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ABSTRACT

One-class data description aims to model the distribution of target data by con-
structing a compact representation of the target class. This approach is widely
applied in tasks like anomaly detection, where the objective is to differentiate
the target data from outliers. Traditional methods typically rely on single-sphere
or pre-defined multi-sphere representations. However, these simplistic assump-
tions often fail to capture the anisotropic structures and intricate patterns present
in real-world data, limiting their effectiveness in representing distributions across
multiple scales. To address these limitations, we propose Probabilistic Granular-
ball Computing (PGBC), a hierarchical framework for one-class data description.
PGBC uses ellipsoidal granular-balls to align with the anisotropic geometry of
data and recursively refines them through statistical splitting, achieving precise
and adaptive data representation. Additionally, PGBC approximates a hierarchical
Gaussian mixture model by aggregating data description scores via granular-ball
distribution entropy at each layer. This enables PGBC to capture data patterns
at multiple levels of granularity, modeling both global structures and fine local
variations. Extensive experiments on benchmark datasets demonstrate that PGBC
consistently outperforms related strong baselines, offering superior accuracy for
hierarchical one-class data description while maintaining a low false positive rate.

1 INTRODUCTION

One-class classification has become increasingly critical in real-world scenarios where acquiring
representative anomalous samples are impractical, unpredictable, or even hazardous such as in me-
chanical failure detection (Pang et al.l 2021)), arrhythmia diagnosis from ECG signals (Kavya et al.,
2024), or cybersecurity intrusion monitoring (Patcha & Parkl [2007). In these domains, anomalies
are not only rare but also highly diverse in form and origin, making it infeasible to comprehensively
define them through labeled datasets. To address these challenges, one-class data description focuses
solely on modeling the intrinsic structure of normal data, without requiring labeled anomalies (Pi-
mentel et al., | 2014; Ruff et al., 2018). Unlike conventional supervised approaches that rely on both
normal and abnormal examples, one-class methods construct a reference model of normality and
identify inputs that deviate from this reference as potential anomalies (Scholkopf et al., 2001} Tax &
Duin, 2004)). By isolating the learning process from the variability and unpredictability of anomalous
events, one-class data description offers a robust and versatile framework, particularly well-suited
for safety-critical or data-scarce applications where systems must autonomously detect novel or un-
expected behaviors (Ruff et al., [2021). Nevertheless, anomaly detection in practice remains highly
challenging, as real-world data distributions often demonstrate complex and anisotropic structures,
where local density varies significantly with direction. This complexity underscores the need for
models that can achieve high detection accuracy while also ensuring low false positive rates.

Traditional one-class data description methods often rely on spherical boundaries. For instance,
Support Vector Data Description (SVDD) (Tax & Duinl 2004) encloses data in a hypersphere in
feature space, and DeepSVDD (Ruff et al., 2018) learns deep latent representations to tighten the
sphere around normal samples. Extensions such as MCDD (Lee et al. [2020) and THOC (Shen
et al} |2020) employ multiple spheres to enhance flexibility, yet they require the number of spheres
to be predefined and still enforce isotropic boundaries.
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Granular-ball computing (Xia et al) 2019; 2020; Xie et al., |2025) offers an adaptive alterna-
tive by automatically generating multiscale hyperspheres without predefining their number. While
more flexible, existing granular-ball methods (e.g., GBDO, GBMOD) also assume isotropic shapes,
which struggle with elongated clusters and lead to redundant overlapping spheres when modeling
anisotropic geometries. As illustrated in Figure [T} isotropic sphere-based granular-ball approaches
approximate clusters using equal-radius contours to define simplified boundaries. In such repre-
sentations, two points that are equidistant from a centroid are always assigned the same anomaly
score, thereby ignoring that real data often concentrates heavily along a principal component direc-
tion. Crucially, this limitation cannot be resolved by simply aggregating geometric distances (e.g.,
average distance to centroids), as iso-probability contours in anisotropic distributions often diverge
from iso-distance contours. This limitation often leads to redundant components for elongated clus-
ters and further increases the number of false positives by misclassifying points aligned with the
dominant geometry.

This motivates us to adopt the probabilistic el-
lipsoidal granular-ball depicted in Figure [T[b)
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This alignment with the intrinsic data geometry

both reduces redundancy and suppresses false Figure 1: (a) Traditional granular-ball representa-

alarms, thereby providing a more expressive tion uses isotropic spheres, which struggle to fit

and reliable framework for anomaly detection. complex or anisotropic regions without excessive

The formal definition and computational details ~ splitting. (b) The proposed probabilistic granular-

of granular-balls are provided in Appendix[A] ~ balls form ellipsoidal regions aligned with the
principal component direction, offering adaptive

In addition, AutoEncoder (Sakurada & Yairi, gpape and orientation for more efficient coverage.

2014) and Deep Autoencoding Gaussian Mix-

ture Model (DAGMM) (Zong et al., |2018)) are

also widely used to enhance expressiveness by learning compact representations. However, this
often comes at the expense of intensive training requirements and high sensitivity to hyperparame-
ters. Meanwhile, Hierarchical Gaussian Mixture Normalizing Flow Modeling (HGAD) (Yao et al.,
2024) presents a hierarchical probabilistic approach that captures anisotropic structures through
component-wise covariances and flows. However, HGAD’s reliance on a predefined structural de-
sign limits its ability to adapt to the unknown complexity of the data, as both the number of mixture
components and the hierarchical levels are fixed beforehand, rather than being dynamically learned
from the data’s intrinsic geometry.

In this paper, we propose Probabilistic Granular-ball Computing (PGBC) for hierarchical one-class
data description. PGBC models data with ellipsoidal granular-balls that adaptively align with prin-
cipal components, overcoming the geometric rigidity of spherical granular-balls. By combining
the geometric flexibility of ellipsoids with the statistical rigor of Gaussian components, PGBC pro-
vides an expressive and statistically grounded representation of data distributions. Moreover, each
granular-ball is refined iteratively using statistical criteria such as the Bayesian Information Criterion
(BIC) and log-likelihood improvement, allowing the model to adjust its complexity automatically
without deep architectures or fixed mixture sizes. For anomaly detection, PGBC organizes granular-
balls into a hierarchical structure resembling a Gaussian mixture model, where anomaly scores are
aggregated across layers using entropy-based weights, enabling detection at multiple levels of gran-
ularity. Overall, this design combines geometric adaptivity with principled statistical refinement,
providing both flexibility and robustness for one-class data description.

Our main contributions are summarized as follows:

1) We introduce probabilistic granular-ball computing (PGBC), a hierarchical one-class data descrip-
tion framework that adaptively captures local data distributions by iteratively splitting and refining
ellipsoidal granular-balls, enabling both anisotropic and probabilistic modeling of the data.
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Probabilistic Granular-ball Construction

iii) Dynamic Reassignment Iterate Steps (ii) (iii)

Hierarchical Anomaly Scoring

simal(x) = sO(x')  Score: s'(x') = —logp(x') s3(x') = —log p(x') 4T

If no Splitting (L=0)  Entropy: ~ H® — (1) + H® - @ Level Weighting with Entropy

Figure 2: Framework of probabilistic granular-ball computing (PGBC). For data with a single prin-
cipal component (no splitting), the model simplifies to a single global Gaussian.

ii) To complement this, we propose a systematic anomaly scoring mechanism that aggregates like-
lihoods across hierarchical levels by entropy-based weighting, effectively amplifying consistent ab-
normality signals while suppressing spurious noise, thereby reducing the false positive rate.

iii) Extensive experiments demonstrate the superiority of PGBC, consistently outperforming recent
state-of-the-art baselines in both tabular and time series anomaly detection tasks.

2 METHODOLOGY

Problem definition and notations. In the context of one-class data description, we are given a
set of NV training samples X = {x1,Xa,...,Xy}, Where each x; € R? is a d-dimensional feature
vector representing normal data. The goal is to learn a compact representation of the normal data
distribution p(x) based solely on X'. This description serves as the foundation for distinguishing
normal samples from anomalies. For a given test sample x’, its anomaly score is determined by
quantifying how much it deviates from the learned description of the normal data. Samples that
significantly deviate are identified as anomalies, while those that align closely with the one-class
description are classified as normal.

Overview. In this section, we formally present the proposed framework of Probabilistic Granular-
Ball Computing (PGBC). As depicted in Figure 2] the PGBC pipeline consists of two main phases:
(1) Probabilistic Granular-Ball Construction (top) and (ii) Hierarchical Anomaly Scoring (bottom).

The first phase, Probabilistic Granular-Ball Construction, adaptively builds a hierarchical one-class
data description through three core steps: (i) Initialization, (i) Recursive Splitting Strategy, and
(iii) Dynamic Reassignment. Steps (ii) and (iii) are alternated iteratively to progressively refine the
description of the underlying data distribution. At each iteration, a probabilistic model is fitted to
the data encapsulated within a granular-ball, which is then divided into smaller components. Each
granular-ball models a local Gaussian distribution, and this recursive process systematically con-
structs a data-driven mixture tree. The resulting hierarchy captures both global and local structures
of the normal data, providing a comprehensive and adaptive probabilistic one-class description.

The second phase, Hierarchical Anomaly Scoring, leverages the constructed hierarchy to compute
anomaly scores for test samples of the data. Instead of relying solely on the leaf-level granular-
balls, PGBC aggregates scores across multiple levels of the hierarchy. This multilevel aggregation
combines both global and local perspectives, enabling robust anomaly detection by capturing coarse-
grained and fine-grained patterns in the data. By integrating information from different levels, PGBC
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ensures that anomalies are ultimately and effectively identified, regardless of whether they deviate
from global trends or local structures.

2.1 PROBABILISTIC GRANULAR-BALL CONSTRUCTION

To capture the anisotropic and locally-varying structures of data, we extend classical granular-balls
into a data-driven hierarchical structure composed of ellipsoidal probabilistic components. Each
region is represented by a Gaussian distribution, with its mean and covariance matrix adaptively
estimated to align with the local data geometry. This approach systematically captures structural
variability and enables flexible density estimation across multiple levels of granularity. Formally,
the definition of a probabilistic granular-ball is provided in Definition [I]

Definition 1 (Probabilistic Granular-Ball). A probabilistic granular-ball B is a Gaussian approxi-
mation in R defined by the following parameters: i) A mean vector ;. € R?, representing the center
of the data distribution within the region. ii) A covariance matrix ¥ € R**9, encoding the shape,
orientation, and dependencies within the data distribution of the region.

The PGBC framework constructs a hierarchical density representation of the data by sequentially
executing three main steps: i) Initialization, ii) Recursive Splitting, and iii) Dynamic Reassignment.
Steps 2 and 3 are performed alternately to iteratively refine and model underlying data distribution.

Step 1: Initialization. The construction process begins with an initial probabilistic granular-ball
B9 that encapsulates the entire dataset X'. The parameters of B(?) are computed as follows:

N N
1 1
(0)_72 ) (0)_72 OV, (ONT
2 =N Xi, X T N_1 (xi—p) (ki —p™) (1)

i=1 i=1

where 1) is the empirical mean and X(%) is the covariance matrix. In practice, ¢ > 0 (set to 106
in our implementation) is a small regularization term added to ¥(°) to ensure numerical stability. At
this step, B(?) serves as the root of the tree hierarchy, capturing the global structure of the data.

Step 2: Recursive Probabilistic Granular-ball Splitting. To refine the density representation,
each granular-ball B(Y) (parent ball) is recursively split into smaller components if the data within
it exhibits sufficient structural variability. This recursive process systematically decomposes the
complex global data distribution into simpler, statistically validated ellipsoidal components.
The splitting strategy is governed by a dual-criterion rule, ensuring that the decision to split is both
statistically sound and adaptive to the data structure.

Splitting rule. A granular-ball BY) is split into two child granular-balls Bng) and Bglﬂ) if and
only if the following two criteria are satisfied:

BIC(M,) < BIC(M;), and AlogL > 0. 2)

Here, M, represents the model of B%) as a single Gaussian model, while M, represents B() as
a two-component Gaussian Mixture Model (GMM). The splitting rule is designed to ensure that
splitting occurs only when the two-component model offers a statistically significant improvement
over the single Gaussian model.

The two criteria used in the splitting rule are defined as follows:

i) Bayesian Information Criterion (BIC). The Bayesian Information Criterion (Schwarz, [1978) eval-
uates the trade-off between model complexity and data fit. It is computed as:

BIC(M) = —2log L(M) + klog N, 3)

where £(M) is the likelihood of model M, k is the number of free parameters in the model, and N
is the number of data points within B 0, Crucially, the BIC term acts as a statistical regularizer,
penalizing excessive complexity to ensure that splitting is driven by significant structural gains rather
than local noise. A lower BIC indicates a better balance between model simplicity and accuracy.
Splitting is preferred if the two-component model M5 achieves a lower BIC than the single Gaussian
model M.
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ii) Log-likelihood gain (LLG). The log-likelihood gain (Fisher, [1922; Wilks| [1938)) measures the
improvement in data fit when replacing the single Gaussian model (M7) with the two-component
GMM (M>). It is computed as:

N

Alog £ =" [log par, (xi) — log par, (xi)] , )

i=1
where py, (x;) and pyy, (x;) are the likelihoods of x; under models M; and Mo, respectively. A
positive A log £ indicates that the two-component GMM (M5) provides a better fit to the data.

If the splitting rule is satisfied, the parent granular-ball B() is divided into two child granular-balls

Bglﬂ) and BSH) , each modeled as Gaussian components. After splitting, these child granular-balls
inherit local data properties and are treated as new candidates for further splitting. This recursive
process continues until no granular-ball satisfies the splitting criteria, resulting in a hierarchical rep-
resentation of the data. However, splitting alone may leave some data points assigned to suboptimal
granular-balls. To address this, a dynamic reassignment step is performed after each split.

