} and radius \mathbf{r} . For a set of
 707 objects \mathbf{o} belonging to gb , these are typically determined as*

$$709 \quad \mathbf{c} = \frac{1}{|gb|} \sum_{\mathbf{o} \in gb} \mathbf{o}, \quad \mathbf{r} = \max_{\mathbf{o} \in gb} \|\mathbf{o} - \mathbf{c}\|, \quad (9)$$

712 where $\|\cdot\|$ denotes the Euclidean distance.

713 Intuitively, a granular-ball represents a localized region in feature space summarizing a group of
 714 similar data points. Construction is usually performed in two stages. In the first stage, the dataset is
 715 coarsely partitioned into initial granular-balls via K-Means clustering, with the number of clusters
 716 often set to \sqrt{n} , where n is the dataset size. Each cluster forms a ball with its centroid and maximum
 717 intra-cluster radius (Definition 2). This initialization provides a coarse but efficient covering of the
 718 data space.

719 The most widely used quality measure is the *distribution measure (DM)* (Definition 3), which quantifies
 720 the average dispersion of points within a ball.

722 **Definition 3** (Distribution Measure (DM)). *Given a granular-ball gb with center \mathbf{c} and data points
 723 $\{\mathbf{o}_i\}_{i=1}^{|gb|}$, the DM score is computed as*

$$724 \quad DM(gb) = \frac{1}{|gb|} \sum_{\mathbf{o}_i \in gb} \|\mathbf{o}_i - \mathbf{c}\|. \quad (10)$$

727 A smaller DM value indicates higher internal consistency. To refine representations, balls with
 728 large DM are recursively split using 2-means clustering. A split is accepted if the weighted DM of
 729 the resulting child balls is lower than that of the parent:

731 **Definition 4** (Refinement Criterion). *A granular-ball gb is refined into gb_1 and gb_2 if*

$$732 \quad DM_w = \frac{|gb_1|}{|gb|} DM(gb_1) + \frac{|gb_2|}{|gb|} DM(gb_2) < DM(gb), \quad (11)$$

735 with both sub-balls containing at least s_{\min} points (e.g., $s_{\min} = 8$).

737 This recursive refinement continues until no further DM -reducing splits are possible, yielding a
 738 hierarchical partition of the dataset into compact granular-balls.

739 In anomaly detection, methods such as Granular-Ball Mean-Shift Outlier Detector (GB-
 740 MOD) (Cheng et al., 2025) and Granular-Ball Density Outlier (GBDO) (Su et al., 2025) apply GBC
 741 to identify outliers via heuristic criteria. However, these approaches are non-probabilistic, which
 742 limits their applicability in statistical analysis. Our PGBC framework extends GBC by associating
 743 each granular-ball with a probabilistic Gaussian component and building a hierarchical structure via
 744 statistically grounded refinement.

745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755

756 **B ALGORITHMS**
757758 For clarity and reproducibility, we provide the pseudocode of the PGBC framework. Algorithm 1 de-
759 scribes the construction of the probabilistic granular-ball hierarchy, starting from a global Gaussian
760 model and recursively applying statistical splitting criteria (BIC and log-likelihood improvement).
761 The resulting tree-structured representation provides hierarchical coverage of the data distribution.
762 Algorithm 2 presents the inference procedure for computing anomaly scores, where test samples are
763 evaluated across all levels of the hierarchy, normalized, and aggregated with entropy-based weights.
764765 **Algorithm 1:** Probabilistic Granular-ball Construction (PGBC)
766767 **Input:** Training data $\mathcal{X} = \{x_1, \dots, x_N\} \subset \mathbb{R}^d$; regularizer ε
768 **Output:** Tree-structured hierarchy \mathcal{T} of probabilistic granular-balls
769 1 **Initialize:**
770 2 Compute global mean $\mu^{(0)}$ and covariance $\Sigma^{(0)} + \varepsilon I$
771 3 Create root ball $\mathcal{B}^{(0)}$ with $(\mu^{(0)}, \Sigma^{(0)})$, initialize tree \mathcal{T}
772 4 Queue $\mathcal{Q} \leftarrow [\mathcal{B}^{(0)}]$
773 5 **while** \mathcal{Q} not empty **do**
774 6 Pop granular-ball \mathcal{B} from \mathcal{Q}
775 7 Fit single Gaussian \mathcal{M}_1 and two-component GMM \mathcal{M}_2 on data in \mathcal{B}
776 8 Compute $BIC(\mathcal{M}_1)$, $BIC(\mathcal{M}_2)$, and $\Delta \log \mathcal{L} = \log L(\mathcal{M}_2) - \log L(\mathcal{M}_1)$
777 9 **if** $BIC(\mathcal{M}_2) < BIC(\mathcal{M}_1)$ **and** $\Delta \log \mathcal{L} > 0$ **then**
778 10 Split \mathcal{B} into $\mathcal{B}_1, \mathcal{B}_2$ using GMM responsibilities
779 11 Add $\mathcal{B}_1, \mathcal{B}_2$ as children of \mathcal{B} in \mathcal{T}
780 12 Push $\mathcal{B}_1, \mathcal{B}_2$ into \mathcal{Q}
781 13 // Dynamic reassignment after each split
782 14 **foreach** $x_i \in \mathcal{X}$ **do**
783 15 $\quad \quad \quad$ Reassign x_i to $\mathcal{B}^* = \arg \max_{\mathcal{B}_j} \log p_{\mathcal{B}_j}(x_i)$
784 15 **else**
785 16 $\quad \quad \quad$ Mark \mathcal{B} as leaf
786 17 **return** \mathcal{T} 788
789
790 **Algorithm 2:** Hierarchical Anomaly Scoring
791792 **Input:** Test sample $x' \in \mathbb{R}^d$; PGBC tree \mathcal{T} with maximum depth L
793 **Output:** Final anomaly score $s_{\text{final}}(x')$
794 1 **if** $L = 0$ **then**
795 2 $\quad \quad \quad$ Let $\mathcal{B}^{(0)}$ be the root granular-ball with $(\mu^{(0)}, \Sigma^{(0)})$
796 3 $\quad \quad \quad$ **return** $-\log \mathcal{N}(x' | \mu^{(0)}, \Sigma^{(0)})$
797 4 **for** $l = 1$ to L **do**
798 5 $\quad \quad \quad$ Let $\{\mathcal{B}_j^{(l)}\}_{j=1}^{K^{(l)}}$ be granular-balls at level l
799 6 $\quad \quad \quad$ Compute weights $\pi_j^{(l)} = \frac{n_j}{\sum_{k=1}^{K^{(l)}} n_k}$ where $n_j = |\mathcal{B}_j^{(l)}|$
800 7 $\quad \quad \quad$ Compute level-wise score: $s^{(l)}(x') = -\log \left(\sum_{j=1}^{K^{(l)}} \pi_j^{(l)} \cdot \mathcal{N}(x' | \mu_j^{(l)}, \Sigma_j^{(l)}) \right)$
801 8 $\quad \quad \quad$ Compute level entropy: $H^{(l)} = -\sum_{j=1}^{K^{(l)}} \frac{n_j}{N} \log \left(\frac{n_j}{N} \right)$
802 9 $\quad \quad \quad$ Normalize $s^{(l)}(x')$ to $\tilde{s}^{(l)}(x')$ using training stats
803 10 Compute entropy weights $w^{(l)} = \frac{H^{(l)}}{\sum_{l'=1}^L H^{(l')}}$
804 11 Compute final score: $s_{\text{final}}(x') = \sum_{l=1}^L w^{(l)} \cdot \tilde{s}^{(l)}(x')$
805 12 **return** $s_{\text{final}}(x')$

810 C MORE EXPERIMENTAL SETTINGS
811812 C.1 DATASETS
813814 Our experiments cover three dataset categories—tabular, benchmark time series (TSB-AD), and
815 repurposed classification datasets (UCR)—spanning both static and temporal anomaly detection
816 scenarios. Below we summarize sources, preprocessing steps, and key statistics; full dataset details
817 are given in Tables 6–8.818 **(1) Tabular datasets.** We evaluate PGBC on 19 real-world tabular datasets collected from pub-
819 lic repositories and prior anomaly-detection benchmarks; full per-dataset statistics are reported in
820 Table 6. The collection covers diverse domains (manufacturing, cybersecurity, biology, and health-
821 care) and varies widely in scale (100–6,870 samples) and dimensionality (7–166 features), creating
822 heterogeneous evaluation conditions. Anomaly proportions span from 0.44% (Yeast) to 31.64%
823 (Satellite), providing both extremely sparse and relatively dense anomaly scenarios. For tabular in-
824 puts we apply per-dataset feature normalization (zero mean, unit variance); categorical attributes,
825 when present, are one-hot encoded (see Appendix C.4 for encoder and preprocessing details). This
826 benchmark stresses PGBC across low-anomaly-ratio cases and high-dimensional, anisotropic fea-
827 ture geometries—settings where covariance-aware modeling is particularly beneficial.
828829 Table 6: Information of 19 tabular anomaly detection datasets.
830

No.	Datasets	Samples	Features	Anom. (%)	Subject Area
1	Abalone	4177	8	1.89	Biology
2	Bands34	346	39	9.83	Phys./Chem.
3	Bands42	354	39	11.86	Phys./Chem.
4	Cardio	1,688	21	1.95	Health/Med.
5	Ecoli	336	7	2.68	Biology
6	Iris	111	4	9.91	Biology
7	Musk	3,062	166	3.17	Biology
8	Pageblocks	5,171	10	4.99	CS
9	Pendigits	6,870	16	2.27	CS
10	Satellite	6,435	36	31.64	Climate/Env.
11	Sick35	3,576	29	0.98	Health/Med.
12	Sick72	3,613	29	1.99	Health/Med.
13	Sonar	107	60	9.35	Phys./Chem.
14	Thyroid	9,172	28	0.81	Health/Med.
15	Tictac12	638	9	1.88	Games
16	Tictac26	652	9	3.99	Games
17	Tictac32	658	9	4.86	Games
18	Waveform	3,443	21	2.9	Phys./Chem.
19	Yeast	1,141	8	0.44	Biology

851
852 **(2) Benchmark time series datasets (TSB-AD).** We use six real-world monitoring datasets from
853 the TSB-AD benchmark, chosen for diversity in source (network traffic, system diagnostics, web
854 services) and sequence length (see Table 7). Each dataset provides point-level anomaly labels; fol-
855 lowing common practice, we segment continuous sequences into fixed-length overlapping windows
856 and encode each window with the same CNN encoder used across experiments (window size and
857 step are listed in Appendix A.4, Table 8). Windowing preserves local temporal context while en-
858 abling batch training and fair comparisons across baseline encoders. Because anomalies are labeled
859 at the point level, reported metrics correspond primarily to window-level detection; where applicable
860 we additionally report sequence-level aggregated results (see main text).861
862 **(3) Repurposed classification datasets (UCR).** From the UCR archive we select five datasets and
863 adapt them to a one-class / open-set evaluation protocol. For each dataset we designate the smallest
class as the anomalous class and treat the remaining classes as normal. Normal samples are split

864
865
866 Table 7: Information of 6 time series anomaly detection datasets.
867
868
869
870
871
872

No.	Datasets	Length	Anomalies	Anom. (%)
1	NAB Traffic	2,494	248	9.94
2	WSD WebService	15,403	203	1.32
3	SMD Facility	22,700	146	0.64
4	IOPS WebService	6,138	53	0.86
5	UCR iMedical	12,000	45	0.38
6	YAHOO Synthetic	1,421	4	0.28

873
874
875 80%/20% into training/testing; the test set is then augmented so that approximately 10% of test
876 samples are anomalous (drawn from the designated anomalous class), creating a controlled open-set
877 scenario. This protocol ensures anomalies are genuine class examples (not synthetic perturbations)
878 while allowing consistent cross-dataset comparisons. Per-dataset statistics (sample counts, length,
879 anomaly counts) are provided in Table 8.

880 Collectively, Tables 6–8 summarize dataset scales, modalities, and anomaly ratios, forming a com-
881 prehensive testbed for evaluating PGBC’s robustness and generalization.

882
883 Table 8: Information of 5 open-set recognition (UCR) datasets.
884
885

No.	Datasets	Samples	Length	Anomalies	Anom. (%)
1	Adiac	778	176	17	10.00
2	CBF	633	128	13	9.49
3	Synthetic Control	511	60	11	9.91
4	SwedishLeaf	1,073	128	23	9.87
5	Trace	153	275	3	9.09

918
919

C.2 BASELINES

920
921
922
923
924

We provide implementation details and hyperparameter settings of the baseline methods evaluated in our experiments. [To evaluate model stability, we introduced randomness through random subsampling \(Bootstrap\) of the training data across five independent runs, applying this uniformly to all methods.](#) All methods use consistent random seed control via `random_state=seed` to ensure reproducibility.

925
926
927
928
929
930

Isolation Forest (Liu et al., 2008). Isolation Forest is a tree-based ensemble method that isolates anomalies by using random partitioning to create "isolation" for each data point. Anomalies, being few and different, are isolated in fewer steps than normal points. We use the scikit-learn implementation with `contamination` set to the true anomaly ratio, which is the proportion of outliers in the dataset.

931
932
933
934
935

Local Outlier Factor (LOF) (Breunig et al., 2000). LOF is a density-based method that identifies anomalies by comparing the local density of a data point to the local densities of its neighbors. A point is considered an outlier if its local density is lower than that of its neighbors. We use a neighborhood size of `n_neighbors=20` and set `contamination` to the known anomaly ratio.

936
937
938
939

k-Nearest Neighbors (kNN) (Peterson, 2009). The kNN method defines the anomaly score of a point as its distance to the k -th nearest neighbor. This score measures how far a point is from its local neighborhood. We set the number of neighbors to `n_neighbors=5`.

940
941
942
943
944
945
946

AutoEncoder (Sakurada & Yairi, 2014). An AutoEncoder is a neural network with an encoder and a decoder, trained to reconstruct its input. By training only on normal data, it learns a compact representation of the normal distribution, so any point with a high reconstruction error is considered an anomaly. We use a feedforward encoder-decoder network trained to minimize reconstruction error. The network is configured with a `latent_dim=16`, trained for 50 epochs, with a `batch_size=64`, and a learning rate of $1e-3$. All models are trained exclusively on normal data.

947
948
949
950
951
952
953
954

Deep SVDD (Ruff et al., 2018). Deep SVDD learns a compact representation of the normal data by training a deep neural network to map the data points into a feature space where they are enclosed within a minimal hypersphere. The radius of this hypersphere is learned during training with a `nu` parameter that controls the trade-off between the volume of the sphere and the number of allowed outliers. We use a three-layer encoder with `hidden_dims=[128, 64, 32]` and an `output_dim=32`. The hypersphere radius is learned with `nu=0.1` using a soft-boundary objective. Pretraining is performed using an AutoEncoder with a `latent_dim=16`, trained for 50 epochs.

