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ABSTRACT

One-class data description aims to model the distribution of target data by con-
structing a compact representation of the target class. This approach is widely
applied in tasks like anomaly detection, where the objective is to differentiate
the target data from outliers. Traditional methods typically rely on single-sphere
or pre-defined multi-sphere representations. However, these simplistic assump-
tions often fail to capture the anisotropic structures and intricate patterns present
in real-world data, limiting their effectiveness in representing distributions across
multiple scales. To address these limitations, we propose Probabilistic Granular-
ball Computing (PGBC), a hierarchical framework for one-class data description.
PGBC uses ellipsoidal granular-balls to align with the anisotropic geometry of
data and recursively refines them through statistical splitting, achieving precise
and adaptive data representation. Additionally, PGBC approximates a hierarchical
Gaussian mixture model by aggregating data description scores via granular-ball
distribution entropy at each layer. This enables PGBC to capture data patterns
at multiple levels of granularity, modeling both global structures and fine local
variations. Extensive experiments on benchmark datasets demonstrate that PGBC
consistently outperforms related strong baselines, offering superior accuracy for
hierarchical one-class data description while maintaining a low false positive rate.

1 INTRODUCTION

One-class classification has become increasingly critical in real-world scenarios where acquiring
representative anomalous samples are impractical, unpredictable, or even hazardous such as in me-
chanical failure detection (Pang et al., 2021), arrhythmia diagnosis from ECG signals (Kavya et al.,
2024), or cybersecurity intrusion monitoring (Patcha & Park, 2007). In these domains, anomalies
are not only rare but also highly diverse in form and origin, making it infeasible to comprehensively
define them through labeled datasets. To address these challenges, one-class data description focuses
solely on modeling the intrinsic structure of normal data, without requiring labeled anomalies (Pi-
mentel et al., 2014; Ruff et al., 2018). Unlike conventional supervised approaches that rely on both
normal and abnormal examples, one-class methods construct a reference model of normality and
identify inputs that deviate from this reference as potential anomalies (Schölkopf et al., 2001; Tax &
Duin, 2004). By isolating the learning process from the variability and unpredictability of anomalous
events, one-class data description offers a robust and versatile framework, particularly well-suited
for safety-critical or data-scarce applications where systems must autonomously detect novel or un-
expected behaviors (Ruff et al., 2021). Nevertheless, anomaly detection in practice remains highly
challenging, as real-world data distributions often demonstrate complex and anisotropic structures,
where local density varies significantly with direction. This complexity underscores the need for
models that can achieve high detection accuracy while also ensuring low false positive rates.

Traditional one-class data description methods often rely on spherical boundaries. For instance,
Support Vector Data Description (SVDD) (Tax & Duin, 2004) encloses data in a hypersphere in
feature space, and DeepSVDD (Ruff et al., 2018) learns deep latent representations to tighten the
sphere around normal samples. Extensions such as MCDD (Lee et al., 2020) and THOC (Shen
et al., 2020) employ multiple spheres to enhance flexibility, yet they require the number of spheres
to be predefined and still enforce isotropic boundaries.
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Granular-ball computing (Xia et al., 2019; 2020; Xie et al., 2025) offers an adaptive alterna-
tive by automatically generating multiscale hyperspheres without predefining their number. While
more flexible, existing granular-ball methods (e.g., GBDO, GBMOD) also assume isotropic shapes,
which struggle with elongated clusters and lead to redundant overlapping spheres when modeling
anisotropic geometries. As illustrated in Figure 1, isotropic sphere-based granular-ball approaches
approximate clusters using equal-radius contours to define simplified boundaries. In such repre-
sentations, two points that are equidistant from a centroid are always assigned the same anomaly
score, thereby ignoring that real data often concentrates heavily along a principal component direc-
tion. Crucially, this limitation cannot be resolved by simply aggregating geometric distances (e.g.,
average distance to centroids), as iso-probability contours in anisotropic distributions often diverge
from iso-distance contours. This limitation often leads to redundant components for elongated clus-
ters and further increases the number of false positives by misclassifying points aligned with the
dominant geometry.

A
B

(a)

(b)

B

Principal Component Direction

A

Figure 1: (a) Traditional granular-ball representa-
tion uses isotropic spheres, which struggle to fit
complex or anisotropic regions without excessive
splitting. (b) The proposed probabilistic granular-
balls form ellipsoidal regions aligned with the
principal component direction, offering adaptive
shape and orientation for more efficient coverage.