Step 3: Dynamic Reassignment. To ensure consistency and improve local fit, each data point
x € X is reassigned to the granular-ball that maximizes its log-likelihood:

B*(x) = arg maxlog ps, (x), (5)

where pp, is the Gaussian density parameterized by (jz;,%;) for granular-ball B;. Dynamic re-
assignment ensures that the hierarchical structure adapts to the evolving density distribution. By
reallocating data points to the granular-balls that best represent their local characteristics, the frame-
work maintains an accurate and adaptive representation of the data. After each round of splitting,
dynamic reassignment is performed to refine the data distribution within the granular-balls.

This alternating process of splitting and reassignment continues iteratively until the hierarchical
structure stabilizes. The resulting tree hierarchy encapsulates the global structure at the root, pro-
gressively refines intermediate levels, and captures fine-grained local patterns at the leaves. This
hierarchical organization enables the framework to effectively balance global and local density esti-
mation, providing both coarse and fine-grained insights into the data distribution.

The whole construction procedure is summarized in Algorithm [I]in Appendix [B}

2.2 HIERARCHICAL ANOMALY SCORING

After constructing the hierarchical structure of probabilistic granular-balls, the PGBC framework

represents the normal data distribution in a coarse-to-fine manner. Each level [ € {1,..., L} in the
hierarchy contains a set of granular-balls {BEZ)}f:(lf. Specifically, the hierarchical scoring aggre-

gates information from levels [ = 1 to L. The root level (I = 0) serves as a fallback representation:
in the degenerate case where no splitting occurs (L = 0), the anomaly score is derived exclusively
from the single global Gaussian at [ = 0.

For a test sample x’, an anomaly score is calculated by combining information from all levels of the
hierarchy. At each level /, the anomaly score is based on the negative log-likelihood of the sample
under the Gaussian components defined by the granular-balls at that level:

KO
1 ) «(
sO(x') = —log ZW;)-N(X’|N§),E§)) , (6)
j=1

j(-l) represents

where NV (x' | u;l), Eg-l)) is the Gaussian density defined by the j-th granular-ball, and 7

the normalized weight of the j-th granular-ball. The weight 7r§l) reflects the relative importance of

the granular-ball in the overall probabilistic distribution and is computed as:

0 _ n

7Tj - KO ) (7)
k=1 "tk

where n; is the number of data points covered by granular-ball B](-l). This level-wise score s(*) (x")
evaluates how well the sample aligns with the normal data distribution at level [, with higher scores
indicating greater deviation.
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Level Weighting with Entropy. To fully utilize the hierarchical structure, anomaly scores are ag-

gregated across all levels. First, the scores at each level are normalized using min-max scaling to
O (x")—min(s®
: .oz N s (x")—min(s'") . l I
ensure consistency: 5 (x’) = D) —min G where min(s(")) and max(s(")) are computed
from the training data. The final anomaly score is then calculated as a weighted sum of the normal-
ized scores across all levels:

L
sana(x') = w50 (x), (8)
=1

where w®) is the weight assigned to level I, reflecting its importance in the anomaly scoring
process. Here, the weights w(") are determined using an entropy-based scheme. The entropy
of level [ quantifies its granularity and confidence in representing the data distribution: H(®) =

W 4. .
- ZK Uy log (n—J\;) where n; is the number of samples covered by granular-ball B;l), and N is

j=1 N

the total number of samples. Higher entropy indicates a finer-grained partition of the data at that
. . ® .

level. The weight for each level is then computed as: wl = LHiH(l,) Since the root layer

=1
(I = 0) encompasses the entire dataset, it yields zero entropy and is inherently excluded from the

weighted sum when L > 1. This allows the scoring mechanism to focus on the refined structural
information provided by subsequent levels. Consequently, the root node B(?) contributes to the final
score only in the degenerate case (L = 0), as established earlier. By combining information across
levels, the PGBC framework produces a hierarchical anomaly score that effectively captures devia-
tions in both global and local patterns. The detailed pseudocode for the scoring process is provided
in Algorithm [2]in Appendix

3 EXPERIMENT

Setup. We evaluate the proposed PGBC framework across three key tasks: (i) tabular anomaly
detection, (ii) time series anomaly detection, and (iii) time series open-set recognition. For each
task, PGBC is systematically compared against a diverse range of classical and deep learning base-
line methods, including Isolation Forest (Liu et al., 2008), Local Outlier Factor (LOF) (Breunig
et al.,|2000), k-Nearest Neighbors (k-NN) (Peterson), 2009), AutoEncoder (Sakurada & Yairi,[2014),
DeepSVDD (Ruff et al., |2018), DAGMM (Zong et al., [2018), the hierarchical Gaussian-mixture
method HGAD (Yao et al., [2024), as well as granular-ball-based approaches GBMOD (Cheng et al.}
2025)) and GBDO (Su et al., 2025)).

All experiments are conducted on a single NVIDIA RTX 4090 GPU, with fixed random seeds to en-
sure reproducibility. Model performance is evaluated using the Area Under the Curve (AUC) metric,
averaged over five independent runs for robustness. Detailed descriptions of the datasets, encoder
configurations, baseline implementations, and evaluation protocols are provided in Appendix[C]

3.1 TABULAR ANOMALY DETECTION

Opverall Results. We evaluate PGBC on 19 tabular datasets spanning manufacturing, cybersecurity,
and medical diagnostics (Cheng et al., [2025). Features are normalized and models are trained only
on normal samples. This evaluation tests PGBC'’s ability to model heterogeneous, static data across
a range of anomaly ratios. Table |l presents the mean AUC scores (averaged over five independent
runs), with standard deviations provided in Appendix [D] PGBC achieves the highest mean AUC on
13 out of 19 datasets and consistently ranks among the top-performing methods, highlighting its
robustness and effectiveness across diverse data types.

Analysis of Representative Scenarios. i) Typical Datasets: On datasets with clear structures,
such as the Bands and Tictac variants, PGBC demonstrates exceptional performance by achieving a
perfect AUC score of 100.0%, demonstrating reliable performance even in cases where data exhibit
no significant structural challenges. ii) Imbalanced Datasets with Low Anomaly Ratios: PGBC
excels on datasets with extremely low anomaly ratios. On Thyroid (0.81% anomalies), it obtains the
state-of-the-art AUC of 71.2%, surpassing all baselines including GBMOD (69.7%). Similarly, on
Yeast (0.44% anomalies), it scores a perfect 100.0% AUC, matching the strongest competitors. This
robustness stems from its hierarchical scoring strategy, which integrates information across multiple
levels of granularity to mitigate majority-class bias in highly imbalanced settings.
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Table 1: AUC results (%) on tabular anomaly detection tasks averaged over five runs. Standard devi-
ations are omitted for brevity (see Appendix [D|for full results). Bold indicates the best performance,
and underline indicates the second best. Abbreviations: AE = AutoEncoder, D.SV = DeepSVDD,
DAG = DAGMM, GBM = GBMOD.

Datasets | LOF IForest KNN AE D.SV DAG HGAD | GBM GBDO | Ours

Abalone 75.6 70.2 69.3 79.9 68.2 57.0 75.2 78.0 76.3 72.1
Bands34 74.8 79.2 71.5 77.8 64.8 53.0 80.7 71.7 71.0 100.0
Bands42 75.9 78.3 76.3 76.1 63.1 51.0 719 76.9 70.4 100.0

Cardio 82.6 85.9 80.5 76.5 77.3 70.0 75.8 86.5 66.4 84.0
Ecoli 85.1 84.1 87.6 88.1 86.8 40.0 88.3 85.1 89.8 89.4
Iris 91.6 100.0 97.8 93.8 834  99.0 98.5 100.0 74.8 100.0
Musk 100.0 96.9 100.0  100.0 99.7 100.0  100.0 91.1 25.9 100.0

Pageblocks | 98.2 98.3 99.6 922 98.4 66.0 99.7 99.5 96.2 99.9
Pendigits 99.3 97.5 98.9 94.4 91.1 77.0 99.4 98.4 74.2 99.5

Satellite 84.5 79.4 87.6 80.6 83.3 80.0 823 855 80.4 83.1
Sick35 73.7 89.3 89.1 85.2 83.8 57.0 88.8 89.1 83.6 87.4
Sick72 61.2 81.4 83.5 814 773 56.0 82.2 79.1 79.6 87.3
Sonar 98.9 99.4 99.6  99.1 76.3 79.0 98.4 98.9 63.7 100.0
Thyroid 53.5 63.3 65.8 60.3 639 440 66.0 69.7 68.6 73.0

Tictac12 97.6 98.6 93.6 84.6 759 54.0 97.0 96.8 60.7 100.0
Tictac26 92.8 95.6 91.1 76.7 64.3 48.0 95.0 88.1 54.2 100.0
Tictac32 92.2 954 93.1 76.1 64.1 46.0 93.2 86.3 55.1 100.0
Waveform 76.5 70.7 76.1 52.5 60.0  56.0 73.7 74.2 65.0 78.1
Yeast 99.1 99.7 994 996 999 430 99.7 100.0 99.2 100.0

Average | 84.9 87.6 87.8 83.0 78.0 61.9 87.6 | 87.1 714 | 911

Table 2: AUC results (%) on time series anomaly detection tasks, averaged over five runs. Standard
deviations are omitted here for clarity (full results in Appendix [D). Bold indicates the best perfor-
mance, and underline indicates the second best. AE = AutoEncoder, D.SV = DeepSVDD, DAG =
DAGMM, GBM = GBMOD.

Datasets | LOF IForest KNN AE DSV DAG HGAD | GBM GBDO | Ours
NAB Traffic 80.4 78.6 912 79.6 834 59.2 84.3 80.6 77.5 854
WSD WebService 94.3 87.2 97.0 96.0 88.6 68.5 94.0 93.6 75.1 98.8
SMD Facility 933 93.4 97.1 98.5 945 78.3 96.4 95.1 91.1 97.9
IOPS WebService 91.0 81.7 855 778 793 62.7 87.0 79.3 44.4 96.4
UCR Medical 95.6 90.8 93.0 664 932 75.5 88.7 88.5 67.7 93.5
YAHOO Synthetic | 71.3 77.2 88.6 448 714 48.1 67.2 67.0 88.9 99.8
Average ‘ 87.6 84.8 92.1 772 85.1 65.4 86.3 ‘ 84.0 74.1 ‘ 95.3

Normal
o Anomaly

0] Normal
o Anomaly

by £ 3 ) © E) & @ 2 10 o » 2

(a) UCR medical (b) WSD WebService (c) Synthetic control

Figure 3: Visualization of probabilistic granular-ball coverings on representative time series datasets.
(a) UCR Medical, (b) WSD WebService, and (c) Synthetic Control.

Summary. The experimental results align with PGBC’s design: covariance-aware, ellipsoidal mod-
eling improves robustness on anisotropic data, while entropy-weighted hierarchical aggregation
helps maintain adaptability across varying anomaly ratios.

3.2 TIME SERIES ANOMALY DETECTION

We evaluate PGBC on six benchmarks from the TSB-AD suite (Liu & Paparrizos| 2024), which
contain real-world monitoring data with accurate anomaly labels. Sequences are segmented into
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Table 3: AUC results (%) on time series open-set recognition tasks, averaged over five runs. Stan-
dard deviations are omitted for brevity (see Appendix [D]for detailed tables). Bold indicates the best
performance, and underline indicates the second best. Abbreviations: AE = AutoEncoder, D.SV =
DeepSVDD, DAG = DAGMM, GBM = GBMOD.

Datasets \ LOF [IForest KNN AE D.SV DAG HGAD GBM GBDO \ Ours
Adiac 96.6 98.1 982 97.6 985 82.7 97.9 98.8 97.3 99.2
CBF 99.7 76.7 99.7 51.0 783 52.1 92.7 95.3 61.9 100.0
Synthetic Control | 98.8 69.8 100.0 844 877 752 96.5 80.9 66.1 99.5
SwedishLeaf 88.8 95.1 96.3 846 945 73.9 97.2 95.7 88.6 99.7
Trace 87.3 89.6 949 629 669 80.0 97.1 73.1 72.2 99.6
Average \ 89.8 85.9 97.8 76.1 852 728 96.3 88.8 71.2 \ 99.6

sliding windows and encoded by a lightweight CNN (Krizhevsky et al.||2012). This evaluation ex-
amines PGBC’s behavior in noisy and dynamic environments. As shown in Table[2] we report mean
AUC over five independent runs (std omitted here for clarity; full tables with std are in Appendix D),
PGBC achieves the highest or second-highest AUC on all datasets. Furthermore, to demonstrate su-
periority over specialized deep time-series methods, we conducted an extended comparison against
generative and flow-based models such as OCFlow, and OCSVM. Detailed results are provided in
Appendix [E.T] where PGBC consistently outperforms these baselines. Figure [3(a) and (b) further
illustrate the learned granular-ball coverings on the UCR medical and WSD WebService datasets,
where each contour corresponds to a 20 boundary.

On datasets with extremely low anomaly ratios, such as SMD (0.64%) and Yahoo (0.28%), PGBC
remains highly competitive. It achieves an AUC of 97.9% on SMD, slightly below AutoEncoder
(98.5%) but higher than all other baselines, and reaches an AUC of 99.8% on Yahoo, surpassing the
second-best method (88.9%) by over 10 points. These two datasets also span the extremes of se-
quence length in our benchmarks (Yahoo with 1,421 time steps and SMD with 22,700), underscoring
PGBC'’s robustness across diverse temporal scales.

On WebService datasets such as WSD and IOPS,
the underlying time series exhibit clear periodic
patterns, which pose challenges for distance-based
methods that cannot adapt to recurring fluctuations.
PGBC achieves the highest AUC scores on both
datasets: 98.8% on WSD (surpassing KNN’s 97.0%)
and 96.4% on 10PS (outperforming LOF’s 91.0%).
This demonstrates its ability to effectively align el-
lipsoidal granular-balls with intrinsic temporal struc-
tures. Figure [] further illustrates this effect on the
IOPS dataset: PGBC produces probabilistic bound-
aries where high anomaly scores closely coincide
with ground-truth anomalies despite the strong pe-
riodicity.