955
956
957
958
959
960
961
962
963
964

Deep Autoencoding Gaussian Mixture Model (DAGMM) (Zong et al., 2018). Deep Autoencoding Gaussian Mixture Model (DAGMM) is a deep learning method that combines a deep autoencoder with a Gaussian Mixture Model (GMM) for unsupervised anomaly detection. It is designed to overcome the limitations of traditional two-stage methods by jointly optimizing the parameters of the autoencoder and GMM in an end-to-end fashion. The model utilizes the autoencoder to generate a low-dimensional representation and reconstruction error, which are then fed into the GMM to estimate the density of the normal data. We configure the autoencoder with a `latent_dim=3`, trained for `epochs=50`, a `batch_size=128`, and a learning rate of $1e-3$. The estimation network parameters are set with `n_components=4` for the GMM, and we use regularization parameters `lambda_energy=0.1` and `lambda_cov_diag=0.005` for the combined loss function.

965
966
967
968
969
970
971

Hierarchical Gaussian Mixture Normalizing Flow Modeling (HGAD) (Yao et al., 2024). Hierarchical Gaussian Mixture Normalizing Flow Modeling (HGAD) is a novel method for unified anomaly detection that addresses the 'homogeneous mapping' issue in traditional normalizing flow-based models. It achieves this by leveraging a hierarchical probabilistic approach with two key components: inter-class Gaussian mixture modeling and intra-class mixed class centers learning. We extract features from `feature_levels=1` layer. The model is configured with `n_classes=1` for anomaly detection, and `n_intra_centers=5` for intra-class modeling. The loss function weights include `lambda_g=1.0`, `lambda_g_intra=1.0`, `lambda_z=1.0`, `lambda_e=0.1`,

972 and `lambda_mi=0.1`. The model is trained for `epochs=50` with a `batch_size=64` and a
 973 learning rate of `1e-3`.
 974

975 **GBMOD (Cheng et al., 2025).** GBMOD, or Granular-Ball Mean-shift Outlier Detector, is a
 976 granular-ball based anomaly detection method addressing the limitations of traditional mean-shift
 977 techniques. It combines neighborhood-based density modeling with deep autoencoding. It uses
 978 granular-balls as anchors to guide the mean-shift process, which effectively avoids the influence of
 979 noisy points and improves efficiency. We use `k=10` nearest neighbors, `iteration_number=3`,
 980 and pretrain an AutoEncoder with the same configuration as described above.
 981

982 **GBDO (Su et al., 2025)** GBDO, or Granular-ball Discrimination Outlier, is a method that im-
 983 proves density-based anomaly detection by operating at a granular-ball level. It detects anomalies
 984 based on local granular-ball density, which is calculated using the local reachability similarity among
 985 granular-balls. We set `k_neighbors=15` and `min_points_ratio=0.1` to control neighbor-
 986 hood and granularity.
 987

988 C.3 METRICS

989 **Area Under the Receiver Operating Characteristic Curve (AUC)** For all experiments, we use
 990 AUC as the primary evaluation metric. AUC is a widely adopted performance measure in anomaly
 991 detection, particularly suitable for highly imbalanced datasets where the number of anomalies is
 992 significantly smaller than normal instances. It quantifies the model’s ability to distinguish between
 993 normal and anomalous samples across various classification thresholds, providing a comprehensive
 994 assessment independent of a specific decision threshold. To evaluate the robustness and repro-
 995 ducibility of our model and baselines on tabular datasets, we performed multiple independent runs
 996 and reported the average AUC with its standard deviation ($AUC \pm \text{std}$).
 997

998 **False Positive Rate (FPR)** In addition to AUC, we also evaluate our model’s performance using
 999 the False Positive Rate (FPR). FPR is crucial in scenarios where the cost of misclassifying a normal
 1000 instance as anomalous (i.e., a false alarm) is high. By analyzing both AUC and FPR, we provide a
 1001 more holistic view of the model’s performance, balancing its overall discriminative power with its
 1002 precision in minimizing false alarms. We report the FPR for 19 tabular datasets.
 1003

1004 **False Negative Rate (FNR)** Complementing FPR, we incorporate the False Negative Rate (FNR)
 1005 to evaluate the model’s sensitivity and reliability. FNR quantifies the proportion of actual anom-
 1006 alies that are incorrectly classified as normal (i.e., missed detections). This metric is paramount
 1007 in safety-critical or high-risk applications—such as mechanical failure prediction or disease diag-
 1008 nosis—where failing to identify an anomaly can lead to severe consequences. By reporting FNR
 1009 alongside FPR, we ensure that the model achieves a robust trade-off, verifying that a low false alarm
 1010 rate is not obtained at the expense of missing actual threats.
 1011

1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

1026
1027

C.4 ENCODERS & COMPARISONS

1028
1029
1030
1031
1032
1033
1034

To ensure fair comparisons across all baselines and to provide a unified vector input for different data types, we employ a feature encoder to transform our data. For tabular datasets, we apply standard feature normalization without additional preprocessing. For time series datasets, a sliding window mechanism is used to segment sequences into fixed-length windows. These windows are then encoded by a lightweight Convolutional Neural Network (CNN) into a fixed-dimensional vector. The detailed architecture and key parameters for our CNN encoder and the time series preprocessing steps are summarized in Table 10.

1035
1036
1037
1038
1039
1040

While our proposed PGBC model is agnostic to the choice of encoder—meaning its core architecture can operate on any fixed-dimensional vector representation—the quality of learned features significantly affects downstream detection accuracy. To investigate this impact, we conducted a comparative study using five common encoder types: MLP, CNN, LSTM, Transformer, and ResNet. These encoders were evaluated on four representative datasets from the TSB-AD and UCR benchmark suites, each representing a distinct feature learning paradigm.

1041
1042
1043
1044
1045
1046

Our experimental findings, with complete results summarized in Table 9, show that the lightweight CNN encoder consistently achieves strong performance, ranking first or second in AUC on all four datasets. Considering its computational efficiency and strong empirical performance, we adopt the CNN architecture as our default feature encoder for all subsequent experiments. This design ensures a fair and robust evaluation across all baselines while maintaining a practical and effective model architecture.

1047
1048
1049

Table 9: Ablation study on feature encoders. AUC results (%) of PGBC using different encoder architectures on selected datasets from TSB-AD and UCR. Bold indicates the best performance. Trans = Transformer.

1050
1051
1052
1053
1054
1055
1056

Dataset	CNN	MLP	LSTM	Trans	ResNet
Adiac	99.6	100.0	97.8	98.7	99.5
Synthetic Control	100.0	80.0	98.2	98.7	100.0
WSD WebService	99.5	99.4	77.7	100.0	100.0
YAHOO Synthetic	100.0	100.0	63.8	75.9	99.2

1057
1058
1059

Table 10: Configuration of key parameters. Details for the CNN encoder architecture and time series preprocessing steps used in the experiments.

1060
1061
1062
1063
1064
1065
1066
1067

Parameter	Value	Description
<i>CNN Encoder Architecture</i>		
Convolutional Layers	3	3-layer convolutional encoder, mirrored by 3-layer transposed convolutional decoder
Kernel Size	5	5×1 kernel for all (transposed) convolutional layers
Stride	2	Stride of 2 for downsampling/upsampling in all layers
Padding	2	Padding of 2 for all (transposed) convolutional layers
Channel Progression	1→16→32→64	Encoder channel increase across layers
Activation Function	ReLU	ReLU activation for all intermediate layers
Latent Dimension	16	Default latent space dimension, configurable via <code>ae_latent_dim</code>
<i>Time Series Processing</i>		
Window Size	32	Sliding window size for time series segmentation
Window Step	8	Step size for sliding window
AE Latent Dimension	16	Autoencoder latent space dimension
AE Epochs	50	Number of training epochs for autoencoder
AE Batch Size	64	Batch size for autoencoder training
AE Learning Rate	10^{-3}	Learning rate for autoencoder training
Device	Auto	GPU/CPU, automatically selected

1074
1075
1076
1077
1078
1079

1080 D MORE RESULTS

1082 In this section, we present a more comprehensive view of our experimental results by including the
 1083 standard deviation (std) of the AUC scores, which reflects model stability.

1085 **Tabular anomaly detection.** The full results are detailed in Table 11. A key observation is that
 1086 PGBc, in addition to achieving the highest average AUC, also demonstrates superior stability with
 1087 the second-lowest average standard deviation among all baselines. This indicates that the high per-
 1088 formance of our method is consistently reproducible across different data splits, a crucial factor for
 1089 reliable real-world applications.

1090 Table 11: Full AUC results (%) with mean and standard deviation on 19 tabular datasets. Results
 1091 are averaged over five independent runs. Bold indicates the best performance. Abbreviations: AE =
 1092 AutoEncoder, D.SV = DeepSVDD, DAG = DAGMM, GBM = GBMOD.

Datasets	LOF	IForest	KNN	AE	D.SV	DAG	HGAD	GBM	GBDO	Ours
Abalone	75.6 ±1.2	70.2 ±1.1	69.3 ±1.0	79.9 ±1.3	68.2 ±1.9	57.0 ±4.3	75.2 ±2.5	78.0 ±1.3	76.3 ±1.0	72.1 ±1.1
Bands34	74.8 ±0.8	79.2 ±1.3	77.5 ±2.7	77.8 ±1.2	64.8 ±5.6	53.0 ±6.8	80.7 ±1.6	71.7 ±0.4	71.0 ±4.4	100.0 ±0.0
Bands42	75.9 ±0.8	78.3 ±1.3	76.3 ±2.7	76.1 ±1.2	63.1 ±5.6	51.0 ±5.6	77.9 ±1.4	76.9 ±0.4	70.4 ±4.4	100.0 ±0.0
Cardio	82.6 ±1.0	85.9 ±1.8	80.5 ±1.6	76.5 ±2.5	77.3 ±8.7	70.0 ±7.5	75.8 ±2.0	86.5 ±0.7	66.4 ±1.4	84.0 ±0.8
Ecoli	85.1 ±0.5	84.1 ±0.9	87.6 ±1.1	88.1 ±2.0	86.8 ±1.5	40.0 ±33.5	88.3 ±2.1	85.1 ±0.2	89.8 ±0.5	89.4 ±0.4
Iris	91.6 ±3.8	100.0 ±0.0	97.8 ±1.0	93.8 ±10.0	83.4 ±13.0	99.0 ±1.7	98.5 ±0.9	100.0 ±0.0	74.8 ±2.6	100.0 ±0.0
Musk	100.0 ±0.0	96.9 ±1.6	100.0 ±0.0	100.0 ±0.0	99.7 ±0.6	100.0 ±0.5	100.0 ±0.0	91.1 ±1.7	25.9 ±1.5	100.0 ±0.0
Pageblocks	98.2 ±0.1	98.3 ±0.2	99.6 ±0.1	92.2 ±0.8	98.4 ±0.1	66.0 ±23.4	99.7 ±0.1	99.5 ±0.1	96.2 ±0.2	99.9 ±0.0
Pendigits	99.3 ±0.1	97.5 ±0.8	98.9 ±0.3	94.4 ±3.3	91.1 ±6.0	77.0 ±17.9	99.4 ±0.3	98.4 ±0.6	74.2 ±2.6	99.5 ±0.6
Satellite	84.5 ±0.2	79.4 ±1.3	87.6 ±0.1	80.6 ±0.6	83.3 ±5.0	80.0 ±4.9	82.3 ±0.3	85.5 ±0.4	80.4 ±0.2	83.1 ±1.5
Sick35	73.7 ±1.3	89.3 ±1.2	89.1 ±0.8	85.2 ±1.4	83.8 ±2.7	57.0 ±15.1	88.8 ±0.4	89.1 ±0.4	83.6 ±0.6	87.4 ±3.3
Sick72	61.2 ±1.7	81.4 ±2.3	83.5 ±0.4	81.4 ±2.1	77.3 ±2.6	56.0 ±4.8	82.2 ±1.1	79.1 ±0.2	79.6 ±1.1	87.3 ±3.6
Sonar	98.9 ±0.1	99.4 ±0.5	99.6 ±0.3	99.1 ±0.2	76.3 ±8.7	79.0 ±12.6	98.4 ±0.7	98.9 ±0.3	63.7 ±8.3	100.0 ±0.0
Thyroid	53.5 ±0.9	63.3 ±1.9	65.8 ±0.7	60.3 ±3.3	63.9 ±6.5	44.0 ±10.9	66.0 ±3.2	69.7 ±0.7	68.6 ±0.3	73.0 ±4.8
Tictac12	97.6 ±0.5	98.6 ±0.6	93.6 ±3.5	84.6 ±6.4	75.9 ±6.4	54.0 ±8.1	97.0 ±1.5	96.8 ±0.9	60.7 ±3.0	100.0 ±0.0
Tictac26	92.8 ±0.9	95.6 ±0.9	91.1 ±1.8	76.7 ±5.7	64.3 ±6.5	48.0 ±4.5	95.0 ±2.6	88.1 ±0.8	54.2 ±0.8	100.0 ±0.0
Tictac32	92.2 ±1.3	95.4 ±0.9	93.1 ±0.8	76.1 ±5.9	64.1 ±9.8	46.0 ±8.3	93.2 ±2.7	86.3 ±2.9	55.1 ±0.7	100.0 ±0.0
Waveform	76.5 ±0.5	70.7 ±3.9	76.1 ±0.6	52.5 ±3.3	60.0 ±3.6	56.0 ±13.6	73.7 ±2.3	74.2 ±0.2	65.0 ±1.2	78.1 ±0.0
Yeast	99.1 ±0.0	99.7 ±0.0	99.4 ±0.2	99.6 ±0.4	99.9 ±0.1	43.0 ±29.6	99.7 ±0.1	100.0 ±0.0	99.2 ±1.1	100.0 ±0.0
Average	84.9 ±13.3	87.6 ±11.4	87.8 ±10.5	83.0 ±12.4	78.0 ±12.8	61.9 ±17.7	87.6 ±10.7	87.1 ±9.8	71.4 ±16.2	91.1 ±10.0

1134
 1135 **Time series anomaly detection.** The complete results for the six TSB-AD benchmarks are
 1136 shown in Table 12. PGBC not only achieves the highest or second-highest mean AUC across
 1137 all datasets, but also maintains low variance compared with deep baselines such as AutoEncoder
 1138 and DeepSVDD. This demonstrates that the probabilistic granular-ball hierarchy provides stable
 1139 anomaly detection under the noisy and dynamic conditions typical of real-world monitoring data.
 1140

1141 Table 12: Full AUC results (%) with mean and standard deviation on 6 time series datasets. Results
 1142 are averaged over five independent runs. Bold indicates the best performance.