This motivates us to adopt the probabilistic el-
lipsoidal granular-ball depicted in Figure 1(b)
for constructing a one-class data description.
Specifically, this approach allows the granular-
ball to flexibly adjust its shape by stretching
along the principal component directions of the
data. As a result, two points with the same ge-
ometric distance from the centroid may lie on
different σ-level contours of the ellipsoid, lead-
ing to significantly different anomaly scores.
This alignment with the intrinsic data geometry
both reduces redundancy and suppresses false
alarms, thereby providing a more expressive
and reliable framework for anomaly detection.
The formal definition and computational details
of granular-balls are provided in Appendix A.

In addition, AutoEncoder (Sakurada & Yairi,
2014) and Deep Autoencoding Gaussian Mix-
ture Model (DAGMM) (Zong et al., 2018) are
also widely used to enhance expressiveness by learning compact representations. However, this
often comes at the expense of intensive training requirements and high sensitivity to hyperparame-
ters. Meanwhile, Hierarchical Gaussian Mixture Normalizing Flow Modeling (HGAD) (Yao et al.,
2024) presents a hierarchical probabilistic approach that captures anisotropic structures through
component-wise covariances and flows. However, HGAD’s reliance on a predefined structural de-
sign limits its ability to adapt to the unknown complexity of the data, as both the number of mixture
components and the hierarchical levels are fixed beforehand, rather than being dynamically learned
from the data’s intrinsic geometry.

In this paper, we propose Probabilistic Granular-ball Computing (PGBC) for hierarchical one-class
data description. PGBC models data with ellipsoidal granular-balls that adaptively align with prin-
cipal components, overcoming the geometric rigidity of spherical granular-balls. By combining
the geometric flexibility of ellipsoids with the statistical rigor of Gaussian components, PGBC pro-
vides an expressive and statistically grounded representation of data distributions. Moreover, each
granular-ball is refined iteratively using statistical criteria such as the Bayesian Information Criterion
(BIC) and log-likelihood improvement, allowing the model to adjust its complexity automatically
without deep architectures or fixed mixture sizes. For anomaly detection, PGBC organizes granular-
balls into a hierarchical structure resembling a Gaussian mixture model, where anomaly scores are
aggregated across layers using entropy-based weights, enabling detection at multiple levels of gran-
ularity. Overall, this design combines geometric adaptivity with principled statistical refinement,
providing both flexibility and robustness for one-class data description.

Our main contributions are summarized as follows:

i) We introduce probabilistic granular-ball computing (PGBC), a hierarchical one-class data descrip-
tion framework that adaptively captures local data distributions by iteratively splitting and refining
ellipsoidal granular-balls, enabling both anisotropic and probabilistic modeling of the data.
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Probabilistic Granular-ball Construction

i) Initialization iii) Dynamic Reassignmentii) Splitting

Hierarchical Anomaly Scoring

Level Weighting with Entropy+

Iterate Steps (ii) (iii) 

Score:
Entropy:If no Splitting (L=0)

Figure 2: Framework of probabilistic granular-ball computing (PGBC). For data with a single prin-
cipal component (no splitting), the model simplifies to a single global Gaussian.

ii) To complement this, we propose a systematic anomaly scoring mechanism that aggregates like-
lihoods across hierarchical levels by entropy-based weighting, effectively amplifying consistent ab-
normality signals while suppressing spurious noise, thereby reducing the false positive rate.

iii) Extensive experiments demonstrate the superiority of PGBC, consistently outperforming recent
state-of-the-art baselines in both tabular and time series anomaly detection tasks.

2 METHODOLOGY

Problem definition and notations. In the context of one-class data description, we are given a
set of N training samples X = {x1,x2, . . . ,xN}, where each xi ∈ Rd is a d-dimensional feature
vector representing normal data. The goal is to learn a compact representation of the normal data
distribution p(x) based solely on X . This description serves as the foundation for distinguishing
normal samples from anomalies. For a given test sample x′, its anomaly score is determined by
quantifying how much it deviates from the learned description of the normal data. Samples that
significantly deviate are identified as anomalies, while those that align closely with the one-class
description are classified as normal.

Overview. In this section, we formally present the proposed framework of Probabilistic Granular-
Ball Computing (PGBC). As depicted in Figure 2, the PGBC pipeline consists of two main phases:
(i) Probabilistic Granular-Ball Construction (top) and (ii) Hierarchical Anomaly Scoring (bottom).