Figure 4: Visualization result of PGBC
anomaly detection results on the [OPS Web-
Service dataset.

Compared with tabular data, time series embeddings

often lie on smooth manifold-like trajectories, where

adjacent segments tend to follow intrinsic orientations. Therefore, modeling such anisotropic and
continuous patterns requires flexible local structures. By orienting ellipsoidal granular-balls along
these directions, PGBC adapts naturally to temporal data and maintains robustness under noisy and
non-stationary conditions.

3.3 TIME SERIES OPEN-SET RECOGNITION

We further evaluate PGBC on five datasets from the UCR archive (Chen et al.l [2015), repurposed
for open-set recognition. The smallest class in each dataset is designated as anomalous; 80% of
the remaining classes are used for training and 20% for testing, with an additional 10% anomalous
samples injected into the test set. This setting explicitly evaluates the ability to recognize previously
unseen categories under distributional shift.
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Table 4: Summary of False Positive Rate (FPR %) and False Negative Rate (FNR %) on 19 tabular
datasets. Full per-dataset results are provided in Appendix@

Metric ‘IForest LOF KNN AE D.SV DAG HGAD GBM GBDO ‘ Ours

Avg FPR (%) | 314 319 254 331 388 429 2.40 3.07 4.57 2.36
AvgFNR (%) | | 528 501 465 572 757 849 38.7 50.2 1.7 359
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Figure 5: Comparison of model complexity (number of granular-balls) between traditional GBC and
PGBC on 19 tabular datasets.

As shown in Table [3] PGBC achieves the best performance on four out of five datasets. PGBC
achieves the highest AUC on four datasets—reaching 99.2% on Adiac, 100.0% on CBF, 99.7% on
SwedishLeaf, and 99.6% on Trace. Even on the more challenging Synthetic Control dataset, PGBC
attains 99.5% AUC, remaining competitive with the best baseline (KNN, 100.0%). These results
highlight both robustness across sequence lengths (60-275) and reliable detection of unseen classes,
enabled by entropy-weighted score aggregation.

As illustrated in Figure [3[c), PGBC adapts its ellipsoidal granular-balls to cover the interleaved
clusters of the Synthetic Control dataset. Overall, these findings demonstrate PGBC’s capability to
generalize to open-set scenarios by forming precise decision boundaries. Specifically, the ellipsoidal
modeling allows PGBC to wrap the complex manifolds of known classes tightly, minimizing the
inclusion of void space where out-of-distribution samples might erroneously fall. Furthermore,
the entropy-weighted aggregation ensures that anomaly scores reflect structural deviations across
multiple granularities, preventing the model from overfitting to specific scales. This enables reliable
rejection of unseen categories even under distributional shifts.

3.4 FALSE POSITIVE AND FALSE NEGATIVE RATE ANALYSIS

Balancing False Positive (FPR) and False Negative Rates (FNR) is critical for practical deployment.
As shown in Table [4] (full details in Appendix [D), PGBC achieves both the lowest average FPR
(2.36%) and FNR (35.9%) across 19 datasets. Unlike methods such as DeepSVDD and GBDO,
which achieve low FPR by being overly conservative (resulting in high FNR), PGBC’s probabilistic
ellipsoidal modeling constructs a precise decision boundary that minimizes false alarms without
sacrificing recall, offering a superior trade-off for safety-critical applications.

3.5 EFFICIENCY AND MODEL COMPACTNESS

PGBC drastically reduces model complexity compared to traditional isotropic Granular-Ball Com-
puting, requiring 1.3x to 41.9x fewer components (see Figure 5). As detailed in Appendix [}
this compactness directly translates to computational efficiency. On an NVIDIA RTX 2060 GPU,
PGBC achieves an average total runtime of 13.03s, nearly 2x faster than the deep probabilistic
baseline HGAD (24.67s) and striking an optimal balance between expressiveness and speed.
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Table 5: Average AUC (%) comparison on Visual Datasets. (a) Results on CIFAR-10 and FashionM-
NIST. (b) Results on MVTec-AD. Bold indicates the best performance, and underline indicates the
second best. Full details in Appendix [F] Abbreviations: AE = AutoEncoder, D.SV = DeepSVDD,
DAG = DAGMM, GBM = GBMOD, U.S=U-student.

(a) Comparison on CIFAR-10 and F-MNIST

Datasets \ DSV AE GBM KNN HGAD CutPaste Ours
CIFAR-10 695 946 946 949 95.3 73.3 95.5
FashionMNIST | 58.5 94.1 925 933 94.6 70.1 94.9

(b) Comparison on MVTec-AD

Datasets \KNN GBM HGAD CutPaste U.S PSVDD Ours
MVTec-AD \ 87.1 81.9 91.2 90.9 92.5 92.1 93.0

3.6 EXTENSION TO VISUAL ANOMALY DETECTION

To further validate the generalization of PGBC, we extended evaluation to visual domains using
pre-trained feature embeddings (512-D ViT) following the ADBench protocol 2022).
Our comparison includes feature-based baselines (DeepSVDD, AE, GBMOD, KNN, HGAD) on all
datasets, and a comprehensive mixed benchmark on MVTec-AD incorporating both feature-based

and image-based SOTA methods (e.g., CutPaste (Li et al.}[2021]), U-student (Bergmann et al., 2020),
P-SVDD (Yi & Yoon| [2020)). Full experimental details are provided in Appendix [F]

As summarized in Table 5] PGBC consistently achieves the highest average AUC across all bench-
marks. On CIFAR-10 and FashionMNIST, PGBC outperforms all feature-based baselines, surpass-
ing the second-best method HGAD (e.g., 95.5% vs. 95.3% on CIFAR-10). Crucially, on the chal-
lenging MVTec-AD industrial dataset, PGBC attains a leading AUC of 93.0%, exceeding both
feature-based competitors and specialized image-based SOTA methods such as U-student (92.5%)
and P-SVDD (92.1%). This demonstrates that PGBC effectively leverages deep feature represen-
tations to model complex visual manifolds, outperforming even methods designed for raw pixel
data. The results underscore the advantage of PGBC’s probabilistic ellipsoidal modeling over rigid
geometric approaches (e.g., DeepSVDD’s 69.5% on CIFAR-10), confirming its robustness in high-
dimensional spaces.

3.7 ABLATION STUDY SUMMARY

We rigorously validate PGBC’s design via component-wise ablations (full details in Appendix [G]
and Appendix [H). Regarding Construction, results confirm that dynamic reassignment is critical
for refining local fits, while the BIC criterion acts as an essential statistical regularizer—removing
it leads to severe overfitting (e.g., component explosion from 25 to 668 on Abalone). Regarding
Scoring, comparisons verify four key elements: (1) Hierarchy: Hierarchical aggregation consis-
tently outperforms flat “Leaf-only” strategies; (2) Metric: Probabilistic log-likelihood significantly
surpasses Euclidean distance (preventing ~18% drop on Bands34); and (3) Weighting & Nor-
malization: Entropy-based weighting and score normalization are proven essential for adaptively
prioritizing informative levels and aligning scales across granularities.

CONCLUSION

This work presented Probabilistic Granular-ball Computing (PGBC), a hierarchical framework for
one-class data description. By leveraging ellipsoidal granular-balls, PGBC effectively aligns with
the anisotropic geometry of data while requiring fewer granular-balls to represent complex distri-
butions. Its recursive refinement process governed by statistical criteria ensures precise multi-scale
data descriptions. Extensive experiments on tabular, time series, open-set, and visual benchmarks
demonstrate consistent improvements and robustness over classical and deep learning baselines, un-
derscoring its effectiveness. Future work could explore extending PGBC to streaming and online
anomaly detection, enabling deployment in dynamic, real-world environments.

10
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ETHICS STATEMENT

This work focuses solely on methodological advances in anomaly detection. All datasets employed
are standard, publicly available benchmarks, and no human subjects, sensitive personal information,
or proprietary data were involved. We therefore do not anticipate direct ethical risks arising from
this study. Nonetheless, as with other anomaly detection techniques, the proposed method could
be deployed in domains such as surveillance or security, where ethical considerations regarding
fairness, privacy, and potential misuse must be carefully assessed by practitioners.

REPRODUCIBILITY STATEMENT

We ensure reproducibility by providing a precise mathematical description of the proposed PGBC
framework in the main text, including its model formulation, splitting and reassignment rules, and
scoring functions. Additional implementation details, covering datasets, preprocessing procedures,
evaluation metrics, model configurations, and experimental settings, are included in the Appendix.
To assess robustness, three main experimental tables report the mean and standard deviation over
five independent runs. To support transparency and reproducibility, all source code and scripts will
be released upon acceptance of this paper.

USE OF LARGE LANGUAGE MODELS

This paper utilized a large language model to aid in the refinement of writing and grammar. Specifi-
cally, the model was used for tasks such as rephrasing sentences for clarity, correcting typographical
errors, and improving overall stylistic coherence. All content, research ideas, and core arguments
remain the sole intellectual property of the authors. The use of the language model was strictly
limited to polishing the written text.
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A PRELIMINARIES: GRANULAR-BALL COMPUTING

We briefly review the basic concepts of traditional granular-ball computing (GBC), which form the
foundation for our probabilistic extension.

Definition 2 (Granular-ball). A granular-ball gb is defined by its center ¢ and radius r. For a set of
objects o belonging to gb, these are typically determined as

1
CZ—ZO, r = max ||o — c||, )
|gb] = oegb
where || - || denotes the Euclidean distance.

Intuitively, a granular-ball represents a localized region in feature space summarizing a group of
similar data points. Construction is usually performed in two stages. In the first stage, the dataset is
coarsely partitioned into initial granular-balls via K-Means clustering, with the number of clusters
often set to v/n, where n is the dataset size. Each cluster forms a ball with its centroid and maximum
intra-cluster radius (Definition [2). This initialization provides a coarse but efficient covering of the
data space.

The most widely used quality measure is the distribution measure (DM) (Definition 3)), which quan-
tifies the average dispersion of points within a ball.

Definition 3 (Distribution Measure (DM)). Given a granular-ball gb with center ¢ and data points
{oi}lz-g:bll, the DM score is computed as

1
DM(gh) = 1 > lloi —cll. (10)

0;Egb

A smaller DM value indicates higher internal consistency. To refine representations, balls with
large DM are recursively split using 2-means clustering. A split is accepted if the weighted DM of
the resulting child balls is lower than that of the parent:

Definition 4 (Refinement Criterion). A granular-ball gb is refined into gby and gbs if

b b
DM, = |gb1| |gb2|
|gb] |gb]

with both sub-balls containing at least Sy points (e.g., Smin = 8).

DM((gby) + DM(gbs) < DM(gb), an

This recursive refinement continues until no further DM-reducing splits are possible, yielding a
hierarchical partition of the dataset into compact granular-balls.

In anomaly detection, methods such as Granular-Ball Mean-Shift Outlier Detector (GB-
MOD) (Cheng et al.,2025)) and Granular-Ball Density Outlier (GBDO) (Su et al.,[2025) apply GBC
to identify outliers via heuristic criteria. However, these approaches are non-probabilistic, which
limits their applicability in statistical analysis. Our PGBC framework extends GBC by associating
each granular-ball with a probabilistic Gaussian component and building a hierarchical structure via
statistically grounded refinement.
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B ALGORITHMS

For clarity and reproducibility, we provide the pseudocode of the PGBC framework. Algorithm(T|de-
scribes the construction of the probabilistic granular-ball hierarchy, starting from a global Gaussian
model and recursively applying statistical splitting criteria (BIC and log-likelihood improvement).
The resulting tree-structured representation provides hierarchical coverage of the data distribution.
Algorithm 2] presents the inference procedure for computing anomaly scores, where test samples are
evaluated across all levels of the hierarchy, normalized, and aggregated with entropy-based weights.

Algorithm 1: Probabilistic Granular-ball Construction (PGBC)

Input: Training data X' = {xy,...,2x} C R? regularizer
Output: Tree-structured hierarchy 7 of probabilistic granular-balls
Initialize:

Compute global mean £(9) and covariance =(9) + ¢J
Create root ball B(*) with (u(9), £(9)), initialize tree T
Queue Q + [BO)]

while Q not empty do
Pop granular-ball B from Q
Fit single Gaussian M and two-component GMM M, on data in B
Compute BIC(M;), BIC(My), and Alog £ = log L(M3) — log L(M;)
if BIC(Ms3) < BIC(M;) and Alog £ > 0 then
Split B into By, B2 using GMM responsibilities
Add By, B as children of Bin T
Push B, B into Q
// Dynamic reassignment after each split
foreach z; € X do
| Reassign z; to B* = arg maxg, log pg, (%)
else
| Mark B as leaf
return 7

Algorithm 2: Hierarchical Anomaly Scoring

Input: Test sample 2’ € R?; PGBC tree 7 with maximum depth L
Output: Final anomaly score Sgnai(x’)
if L = O then

Let B() be the root granular-ball with (1), (%))
| return —log NV (2 | 10, 33(0))
for/ =1to L do
Let {By) }jK:(ll) be gr(a)nular-balls at level [

l _ Uz

. 1)
Compute weights 7w’ = where n; = B(-
p g J EkK=(l1) nk J | i ‘

Compute level-wise score: s (z/) = —log (Z]KZ(;) 7T](D -N(2' | u§l), Ey)))

Compute level entropy: H) = — ZJK:(;) L log (%)

Normalize s()(z') to 5 (') using training stats

. ®
Compute entropy weights w() = LHiH(,,)
=1

Compute final score: sgpa1(2’) = Zlel w® - 50 (")
return Sgna (2')
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C MORE EXPERIMENTAL SETTINGS

C.1 DATASETS

Our experiments cover three dataset categories—tabular, benchmark time series (TSB-AD), and
repurposed classification datasets (UCR)—spanning both static and temporal anomaly detection
scenarios. Below we summarize sources, preprocessing steps, and key statistics; full dataset details
are given in Tables [6H8]

(1) Tabular datasets. We evaluate PGBC on 19 real-world tabular datasets collected from pub-
lic repositories and prior anomaly-detection benchmarks; full per-dataset statistics are reported in
Table [6] The collection covers diverse domains (manufacturing, cybersecurity, biology, and health-
care) and varies widely in scale (100-6,870 samples) and dimensionality (7-166 features), creating
heterogeneous evaluation conditions. Anomaly proportions span from 0.44% (Yeast) to 31.64%
(Satellite), providing both extremely sparse and relatively dense anomaly scenarios. For tabular in-
puts we apply per-dataset feature normalization (zero mean, unit variance); categorical attributes,
when present, are one-hot encoded (see Appendix [C.4] for encoder and preprocessing details). This
benchmark stresses PGBC across low-anomaly-ratio cases and high-dimensional, anisotropic fea-
ture geometries—settings where covariance-aware modeling is particularly beneficial.