Datasets	LOF	IForest	KNN	AE	D.SV	DAG	HGAD	GBM	GBDO	Ours
NAB Traffic	80.4	78.6	91.2	79.6	83.4	59.2	84.3	80.6	77.5	85.4
	± 0.4	± 0.6	± 0.9	± 2.3	± 2.0	± 5.9	± 1.7	± 0.7	± 0.3	± 3.8
WSD WebService	94.3	87.2	97.0	96.0	88.6	68.5	94.0	93.6	75.1	98.8
	± 0.2	± 0.9	± 0.3	± 0.2	± 1.9	± 13.5	± 1.1	± 0.6	± 0.5	± 0.4
SMD Facility	93.3	93.4	97.1	98.5	94.5	78.3	96.4	95.1	91.1	97.9
	± 0.7	± 0.3	± 0.6	± 0.1	± 1.6	± 6.9	± 1.0	± 1.5	± 0.7	± 0.0
IOPS WebService	91.0	81.7	85.5	77.8	79.3	62.7	87.0	79.3	44.4	96.4
	± 0.5	± 2.4	± 0.4	± 14.7	± 4.5	± 4.0	± 3.4	± 4.5	± 1.2	± 0.1
UCR Medical	95.6	90.8	93.0	66.4	93.2	75.5	88.7	88.5	67.7	93.5
	± 0.7	± 3.0	± 0.3	± 1.2	± 5.3	± 9.1	± 2.3	± 1.2	± 0.3	± 0.1
YAHOO Synthetic	71.3	77.2	88.6	44.8	71.4	48.1	67.2	67.0	88.9	99.8
	± 7.4	± 2.1	± 4.9	± 8.8	± 21.9	± 12.5	± 29.8	± 8.8	± 0.0	± 0.0
Average	87.6	84.8	92.1	77.2	85.1	65.4	86.3	84.0	74.1	95.3
	± 1.7	± 1.6	± 1.2	± 4.6	± 6.2	± 8.7	± 6.6	± 2.9	± 0.5	± 0.7

1157
 1158 **Time series open-set recognition.** For the UCR-based open-set recognition task, the full results
 1159 are summarized in Table 13. Across the five datasets, PGBC achieves competitive or superior mean
 1160 AUC while keeping consistently small standard deviations. This stability highlights the robustness
 1161 of the entropy-weighted hierarchical scoring mechanism, which balances coarse and fine represen-
 1162 tations and prevents overfitting to specific runs. Overall, PGBC generalizes well under distributional
 1163 shifts, as evidenced by both high average accuracy and low variability across repeated experiments.
 1164

1165 Table 13: Full AUC results (%) with mean and standard deviation on 5 open-set recognition tasks.
 1166 Results are averaged over five independent runs. Bold indicates the best performance.

Datasets	LOF	IForest	KNN	AE	D.SV	DAG	HGAD	GBM	GBDO	Ours
Adiac	96.6	98.1	98.2	97.6	98.5	82.7	97.9	98.8	97.3	99.2
	± 0.7	± 0.5	± 0.1	± 0.2	± 0.3	± 14.9	± 0.2	± 0.6	± 0.0	± 0.2
CBF	99.7	76.7	99.7	51.0	78.3	52.1	92.7	95.3	61.9	100.0
	± 0.1	± 3.9	± 0.2	± 3.7	± 14.0	± 17.5	± 2.9	± 2.4	± 0.4	± 0.0
Synthetic Control	98.8	69.8	100.0	84.4	87.7	75.2	96.5	80.9	66.1	99.5
	± 0.4	± 4.8	± 0.1	± 4.6	± 3.3	± 18.0	± 1.6	± 2.9	± 1.5	± 1.1
SwedishLeaf	88.8	95.1	96.3	84.6	94.5	73.9	97.2	95.7	88.6	99.7
	± 1.1	± 0.6	± 0.1	± 4.6	± 3.4	± 16.7	± 0.9	± 0.5	± 0.1	± 0.1
Trace	87.3	89.6	94.9	62.9	66.9	80.0	97.1	73.1	72.2	99.6
	± 6.1	± 2.0	± 5.5	± 23.1	± 35.4	± 34.2	± 4.2	± 11.8	± 0.0	± 1.0
Average	89.8	85.9	97.8	76.1	85.2	72.8	96.3	88.8	77.2	99.6
	± 2.9	± 2.4	± 1.6	± 7.2	± 18.1	± 20.3	± 1.9	± 3.6	± 0.4	± 0.5

1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188
 1189 **False Positive Rate (FPR) Results.** In this section, we provide the complete false positive rate
 1190 (FPR) results for all 19 tabular datasets, as detailed in Table 14. This comprehensive view comple-
 1191 ments the main text and highlights the superior reliability of PGBC in controlling false alarms across
 1192 diverse data distributions. As shown in the table, PGBC achieves the lowest average FPR of **2.36%**.
 1193 A closer inspection reveals that methods relying on isotropic boundaries (e.g., DeepSVDD, 3.88%)
 1194 or simple geometric distances (e.g., GBDO, 4.57%) tend to generate higher false alarms, particu-
 1195 larly on datasets with complex cluster shapes. In contrast, PGBC’s advantage is most pronounced in
 1196 these scenarios, as its probabilistic ellipsoidal granular-balls can stretch to fit the normal data tightly
 1197 without encompassing the surrounding void space, thereby minimizing the risk of misclassifying
 1198 normal boundary points as anomalies.
 1199
 1200 Table 14: Full False Positive Rate (FPR %) results on 19 tabular datasets. Lower values indicate
 1201 fewer false alarms. Abbreviations: AE = AutoEncoder, D.SV = DeepSVDD, DAG = DAGMM,
 1202 GBM = GBMOD.

Datasets	LOF	IForest	KNN	AE	D.SV	DAG	HGAD	GBM	GBDO	Ours
Abalone	<u>4.56</u>	4.73	4.37	4.61	4.88	5.05	4.66	4.71	5.05	4.64
Bands34	<u>4.17</u>	5.13	<u>2.88</u>	4.49	5.13	5.45	0.00	4.17	6.09	0.00
Bands42	3.85	4.81	<u>2.88</u>	3.85	5.13	5.45	0.00	3.21	3.21	0.00
Cardio	4.53	4.35	3.93	4.71	4.53	4.65	4.35	<u>4.05</u>	4.95	4.65
Ecoli	3.06	3.06	3.06	3.06	3.06	5.20	3.06	3.06	<u>3.98</u>	3.06
Iris	0.00	<u>2.00</u>	0.00	3.00	<u>2.00</u>	<u>2.00</u>	0.00	0.00	5.00	0.00
Musk	1.92	1.92	1.92	1.92	<u>2.02</u>	1.92	1.92	1.92	5.19	1.92
Pageblocks	1.61	0.83	<u>0.49</u>	0.55	1.04	3.91	0.57	1.14	2.06	0.22
Pendigits	3.66	2.80	2.80	3.71	4.71	4.72	2.80	<u>3.05</u>	4.54	2.80
Satellite	0.00	0.00	0.00	<u>0.02</u>	1.20	0.23	0.00	0.00	0.43	0.00
Sick35	4.94	4.94	<u>4.63</u>	4.83	4.74	5.06	4.80	4.66	5.06	4.57
Sick72	5.00	4.91	4.57	4.77	4.74	5.17	4.83	<u>4.69</u>	5.06	4.80
Sonar	<u>1.03</u>	0.00	0.00	0.00	2.06	2.06	<u>1.03</u>	<u>1.03</u>	5.15	0.00
Thyroid	5.02	4.96	4.95	4.98	4.95	5.05	4.98	<u>4.90</u>	5.06	4.89
Tictac12	3.19	<u>3.35</u>	3.19	3.99	4.79	5.11	3.19	<u>3.35</u>	5.75	3.19
Tictac26	2.24	2.24	1.12	2.40	4.63	4.95	<u>1.28</u>	3.19	4.63	1.12
Tictac32	1.44	1.76	0.16	2.24	4.79	5.27	<u>0.32</u>	2.40	5.75	0.16
Waveform	4.82	4.10	2.57	5.12	4.67	5.00	<u>3.20</u>	4.07	5.12	4.07
Yeast	4.67	4.67	4.67	4.67	<u>4.75</u>	5.11	4.67	4.67	<u>4.75</u>	4.75
Average		3.14	3.19	2.54	3.31	3.88	4.29	<u>2.40</u>	3.07	4.57
										2.36

1242 **False Negative Rate (FNR) Results.** While a low FPR is essential for system usability, a low
 1243 False Negative Rate (FNR) is critical for safety, as missing a genuine anomaly can have severe con-
 1244 sequences. The full FNR results in Table 15 reveal a significant trade-off made by many baselines.
 1245 PGBC achieves the **lowest average FNR of 35.9%**, edging out the second-best HGAD (38.7%) and
 1246 drastically surpassing DeepSVDD (75.7%) and GBDO (77.7%). The extremely high FNRs of these
 1247 methods suggest they achieve reasonable FPRs only by being *overly conservative*—resulting in an
 1248 overly loose decision boundary that fails to capture a significant portion of anomalies. In contrast,
 1249 when combined with the FPR analysis in Section 3.4 (where PGBC also leads with 2.36%), these
 1250 results confirm that PGBC does not trivially trade off precision for recall. Instead, its hierarchical
 1251 probabilistic structure provides a fundamentally more accurate description of the data, successfully
 1252 identifying diverse anomalies that other methods miss.

1253 Table 15: Full False Negative Rate (FNR %) results on 19 tabular datasets. Lower values indi-
 1254 cate fewer missed anomalies. Abbreviations: AE = AutoEncoder, D.SV = DeepSVDD, DAG =
 1255 DAGMM, GBM = GBMOD.

Datasets	IForest	LOF	KNN	AE	D.SV	DAG	HGAD	GBM	GBDO	Ours
Abalone	72.2	81.0	74.7	86.1	86.1	91.1	74.7	88.6	83.5	75.9
Bands34	85.3	94.1	97.1	79.4	82.4	97.1	47.1	79.4	97.1	47.1
Bands42	85.7	92.9	95.2	63.3	97.6	97.6	57.1	88.1	97.6	57.1
Cardio	69.7	60.6	69.7	66.7	81.8	100.0	60.6	57.6	84.8	48.5
Ecoli	22.2	22.2	22.2	88.9	44.4	100.0	11.1	22.2	22.2	22.2
Iris	45.5	63.6	45.5	45.5	100.0	81.8	45.5	45.5	100.0	45.5
Musk	0.0	0.0	0.0	0.0	18.6	13.4	0.0	0.0	84.5	0.0
Pageblocks	30.2	15.5	10.9	22.5	39.1	70.9	12.0	22.5	38.8	3.1
Pendigits	37.2	0.0	0.0	92.3	100.0	94.9	0.0	17.9	64.7	0.0
Satellite	84.2	84.2	84.2	84.2	84.2	85.5	84.2	84.2	94.7	84.2
Sick35	88.6	88.6	71.4	74.3	91.4	100.0	71.4	71.4	85.7	45.7
Sick72	94.4	90.3	86.1	83.3	95.8	100.0	84.7	86.1	93.1	72.2
Sonar	50.0	40.0	40.0	50.0	70.0	90.0	40.0	50.0	70.0	40.0
Thyroid	97.3	89.2	89.2	89.2	83.8	97.3	91.9	82.4	98.6	79.7
Tictac12	0.0	8.3	8.3	0.0	83.3	100.0	8.3	0.0	91.7	0.0
Tictac26	26.9	26.9	11.5	30.8	100.0	96.2	3.8	42.3	84.6	0.0
Tictac32	25.0	31.2	9.4	50.0	90.6	96.9	9.4	50.0	90.6	0.0
Waveform	88.0	64.0	69.0	81.0	89.0	100.0	33.0	66.0	95.0	61.0
Yeast	0.0									
Average	52.8	50.1	46.5	57.2	75.7	84.9	38.7	50.2	77.7	35.9

1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296 **E EXTENDED BASELINES AND METRICS**
12971298 In this section, we provide detailed comparisons with additional baselines requested by the reviewers
1299 to demonstrate the superiority of PGBC across different task domains.
13001301 **E.1 ADDITIONAL BASELINES ON TIME-SERIES ANOMALY DETECTION**
13021303 To demonstrate the superiority of PGBC against a broader range of state-of-the-art methods in time-
1304 series anomaly detection, we incorporated additional baselines: **OCFlow** (Maziarka et al., 2022) and
1305 **OCSVM**. We evaluated them on our six Time-Series Benchmark datasets (TSB-AD) to compare our
1306 approach against representative normalizing flow and kernel-based methods.
13071308 **Implementation Details.** To ensure a fair comparison, we configured each baseline with key hyper-
1309 parameters optimized for the task. For **OCFlow**, a flow-based model, we utilized 8 coupling layers
1310 ($n_couplings=8$, $n_layers=4$) with a hidden dimension of 512 and variable Jacobian determinants
1311 ($det_type='var'$) to map data to a latent hypersphere. For **OCSVM**, we utilized the standard
1312 RBF kernel with $gamma='scale'$, dynamically setting the nu parameter equal to the ground-truth
1313 anomaly ratio of each dataset.
13141315 **Analysis.** As shown in Table 16, PGBC consistently outperforms these baselines by a significant
1316 margin. While normalizing flows (OCFlow) achieve a decent average AUC of 81.5%, they show
1317 significant variance (e.g., $\pm 26.4\%$ on *YAHOO*). This instability indicates the inherent difficulty
1318 Normalizing Flows face in accurately mapping the complex, locally varying geometry of time-series
1319 embeddings to a regular latent density, compared to PGBC’s adaptive granular-balls. Furthermore,
1320 traditional kernels (OCSVM) perform reasonably well (Avg 75.3%) but still lag behind PGBC (e.g.,
1321 41.0% vs. 99.8% on *YAHOO*), confirming that fixed kernels are insufficient to model locally varying
1322 anisotropic structures.
13231324 Table 16: Comparison with additional baselines on time-series anomaly detection (AUC %). **Bold**
1325 indicates the best performance.
1326

Datasets	OCSVM	OCFlow	Ours
NAB Traffic	78.9 ± 2.3	74.0 ± 2.7	85.4 ± 3.8
WSD WebService	92.9 ± 0.4	94.8 ± 1.0	98.8 ± 0.4
SMD Facility	88.0 ± 2.8	97.1 ± 2.2	97.9 ± 0.0
IOPS WebService	84.4 ± 1.9	84.0 ± 4.4	96.4 ± 0.1
UCR Medical	66.3 ± 4.7	80.7 ± 8.6	93.5 ± 0.1
YAHOO Synthetic	41.0 ± 8.4	58.4 ± 26.4	99.8 ± 0.0
Average	75.3 ± 3.4	81.5 ± 7.6	95.3 ± 0.7

1334 **E.2 COMPARISON WITH OSR METHOD**
13351336 To further validate the effectiveness of PGBC from an Open-Set Recognition (OSR) perspective, we
1337 compared it against the foundational baseline method: OpenMax (Bendale & Boult, 2016), which
1338 estimates the probability of an input being from an unknown class by fitting Weibull distributions
1339 to the tail activation distances of known classes. We followed the same OSR protocol described in
1340 Section 3.3, evaluating on five datasets from the UCR archive.
13411342 **Analysis.** As shown in Table 17, PGBC demonstrates overwhelming superiority over OpenMax,
1343 achieving an average AUC of **99.6%** compared to 68.7%. OpenMax relies on calibrating SoftMax
1344 scores, which implicitly assumes that known classes form tight, separable clusters in the penultimate
1345 layer. However, strictly enforcing such compactness on time-series data can be challenging, leading
1346 to feature distributions that defy OpenMax’s distributional assumptions. Consequently, OpenMax
1347 struggles significantly, performing near random guessing on datasets like *CBF* (49.5%). In contrast,
1348 PGBC is inherently well-suited for this data geometry. Its *adaptive ellipsoidal granular-balls*^{**}
1349 can stretch and rotate to locally approximate these manifold structures, creating a tight and precise
boundary around the normal data. This geometric alignment enables robust rejection of open-set
samples regardless of the classification margin.
1350

1350
 1351 Table 17: Comparison with the Open-Set Recognition (OSR) baseline on time series tasks. Reported
 1352 metric is AUC (%). PGBC significantly outperforms the classic method OpenMax. **Bold** indicates
 1353 the best performance.