Table 6: Information of 19 tabular anomaly detection datasets.

No. \ Datasets \ Samples Features Anom. (%) Subject Area
1 Abalone 4177 8 1.89 Biology
2 Bands34 346 39 9.83 Phys./Chem.
3 Bands42 354 39 11.86 Phys./Chem.
4 Cardio 1,688 21 1.95 Health/Med.
5 Ecoli 336 7 2.68 Biology
6 Iris 111 4 9.91 Biology
7 Musk 3,062 166 3.17 Biology
8 Pageblocks 5,171 10 4.99 CS
9 Pendigits 6,870 16 2.27 CS
10 Satellite 6,435 36 31.64 Climate/Env.
11 Sick35 3,576 29 0.98 Health/Med.
12 Sick72 3,613 29 1.99 Health/Med.
13 Sonar 107 60 9.35 Phys./Chem.
14 Thyroid 9,172 28 0.81 Health/Med.
15 Tictac12 638 9 1.88 Games
16 Tictac26 652 9 3.99 Games
17 Tictac32 658 9 4.86 Games
18 Waveform 3,443 21 2.9 Phys./Chem.
19 Yeast 1,141 8 0.44 Biology

(2) Benchmark time series datasets (TSB-AD). We use six real-world monitoring datasets from
the TSB-AD benchmark, chosen for diversity in source (network traffic, system diagnostics, web
services) and sequence length (see Table[7). Each dataset provides point-level anomaly labels; fol-
lowing common practice, we segment continuous sequences into fixed-length overlapping windows
and encode each window with the same CNN encoder used across experiments (window size and
step are listed in Appendix A.4, Table 8). Windowing preserves local temporal context while en-
abling batch training and fair comparisons across baseline encoders. Because anomalies are labeled
at the point level, reported metrics correspond primarily to window-level detection; where applicable
we additionally report sequence-level aggregated results (see main text).

(3) Repurposed classification datasets (UCR). From the UCR archive we select five datasets and
adapt them to a one-class / open-set evaluation protocol. For each dataset we designate the smallest
class as the anomalous class and treat the remaining classes as normal. Normal samples are split

16



Under review as a conference paper at ICLR 2026

Table 7: Information of 6 time series anomaly detection datasets.

No. | Datasets | Length  Anomalies Anom. (%)
1 NAB Traffic 2,494 248 9.94
2 WSD WebService | 15,403 203 1.32
3 SMD Facility 22,700 146 0.64
4 TIOPS WebService 6,138 53 0.86
5 UCR iMedical 12,000 45 0.38
6 YAHOO Synthetic 1,421 4 0.28

80%/20% into training/testing; the test set is then augmented so that approximately 10% of test
samples are anomalous (drawn from the designated anomalous class), creating a controlled open-set
scenario. This protocol ensures anomalies are genuine class examples (not synthetic perturbations)
while allowing consistent cross-dataset comparisons. Per-dataset statistics (sample counts, length,
anomaly counts) are provided in Table([§]

Collectively, Tables summarize dataset scales, modalities, and anomaly ratios, forming a com-
prehensive testbed for evaluating PGBC'’s robustness and generalization.

Table 8: Information of 5 open-set recognition (UCR) datasets.

No. | Datasets | Samples Length Anomalies Anom. (%)
1 Adiac 778 176 17 10.00
2 CBF 633 128 13 9.49
3 Synthetic Control 511 60 11 9.91
4 SwedishLeaf 1,073 128 23 9.87
5 Trace 153 275 3 9.09
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C.2 BASELINES

We provide implementation details and hyperparameter settings of the baseline methods evaluated
in our experiments. To evaluate model stability, we introduced randomness through random sub-
sampling (Bootstrap) of the training data across five independent runs, applying this uniformly to
all methods. All methods use consistent random seed control via random_state=seed to ensure
reproducibility.

Isolation Forest (Liu et al., 2008). Isolation Forest is a tree-based ensemble method that isolates
anomalies by using random partitioning to create “isolation” for each data point. Anomalies, being
few and different, are isolated in fewer steps than normal points. We use the scikit-learn implemen-
tation with contamination set to the true anomaly ratio, which is the proportion of outliers in
the dataset.

Local Outlier Factor (LOF) (Breunig et al., 2000). LOF is a density-based method that identifies
anomalies by comparing the local density of a data point to the local densities of its neighbors. A
point is considered an outlier if its local density is lower than that of its neighbors. We use a
neighborhood size of n_.neighbors=20 and set contamination to the known anomaly ratio.

k-Nearest Neighbors (kNN) (Peterson, 2009). The kNN method defines the anomaly score of a
point as its distance to the k -th nearest neighbor. This score measures how far a point is from its
local neighborhood. We set the number of neighbors to n_.neighbors=5.

AutoEncoder (Sakurada & Yairi, 2014). An AutoEncoder is a neural network with an encoder
and a decoder, trained to reconstruct its input. By training only on normal data, it learns a compact
representation of the normal distribution, so any point with a high reconstruction error is consid-
ered an anomaly. We use a feedforward encoder-decoder network trained to minimize reconstruc-
tion error. The network is configured with a latent _dim=16, trained for 50 epochs, with a
batch_size=64, and a learning rate of 1e—3. All models are trained exclusively on normal data.

Deep SVDD (Ruff et al.,2018). Deep SVDD learns a compact representation of the normal data
by training a deep neural network to map the data points into a feature space where they are en-
closed within a minimal hypersphere. The radius of this hypersphere is learned during training
with a nu parameter that controls the trade-off between the volume of the sphere and the number
of allowed outliers. We use a three-layer encoder with hidden_dims=[128, 64, 32] andan
output_dim=32. The hypersphere radius is learned with nu=0.1 using a soft-boundary objective.
Pretraining is performed using an AutoEncoder with a latent _dim=16, trained for 50 epochs.

Deep Autoencoding Gaussian Mixture Model (DAGMM) (Zong et al., 2018). Deep Autoen-
coding Gaussian Mixture Model (DAGMM) is a deep learning method that combines a deep autoen-
coder with a Gaussian Mixture Model (GMM) for unsupervised anomaly detection. It is designed
to overcome the limitations of traditional two-stage methods by jointly optimizing the parameters of
the autoencoder and GMM in an end-to-end fashion. The model utilizes the autoencoder to generate
a low-dimensional representation and reconstruction error, which are then fed into the GMM to esti-
mate the density of the normal data. We configure the autoencoder with a latent _dim=3, trained
for epochs=50, a batch_size=128, and a learning rate of 1e-3. The estimation network
parameters are set with n_components=4 for the GMM, and we use regularization parameters
lambda_energy=0.1 and lambda_cov_diag=0.005 for the combined loss function.

Hierarchical Gaussian Mixture Normalizing Flow Modeling (HGAD) (Yao et al., 2024). Hi-
erarchical Gaussian Mixture Normalizing Flow Modeling (HGAD) is a novel method for unified
anomaly detection that addresses the homogeneous mapping’ issue in traditional normalizing flow-
based models. It achieves this by leveraging a hierarchical probabilistic approach with two key
components: inter-class Gaussian mixture modeling and intra-class mixed class centers learning. We
extract features from feature_levels=1 layer. The model is configured with n_.classes=1
for anomaly detection, and n_intra_centers=5 for intra-class modeling. The loss function
weights include 1ambda_g=1.0, lambda_g_intra=1.0, lambda_z=1.0, lambda_e=0.1,
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and lambda_mi=0.1. The model is trained for epochs=50 with a batch_size=64 and a
learning rate of 1e-3.

GBMOD (Cheng et al., |2025). GBMOD, or Granular-Ball Mean-shift Outlier Detector, is a
granular-ball based anomaly detection method addressing the limitations of traditional mean-shift
techniques. It combines neighborhood-based density modeling with deep autoencoding. It uses
granular-balls as anchors to guide the mean-shift process, which effectively avoids the influence of
noisy points and improves efficiency. We use k=10 nearest neighbors, iteration_number=3,
and pretrain an AutoEncoder with the same configuration as described above.

GBDO (Su et al., 2025) GBDO, or Granular-ball Discrimination Outlier, is a method that im-
proves density-based anomaly detection by operating at a granular-ball level. It detects anomalies
based on local granular-ball density, which is calculated using the local reachability similarity among
granular-balls. We set k_neighbors=15 and min_points_ratio=0.1 to control neighbor-
hood and granularity.

C.3 METRICS

Area Under the Receiver Operating Characteristic Curve (AUC) For all experiments, we use
AUC as the primary evaluation metric. AUC is a widely adopted performance measure in anomaly
detection, particularly suitable for highly imbalanced datasets where the number of anomalies is
significantly smaller than normal instances. It quantifies the model’s ability to distinguish between
normal and anomalous samples across various classification thresholds, providing a comprehensive
assessment independent of a specific decision threshold. To evaluate the robustness and repro-
ducibility of our model and baselines on tabular datasets, we performed multiple independent runs
and reported the average AUC with its standard deviation (AUC + std).

False Positive Rate (FPR) In addition to AUC, we also evaluate our model’s performance using
the False Positive Rate (FPR). FPR is crucial in scenarios where the cost of misclassifying a normal
instance as anomalous (i.e., a false alarm) is high. By analyzing both AUC and FPR, we provide a
more holistic view of the model’s performance, balancing its overall discriminative power with its
precision in minimizing false alarms. We report the FPR for 19 tabular datasets.

False Negative Rate (FNR) Complementing FPR, we incorporate the False Negative Rate (FNR)
to evaluate the model’s sensitivity and reliability. FNR quantifies the proportion of actual anoma-
lies that are incorrectly classified as normal (i.e., missed detections). This metric is paramount
in safety-critical or high-risk applications—such as mechanical failure prediction or disease diag-
nosis—where failing to identify an anomaly can lead to severe consequences. By reporting FNR
alongside FPR, we ensure that the model achieves a robust trade-off, verifying that a low false alarm
rate is not obtained at the expense of missing actual threats.
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C.4 ENCODERS & COMPARISONS

To ensure fair comparisons across all baselines and to provide a unified vector input for different data
types, we employ a feature encoder to transform our data. For tabular datasets, we apply standard
feature normalization without additional preprocessing. For time series datasets, a sliding window
mechanism is used to segment sequences into fixed-length windows. These windows are then en-
coded by a lightweight Convolutional Neural Network (CNN) into a fixed-dimensional vector. The
detailed architecture and key parameters for our CNN encoder and the time series preprocessing
steps are summarized in Table

While our proposed PGBC model is agnostic to the choice of encoder—meaning its core architecture
can operate on any fixed-dimensional vector representation—the quality of learned features signifi-
cantly affects downstream detection accuracy. To investigate this impact, we conducted a compara-
tive study using five common encoder types: MLP, CNN, LSTM, Transformer, and ResNet. These
encoders were evaluated on four representative datasets from the TSB-AD and UCR benchmark
suites, each representing a distinct feature learning paradigm.

Our experimental findings, with complete results summarized in Table [0} show that the lightweight
CNN encoder consistently achieves strong performance, ranking first or second in AUC on all four
datasets. Considering its computational efficiency and strong empirical performance, we adopt the
CNN architecture as our default feature encoder for all subsequent experiments. This design ensures
a fair and robust evaluation across all baselines while maintaining a practical and effective model
architecture.

Table 9: Ablation study on feature encoders. AUC results (%) of PGBC using different encoder
architectures on selected datasets from TSB-AD and UCR. Bold indicates the best performance.
Trans = Transformer.

Dataset \CNN MLP LSTM Trans ResNet

Adiac 99.6 1000 978 98.7 99.5
Synthetic Control | 100.0  80.0 98.2 98.7 100.0
WSD WebService | 99.5 994 777  100.0  100.0
YAHOO Synthetic | 100.0 100.0  63.8 75.9 99.2

Table 10: Configuration of key parameters. Details for the CNN encoder architecture and time series
preprocessing steps used in the experiments.

Parameter | Value | Description
CNN Encoder Architecture

Convolutional Layers | 3 3-layer convolutional encoder, mirrored by 3-layer transposed convolutional decoder
Kernel Size 5 5x1 kernel for all (transposed) convolutional layers

Stride 2 Stride of 2 for downsampling/upsampling in all layers

Padding 2 Padding of 2 for all (transposed) convolutional layers

Channel Progression 1—16—32—64 | Encoder channel increase across layers

Activation Function ReLU ReLU activation for all intermediate layers

Latent Dimension 16 Default latent space dimension, configurable via ae_latent_dim

Time Series Processing

Window Size 32 Sliding window size for time series segmentation
Window Step 8 Step size for sliding window

AE Latent Dimension | 16 Autoencoder latent space dimension

AE Epochs 50 Number of training epochs for autoencoder

AE Batch Size 64 Batch size for autoencoder training

AE Learning Rate 1073 Learning rate for autoencoder training

Device Auto GPU/CPU, automatically selected
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D MORE RESULTS

In this section, we present a more comprehensive view of our experimental results by including the
standard deviation (std) of the AUC scores, which reflects model stability.

Tabular anomaly detection. The full results are detailed in Table A key observation is that
PGBC, in addition to achieving the highest average AUC, also demonstrates superior stability with
the second-lowest average standard deviation among all baselines. This indicates that the high per-
formance of our method is consistently reproducible across different data splits, a crucial factor for
reliable real-world applications.

Table 11: Full AUC results (%) with mean and standard deviation on 19 tabular datasets. Results
are averaged over five independent runs. Bold indicates the best performance. Abbreviations: AE =
AutoEncoder, D.SV = DeepSVDD, DAG = DAGMM, GBM = GBMOD.

Datasets | LOF IForest KNN AE D.SV DAG HGAD | GBM GBDO | Ours
75.6 70.2 69.3 79.9 68.2 57.0 75.2 78.0 76.3 72.1

Abalone
+1.2 +1.1 +1.0 +1.3 +1.9 +4.3 +2.5 +1.3 +1.0 +1.1
74.8 79.2 77.5 77.8 64.8 53.0 80.7 71.7 71.0 100.0
Bands34 ——
+0.8 +1.3 +2.7 +1.2 +5.6 +6.8 +1.6 +0.4 +4.4 +0.0
75.9 78.3 76.3 76.1 63.1 51.0 77.9 76.9 70.4 100.0
Bands42
+0.8 +1.3 +2.7 +1.2 +5.6 +5.6 +1.4 +0.4 +4.4 +0.0
Cardio 82.6 85.9 80.5 76.5 77.3 70.0 75.8 86.5 66.4 84.0
+1.0 +1.8 +1.6 +2.5 +8.7 +7.5 +2.0 +0.7 +1.4 +0.8
Ecoli 85.1 84.1 87.6 88.1 86.8 40.0 88.3 85.1 89.8 89.4
colt +0.5 +0.9 +1.1 +2.0 +1.5  +33.5 +2.1 +0.2 +0.5 +0.4
Iri 91.6 100.0 97.8 93.8 83.4 99.0 98.5 100.0 74.8 100.0
18 +3.8 +0.0 +1.0  410.0 +13.0  £1.7 +0.9 +0.0 +2.6 +0.0
Musk 100.0 96.9 100.0 100.0 99.7 100.0 100.0 91.1 25.9 100.0
us +0.0 +1.6 +0.0 +0.0 +0.6 +0.5 +0.0 +1.7 +1.5 +0.0
98.2 98.3 99.6 92.2 98.4 66.0 99.7 99.5 96.2 99.9
Pageblocks . .
+0.1 +0.2 +0.1 +0.8 +0.1  +23.4 +0.1 +0.1 +0.2 +0.0
.. 99.3 97.5 98.9 94.4 91.1 77.0 99.4 98.4 74.2 99.5
Pendigits ] Y ] ) X
+0.1 +0.8 +0.3 +3.3 +6.0  +17.9 +0.3 +0.6 +2.6 +0.6
Satellit 84.5 79.4 87.6 80.6 83.3 80.0 82.3 85.5 80.4 83.1
atellite +0.2 +1.3 +0.1 +0.6 +5.0 +4.9 +0.3 +0.4 +0.2 +1.5
Sick35 73.7 89.3 89.1 85.2 83.8 57.0 88.8 89.1 83.6 87.4
1€ +1.3 +1.2 +0.8 +1.4 +2.7 151 +0.4 +0.4 +0.6 +3.3
Sick72 61.2 81.4 83.5 814 77.3 56.0 82.2 79.1 79.6 87.3
1€ +1.7 +2.3 +0.4 +2.1 +2.6 +4.8 +1.1 +0.2 +1.1 +3.6
S 98.9 994 99.6  99.1 76.3 79.0 98.4 98.9 63.7 100.0
onar +0.1 +0.5 +0.3 +0.2 +8.7  +12.6 +0.7 +0.3 +8.3 +0.0
. 53.5 63.3 65.8 60.3 63.9 44.0 66.0 69.7 68.6 73.0
Thyroid e
+0.9 +1.9 +0.7 +3.3 +6.5  +10.9 +3.2 +0.7 +0.3 +4.8
. 97.6 98.6 93.6 84.6 75.9 54.0 97.0 96.8 60.7 100.0
Tictacl2 —_
+0.5 +0.6 +3.5 +6.4 +6.4 +8.1 +1.5 +0.9 +3.0 +0.0
. 92.8 95.6 91.1 76.7 64.3 48.0 95.0 88.1 54.2 100.0
Tictac26 —_
+0.9 +0.9 +1.8 +5.7 +6.5 +4.5 +2.6 +0.8 +0.8 +0.0
. 92.2 95.4 93.1 76.1 64.1 46.0 93.2 86.3 55.1 100.0
Tictac32 B
+1.3 +0.9 +0.8 +5.9 +9.8 +8.3 +2.7 +2.9 +0.7 +0.0
76.5 70.7 76.1 52.5 60.0 56.0 73.7 74.2 65.0 78.1
Waveform —
+0.5 +3.9 +0.6 +3.3 +3.6  +13.6 +2.3 +0.2 +1.2 +0.0
Yeast 99.1 99.7 994 99.6 99.9 43.0 99.7 100.0 99.2 100.0
+0.0 +0.0 +0.2 +0.4 +0.1  429.6 +0.1 +0.0 +1.1 +0.0
84.9 87.6 87.8 83.0 78.0 61.9 87.6 87.1 71.4 91.1
Average o )
+13.3 +11.4 +10.5  +12.4  +12.8  +£17.7 +10.7 +9.8 +16.2 +10.0
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Time series anomaly detection. The complete results for the six TSB-AD benchmarks are
shown in Table PGBC not only achieves the highest or second-highest mean AUC across
all datasets, but also maintains low variance compared with deep baselines such as AutoEncoder
and DeepSVDD. This demonstrates that the probabilistic granular-ball hierarchy provides stable
anomaly detection under the noisy and dynamic conditions typical of real-world monitoring data.

Table 12: Full AUC results (%) with mean and standard deviation on 6 time series datasets. Results
are averaged over five independent runs. Bold indicates the best performance.

Datasets \ LOF IForest KNN AE D.SV DAG HGAD GBM GBDO \ Ours
NAB Traffic 80.4 78.6 91.2 79.6 834 592 84.3 80.6 77.5 85.4
+0.4 +0.6 +0.9 +2.3 +2.0 +5.9 +1.7 +0.7 +0.3 +3.8
WSD WebService 94.3 87.2 97.0 96.0 88.6 68‘.5 94.0 93.6 75.1 98.8
+0.2 +0.9 +0.3 +0.2 +1.9  +13.5 +1.1 +0.6 +0.5 +0.4
. 93.3 934 97.1 98.5 945 78.3 96.4 95.1 91.1 97.9
SMD Facility

+0.7 +0.3 +0.6 +0.1 +1.6 +6.9 +1.0 +1.5 +0.7 +0.0
. 91.0 81.7 855 778 79.3 62.7 87.0 79.3 44.4 96.4
IOPS WebService +0.5 +2.4 +0.4 147 445 +4.0 +3.4 +4.5 +1.2 +0.1
UCR Medical 95.6 99.8 930 664 932 755 88.7 88.5 67.7 93.5
+0.7 +3.0 +0.3 +1.2 +5.3 +9.1 +2.3 +1.2 +0.3 +0.1
. 71.3 77.2 88.6 448 714 48.1 67.2 67.0 88.9 99.8
YAHOO Synthetic +7.4 +2.1 +4.9 +8.8  £21.9 +12.5 +29.8 +8.8 +0.0 +0.0
87.6 84.8 92.1 772  85.1 654 86.3 84.0 74.1 95.3

Average -
+1.7 +1.6 +1.2 +4.6 +6.2 +8.7 +6.6 +2.9 +0.5 +0.7

Time series open-set recognition. For the UCR-based open-set recognition task, the full results
are summarized in Table[I3] Across the five datasets, PGBC achieves competitive or superior mean
AUC while keeping consistently small standard deviations. This stability highlights the robustness
of the entropy-weighted hierarchical scoring mechanism, which balances coarse and fine represen-
tations and prevents overfitting to specific runs. Overall, PGBC generalizes well under distributional
shifts, as evidenced by both high average accuracy and low variability across repeated experiments.

Table 13: Full AUC results (%) with mean and standard deviation on 5 open-set recognition tasks.
Results are averaged over five independent runs. Bold indicates the best performance.

Datasets | LOF IForest KNN AE D.SV DAG HGAD GBM GBDO | Ours
Adiac 96.6 98.1 98.2 97.6 98.5 82.7 97.9 98.8 97.3 99.2
+0.7 0.5 +£0.1  +0.2  £0.3  +149  £0.2 +0.6 +0.0 +0.2
CBF 99.7 76.7 99.7 51.0 783 52.1 92.7 95.3 61.9 100.0
+0.1 +3.9 +0.2 437  +140 +£17.5  +2.9 +2.4 +0.4 +0.0
Synthetic Control 98.8 69.8 100.0 84.4 87.7 75.2 96.5 80.9 66.1 99.5
+0.4 +4.8 +0.1  +46  +33  +£18.0  +16 +2.9 +1.5 +1.1
SwedishLeaf 88.8 95.1 96.3 84.6 94.5 73.9 97.2 95.7 88.6 99.7
+1.1 +0.6 +0.1  +4.6  +3.4  £16.7 0.9 +0.5 +0.1 +0.1
Trace 87.3 89.6 94.9 62.9 66.9 80.0 97.1 73.1 72.2 99.6
+6.1 +2.0 455  4+23.1  +35.4  £34.2  +4.2 +11.8 +0.0 +1.0
89.8 85.9 97.8 76.1 85.2 72.8 96.3 88.8 77.2 99.6
Average .
+2.9 +2.4 +1.6  4+7.2  +181 £203  +1.9 +3.6 +0.4 +0.5
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False Positive Rate (FPR) Results. In this section, we provide the complete false positive rate
(FPR) results for all 19 tabular datasets, as detailed in Table This comprehensive view comple-
ments the main text and highlights the superior reliability of PGBC in controlling false alarms across
diverse data distributions. As shown in the table, PGBC achieves the lowest average FPR of 2.36%.
A closer inspection reveals that methods relying on isotropic boundaries (e.g., DeepSVDD, 3.88%)
or simple geometric distances (e.g., GBDO, 4.57%) tend to generate higher false alarms, particu-
larly on datasets with complex cluster shapes. In contrast, PGBC’s advantage is most pronounced in
these scenarios, as its probabilistic ellipsoidal granular-balls can stretch to fit the normal data tightly
without encompassing the surrounding void space, thereby minimizing the risk of misclassifying
normal boundary points as anomalies.

Table 14: Full False Positive Rate (FPR %) results on 19 tabular datasets. Lower values indicate
fewer false alarms. Abbreviations: AE = AutoEncoder, D.SV = DeepSVDD, DAG = DAGMM,
GBM = GBMOD.

Datasets | LOF IForest KNN AE D.SV DAG HGAD | GBM GBDO | Ours

Abalone 4.56 4.73 437 461 488 5.05 4.66 4.71 5.05 4.64
Bands34 4.17 5.13 288 449 5.13 5.45 0.00 4.17 6.09 0.00
Bands42 3.85 4.81 2.88 385 5.13 5.45 0.00 3.21 3.21 0.00

Cardio 4.53 4.35 393 471 453 465 4.35 4.05 4.95 4.65
Ecoli 3.06 3.06 3.06 3.06 306 520 3.06 3.06 3.98 3.06
Iris 0.00 2.00 0.00 3.00 2.00 2.00 0.00 0.00 5.00 0.00
Musk 1.92 1.92 192 192 192 202 1.92 1.92 5.19 1.92

Pageblocks | 1.61 0.83 049 055 104 391 0.57 1.14 2.06 0.22
Pendigits 3.66 2.80 280 371 471 472 2.80 3.05 4.54 2.80
Satellite 0.00 0.00 000 002 120 0.23 0.00 0.00 0.43 0.00

Sick35 4.94 4.94 4.63 483 474  5.06 4.80 4.66 5.06 4.57
Sick72 5.00 491 4.57 477 474 517 4.83 4.69 5.06 4.80
Sonar 1.03 0.00 0.00 0.00 206 206 1.03 1.03 5.15 0.00
Thyroid 5.02 4.96 495 498 495 505 4.98 4.90 5.06 4.89

Tictac12 3.19 3.35 319 399 479 511 3.19 3.35 5.75 3.19
Tictac26 2.24 224 112 240 463 495 1.28 3.19 4.63 1.12
Tictac32 1.44 1.76 016 224 479 527 0.32 2.40 5.75 0.16
Waveform | 4.82 4.10 257 512 467 500 3.20 4.07 5.12 4.07
Yeast 4.67 4.67 4.67 4.67 475 5.11 4.67 4.67 4.75 4.75

Average | 3.14 3.19 254 331 3838 429 240 | 3.07 457 | 2.36
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False Negative Rate (FNR) Results. While a low FPR is essential for system usability, a low
False Negative Rate (FNR) is critical for safety, as missing a genuine anomaly can have severe con-
sequences. The full FNR results in Table[T3]reveal a significant trade-off made by many baselines.
PGBC achieves the lowest average FNR of 35.9%, edging out the second-best HGAD (38.7%) and
drastically surpassing DeepSVDD (75.7%) and GBDO (77.7%). The extremely high FNRs of these
methods suggest they achieve reasonable FPRs only by being overly conservative—resulting in an
overly loose decision boundary that fails to capture a significant portion of anomalies. In contrast,
when combined with the FPR analysis in Section 3.4 (where PGBC also leads with 2.36%), these
results confirm that PGBC does not trivially trade off precision for recall. Instead, its hierarchical
probabilistic structure provides a fundamentally more accurate description of the data, successfully
identifying diverse anomalies that other methods miss.

Table 15: Full False Negative Rate (FNR %) results on 19 tabular datasets. Lower values indi-
cate fewer missed anomalies. Abbreviations: AE = AutoEncoder, D.SV = DeepSVDD, DAG =
DAGMM, GBM = GBMOD.