Datasets	OpenMax	Ours
Adiac	92.4 ± 7.4	99.2 ± 0.2
CBF	49.5 ± 0.3	100.0 ± 0.0
Synthetic Control	53.0 ± 5.0	99.8 ± 1.1
SwedishLeaf	63.9 ± 4.8	99.7 ± 0.1
Trace	84.9 ± 1.8	99.6 ± 1.0
Average	68.7 ± 3.9	99.6 ± 0.5

E.3 PRECISION, RECALL, AND F1-SCORE ANALYSIS

To provide a comprehensive evaluation beyond threshold-independent metrics like AUC, we report the Precision (P), Recall (R), and F1-score on 12 representative tabular datasets. The decision threshold for all methods is strictly determined by the ground-truth anomaly ratio (contamination) of each dataset.

Analysis. As detailed in Table 18, PGBC demonstrates exceptional robustness, achieving the **highest F1-score on all 12 datasets**. First, on datasets with complex structures such as *Bands42* and *Pendigits*, PGBC achieves perfect performance (100.0% F1), whereas the strong probabilistic baseline HGAD lags behind (90.2% and 95.6%, respectively), and distance-based methods like KNN struggle significantly. Second, the results on the challenging *Sick72* dataset highlight the precision-recall trade-off. While baselines like DAGMM achieve 100% Recall, they suffer from catastrophic Precision (2.0%), indicating they classify almost all samples as anomalies. In contrast, PGBC maintains a significantly higher Precision (**63.6%** vs. next best 17.6%), securing the highest F1-score (29.8%). This confirms that PGBC’s high performance stems from a precise, well-fitted decision boundary rather than loose over-coverage.

1379
 1380
 1381
 1382
 1383
 1384
 1385
 1386
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396
 1397
 1398
 1399
 1400
 1401
 1402
 1403

1404
 1405
 1406
 1407
 1408
 1409
 1410
 1411
 1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457

Table 18: Precision (P), Recall (R), and F1-score (%) on 12 representative tabular datasets. **Bold** indicates the best performance, and underline indicates the second best. Abbreviations: AE = AutoEncoder, D.SV = DeepSVDD, DAG = DAGMM, GBM = GBMOD.

Method	Bands34			Bands42			Ecoli			Iris			Musk			Pageblocks				
	P	R	F1	P	R	F1	P	R	F1	P	R	F1	P	R	F1	P	R	F1		
IForest	35.6	61.8	45.2	28.6	85.7	42.9	58.3	77.8	66.7	100.0	100.0	96.8	92.8	94.7	68.0	74.8	71.2			
LOF	32.7	52.9	40.4	34.4	50.0	40.8	77.8	77.8	83.3	90.9	87.0	100.0	100.0	100.0	84.0	85.7	84.8			
KNN	29.9	58.8	39.6	33.3	54.8	41.4	87.5	77.8	82.4	91.7	100.0	95.7	100.0	100.0	89.0	90.7	89.8			
AE	30.6	76.5	43.7	35.3	71.4	47.2	13.6	33.3	19.4	100.0	90.9	95.2	100.0	100.0	81.5	75.2	78.2			
D.SV	11.8	85.3	20.7	12.5	100.0	22.2	36.8	77.8	50.0	10.8	90.9	19.2	83.5	78.4	80.9	57.7	69.8	63.2		
DAG	13.4	73.5	22.6	12.6	100.0	22.3	2.7	100.0	5.2	42.9	81.8	56.2	100.0	76.3	86.5	28.4	31.4	29.8		
HGAD	84.6	97.1	90.4	92.5	88.1	90.2	100.0	77.8	87.5	100.0	100.0	100.0	100.0	100.0	86.5	91.9	89.1			
GBM	25.6	61.8	36.2	40.8	47.6	44.0	77.8	77.8	77.8	100.0	100.0	100.0	100.0	100.0	53.6	15.5	24.0	74.7	81.4	77.9
GBDO	21.6	55.9	31.1	24.5	61.9	35.1	70.0	77.8	73.7	53.3	72.7	61.5	100.0	100.0	100.0	64.6	78.7	71.0		
Ours	94.4	100.0	97.1	100.0	100.0	100.0	77.8	87.5	100.0	98.4	99.2									

Method	Pendigits			Sonar			Stick72			Tictac12			Tictac26			Tictac32		
	P	R	F1	P	R	F1	P	R	F1	P	R	F1	P	R	F1	P	R	F1
IForest	45.1	47.4	46.2	83.3	100.0	90.9	4.8	91.7	9.2	63.2	100.0	77.4	84.2	61.5	71.1	77.4	75.0	76.2
LOF	83.9	93.6	88.5	76.9	90.0	87.0	6.3	25.0	10.1	90.9	83.3	87.0	90.5	73.1	80.9	90.5	59.4	71.7
KNN	91.0	97.4	94.1	90.0	90.0	90.0	6.7	90.3	12.4	100.0	91.7	95.7	85.2	88.5	86.8	87.9	90.6	89.2
AE	32.7	62.8	43.0	90.9	100.0	95.2	8.5	75.0	15.2	25.0	25.0	25.0	64.0	61.5	62.7	65.2	46.9	54.5
SVDD	2.3	100.0	4.5	100.0	30.0	46.2	5.3	38.9	9.3	9.5	16.7	12.1	6.2	53.8	11.1	7.2	31.2	11.7
DAGMM	7.1	72.4	12.9	19.0	80.0	30.8	2.0	100.0	3.9	2.1	100.0	4.1	4.3	61.5	8.1	4.9	100.0	9.3
HGAD	93.3	98.1	95.6	100.0	100.0	100.0	14.7	13.9	14.3	100.0	83.3	90.9	96.0	92.3	94.1	96.7	90.6	93.5
GBMOD	67.5	66.7	67.1	83.3	100.0	90.9	17.6	8.3	11.3	64.3	75.0	69.2	45.7	61.5	52.5	48.7	59.4	53.5
GBDO	29.3	34.6	31.8	44.4	40.0	42.1	5.5	95.8	10.3	11.1	8.3	9.5	12.1	15.4	13.6	10.1	21.9	13.9
Ours	100.0	100.0	100.0	100.0	100.0	100.0	29.8	19.4	63.6	100.0								

1458 F EXTENDED EXPERIMENTS ON VISUAL DATASETS
14591460 To demonstrate the versatility of PGBC on high-dimensional data beyond tabular and time-series
1461 domains, we conducted experiments on three widely recognized visual benchmarks: CIFAR-10,
1462 FashionMNIST, and MVTec-AD.1463 **Experimental Setup.** Adhering to the standard protocol established by ADBench (Han et al., 2022),
1464 we utilized the provided pre-extracted deep feature embeddings as input for all methods. This stan-
1465 dardized setup allows for a direct and focused comparison regarding the ability to model complex,
1466 anisotropic distributions inherent in semantic feature spaces. Specifically, the input data consists of
1467 **512-dimensional** feature vectors derived from a pre-trained **Vision Transformer (ViT)** backbone.
14681469 **Implementation Details and Baselines.** We compared PGBC against a diverse set of baselines.
1470 For the CIFAR-10 and FashionMNIST datasets, we compare PGBC against five classical feature-
1471 based methods: DeepSVDD, AutoEncoder (AE), GBMOD, KNN, and HGAD. For all these meth-
1472 ods (**DeepSVDD**, **AE**, **GBMOD**, **KNN**, **HGAD**), we maintained the hyperparameter configurations
1473 described in Appendix C.2, adjusting only the input layer size to match the 512-dimensional feature
1474 vectors. PGBC was applied directly to these feature vectors without any additional fine-tuning.
14751476 For the MVTec-AD industrial benchmark, we adopt a comprehensive mixed comparison strategy.
1477 The results of the five aforementioned feature-based baselines and PGBC are obtained by running
1478 them on the 512-dimensional ViT feature vectors (ADBench protocol). However, to benchmark
1479 against leading methods that inherently rely on raw spatial information, we also include results from
1480 three prominent *image-based* methods, namely **CutPaste** (Li et al., 2021), **U-student** (Uninformed
1481 students) (Bergmann et al., 2020), and **P-SVDD** (Patch-level SVDD) (Yi & Yoon, 2020). Since
1482 the core mechanisms of these image-based methods (such as self-supervised spatial augmentation)
1483 cannot be fairly tested on pre-extracted feature vectors, their performance on MVTec-AD is cited
1484 directly from the original CutPaste paper (Li et al., 2021).1485 **Results and Discussion.** The detailed results for CIFAR-10 and FashionMNIST subsets are re-
1486 ported in Table 19, while the MVTec-AD results, including the image-based baselines, are reported
1487 separately in Table 20. PGBC consistently achieves the highest average AUC scores across all three
1488 benchmarks: **95.5%** on CIFAR-10, **94.9%** on FashionMNIST, and **93.0%** on MVTec-AD.
14891490 First, when comparing with feature-based baselines, PGBC outperforms the second-best method,
1491 HGAD, across all three datasets. On CIFAR-10 and FashionMNIST, PGBC achieves 95.5% and
1492 94.9% respectively, both exceeding HGAD (95.3% and 94.6%). On the MVTec-AD dataset,
1493 PGBC (93.0% AUC) also clearly outperforms the best feature-based competitor, HGAD (91.2%
1494 AUC). This stable leading performance across diverse visual domains demonstrates that our adap-
1495 tive granular-ball construction is superior to standard density estimation techniques like hierarchical
1496 Gaussian mixtures in modeling complex feature distributions.
14971498 Second, we analyze the competitive landscape on MVTec-AD, which includes image-based state-
1499 of-the-art methods. PGBC (**93.0%** Avg AUC) achieves the highest overall average score, surpass-
1500 ing specialized image-based methods such as **CutPaste** (90.9% Avg AUC), **P-SVDD** (92.1% Avg
1501 AUC), and the competitive **U-student** (92.5% Avg AUC). This superior performance is highly
1502 significant: it confirms that PGBC effectively leverages powerful deep feature representations to
1503 achieve state-of-the-art detection on challenging industrial data, even when benchmarked against
1504 methods that operate directly on raw pixels.
15051506 Finally, we emphasize the advantage provided by PGBC’s probabilistic ellipsoidal modeling. We
1507 observe that methods relying on simple geometric boundaries, such as DeepSVDD, show limited
1508 capability when dealing with complex visual feature manifolds. For instance, on the CIFAR-10
1509 and F-MNIST datasets shown in Table 19, DeepSVDD exhibits significantly lower average AUCs
1510 (69.5% and 58.5%, respectively), which is consistent with the rigidity of its hyperspherical boundary
1511 assumption being ill-suited for complex data distributions. In contrast, PGBC’s probabilistic ellip-
1512 sodal modeling successfully captures these inherent geometries, providing consistently superior and
1513 stable performance across all benchmarks.

1512
1513
1514
1515
1516
1517Table 19: Full quantitative results (AUC \uparrow and FPR \downarrow in %) on CIFAR-10 and FashionMNIST. **Bold** indicates the best performance, and underline indicates the second best. Abbreviations: GBM=GBMOD, U.S=U-student.

Datasets	Subset	DeepSVDD		AutoEncoder		GBMOD		KNN		HGAD		Ours	
		AUC	FPR	AUC	FPR	AUC	FPR	AUC	FPR	AUC	FPR	AUC	FPR
CIFAR10	0	78.7	15.4	93.5	8.0	92.0	8.4	91.9	7.0	<u>94.1</u>	6.3	94.4	2.6
	1	78.9	21.4	95.7	3.3	95.9	<u>2.1</u>	95.7	4.6	<u>96.6</u>	1.1	96.7	3.2
	2	67.1	37.2	89.0	11.3	89.0	12.6	91.0	13.8	90.1	9.0	90.6	<u>6.8</u>
	3	68.4	19.9	92.7	7.1	93.3	4.9	94.1	4.9	93.3	7.5	<u>93.9</u>	<u>3.5</u>
	4	66.8	48.2	95.7	2.1	95.2	4.0	95.5	4.6	<u>96.1</u>	4.4	96.2	6.7
	5	63.3	64.1	92.7	3.3	<u>94.0</u>	5.2	94.1	4.5	<u>94.0</u>	4.8	94.1	<u>3.6</u>
	6	67.7	35.1	96.8	<u>3.2</u>	96.2	<u>3.2</u>	97.1	4.4	<u>97.2</u>	2.9	97.4	2.9
	7	66.3	37.8	97.1	5.4	96.7	4.3	96.9	6.9	<u>97.4</u>	5.0	97.5	<u>4.5</u>
	8	73.3	25.4	96.7	3.5	97.0	<u>3.3</u>	96.9	3.5	97.0	2.8	97.0	<u>3.3</u>
	9	64.4	31.5	95.9	<u>3.3</u>	96.7	3.5	95.9	3.6	96.8	1.4	96.9	4.4
	Avg	69.5	33.6	94.6	5.1	94.6	5.2	94.9	5.8	<u>95.3</u>	4.5	95.5	4.2
F-MNIST	0	47.8	99.9	91.3	7.1	89.9	5.6	90.1	4.5	<u>92.2</u>	6.4	92.6	3.0
	1	55.1	67.8	<u>99.7</u>	1.2	98.9	3.7	<u>99.7</u>	0.9	99.8	1.5	99.8	<u>1.1</u>
	2	55.3	23.6	93.4	4.8	93.1	5.7	<u>93.7</u>	2.4	93.8	4.5	93.8	<u>4.1</u>
	3	58.5	31.8	90.4	9.7	85.9	8.2	86.6	<u>3.9</u>	<u>91.7</u>	7.1	92.2	<u>5.9</u>
	4	61.8	33.0	89.2	<u>2.7</u>	87.2	4.1	88.2	6.2	89.7	5.5	90.0	2.6
	5	77.6	18.2	94.8	0.4	94.0	1.8	93.8	<u>0.5</u>	96.2	1.1	96.8	0.5
	6	55.8	79.7	87.6	2.2	83.9	9.8	87.1	2.2	<u>87.7</u>	1.8	88.1	<u>2.0</u>
	7	71.8	31.6	98.3	<u>0.8</u>	97.5	1.8	97.8	1.0	<u>98.6</u>	1.2	98.7	0.6
	8	50.5	78.1	98.3	4.4	96.4	4.6	<u>98.5</u>	4.2	98.6	3.6	98.6	<u>4.2</u>
	9	50.4	100.0	98.0	0.9	97.9	1.4	<u>98.1</u>	<u>1.2</u>	98.3	1.3	98.3	<u>1.2</u>
	Avg	58.5	56.4	94.1	3.4	92.5	4.7	93.3	2.7	94.6	3.4	94.9	2.5