Datasets ‘IForest LOF KNN AE D.SV DAG HGAD ‘ GBM GBDO ‘ Ours

Abalone 72.2 81.0 747 86.1 86.1 91.1 74.7 88.6 83.5 75.9
Bands34 85.3 94.1 971 794 824 97.1 471 79.4 97.1 471
Bands42 85.7 929 952 633 976 97.6 57.1 88.1 97.6 57.1
Cardio 69.7 606 69.7 667 81.8 100.0 60.6 57.6 84.8 48.5
Ecoli 22.2 222 222 889 444 100.0 11.1 22.2 22.2 22.2
Iris 45.5 63.6 455 455 1000 81.8 45.5 45.5 100.0 | 45.5
Musk 0.0 0.0 0.0 0.0 18.6 134 0.0 0.0 84.5 0.0
Pageblocks 30.2 155 109 225 39.1 70.9 12.0 225 38.8 3.1
Pendigits 37.2 0.0 0.0 923 1000 949 0.0 179 64.7 0.0
Satellite 84.2 842 842 842 842 85.5 84.2 84.2 94.7 84.2
Sick35 88.6 886 714 743 914 100.0 71.4 71.4 85.7 45.7
Sick72 94.4 903 86.1 833 958 100.0 84.7 86.1 93.1 72.2
Sonar 50.0 40.0 400 50.0 70.0 90.0 40.0 50.0 70.0 40.0
Thyroid 97.3 89.2 89.2 892 838 97.3 91.9 824 98.6 79.7
Tictac12 0.0 83 8.3 0.0 833 100.0 8.3 0.0 91.7 0.0
Tictac26 26.9 269 11.5 30.8 100.0 96.2 3.8 423 84.6 0.0
Tictac32 25.0 31.2 94 500 90.6 96.9 9.4 50.0 90.6 0.0
Waveform 88.0 640 69.0 81.0 89.0 100.0 33.0 66.0 95.0 61.0
Yeast 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Average | 52.8 50.1 465 572 757 84.9 387 | 502 717 | 359
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E EXTENDED BASELINES AND METRICS

In this section, we provide detailed comparisons with additional baselines requested by the reviewers
to demonstrate the superiority of PGBC across different task domains.

E.l1 ADDITIONAL BASELINES ON TIME-SERIES ANOMALY DETECTION

To demonstrate the superiority of PGBC against a broader range of state-of-the-art methods in time-
series anomaly detection, we incorporated additional baselines: OCFlow (Maziarka et al.,[2022) and
OCSVM. We evaluated them on our six Time-Series Benchmark datasets (TSB-AD) to compare our
approach against representative normalizing flow and kernel-based methods.

Implementation Details. To ensure a fair comparison, we configured each baseline with key hyper-
parameters optimized for the task. For OCFlow, a flow-based model, we utilized 8 coupling layers
(n_couplings=8, n_layers=4) with a hidden dimension of 512 and variable Jacobian determi-
nants (det_type=’var’) to map data to a latent hypersphere. For OCSVM, we utilized the standard
RBF kernel with gamma=’scale’, dynamically setting the nu parameter equal to the ground-truth
anomaly ratio of each dataset.

Analysis. As shown in Table [T6] PGBC consistently outperforms these baselines by a significant
margin. While normalizing flows (OCFlow) achieve a decent average AUC of 81.5%, they show
significant variance (e.g., = 26.4% on YAHOO). This instability indicates the inherent difficulty
Normalizing Flows face in accurately mapping the complex, locally varying geometry of time-series
embeddings to a regular latent density, compared to PGBC’s adaptive granular-balls. Furthermore,
traditional kernels (OCSVM) perform reasonably well (Avg 75.3%) but still lag behind PGBC (e.g.,
41.0% vs. 99.8% on YAHOO), confirming that fixed kernels are insufficient to model locally varying
anisotropic structures.

Table 16: Comparison with additional baselines on time-series anomaly detection (AUC %). Bold
indicates the best performance.

Datasets | OCSVM OCFlow | Ours

NAB Traffic 789 +23 T740+27 | 854+ 3.8
WSD WebService | 929 +04 948 +1.0 | 98.8 + 0.4
SMD Facility 88.0+28 97.14+22 | 979+ 0.0
IOPS WebService | 844 +19 84.0+44 | 96.4 +0.1
UCR Medical 663 +47 80.7+86 | 93.5+0.1
YAHOO Synthetic | 41.0 £ 84 5844264 | 99.8 + 0.0
Average ‘ 753 +34 815+76 ‘ 95.3 + 0.7

E.2 COMPARISON WITH OSR METHOD

To further validate the effectiveness of PGBC from an Open-Set Recognition (OSR) perspective, we
compared it against the foundational baseline method: OpenMax (Bendale & Boult, [2016)), which
estimates the probability of an input being from an unknown class by fitting Weibull distributions
to the tail activation distances of known classes. We followed the same OSR protocol described in
Section [3.3] evaluating on five datasets from the UCR archive.

Analysis. As shown in Table PGBC demonstrates overwhelming superiority over OpenMax,
achieving an average AUC of 99.6% compared to 68.7%. OpenMax relies on calibrating SoftMax
scores, which implicitly assumes that known classes form tight, separable clusters in the penultimate
layer. However, strictly enforcing such compactness on time-series data can be challenging, leading
to feature distributions that defy OpenMax’s distributional assumptions. Consequently, OpenMax
struggles significantly, performing near random guessing on datasets like CBF (49.5%). In contrast,
PGBC is inherently well-suited for this data geometry. Its **adaptive ellipsoidal granular-balls**
can stretch and rotate to locally approximate these manifold structures, creating a tight and precise
boundary around the normal data. This geometric alignment enables robust rejection of open-set
samples regardless of the classification margin.
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Table 17: Comparison with the Open-Set Recognition (OSR) baseline on time series tasks. Reported
metric is AUC (%). PGBC significantly outperforms the classic method OpenMax. Bold indicates
the best performance.

Datasets | OpenMax |  Ours

Adiac 924+74 | 99.2+0.2
CBF 49.5 +£0.3 | 100.0 + 0.0
Synthetic Control | 53.0 £ 5.0 | 99.8 £ 1.1
SwedishLeaf 639+48 | 99.7+0.1
Trace 849+ 1.8 | 99.6 + 1.0
Average | 68.7+39 | 99.6 +0.5

E.3 PRECISION, RECALL, AND F1-SCORE ANALYSIS

To provide a comprehensive evaluation beyond threshold-independent metrics like AUC, we re-
port the Precision (P), Recall (R), and Fl-score on 12 representative tabular datasets. The decision
threshold for all methods is strictly determined by the ground-truth anomaly ratio (contamination)
of each dataset.

Analysis. As detailed in Table [I8] PGBC demonstrates exceptional robustness, achieving the high-
est F1-score on all 12 datasets. First, on datasets with complex structures such as Bands42 and
Pendigits, PGBC achieves perfect performance (100.0% F1), whereas the strong probabilistic base-
line HGAD lags behind (90.2% and 95.6%, respectively), and distance-based methods like KNN
struggle significantly. Second, the results on the challenging Sick72 dataset highlight the precision-
recall trade-off. While baselines like DAGMM achieve 100% Recall, they suffer from catastrophic
Precision (2.0%), indicating they classify almost all samples as anomalies. In contrast, PGBC main-
tains a significantly higher Precision (63.6% vs. next best 17.6%), securing the highest F1-score
(29.8%). This confirms that PGBC’s high performance stems from a precise, well-fitted decision
boundary rather than loose over-coverage.
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F EXTENDED EXPERIMENTS ON VISUAL DATASETS

To demonstrate the versatility of PGBC on high-dimensional data beyond tabular and time-series
domains, we conducted experiments on three widely recognized visual benchmarks: CIFAR-10,
FashionMNIST, and MVTec-AD.

Experimental Setup. Adhering to the standard protocol established by ADBench (Han et al.,[2022),
we utilized the provided pre-extracted deep feature embeddings as input for all methods. This stan-
dardized setup allows for a direct and focused comparison regarding the ability to model complex,
anisotropic distributions inherent in semantic feature spaces. Specifically, the input data consists of
512-dimensional feature vectors derived from a pre-trained Vision Transformer (ViT) backbone.

Implementation Details and Baselines. We compared PGBC against a diverse set of baselines.
For the CIFAR-10 and FashionMNIST datasets, we compare PGBC against five classical feature-
based methods: DeepSVDD, AutoEncoder (AE), GBMOD, KNN, and HGAD. For all these meth-
ods (DeepSVDD, AE, GBMOD, KNN, HGAD), we maintained the hyperparameter configurations
described in Appendix C.2, adjusting only the input layer size to match the 512-dimensional feature
vectors. PGBC was applied directly to these feature vectors without any additional fine-tuning.

For the MVTec-AD industrial benchmark, we adopt a comprehensive mixed comparison strategy.
The results of the five aforementioned feature-based baselines and PGBC are obtained by running
them on the 512-dimensional ViT feature vectors (ADBench protocol). However, to benchmark
against leading methods that inherently rely on raw spatial information, we also include results from
three prominent image-based methods, namely CutPaste 2021), U-student (Uninformed
students) (Bergmann et al) [2020), and P-SVDD (Patch-level SVDD) (Yi & Yoon 2020). Since
the core mechanisms of these image-based methods (such as self-supervised spatial augmentation)
cannot be fairly tested on pre-extracted feature vectors, their performance on MVTec-AD is cited

directly from the original CutPaste paper 2021).

Results and Discussion. The detailed results for CIFAR-10 and FashionMNIST subsets are re-
ported in Table [T9} while the MVTec-AD results, including the image-based baselines, are reported
separately in Table[20] PGBC consistently achieves the highest average AUC scores across all three
benchmarks: 95.5% on CIFAR-10, 94.9% on FashionMNIST, and 93.0% on MVTec-AD.

First, when comparing with feature-based baselines, PGBC outperforms the second-best method,
HGAD, across all three datasets. On CIFAR-10 and FashionMNIST, PGBC achieves 95.5% and
94.9% respectively, both exceeding HGAD (95.3% and 94.6%). On the MVTec-AD dataset,
PGBC (93.0% AUC) also clearly outperforms the best feature-based competitor, HGAD (91.2%
AUQC). This stable leading performance across diverse visual domains demonstrates that our adap-
tive granular-ball construction is superior to standard density estimation techniques like hierarchical
Gaussian mixtures in modeling complex feature distributions.

Second, we analyze the competitive landscape on MVTec-AD, which includes image-based state-
of-the-art methods. PGBC (93.0% Avg AUC) achieves the highest overall average score, surpass-
ing specialized image-based methods such as CutPaste (90.9% Avg AUC), P-SVDD (92.1% Avg
AUC), and the competitive U-student (92.5% Avg AUC). This superior performance is highly
significant: it confirms that PGBC effectively leverages powerful deep feature representations to
achieve state-of-the-art detection on challenging industrial data, even when benchmarked against
methods that operate directly on raw pixels.

Finally, we emphasize the advantage provided by PGBC’s probabilistic ellipsoidal modeling. We
observe that methods relying on simple geometric boundaries, such as DeepSVDD, show limited
capability when dealing with complex visual feature manifolds. For instance, on the CIFAR-10
and F-MNIST datasets shown in Table [T9} DeepSVDD exhibits significantly lower average AUCs
(69.5% and 58.5%, respectively), which is consistent with the rigidity of its hyperspherical boundary
assumption being ill-suited for complex data distributions. In contrast, PGBC’s probabilistic ellip-
soidal modeling successfully captures these inherent geometries, providing consistently superior and
stable performance across all benchmarks.
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Table 19: Full quantitative results (AUC 1 and FPR | in %) on CIFAR-10 and FashionMNIST.
Bold indicates the best performance, and underline indicates the second best. Abbreviations:
GBM=GBMOD, U.S=U-student.

Datasets Subset DeepSVDD | AutoEncoder GBMOD KNN HGAD Ours
o AUC FPR | AUC FPR | AUC FPR | AUC FPR | AUC FPR | AUC FPR
0 78.7 154 | 935 8.0 920 84 | 919 70 | 941 63 | 944 26
1 789 214 | 957 33 959 2.1 | 957 46 | 96.6 1.1 | 96.7 32
2 67.1 372 | 89.0 113 | 89.0 126 | 91.0 138 | 90.1 9.0 | 90.6 6.8
3 68.4 199 | 92.7 7.1 933 49 | 941 49 | 933 75 | 939 35
4 66.8 482 | 95.7 2.1 952 40 | 955 46 | 96.1 44 | 96.2 6.7
CIFARI10 5 63.3 64.1 92.7 33 940 52 | 941 45 | 940 48 | 941 36
6 67.7 35.1 96.8 3.2 96.2 32 | 97.1 44 | 972 29 | 974 29
7 663 37.8 | 97.1 54 967 43 | 969 69 | 974 50 | 975 45
8 733 254 | 96.7 3.5 97.0 33 | 969 35 | 970 28 | 97.0 33
9 644 315 | 959 33 96.7 35 | 959 36 | 968 14 | 969 44
\ Avg \ 69.5 336 \ 94.6 5.1 \ 946 52 \ 949 538 \ 953 45 \ 955 4.2
0 478 999 | 91.3 7.1 899 56 | 90.1 45 | 922 64 | 926 3.0
1 55.1 67.8 | 99.7 1.2 989 37 | 997 09 | 998 1.5 998 1.1
2 553 236 | 934 4.8 93.1 57 | 937 24 | 938 45 | 938 4.1
3 58.5 31.8 | 904 9.7 859 82 | 866 39 | 91.7 7.1 922 59
4 61.8 330 | 89.2 2.7 872 4.1 882 62 | 89.7 55 | 90.0 26
F-MNIST 5 776 182 | 94.8 0.4 940 1.8 | 93.8 05 | 962 1.1 96.8 0.5
6 558 79.7 | 87.6 2.2 839 98 | 87.1 22 | 8.7 18 | 8.1 2.0
7 71.8 316 | 983 0.8 97.5 1.8 | 978 1.0 | 986 1.2 | 98.7 0.6
8 50.5 78.1 98.3 4.4 964 46 | 985 42 | 986 3.6 | 986 4.2
9 50.4 100.0 | 98.0 0.9 97.9 14 | 981 12 | 983 13 | 983 1.2
\ Avg \ 585 564 \ 94.1 34 \ 925 4.7 \ 933 2.7 \ 946 34 \ 949 25

Table 20: Full AUC results (%) on the MVTec-AD dataset. Abbreviations: GBM=GBMOD,
U.S=U-student. Bold indicates the best performance, and underline indicates the second best.