1539
1540
1541
1542
1543Table 20: Full AUC results (%) on the MVTec-AD dataset. Abbreviations: GBM=GBMOD, U.S=U-student. **Bold** indicates the best performance, and underline indicates the second best.1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Datasets	KNN	GBM	HGAD	CutPaste	U.S	PSVDD	Ours	
bottle	<u>99.7</u>	99.3	99.9	99.2	96.7	98.6	99.9	
cable	<u>94.6</u>	90.0	93.7	87.1	82.3	90.3	96.4	
capsule	77.7	72.4	82.3	87.9	92.8	76.7	<u>91.5</u>	
carpet	97.1	96.1	<u>97.4</u>	67.9	95.3	92.9	97.9	
grid	73.9	60.6	85.0	99.9	<u>98.7</u>	94.6	87.6	
hazelnut	82.1	77.2	87.6	91.3	<u>91.4</u>	92.0	87.0	
leather	100.0	100.0	100.0	<u>99.7</u>	93.4	90.9	100.0	
metalnut	89.7	82.8	93.0	96.8	94.0	94.0	<u>95.9</u>	
pill	77.0	73.9	85.1	93.4	<u>86.7</u>	86.1	85.3	
screw	67.1	60.3	76.7	54.4	87.4	<u>81.3</u>	77.0	
tile	<u>98.9</u>	98.0	99.7	95.9	95.8	97.8	99.7	
toothbrush	96.2	81.7	96.2	<u>99.2</u>	98.6	100.0	97.5	
transistor	83.3	79.6	84.6	<u>96.4</u>	83.6	<u>91.5</u>	89.9	
wood	85.2	74.5	94.9	94.9	95.5	<u>96.5</u>	98.0	
zipper	84.5	82.0	92.3	99.4	95.8	<u>97.9</u>	91.7	
	Avg	87.1	81.9	91.2	90.9	<u>92.5</u>	92.1	93.0

1566 G ABLATION STUDIES

1568 In this section, we conduct a comprehensive ablation analysis to validate the contribution of key
 1569 components in PGBC: the dynamic reassignment step and the BIC splitting criterion.
 1570

1571 G.1 IMPACT OF DYNAMIC REASSIGNMENT

1573 The dynamic reassignment step (Step 3 in Algorithm 1) ensures that data points are associated
 1574 with the most likely Gaussian component after each split. To verify its necessity, we compared the
 1575 performance and runtime of PGBC with and without this step.
 1576

1577 As shown in Table 21, enabling dynamic reassignment consistently improves detection accuracy.
 1578 For instance, on the *Cardio* dataset, AUC increases significantly from 80.41% to **84.04%**, and on
 1579 *SwedishLeaf*, FPR drops from 2.10% to **1.81%**. This confirms that refining the data assignment
 1580 after splitting allows the granular-balls to better fit the local data geometry. While this step involves
 1581 iterative computation, the overall efficiency of our method remains high, as detailed in the com-
 1582 prehensive runtime analysis in **Appendix I**.
 1583

1583 Table 21: Ablation study on the Dynamic Reassignment step. Impact on AUC (%) and FPR (%)
 1584 across six representative datasets. **Bold** indicates the better performance.
 1585

Datasets	Reassign	AUC% (\uparrow)	FPR% (\downarrow)
NAB Traffic	\times	85.06 ± 0.79	7.81 ± 0.24
	\checkmark	85.68 ± 3.04	7.58 ± 0.83
WSD WebService	\times	98.58 ± 0.01	0.50 ± 0.00
	\checkmark	98.69 ± 0.04	0.44 ± 0.00
Abalone	\times	70.46 ± 0.76	1.78 ± 0.00
	\checkmark	72.10 ± 0.33	1.72 ± 0.01
Cardio	\times	80.41 ± 0.07	1.74 ± 0.06
	\checkmark	84.04 ± 0.96	1.63 ± 0.12
Adiac	\times	98.22 ± 1.20	2.09 ± 1.05
	\checkmark	98.58 ± 1.11	1.96 ± 1.17
SwedishLeaf	\times	98.10 ± 0.17	2.10 ± 0.38
	\checkmark	98.66 ± 0.39	1.81 ± 0.36

1602 G.2 IMPACT OF BIC CRITERION

1604 A critical challenge in hierarchical density estimation is determining the optimal stopping condition
 1605 to prevent over-partitioning, where the model fits local noise rather than the underlying distribution.
 1606 To validate the efficacy of the Bayesian Information Criterion (BIC) as a statistical regularizer in
 1607 PGBC, we compared our proposed method ("Full") against a baseline variant ("No BIC") that ex-
 1608 ecutes splits solely based on positive Log-Likelihood Gain (LLG), effectively removing the penalty
 1609 for model complexity.
 1610

1611 The quantitative results in Table 22 demonstrate that the BIC criterion serves as an essential de-
 1612 fense against overfitting. Without the BIC penalty ("No BIC"), the algorithm aggressively pursues
 1613 marginal likelihood gains, leading to an explosion in the number of granular-balls. For instance, on
 1614 the *Cardio* dataset, the number of components surges from a parsimonious 17 to an excessive 721,
 1615 and on *Abalone*, it increases from 25 to 668. This uncontrolled growth has severe consequences
 1616 for computational efficiency, with runtimes increasing by orders of magnitude (e.g., from 3.13s to
 1617 183.41s on *Abalone* and from 1.46s to 37.33s on *WSD WebService*). This trend is consistent across
 1618 both tabular datasets and time-series embeddings (e.g., NAB and WSD), indicating that without
 1619 the BIC penalty, the model tends to interpret insignificant local data variations as distinct structural
 complexity, ensuring a representation that is both statistically significant and computationally efficient.
 1620

1620 Table 22: **Ablation study on the impact of the BIC Criterion.** Comparison of PGBC (“Full”) against
 1621 a variant without the BIC penalty (“w/o BIC”) across 7 datasets. (a) Model Complexity (Number of
 1622 Granular-balls). (b) Efficiency (Runtime in seconds). **Bold** indicates the more compact model and
 1623 efficient runtime.

1624

(a) Model Complexity (Number of Granular-balls)

Strategy	Abalone	Bands34	Bands42	Cardio	Ecoli	NAB	WSD
Full (Ours)	25	10	14	17	5	6	9
w/o BIC	668	312	161	721	314	269	382

1629

(b) Efficiency (Runtime in seconds)

Strategy	Abalone	Bands34	Bands42	Cardio	Ecoli	NAB	WSD
Full (Ours)	3.13	0.62	0.72	1.83	0.32	0.25	1.46
w/o BIC	183.41	6.44	6.29	42.80	5.07	4.35	37.33

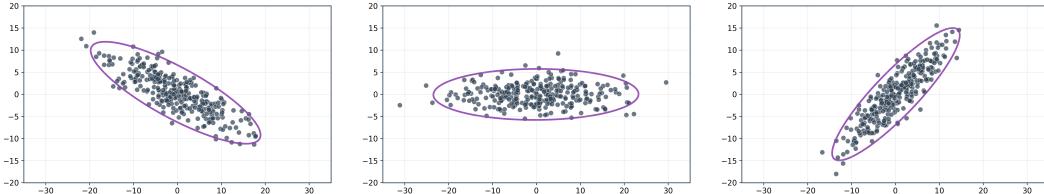
1630

1636 G.3 DOES THE METHOD SUPPORT A SINGLE PRINCIPAL COMPONENT?

1637

1638 PGBC naturally supports data dominated by one or few principal components without any architec-
 1639 tural modification. On three 2D toy datasets with highly elongated distributions (Figure 6), the BIC
 1640 criterion correctly terminates splitting at the root level in all cases, producing exactly one ellipsoidal
 1641 granular-ball $\mathcal{B}^{(0)}$ that precisely aligns with the dominant principal direction(s). This demonstrates
 1642 that PGBC gracefully degenerates to a single anisotropic Gaussian whenever the data structure war-
 1643 rants it, confirming its full adaptivity across both complex high-rank and simple low-rank scenarios.

1644



1651

1652 Figure 6: **Visualization of PGBC on three 2D toy datasets with highly anisotropic distributions.** In all
 1653 cases, PGBC automatically stops splitting and fits a single elongated ellipsoid $\mathcal{B}^{(0)}$ perfectly aligned
 1654 with the data manifold, demonstrating degeneration to a single principal component Gaussian.

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674 H ANOMALY SCORING MECHANISMS

1675
 1676
 1677 To rigorously evaluate the effectiveness of our proposed hierarchical anomaly scoring mechanism,
 1678 we conducted a component-wise comparative study. We analyze four distinct aspects of the scoring
 1679 strategy in the following order: (1) the necessity of hierarchical aggregation, (2) the effectiveness
 1680 of entropy-based weighting schemes, (3) the impact of the probabilistic scoring metric, and (4) the
 1681 importance of score normalization. The detailed analysis for each component is provided below.

1682 H.1 IMPACT OF HIERARCHICAL AGGREGATION (HIERARCHY VS. LEAF-ONLY)

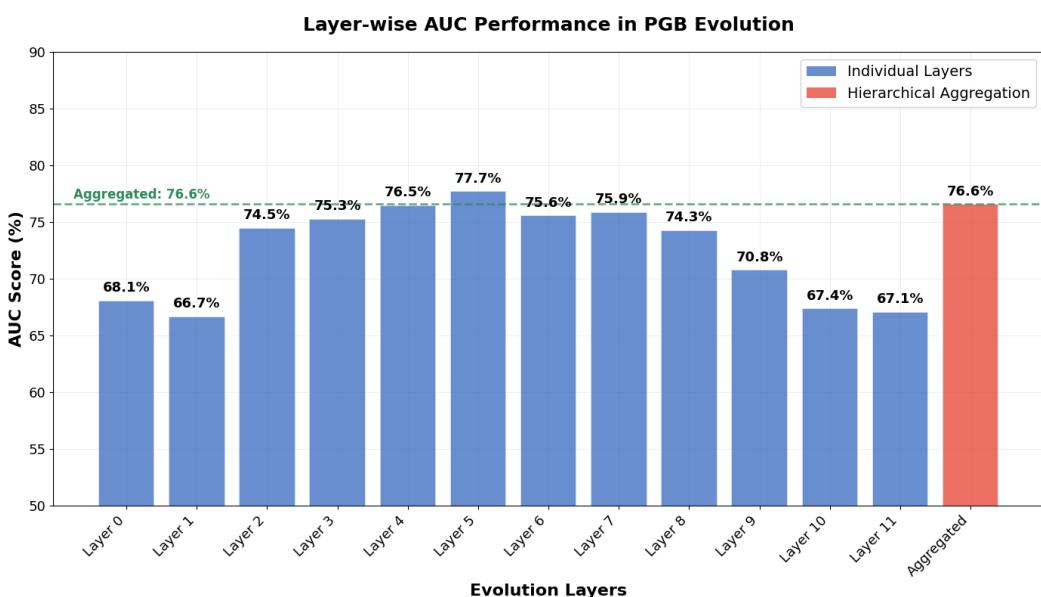
1683 To validate the necessity of the hierarchical structure, we compared PGBC against a "Leaf-only"
 1684 strategy, which utilizes the finest-grained granular-balls at the leaf nodes to compute anomaly scores.

1685 As shown in Table 23, the hierarchical PGBC consistently outperforms the flat "Leaf-only" approach
 1686 across all datasets. For instance, on *Thyroid*, the AUC rises from 67.8% to 73.0%, and on *Sick72*
 1687 from 84.2% to 87.3%. This result demonstrates that relying solely on fine-grained leaf nodes is
 1688 insufficient, as they may overfit to local variations. In contrast, intermediate layers in the hierarchy
 1689 capture valuable multi-scale structural information that is critical for robust anomaly detection.

1690 To visually illustrate this, Figure 7 plots the layer-wise AUC on the *Thyroid* dataset. Performance
 1691 fluctuates significantly across layers, and the finest granularity (leaves) is not necessarily optimal.
 1692 PGBC's hierarchical aggregation effectively integrates these complementary scales.

1693
 1694
 1695
 1696 Table 23: Comparison of Hierarchical Aggregation vs. Leaf-only strategy. Metric: AUC (%).

1697 Method	1698 Bands34	1699 Bands42	1700 Ecoli	1701 Sick72	1702 Thyroid	1703 Waveform
1700 Leaf-only	1701 97.4 ± 2.4	1702 99.1 ± 0.7	1703 88.8 ± 0.3	1704 84.2 ± 1.0	1705 67.8 ± 2.2	1706 77.6 ± 0.0
1701 Ours	1702 100.0 ± 0.0	1703 100.0 ± 0.0	1704 89.4 ± 0.4	1705 87.3 ± 3.6	1706 73.0 ± 4.8	1707 78.1 ± 0.0



1728 **H.2 IMPACT OF WEIGHTING SCHEMES (ENTROPY VS. UNIFORM)**
17291730 We examined the effectiveness of our entropy-based weighting scheme by comparing it against a
1731 "Uniform" strategy, where every hierarchical level contributes equally to the final score.1732 Table 24 shows that the entropy-based weighting consistently yields superior results. For example,
1733 on *Bands34*, the AUC drops to 96.4% with uniform weights, and on *Sick72*, it falls drastically
1734 to 78.3% (a decrease of 9.0%). This significant performance gap highlights the limitation of the
1735 "Uniform" strategy: it treats coarse global approximations and fine local details identically. Con-
1736 sequently, levels with lower discriminative power can dilute the precise anomaly signals captured
1737 by more informative levels. In contrast, our entropy-based weighting adapts dynamically to the
1738 data complexity. Specifically, when the data structure is complex and necessitates deeper recursive
1739 splitting, the entropy metric naturally assigns higher weights to the fine-grained levels that capture
1740 intricate local patterns. Consequently, the influence of coarse-grained levels—which provide only
1741 rough global statistics—is automatically attenuated, ensuring that the detection is driven by the most
1742 detailed and informative resolution.1743 Table 24: Comparison of Entropy-based vs. Uniform Weighting. Metric: AUC (%).
1744

Method	Bands34	Bands42	Ecoli	Sick72	Thyroid	Waveform
Uniform	96.4 \pm 2.6	97.8 \pm 0.9	88.4 \pm 0.1	78.3 \pm 2.4	72.9 \pm 6.1	74.1 \pm 0.0
Ours	100.0 \pm 0.0	100.0 \pm 0.0	89.4 \pm 0.4	87.3 \pm 3.6	73.0 \pm 4.8	78.1 \pm 0.0

1750 **H.3 IMPACT OF SCORING METRIC (LOG-LIKELIHOOD VS. EUCLIDEAN DISTANCE)**
17511752 To isolate the contribution of our probabilistic scoring mechanism, we conducted an ablation study
1753 using two alternative scoring strategies based on Euclidean distance. Crucially, these baselines share
1754 the exact same hierarchical structure and granular-ball centers generated by PGBC, differing solely
1755 in how the anomaly score is computed:1756

- **Min-Distance:** Calculates the Euclidean distance to the *nearest* granular-ball center. This
1757 represents a "vanilla" GBC approach, treating granular-balls as isotropic spheres and ig-
1758 noring local shape information.
- **Avg-Distance:** Calculates the *average* Euclidean distance to *all* granular-ball centers. This
1759 strategy, suggested for comparison, incorporates global geometric information rather than
1760 local density.

1761 The results in Table 25 reveal a significant performance gap between these distance-based metrics
1762 and our proposed probabilistic scoring. First, **Min-Distance** consistently underperforms PGBC. For
1763 instance, on the *Bands* datasets, the AUC drops from 100.0% (Ours) to approximately 82–84%. This
1764 confirms that simple geometric distance fails to capture the anisotropic structures (e.g., elongated
1765 clusters) inherent in the data, whereas our log-likelihood scoring successfully leverages the covari-
1766 ance matrix to model local orientation. Second, **Avg-Distance** proves to be an unstable metric for
1767 anomaly detection. While it outperforms Min-Distance on *Thyroid* (67.6% vs. 56.2%) and *Ecoli*,
1768 it performs worse on *Bands42* (75.6%). This inconsistency suggests that averaging distances in-
1769 incorporates irrelevant global geometric information that obscures the precise local anomaly signals.
1770 Ultimately, PGBC (Log-Likelihood) surpasses both distance baselines across all datasets, demon-
1771 strating that explicit probabilistic modeling is essential for precise data description.1772 Table 25: Ablation study on scoring metrics. "Min-Dist" and "Avg-Dist" denote the minimum and
1773 average Euclidean distances to granular-ball centers, respectively. Metric: AUC (%).
1774

Method	Bands34	Bands42	Ecoli	Sick72	Thyroid	Waveform
Min-Dist	83.9 \pm 1.8	81.8 \pm 2.6	79.5 \pm 2.8	80.9 \pm 1.4	56.2 \pm 1.5	71.6 \pm 0.0
Avg-Dist	81.3 \pm 1.4	75.6 \pm 3.8	84.3 \pm 0.4	79.6 \pm 0.5	67.6 \pm 0.2	68.8 \pm 0.0
Ours	100.0 \pm 0.0	100.0 \pm 0.0	89.4 \pm 0.4	87.3 \pm 3.6	73.0 \pm 4.8	78.1 \pm 0.0

1782 **H.4 IMPACT OF SCORE NORMALIZATION**
17831784 Finally, to assess the importance of aligning scores across levels, we tested a variant "w/o Normal-
1785 ization", which aggregates raw log-likelihood scores without min-max scaling.1786 As presented in Table 26, removing normalization leads to clear performance degradation. For
1787 instance, the AUC on *Sick72* drops from 87.3% to 81.2%. This degradation arises because the
1788 raw log-likelihood scores at different hierarchical levels often exhibit vastly different value ranges,
1789 reflecting the varying granularity of the data description from global to local scales. Without nor-
1790 malization, levels with numerically larger score ranges could inadvertently overshadow the contri-
1791 butions of other levels, biasing the final result. Normalization ensures that the contribution of each
1792 level is governed strictly by its structural informativeness (entropy), rather than arbitrary differences
1793 in numerical magnitude.1794 **Table 26: Impact of Score Normalization. Metric: AUC (%).**
1795

Method	Bands34	Bands42	Ecoli	Sick72	Thyroid	Waveform
w/o Norm	99.6 ± 0.7	99.1 ± 0.7	88.8 ± 0.3	81.2 ± 1.8	71.3 ± 6.5	77.8 ± 0.0
Ours	100.0 ± 0.0	100.0 ± 0.0	89.4 ± 0.4	87.3 ± 3.6	73.0 ± 4.8	78.1 ± 0.0

1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

1836 I COMPUTATIONAL EFFICIENCY ANALYSIS

1838 In this section, we provide a theoretical analysis of the time complexity of PGBC and report empirical
 1839 runtime comparisons against all baseline methods.

1841 I.1 THEORETICAL COMPLEXITY

1843 The computational cost of PGBC is primarily determined by the hierarchical construction process
 1844 using the Expectation-Maximization (EM) algorithm. For a dataset with N samples and d dimensions,
 1845 let L denote the tree depth and t denote the average number of EM iterations per split. Since
 1846 the summation of samples across all granular-balls at any specific level is bounded by N , the
 1847 computational complexity for one level is approximately $\mathcal{O}(t \cdot N \cdot d^2)$. Consequently, the total training
 1848 complexity is $\mathcal{O}(L \cdot t \cdot N \cdot d^2)$. This is generally more efficient than deep neural networks, where
 1849 the number of training epochs (typically 50-100) far exceeds the tree depth L (typically < 10).
 1850 For inference, computing the anomaly score involves evaluating Gaussian densities across the
 1851 constructed hierarchy, resulting in a complexity of $\mathcal{O}(K_{total} \cdot d^2)$, where K_{total} is the total number of
 1852 granular-balls, ensuring fast retrieval.

1853 Table 27: Average runtime (seconds) comparison on 19 tabular datasets. **Bold** indicates the pro-
 1854 posed method. Abbreviations: AE = AutoEncoder, D.SV = DeepSVDD, DAG = DAGMM, GBM =
 1855 GBMOD.

Datasets	IForest	LOF	KNN	AE	D.SV	DAG	HGAD	GBM	GBDO	Ours
Abalone	0.22	0.13	0.04	16.63	13.04	29.95	40.38	1.14	21.13	6.28
Bands34	0.24	0.25	0.01	8.42	5.96	2.87	3.31	3.45	2.29	0.98
Bands42	0.18	0.25	0.01	16.63	5.31	2.67	3.27	2.61	7.14	2.60
Cardio	0.19	0.27	0.01	7.43	5.67	11.02	16.78	15.62	14.00	4.92
Ecoli	0.19	0.01	0.01	6.91	0.21	2.59	3.68	0.14	5.87	0.89
Iris	0.20	0.00	0.00	6.28	0.10	1.02	1.28	1.12	2.06	0.36
Musk	0.23	0.30	0.04	25.58	4.97	19.66	28.98	28.64	17.04	21.64
Pageblocks	0.22	0.23	0.08	18.88	7.99	31.86	46.76	1.54	22.15	58.46
Pendigits	0.26	0.35	0.05	45.70	10.70	42.87	63.44	8.06	25.68	49.19
Satellite	0.23	0.32	0.04	15.81	7.19	28.73	42.89	5.78	21.40	5.80
Sick35	0.21	0.28	0.02	26.51	5.81	22.79	33.96	43.46	21.94	11.99
Sick72	0.21	0.28	0.02	28.29	5.85	22.83	33.85	43.58	21.97	12.31
Sonar	0.22	0.26	0.01	19.19	0.14	1.24	1.37	0.97	1.88	1.11
Thyroid	0.26	0.90	0.10	40.77	24.85	57.76	62.22	21.39	37.22	21.12
Tictac12	0.19	0.02	0.01	8.93	0.27	4.14	6.04	0.30	7.54	15.16
Tictac26	0.19	0.02	0.01	9.19	0.28	4.31	6.16	0.31	7.83	15.27
Tictac32	0.19	0.02	0.01	9.45	0.29	4.56	6.36	0.31	7.71	15.55
Waveform	0.21	0.28	0.02	27.79	5.63	22.63	32.83	29.62	16.19	1.44
Yeast	0.19	0.05	0.02	12.80	0.52	7.66	10.98	0.54	11.45	2.41
Average	0.21	0.22	0.03	18.48	7.09	16.90	23.40	10.98	14.34	13.03

1878 I.2 EMPIRICAL RUNTIME COMPARISON

1880 To evaluate real-world efficiency, we measured the total runtime for all methods on the 19 tabular
 1881 datasets. All runtime experiments in this section were conducted on a machine equipped with an
 1882 NVIDIA RTX 2060 GPU (6 GB), an AMD Ryzen 7 4800H CPU, and 16 GB of RAM. This setup
 1883 differs from the main experiments (which used an RTX 4090 server), serving to demonstrate the
 1884 accessibility and efficiency of our method on standard hardware.

1885 The runtime results in Table 27 illustrate the trade-off between computational cost and model com-
 1886 plexity. Traditional distance-based methods like KNN and IForest are extremely fast due to their
 1887 algorithmic simplicity, but as shown in the main text, they often fail to capture complex anisotropic
 1888 patterns, resulting in lower detection accuracy. In contrast, deep learning-based approaches such as
 1889 AutoEncoder and HGAD are significantly slower (averaging 18.59s and 24.67s, respectively) due
 to the necessity of iterative gradient descent over many epochs. PGBC achieves an average runtime

of **13.03s**, positioning it advantageously between these two extremes. It is nearly **2x faster** than HGAD and consistently outperforms other iterative methods like DAGMM. This efficiency indicates that PGBC successfully avoids the heavy computational burden of deep neural networks while providing a sophisticated probabilistic description that surpasses simple distance-based baselines, making it a highly practical solution for real-world anomaly detection tasks.

I.3 MODEL COMPACTNESS ANALYSIS

Tabular Data Analysis. To complement the reduction factor analysis in the main text, Figure 8 presents the number of components required by traditional GBC versus PGBC across all 19 tabular datasets. It is evident that PGBC achieves a consistent and dramatic reduction in model complexity. For instance, on the *Sick72* dataset, traditional GBC requires 1009 isotropic balls to cover the data, whereas PGBC achieves a more precise coverage with only 44 ellipsoidal components. Similarly, on *Waveform*, the count drops from 740 to 23. This confirms that PGBC’s covariance-aware modeling effectively eliminates the need for excessive recursive splitting in real-world anisotropic regions.

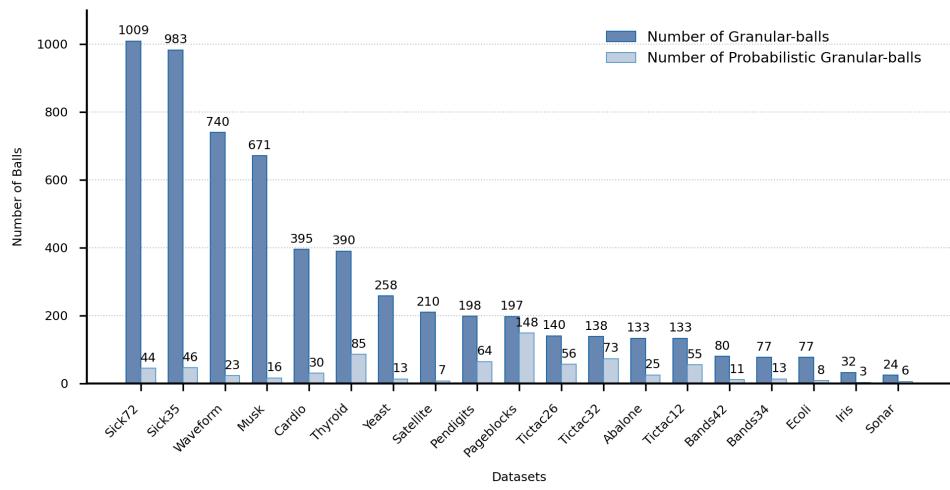


Figure 8: Comparison of model complexity (absolute number of granular-balls) on 19 tabular datasets. Dark blue bars represent traditional GBC, while light blue bars represent PGBC. PGBC consistently maintains a significantly more compact representation.

Synthetic Data Verification. To evaluate the efficiency of PGBC in idealized scenarios, we analyzed four synthetic datasets: Two Circles, Two Moons, Intersecting, and DB. Figure 9 reports the number of granular-balls required by traditional isotropic Granular-Ball Computing (GBC) versus the proposed PGBC. Quantitatively, PGBC achieves a dramatic reduction in model size, reducing the component count by factors ranging from $7.5\times$ to $26.8\times$. As visually demonstrated in **Appendix K** (see Figure 11), this compactness stems from PGBC’s superior adaptivity: unlike GBC, PGBC aligns ellipsoidal boundaries with the underlying data geometry, eliminating the need for unnecessary splits in anisotropic regions. This results in a highly parsimonious representation that significantly lowers computational cost without sacrificing data coverage or detection accuracy.

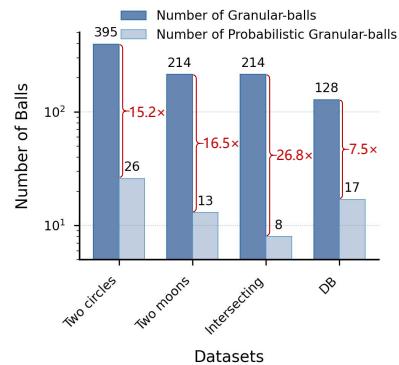
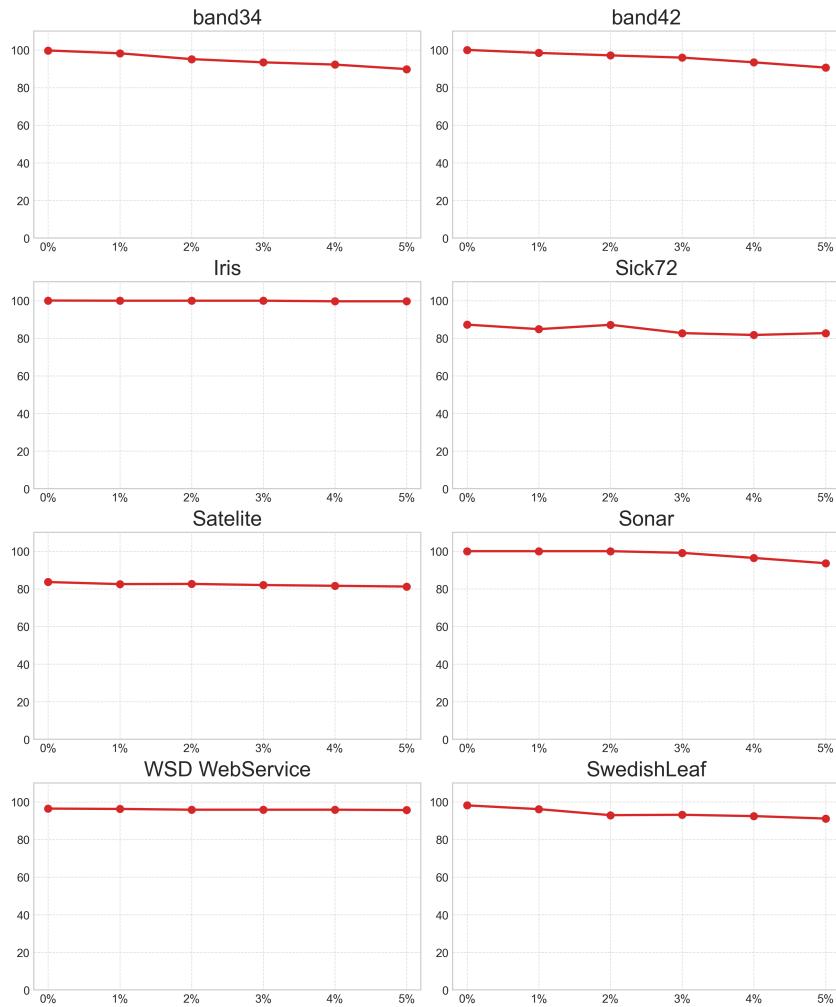


Figure 9: Comparison of model complexity on 4 synthetic datasets. The chart highlights the reduction in the number of granular-balls required by PGBC compared to traditional GBC.