Datasets | KNN  GBM HGAD | CutPaste U.S PSVDD | Ours

bottle 99.7 993 999 | 992 967 986 | 99.9
cable 946 900 937 87.1 823 903 | 96.4
capsule 777 124 823 879 928 767 | 915
carpet 97.1  96.1 974 | 679 953 929 | 979
grid 739 606 850 | 999 987 946 | 87.6
hazelnut | 82.1 772 876 | 913 914 920 | 87.0
leather 100.0 1000 1000 | 997 934 909 | 100.0
metalnut | 89.7 828 930 | 968 940 940 | 959
pill 770 739 851 934 867 861 | 853
screw 67.1 603 767 544 874 813 | 770
tile 989 980 997 | 959 958 978 | 99.7
toothbrush | 962 817 962 | 992 986 1000 | 975
transistor | 833  79.6  84.6 964 836 9L5 | 899
wood 852 745 949 949 955 965 | 98.0
zipper 845 820 923 994 958 979 | 917
Avg | 871 819 912 | 909 925 921 | 93.0
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G ABLATION STUDIES

In this section, we conduct a comprehensive ablation analysis to validate the contribution of key
components in PGBC: the dynamic reassignment step and the BIC splitting criterion.

G.1 IMPACT OF DYNAMIC REASSIGNMENT

The dynamic reassignment step (Step 3 in Algorithm 1) ensures that data points are associated
with the most likely Gaussian component after each split. To verify its necessity, we compared the
performance and runtime of PGBC with and without this step.

As shown in Table 2T} enabling dynamic reassignment consistently improves detection accuracy.
For instance, on the Cardio dataset, AUC increases significantly from 80.41% to 84.04%, and on
SwedishLeaf, FPR drops from 2.10% to 1.81%. This confirms that refining the data assignment
after splitting allows the granular-balls to better fit the local data geometry. While this step involves
iterative computation, the overall efficiency of our method remains high, as detailed in the compre-
hensive runtime analysis in Appendix [I}

Table 21: Ablation study on the Dynamic Reassignment step. Impact on AUC (%) and FPR (%)
across six representative datasets. Bold indicates the better performance.

Datasets | Reassign | AUC% (1) FPR% (])
x 85.06 £ 0.79 7.81 + 0.24

NAB Traffic /| 85.68+3.04 7.58+0.83
. x 98.58 + 0.01  0.50 4 0.00

WSD WebService v 98.69 + 0.04 0.4 - 0.00
Abal X 70.46 +0.76  1.78 4+ 0.00
alone v 7210 + 033 1.72 + 0.01
Cardi X 80.41 +0.07 1.74 + 0.06
ardio v 84.04 + 0.96 1.63 + 0.12
Adi x 9822+ 120 2.09 + 1.05
1ac v 98.58 + 1.11  1.96 + 1.17

. X 98.10 £ 0.17 2.10 4 0.38
SwedishLeaf /| 98.66+ 039 1.81+0.36

IMPACT OF BIC CRITERION

A critical challenge in hierarchical density estimation is determining the optimal stopping condition
to prevent over-partitioning, where the model fits local noise rather than the underlying distribution.
To validate the efficacy of the Bayesian Information Criterion (BIC) as a statistical regularizer in
PGBC, we compared our proposed method (“Full””) against a baseline variant ("No BIC”) that exe-
cutes splits solely based on positive Log-Likelihood Gain (LLG), effectively removing the penalty
for model complexity.

The quantitative results in Table 22] demonstrate that the BIC criterion serves as an essential de-
fense against overfitting. Without the BIC penalty ("No BIC”), the algorithm aggressively pursues
marginal likelihood gains, leading to an explosion in the number of granular-balls. For instance, on
the Cardio dataset, the number of components surges from a parsimonious 17 to an excessive 721,
and on Abalone, it increases from 25 to 668. This uncontrolled growth has severe consequences
for computational efficiency, with runtimes increasing by orders of magnitude (e.g., from 3.13s to
183.41s on Abalone and from 1.46s to 37.33s on WSD WebService). This trend is consistent across
both tabular datasets and time-series embeddings (e.g., NAB and WSD), indicating that without
the BIC penalty, the model tends to interpret insignificant local data variations as distinct structural
components. By incorporating the BIC term, PGBC successfully balances data fit with model com-
plexity, ensuring a representation that is both statistically significant and computationally efficient.

30



Under review as a conference paper at ICLR 2026

Table 22: Ablation study on the impact of the BIC Criterion. Comparison of PGBC (”Full”’) against
a variant without the BIC penalty ("w/o BIC”) across 7 datasets. (a) Model Complexity (Number of
Granular-balls). (b) Efficiency (Runtime in seconds). Bold indicates the more compact model and
efficient runtime.

(a) Model Complexity (Number of Granular-balls)

Strategy \Abalone Bands34 Bands42 Cardio Ecoli NAB WSD

Full (Ours) 25 10 14 17 5 6 9
w/o BIC 668 312 161 721 314 269 382

(b) Efficiency (Runtime in seconds)

Strategy | Abalone Bands34 Bands42 Cardio Ecoli NAB WSD

Full (Ours) 3.13 0.62 0.72 1.83 032 025 146
w/o BIC 183.41 6.44 6.29 4280 507 435 3733

G.3 DOES THE METHOD SUPPORT A SINGLE PRINCIPAL COMPONENT?

PGBC naturally supports data dominated by one or few principal components without any architec-
tural modification. On three 2D toy datasets with highly elongated distributions (Figure|[6), the BIC
criterion correctly terminates splitting at the root level in all cases, producing exactly one ellipsoidal
granular-ball B() that precisely aligns with the dominant principal direction(s). This demonstrates
that PGBC gracefully degenerates to a single anisotropic Gaussian whenever the data structure war-
rants it, confirming its full adaptivity across both complex high-rank and simple low-rank scenarios.

Figure 6: Visualization of PGBC on three 2D toy datasets with highly anisotropic distributions. In all

cases, PGBC automatically stops splitting and fits a single elongated ellipsoid B(°) perfectly aligned
with the data manifold, demonstrating degeneration to a single principal component Gaussian.
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H ANOMALY SCORING MECHANISMS

To rigorously evaluate the effectiveness of our proposed hierarchical anomaly scoring mechanism,
we conducted a component-wise comparative study. We analyze four distinct aspects of the scoring
strategy in the following order: (1) the necessity of hierarchical aggregation, (2) the effectiveness
of entropy-based weighting schemes, (3) the impact of the probabilistic scoring metric, and (4) the
importance of score normalization. The detailed analysis for each component is provided below.

H.1 IMPACT OF HIERARCHICAL AGGREGATION (HIERARCHY VS. LEAF-ONLY)

To validate the necessity of the hierarchical structure, we compared PGBC against a "Leaf-only”
strategy, which utilizes the finest-grained granular-balls at the leaf nodes to compute anomaly scores.

As shown in Table[23] the hierarchical PGBC consistently outperforms the flat “Leaf-only” approach
across all datasets. For instance, on Thyroid, the AUC rises from 67.8% to 73.0%, and on Sick72
from 84.2% to 87.3%. This result demonstrates that relying solely on fine-grained leaf nodes is
insufficient, as they may overfit to local variations. In contrast, intermediate layers in the hierarchy
capture valuable multi-scale structural information that is critical for robust anomaly detection.

To visually illustrate this, Figure 7| plots the layer-wise AUC on the Thyroid dataset. Performance
fluctuates significantly across layers, and the finest granularity (leaves) is not necessarily optimal.
PGBC'’s hierarchical aggregation effectively integrates these complementary scales.

Table 23: Comparison of Hierarchical Aggregation vs. Leaf-only strategy. Metric: AUC (%).

Method | Bands34 Bands42 Ecoli Sick72 Thyroid  Waveform
Leaf-only | 974+24 99.1+0.7 888+03 842+10 678+£22 77.6+£0.0
Ours 100.0 £ 0.0 100.0 0.0 894+04 873+3.6 73.0+48 781+0.0

Layer-wise AUC Performance in PGB Evolution
90

mmm Individual Layers
I Hierarchical Aggregation

854

80

~
v

67.4% 67.1%

AUC Score (%)
~
[=]

o
v}

Evolution Layers

Figure 7: Layer-wise AUC performance on the Thyroid dataset. The chart compares the perfor-
mance of individual layers against the hierarchical aggregation (Ours), validating the necessity of
multi-granularity scoring.
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H.2 IMPACT OF WEIGHTING SCHEMES (ENTROPY VS. UNIFORM)

We examined the effectiveness of our entropy-based weighting scheme by comparing it against a
”Uniform” strategy, where every hierarchical level contributes equally to the final score.

Table 24] shows that the entropy-based weighting consistently yields superior results. For exam-
ple, on Bands34, the AUC drops to 96.4% with uniform weights, and on Sick72, it falls drastically
to 78.3% (a decrease of 9.0%). This significant performance gap highlights the limitation of the
“Uniform” strategy: it treats coarse global approximations and fine local details identically. Con-
sequently, levels with lower discriminative power can dilute the precise anomaly signals captured
by more informative levels. In contrast, our entropy-based weighting adapts dynamically to the
data complexity. Specifically, when the data structure is complex and necessitates deeper recursive
splitting, the entropy metric naturally assigns higher weights to the fine-grained levels that capture
intricate local patterns. Consequently, the influence of coarse-grained levels—which provide only
rough global statistics—is automatically attenuated, ensuring that the detection is driven by the most
detailed and informative resolution.

Table 24: Comparison of Entropy-based vs. Uniform Weighting. Metric: AUC (%).

Method | Bands34 Bands42 Ecoli Sick72 Thyroid  Waveform

Uniform | 964+26 978+09 884+£0.1 783+24 729461 741+00
Ours 100.0 £ 0.0 100.0+0.0 894+04 873+36 73.0+48 781+0.0

H.3 IMPACT OF SCORING METRIC (LOG-LIKELIHOOD VS. EUCLIDEAN DISTANCE)

To isolate the contribution of our probabilistic scoring mechanism, we conducted an ablation study
using two alternative scoring strategies based on Euclidean distance. Crucially, these baselines share
the exact same hierarchical structure and granular-ball centers generated by PGBC, differing solely
in how the anomaly score is computed:

* Min-Distance: Calculates the Euclidean distance to the nearest granular-ball center. This
represents a “vanilla” GBC approach, treating granular-balls as isotropic spheres and ig-
noring local shape information.

» Avg-Distance: Calculates the average Euclidean distance to all granular-ball centers. This
strategy, suggested for comparison, incorporates global geometric information rather than
local density.

The results in Table 23] reveal a significant performance gap between these distance-based metrics
and our proposed probabilistic scoring. First, Min-Distance consistently underperforms PGBC. For
instance, on the Bands datasets, the AUC drops from 100.0% (Ours) to approximately 82—84%. This
confirms that simple geometric distance fails to capture the anisotropic structures (e.g., elongated
clusters) inherent in the data, whereas our log-likelihood scoring successfully leverages the covari-
ance matrix to model local orientation. Second, Avg-Distance proves to be an unstable metric for
anomaly detection. While it outperforms Min-Distance on Thyroid (67.6% vs. 56.2%) and Ecoli,
it performs worse on Bands42 (75.6%). This inconsistency suggests that averaging distances in-
corporates irrelevant global geometric information that obscures the precise local anomaly signals.
Ultimately, PGBC (Log-Likelihood) surpasses both distance baselines across all datasets, demon-
strating that explicit probabilistic modeling is essential for precise data description.

Table 25: Ablation study on scoring metrics. ”"Min-Dist” and ”Avg-Dist” denote the minimum and
average Euclidean distances to granular-ball centers, respectively. Metric: AUC (%).

Method \ Bands34 Bands42 Ecoli Sick72 Thyroid  Waveform

Min-Dist | 839+18 81.8£26 795+28 809+14 562+15 71.6+0.0
Avg-Dist | 81314 756+£38 843+£04 79.6+05 67602 68.8+0.0
Ours 100.0 £ 0.0 100.0+0.0 894+04 873+3.6 73.0+48 78.1+0.0
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H.4 IMPACT OF SCORE NORMALIZATION

Finally, to assess the importance of aligning scores across levels, we tested a variant “w/o Normal-
ization”, which aggregates raw log-likelihood scores without min-max scaling.

As presented in Table 26} removing normalization leads to clear performance degradation. For
instance, the AUC on Sick72 drops from 87.3% to 81.2%. This degradation arises because the
raw log-likelihood scores at different hierarchical levels often exhibit vastly different value ranges,
reflecting the varying granularity of the data description from global to local scales. Without nor-
malization, levels with numerically larger score ranges could inadvertently overshadow the contri-
butions of other levels, biasing the final result. Normalization ensures that the contribution of each
level is governed strictly by its structural informativeness (entropy), rather than arbitrary differences
in numerical magnitude.

Table 26: Impact of Score Normalization. Metric: AUC (%).

Method \ Bands34 Bands42 Ecoli Sick72 Thyroid  Waveform
w/oNorm | 99.6+0.7 99.1+0.7 888+03 81.2+18 71.3+65 77.8+£0.0
Ours 100.0 £ 0.0 100.0+0.0 894 +04 873+36 73.0+48 781+0.0

34



Under review as a conference paper at ICLR 2026

I COMPUTATIONAL EFFICIENCY ANALYSIS

In this section, we provide a theoretical analysis of the time complexity of PGBC and report empir-
ical runtime comparisons against all baseline methods.