1944 J ROBUSTNESS TO CONTAMINATION

1946 To evaluate the robustness of PGBC against label noise, we conducted experiments by introducing
 1947 varying ratios of anomalies (from 0% to 5%) into the training sets of eight representative datasets.
 1948 These datasets span diverse domains, including six tabular datasets (e.g., *Bands34*, *Iris*, *Sonar*),
 1949 one time series dataset (*WSD WebService*), and one open-set recognition dataset (*SwedishLeaf*),
 1950 ensuring a comprehensive assessment across different data modalities.

1951 As shown in Figure 10, PGBC demonstrates remarkable stability across most scenarios. On datasets
 1952 with clear structural separation like *Iris* and *WSD WebService*, the performance drop is negligible
 1953 ($\leq 1\%$), indicating near-perfect immunity to contamination. Even on challenging datasets such
 1954 as *Bands34* and *Bands42*, where the AUC decreases by approximately 10%, the model exhibits
 1955 a graceful degradation, maintaining absolute scores above 89%. This resilience stems from the
 1956 statistical rigor of the granular-ball splitting process, which effectively isolates sparse noisy samples
 1957 and prevents them from distorting the learned normal data distribution.



1991 Figure 10: Robustness analysis on eight datasets under varying training data contamination rates
 1992 (0% to 5%). PGBC demonstrates high stability across tabular, time series, and open-set tasks, with
 1993 minimal performance loss in most scenarios.

1998
1999

K VISUALIZATION STUDIES

2000
2001
2002
2003
2004
2005

Beyond the quantitative results reported in the main text, we include visual comparisons that highlight the covering behavior of different granular-ball approaches. Figure 11 shows how probabilistic granular-balls, unlike traditional isotropic granular-balls, adapt their shape and orientation to local data structure. On synthetic datasets with curved or elongated clusters, this adaptivity allows PGBC to cover distributions with fewer and more compact components, providing an intuitive complement to the quantitative gains discussed earlier.

2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016

To further illustrate the refinement behavior of PGBC, we visualize the probabilistic granular-ball splitting process on four representative datasets: two tabular datasets (*abalone*, *pageblocks*), one benchmark time series dataset (*SMD Facility*), and one repurposed UCR dataset (*Synthetic Control*). For tabular data with large sample sizes and inherent clustering structures, PGBC progressively splits coarse coverings into compact ellipsoidal components that align with cluster boundaries (Figures 12 and 13). For time series data, embeddings often lie on smooth manifold-like trajectories; here PGBC adaptively stretches ellipsoids along principal directions, preserving continuity while capturing subtle deviations (Figure 14). For UCR datasets with multiple interleaved classes, PGBC refines granular-balls into anisotropic coverings that disentangle overlapping patterns and highlight out-of-distribution behaviors (Figure 15). Together, these visualizations demonstrate PGBC’s ability to handle heterogeneous structures across static and temporal domains.

2017
2018
2019
2020
2021
2022
2023
2024

To complement the quantitative results, we further visualize anomaly detection outcomes on the six time series datasets used in our experiments. [To generate the continuous point-level anomaly score curves shown in these figures, we aggregated the window-level outputs: specifically, the score for each time step is calculated by averaging the hierarchical log-likelihoods of all overlapping sliding windows covering that point.](#) Each plot overlays the raw sequence with ground-truth anomalies and those detected by PGBC. As shown in Figure 16 and Figure 17, the detected anomalies closely follow the true labels, capturing both sharp point anomalies and subtle contextual deviations across diverse temporal settings.

2025
2026
2027
2028
2029
2030
2031
2032
2033
2034

Building on these insights, we further provide a specific case study of our method’s anomaly detection performance on the UCR Adiac dataset, a benchmark for challenging time series. The visualization in Figure 18 provides a dual-panel view. The top panel compares the Dynamic Time Warping Barycenter Averaging (DBA) mean curves of normal samples, ground-truth anomalies, and the anomalies detected by PGBC. The close alignment of the detected anomaly mean curve with that of the ground-truth, and its significant divergence from the normal samples’ mean, visually validates our method’s ability to precisely capture the intrinsic patterns that define an anomaly. The bottom panel of Figure 18 overlays all samples, where the detected anomalies are shown to align perfectly with the ground-truth anomalies. This powerful visual evidence confirms that our method accurately pinpoints the exact locations and shapes of true anomalies, thus complementing the quantitative performance metrics with a clear demonstration of our method’s high precision.

2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

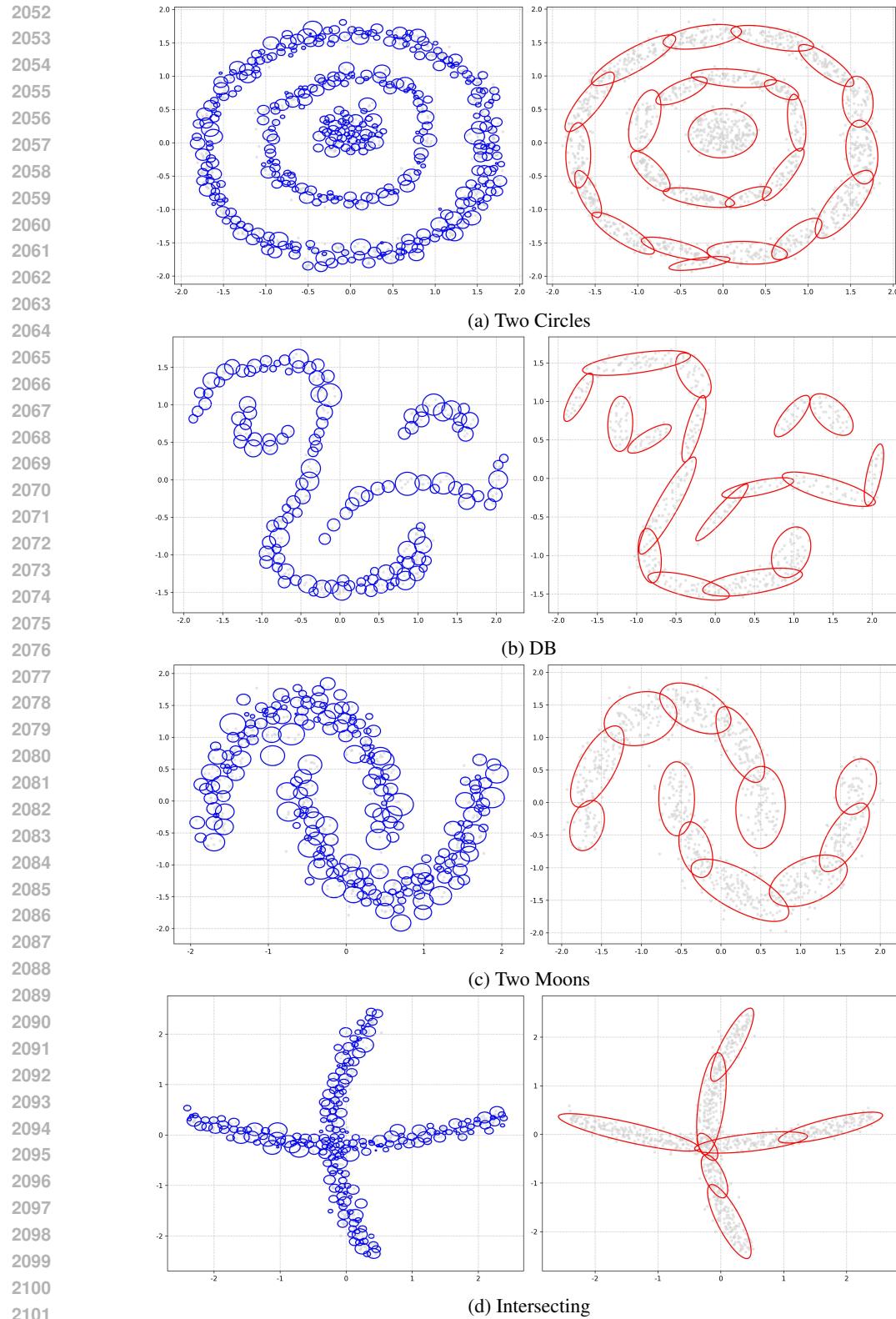
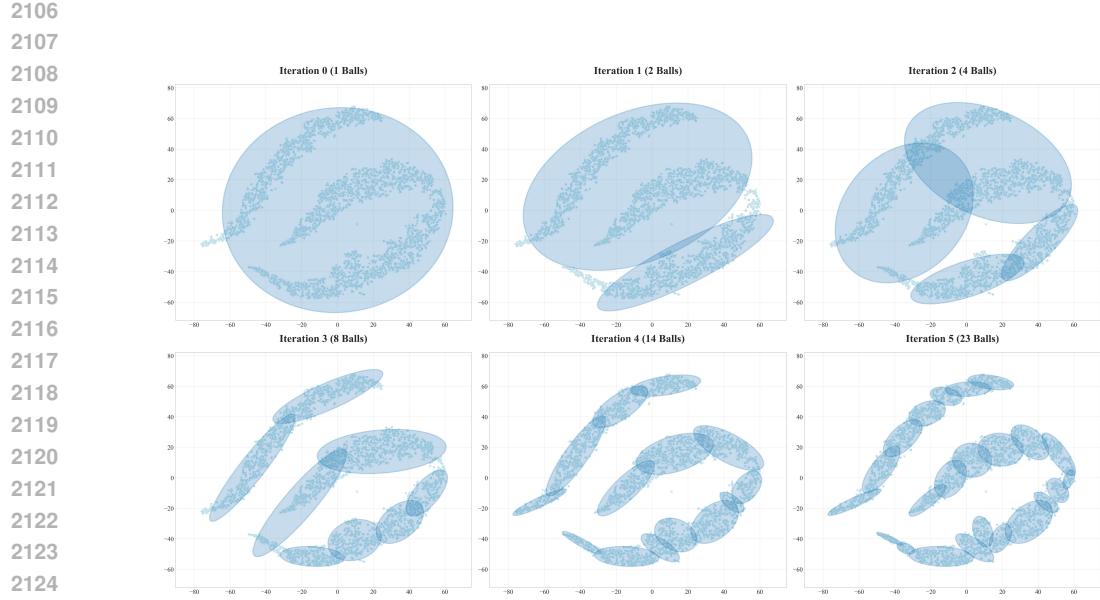
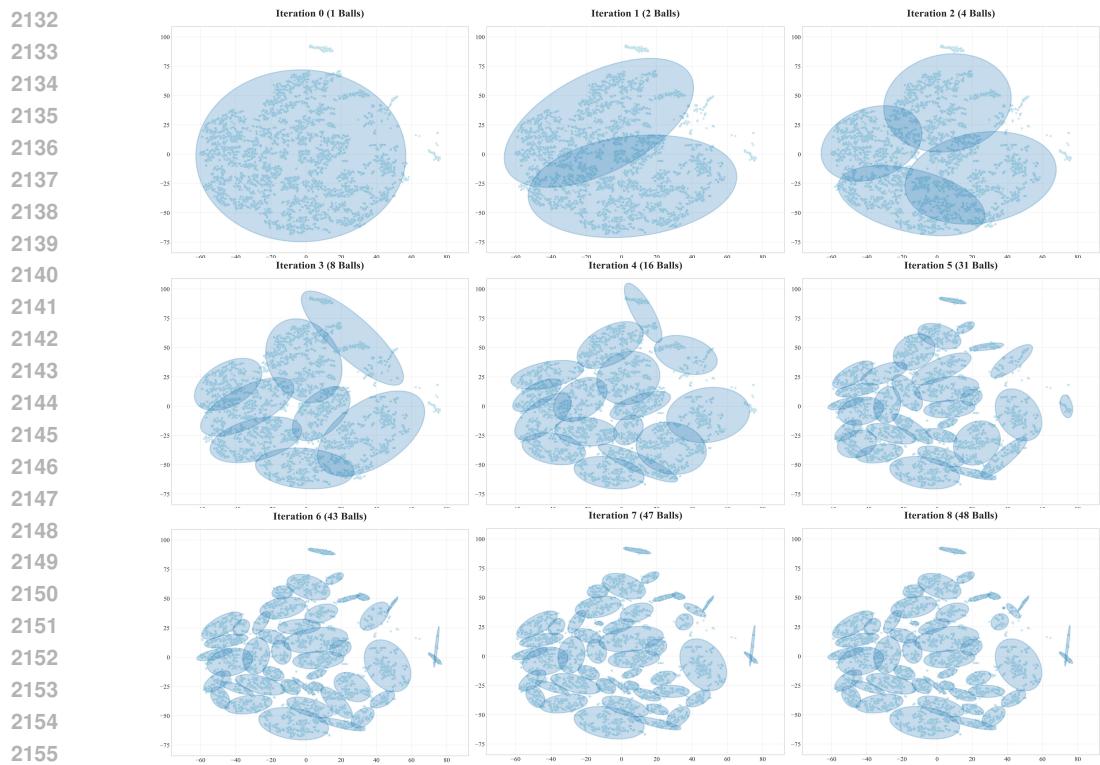


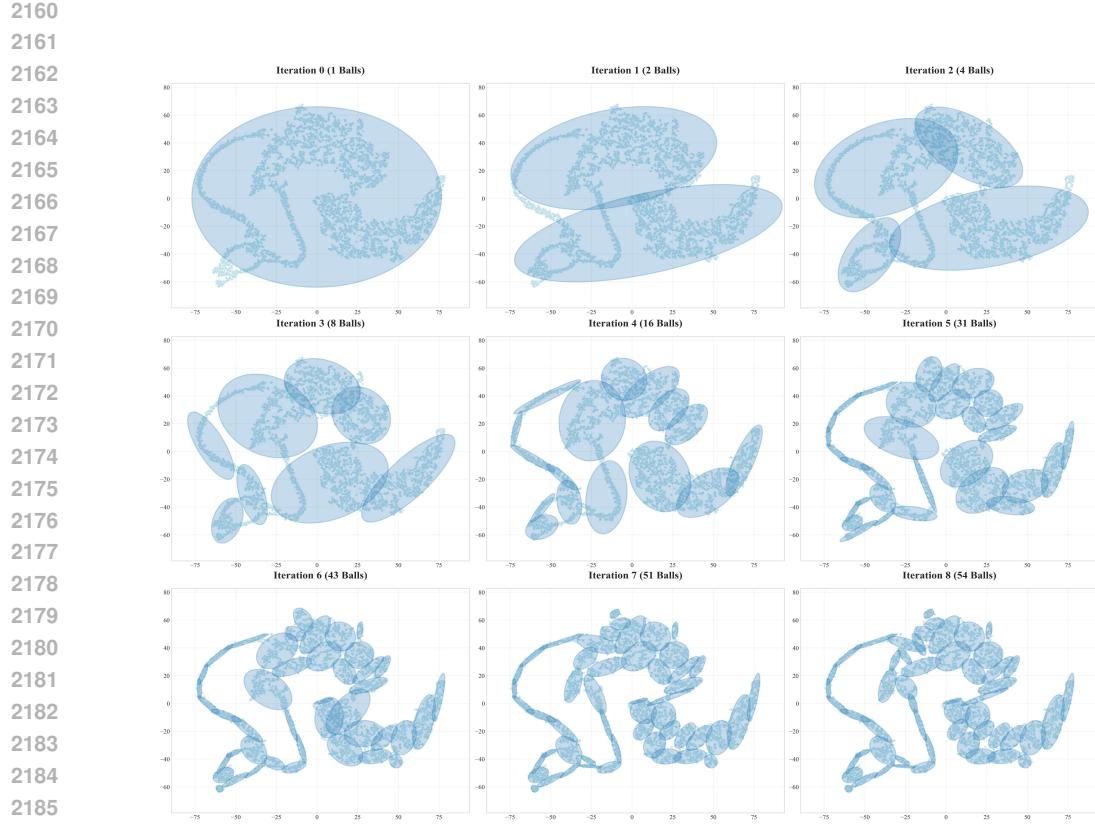
Figure 11: Visualization of granular-ball generation on synthetic datasets. Comparison between traditional isotropic (left) and probabilistic ellipsoidal (right) granular-balls.