1.1 THEORETICAL COMPLEXITY

The computational cost of PGBC is primarily determined by the hierarchical construction process
using the Expectation-Maximization (EM) algorithm. For a dataset with N samples and d dimen-
sions, let L denote the tree depth and ¢ denote the average number of EM iterations per split. Since
the summation of samples across all granular-balls at any specific level is bounded by NV, the com-
putational complexity for one level is approximately O(t - N - d?). Consequently, the total training
complexity is O(L - t - N - d?). This is generally more efficient than deep neural networks, where
the number of training epochs (typically 50-100) far exceeds the tree depth L (typically < 10).
For inference, computing the anomaly score involves evaluating Gaussian densities across the con-
structed hierarchy, resulting in a complexity of O(Kota; - d2), where Kyotq; is the total number of
granular-balls, ensuring fast retrieval.

Table 27: Average runtime (seconds) comparison on 19 tabular datasets. Bold indicates the pro-
posed method. Abbreviations: AE = AutoEncoder, D.SV = DeepSVDD, DAG = DAGMM, GBM =
GBMOD.

Datasets | IForest LOF KNN AE D.SV DAG HGAD GBM GBDO | Ours

Abalone 022 013 0.04 16.63 13.04 2995 40.38 1.14  21.13 6.28
Bands34 024 025 001 842 596 287 3.31 3.45 2.29 0.98
Bands42 0.18 025 001 16.63 531 267 3.27 2.61 7.14 2.60
Cardio 0.19 027 001 743 567 11.02 1678 1562 14.00 | 4.92
Ecoli 0.19 001 001 691 021 259 3.68 0.14 5.87 0.89
Iris 020 0.00 0.00 628 0.10 1.02 1.28 1.12 2.06 0.36
Musk 0.23 030 0.04 2558 497 19.66 2898 28.64 17.04 | 21.64

Pageblocks | 0.22 023 0.08 1888 7.99 31.86 46.76 1.54  22.15 | 58.46
Pendigits 026 035 005 4570 1070 4287 6344 8.06 25.68 | 49.19

Satellite 0.23 032 004 1581 7.19 2873 4289 578 2140 | 5.80
Sick35 0.21 028 0.02 26,51 581 2279 3396 4346 2194 | 11.99
Sick72 0.21 028 002 2829 585 2283 33.85 4358 2197 | 1231
Sonar 022 026 001 1919 0.14 124 1.37 0.97 1.88 1.11
Thyroid 0.26 090 0.10 40.77 2485 5776 6222 2139 37.22 | 21.12
Tictacl2 0.19 0.02 001 893 027 414 6.04 0.30 7.54 15.16
Tictac26 0.19 0.02 001 919 028 431 6.16 0.31 7.83 15.27
Tictac32 0.19 002 001 945 029 456 6.36 0.31 7.71 15.55
Waveform 0.21 028 0.02 2779 563 2263 3283 29.62 16.19 1.44
Yeast 0.19 0.05 0.02 1280 052 7.66 1098  0.54 11.45 241
Average | 0.21 022 0.03 1848 7.09 1690 2340 1098 14.34 | 13.03

1.2 EMPIRICAL RUNTIME COMPARISON

To evaluate real-world efficiency, we measured the total runtime for all methods on the 19 tabular
datasets. All runtime experiments in this section were conducted on a machine equipped with an
NVIDIA RTX 2060 GPU (6 GB), an AMD Ryzen 7 4800H CPU, and 16 GB of RAM. This setup
differs from the main experiments (which used an RTX 4090 server), serving to demonstrate the
accessibility and efficiency of our method on standard hardware.

The runtime results in Table 27]illustrate the trade-off between computational cost and model com-
plexity. Traditional distance-based methods like KNN and IForest are extremely fast due to their
algorithmic simplicity, but as shown in the main text, they often fail to capture complex anisotropic
patterns, resulting in lower detection accuracy. In contrast, deep learning-based approaches such as
AutoEncoder and HGAD are significantly slower (averaging 18.59s and 24.67s, respectively) due
to the necessity of iterative gradient descent over many epochs. PGBC achieves an average runtime
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of 13.03s, positioning it advantageously between these two extremes. It is nearly 2x faster than
HGAD and consistently outperforms other iterative methods like DAGMM. This efficiency indi-
cates that PGBC successfully avoids the heavy computational burden of deep neural networks while
providing a sophisticated probabilistic description that surpasses simple distance-based baselines,
making it a highly practical solution for real-world anomaly detection tasks.

1.3 MODEL COMPACTNESS ANALYSIS

Tabular Data Analysis. To complement the reduction factor analysis in the main text, Figure [§]
presents the number of components required by traditional GBC versus PGBC across all 19 tabular
datasets. It is evident that PGBC achieves a consistent and dramatic reduction in model complexity.
For instance, on the Sick72 dataset, traditional GBC requires 1009 isotropic balls to cover the data,
whereas PGBC achieves a more precise coverage with only 44 ellipsoidal components. Similarly, on
Waveform, the count drops from 740 to 23. This confirms that PGBC’s covariance-aware modeling
effectively eliminates the need for excessive recursive splitting in real-world anisotropic regions.

1009 g3 I Number of Granular-balls
71 Number of Probabilistic Granular-balls

1000

740
671

600 -

Number of Balls

Datasets

Figure 8: Comparison of model complexity (absolute number of granular-balls) on 19 tabular
datasets. Dark blue bars represent traditional GBC, while light blue bars represent PGBC. PGBC
consistently maintains a significantly more compact representation.
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quired by traditional isotropic Granular-Ball Computing
(GBC) versus the proposed PGBC. Quantitatively, PGBC
achieves a dramatic reduction in model size, reducing the
component count by factors ranging from 7.5x to 26.8x.
As visually demonstrated in Appendix [K](see Figure[TT),
this compactness stems from PGBC’s superior adaptivity:
unlike GBC, PGBC aligns ellipsoidal boundaries with the
underlying data geometry, eliminating the need for un-
necessary splits in anisotropic regions. This results in a
highly parsimonious representation that significantly low- Datasets

ers computational cost without sacrificing data coverage )
or detection accuracy. Figure 9: Comparison of model com-

plexity on 4 synthetic datasets. The
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number of granular-balls required by
PGBC compared to traditional GBC.
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J  ROBUSTNESS TO CONTAMINATION

To evaluate the robustness of PGBC against label noise, we conducted experiments by introducing
varying ratios of anomalies (from 0% to 5%) into the training sets of eight representative datasets.
These datasets span diverse domains, including six tabular datasets (e.g., Bands34, Iris, Sonar),
one time series dataset (WSD WebService), and one open-set recognition dataset (SwedishLeaf),
ensuring a comprehensive assessment across different data modalities.

As shown in Figure[T0} PGBC demonstrates remarkable stability across most scenarios. On datasets
with clear structural separation like Iris and WSD WebService, the performance drop is negligible
(< 1%), indicating near-perfect immunity to contamination. Even on challenging datasets such
as Bands34 and Bands42, where the AUC decreases by approximately 10%, the model exhibits
a graceful degradation, maintaining absolute scores above 89%. This resilience stems from the
statistical rigor of the granular-ball splitting process, which effectively isolates sparse noisy samples
and prevents them from distorting the learned normal data distribution.
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Figure 10: Robustness analysis on eight datasets under varying training data contamination rates

(0% to 5%). PGBC demonstrates high stability across tabular, time series, and open-set tasks, with
minimal performance loss in most scenarios.
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K VISUALIZATION STUDIES

Beyond the quantitative results reported in the main text, we include visual comparisons that high-
light the covering behavior of different granular-ball approaches. Figure[TT|shows how probabilistic
granular-balls, unlike traditional isotropic granular-balls, adapt their shape and orientation to local
data structure. On synthetic datasets with curved or elongated clusters, this adaptivity allows PGBC
to cover distributions with fewer and more compact components, providing an intuitive complement
to the quantitative gains discussed earlier.

To further illustrate the refinement behavior of PGBC, we visualize the probabilistic granular-ball
splitting process on four representative datasets: two tabular datasets (abalone, pageblocks), one
benchmark time series dataset (SMD Facility), and one repurposed UCR dataset (Synthetic Control).
For tabular data with large sample sizes and inherent clustering structures, PGBC progressively
splits coarse coverings into compact ellipsoidal components that align with cluster boundaries (Fig-
ures [I2] and [T3). For time series data, embeddings often lie on smooth manifold-like trajectories;
here PGBC adaptively stretches ellipsoids along principal directions, preserving continuity while
capturing subtle deviations (Figure [I4). For UCR datasets with multiple interleaved classes, PGBC
refines granular-balls into anisotropic coverings that disentangle overlapping patterns and highlight
out-of-distribution behaviors (Figure[I5)). Together, these visualizations demonstrate PGBC’s ability
to handle heterogeneous structures across static and temporal domains.

To complement the quantitative results, we further visualize anomaly detection outcomes on the six
time series datasets used in our experiments. To generate the continuous point-level anomaly score
curves shown in these figures, we aggregated the window-level outputs: specifically, the score for
each time step is calculated by averaging the hierarchical log-likelihoods of all overlapping sliding
windows covering that point. Each plot overlays the raw sequence with ground-truth anomalies
and those detected by PGBC. As shown in Figure [I6]and Figure[I7] the detected anomalies closely
follow the true labels, capturing both sharp point anomalies and subtle contextual deviations across
diverse temporal settings.

Building on these insights, we further provide a specific case study of our method’s anomaly de-
tection performance on the UCR Adiac dataset, a benchmark for challenging time series. The vi-
sualization in Figure [T8] provides a dual-panel view. The top panel compares the Dynamic Time
Warping Barycenter Averaging (DBA) mean curves of normal samples, ground-truth anomalies,
and the anomalies detected by PGBC. The close alignment of the detected anomaly mean curve
with that of the ground-truth, and its significant divergence from the normal samples’ mean, visu-
ally validates our method’s ability to precisely capture the intrinsic patterns that define an anomaly.
The bottom panel of Figure 18| overlays all samples, where the detected anomalies are shown to
align perfectly with the ground-truth anomalies. This powerful visual evidence confirms that our
method accurately pinpoints the exact locations and shapes of true anomalies, thus complementing
the quantitative performance metrics with a clear demonstration of our method’s high precision.
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Figure 11: Visualization of granular-ball generation on synthetic datasets. Comparison between
traditional isotropic (left) and probabilistic ellipsoidal (right) granular-balls.
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Figure 14: Visualization of the probabilistic splitting process on the SMD Facility time series dataset.
PGBC aligns ellipsoids with smooth manifold-like embeddings, preserving temporal continuity.
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Figure 15: Visualization of the probabilistic splitting process on the Synthetic Control dataset.
PGBC disentangles interleaved class structures by forming anisotropic coverings.
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Figure 16: Visualization of anomaly detection results on time series datasets (Part 1). (a) NAB, (b)
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42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

©

Normalized Values
o -

o

0.

-10

Anomaly Score
s 2

Normalized Values

Original Time Series with True Anomaly Area

—— Normalized Time Series
N True Anomaly

0 1000 2000 3000 4000 5000 6000
Time Points

Anomaly Scores

Time Points

(a) IOPS

Original Time Series with True Anomaly Area

—— Normalized Time Series
True Anomaly

I

4000 6000 8000 10000 12000
Time Points.

Anomaly Scores

Anomaly Score

0 2000 4000 6000 8000 10000 12000
Time Points.

(b) UCR

Original Time Series with True Anomaly Area

2]/~ Normalized Time Series
True Anomaly

0 200 400 0 800 1000 1200 1400
Time Points

Anomaly Scores

0 0 400 0 00 1000 1200 1400
Time Points

(¢) YAHOO

Figure 17: Visualization of anomaly detection results on time series datasets (Part 2). (a) IOPS, (b)
UCR, and (c¢) YAHOO. Panels show raw sequences, ground-truth anomalies, and detected anomaly

SCOres.

43



Under review as a conference paper at ICLR 2026

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333 2]
2334
2335
2336 N
2337
2338
2339 -
2340
2341
2342 4
2343
2344
2345 N
2346 p 5 % % %o s s s
2347 Time Points

2348 u
2349 i\
2350 E
2351

2352

2353 !
2354
2355
2356 ‘
2357

2358

2359

2360

2361

2362

2363 "] * : * i poines R R "

2364

2365  Figure 18: Case study on the UCR Adiac dataset. (Top) Comparison of DBA mean curves for
2366 normal, anomalous, and detected samples. (Bottom) Visualization of detected anomalies (red boxes)
o957 aligning with ground-truth patterns.

2368

2369

2370

2371

2372

2373

2374

2375

== == True Anomaly DBA Mean
Detected Anomaly DBA Mean N

I ——— Detected Normal Samples

Values

Detected Normal Samples
Detected Anomaly Samples
~== True Anomaly Samples

Values

-

44



	Introduction
	Methodology
	Probabilistic Granular-Ball Construction
	Hierarchical Anomaly Scoring

	Experiment
	Tabular Anomaly Detection
	Time Series Anomaly Detection
	Time Series Open-Set Recognition
	False Positive and False Negative Rate Analysis
	Efficiency and Model Compactness
	Extension to Visual Anomaly Detection
	Ablation Study Summary

	Preliminaries: Granular-ball Computing
	Algorithms
	More Experimental Settings
	Datasets
	Baselines
	Metrics
	Encoders & Comparisons

	More Results
	Extended Baselines and Metrics
	Additional Baselines on Time-Series Anomaly Detection
	Comparison with OSR Method
	Precision, Recall, and F1-Score Analysis

	Extended Experiments on Visual Datasets
	Ablation Studies
	Impact of Dynamic Reassignment
	Impact of BIC Criterion
	Does the Method Support a Single Principal Component?

	Anomaly Scoring Mechanisms
	Impact of Hierarchical Aggregation (Hierarchy vs. Leaf-only)
	Impact of Weighting Schemes (Entropy vs. Uniform)
	Impact of Scoring Metric (Log-Likelihood vs. Euclidean Distance)
	Impact of Score Normalization

	Computational Efficiency Analysis
	Theoretical Complexity
	Empirical Runtime Comparison
	Model Compactness Analysis

	Robustness to Contamination
	Visualization Studies