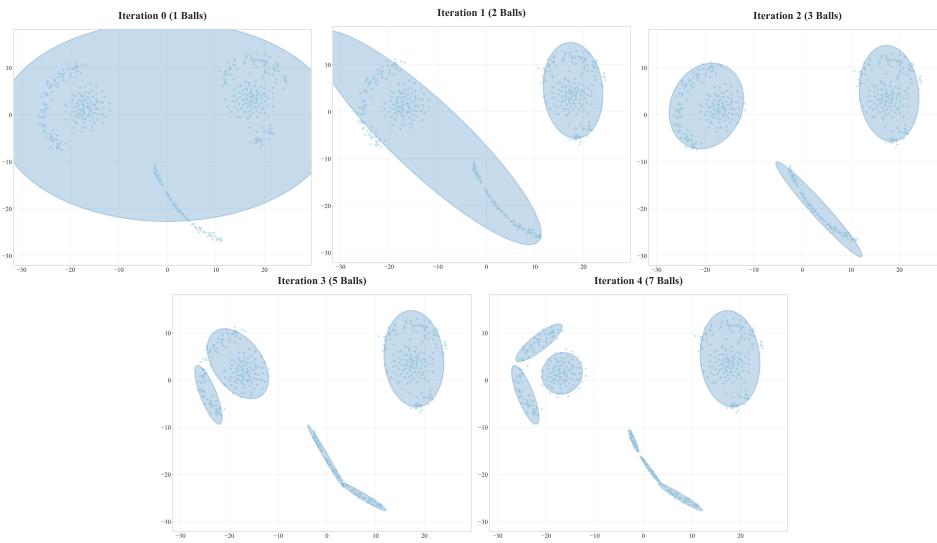
2126 Figure 12: Visualization of the probabilistic splitting process on the *Abalone* dataset. PGBC refines
 2127 coarse coverings into ellipsoids that align with natural group boundaries.



2157 Figure 13: Visualization of the probabilistic splitting process on the *Pageblocks* dataset. PGBC
 2158 adapts to heterogeneous distributions by stretching ellipsoids along anisotropic directions.



2187 Figure 14: Visualization of the probabilistic splitting process on the *SMD Facility* time series dataset.
 2188 PGBC aligns ellipsoids with smooth manifold-like embeddings, preserving temporal continuity.



2211 Figure 15: Visualization of the probabilistic splitting process on the *Synthetic Control* dataset.
 2212 PGBC disentangles interleaved class structures by forming anisotropic coverings.

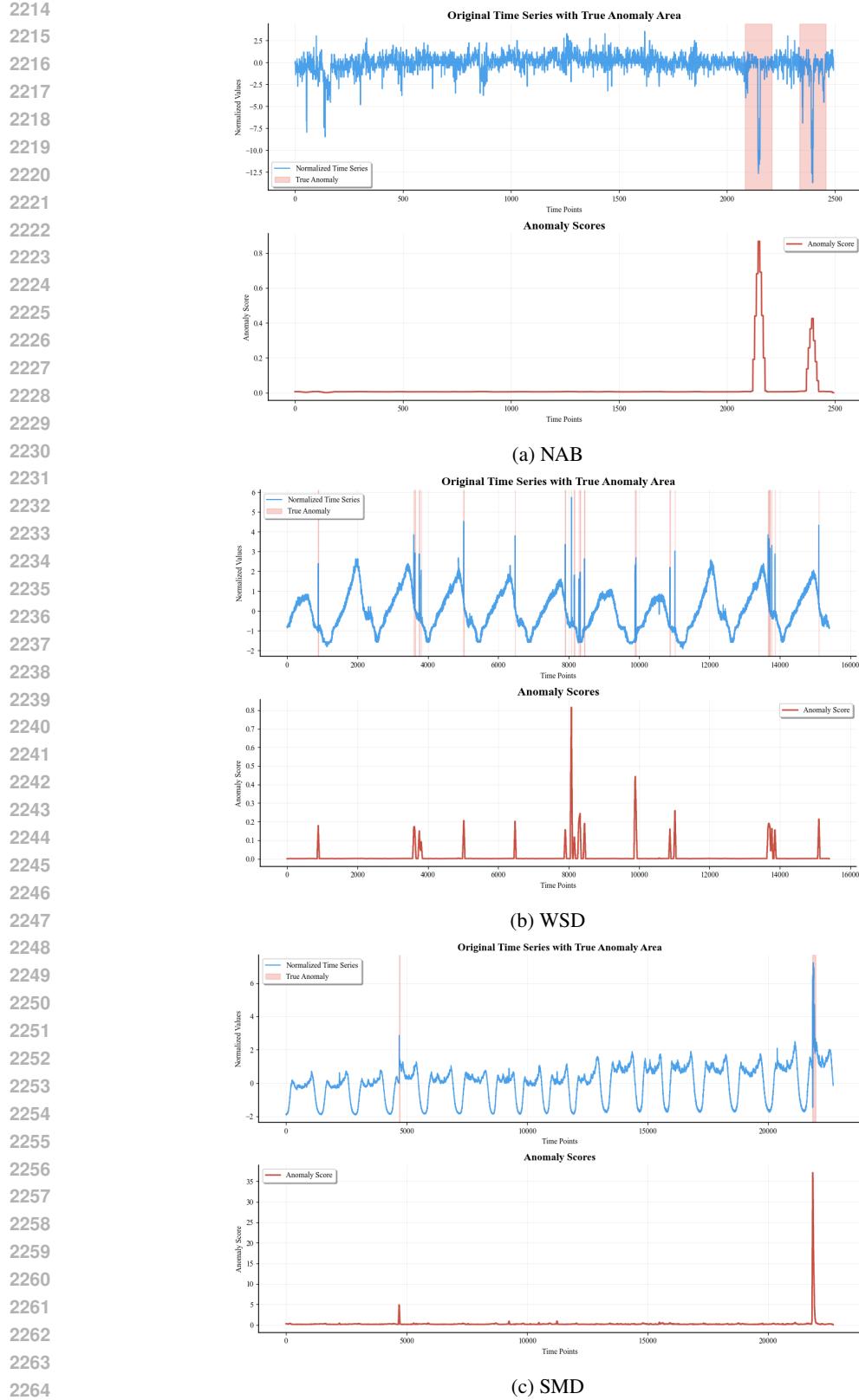


Figure 16: Visualization of anomaly detection results on time series datasets (Part 1). (a) NAB, (b) WSD, and (c) SMD. Panels show raw sequences (blue), ground-truth anomalies (red shading/bars), and detected anomaly scores (red lines).

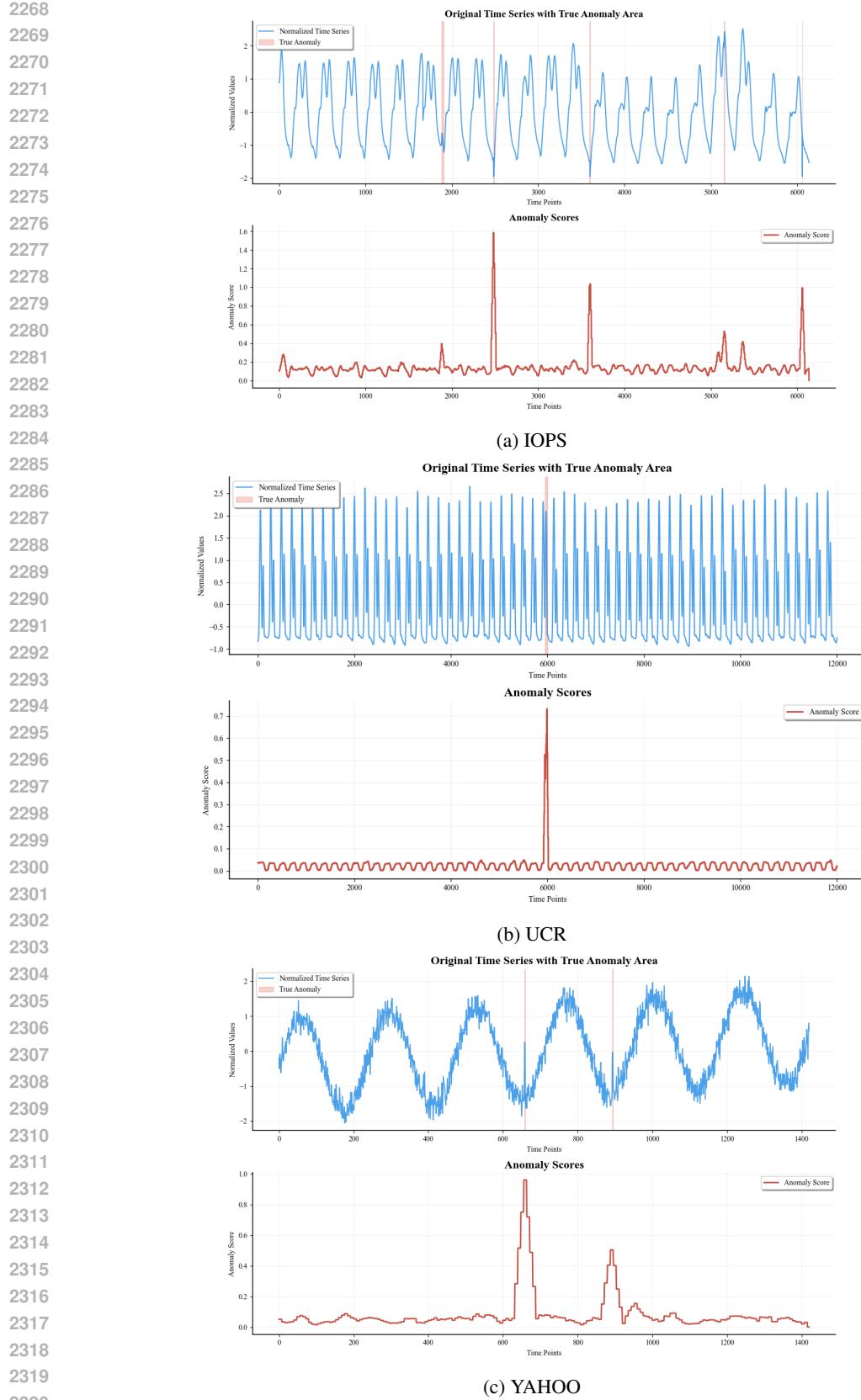


Figure 17: Visualization of anomaly detection results on time series datasets (Part 2). (a) IOPS, (b) UCR, and (c) YAHOO. Panels show raw sequences, ground-truth anomalies, and detected anomaly scores.

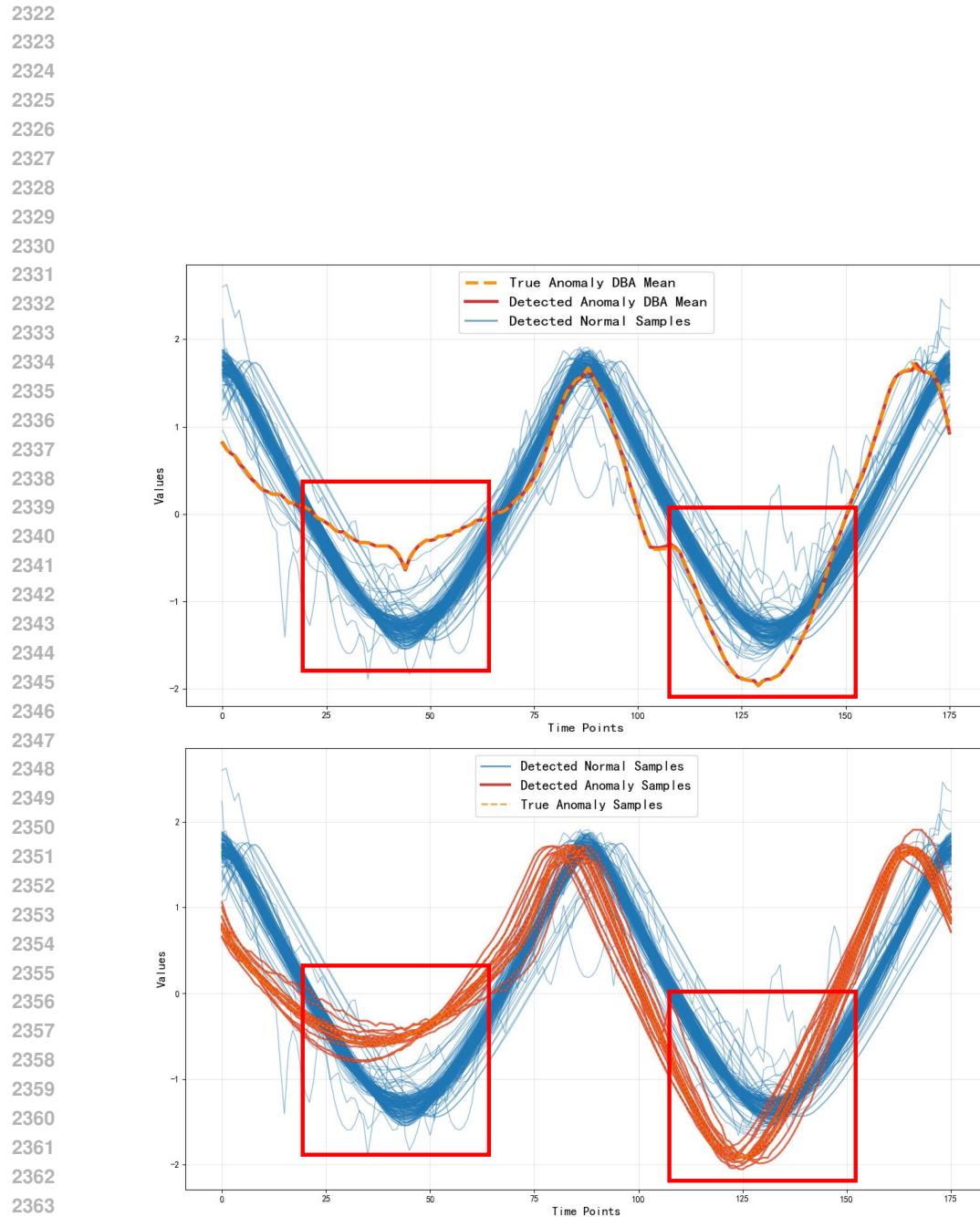


Figure 18: Case study on the UCR Adiac dataset. (Top) Comparison of DBA mean curves for normal, anomalous, and detected samples. (Bottom) Visualization of detected anomalies (red boxes) aligning with ground-truth patterns.