The first phase, Probabilistic Granular-Ball Construction, adaptively builds a hierarchical one-class
data description through three core steps: (i) Initialization, (ii) Recursive Splitting Strategy, and
(iii) Dynamic Reassignment. Steps (ii) and (iii) are alternated iteratively to progressively refine the
description of the underlying data distribution. At each iteration, a probabilistic model is fitted to
the data encapsulated within a granular-ball, which is then divided into smaller components. Each
granular-ball models a local Gaussian distribution, and this recursive process systematically con-
structs a data-driven mixture tree. The resulting hierarchy captures both global and local structures
of the normal data, providing a comprehensive and adaptive probabilistic one-class description.

The second phase, Hierarchical Anomaly Scoring, leverages the constructed hierarchy to compute
anomaly scores for test samples of the data. Instead of relying solely on the leaf-level granular-
balls, PGBC aggregates scores across multiple levels of the hierarchy. This multilevel aggregation
combines both global and local perspectives, enabling robust anomaly detection by capturing coarse-
grained and fine-grained patterns in the data. By integrating information from different levels, PGBC
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ensures that anomalies are ultimately and effectively identified, regardless of whether they deviate
from global trends or local structures.

2.1 PROBABILISTIC GRANULAR-BALL CONSTRUCTION

To capture the anisotropic and locally-varying structures of data, we extend classical granular-balls
into a data-driven hierarchical structure composed of ellipsoidal probabilistic components. Each
region is represented by a Gaussian distribution, with its mean and covariance matrix adaptively
estimated to align with the local data geometry. This approach systematically captures structural
variability and enables flexible density estimation across multiple levels of granularity. Formally,
the definition of a probabilistic granular-ball is provided in Definition 1.

Definition 1 (Probabilistic Granular-Ball). A probabilistic granular-ball B is a Gaussian approxi-
mation in Rd defined by the following parameters: i) A mean vector µ ∈ Rd, representing the center
of the data distribution within the region. ii) A covariance matrix Σ ∈ Rd×d, encoding the shape,
orientation, and dependencies within the data distribution of the region.

The PGBC framework constructs a hierarchical density representation of the data by sequentially
executing three main steps: i) Initialization, ii) Recursive Splitting, and iii) Dynamic Reassignment.
Steps 2 and 3 are performed alternately to iteratively refine and model underlying data distribution.

Step 1: Initialization. The construction process begins with an initial probabilistic granular-ball
B(0) that encapsulates the entire dataset X . The parameters of B(0) are computed as follows:

µ(0) =
1

N

N∑
i=1

xi, Σ(0)=
1

N−1

N∑
i=1

(xi−µ(0))(xi−µ(0))⊤, (1)

where µ(0) is the empirical mean and Σ(0) is the covariance matrix. In practice, ϵ > 0 (set to 10−6

in our implementation) is a small regularization term added to Σ(0) to ensure numerical stability. At
this step, B(0) serves as the root of the tree hierarchy, capturing the global structure of the data.

Step 2: Recursive Probabilistic Granular-ball Splitting. To refine the density representation,
each granular-ball B(l) (parent ball) is recursively split into smaller components if the data within
it exhibits sufficient structural variability. This recursive process systematically decomposes the
complex global data distribution into simpler, statistically validated ellipsoidal components.
The splitting strategy is governed by a dual-criterion rule, ensuring that the decision to split is both
statistically sound and adaptive to the data structure.

Splitting rule. A granular-ball B(l) is split into two child granular-balls B(l+1)
1 and B(l+1)

2 if and
only if the following two criteria are satisfied:

BIC(M2) < BIC(M1), and ∆logL > 0. (2)

Here, M1 represents the model of B(l) as a single Gaussian model, while M2 represents B(l) as
a two-component Gaussian Mixture Model (GMM). The splitting rule is designed to ensure that
splitting occurs only when the two-component model offers a statistically significant improvement
over the single Gaussian model.

The two criteria used in the splitting rule are defined as follows:

i) Bayesian Information Criterion (BIC). The Bayesian Information Criterion (Schwarz, 1978) eval-
uates the trade-off between model complexity and data fit. It is computed as:

BIC(M) = −2 logL(M) + k logN, (3)

where L(M) is the likelihood of model M , k is the number of free parameters in the model, and N
is the number of data points within B(l). Crucially, the BIC term acts as a statistical regularizer,
penalizing excessive complexity to ensure that splitting is driven by significant structural gains rather
than local noise. A lower BIC indicates a better balance between model simplicity and accuracy.
Splitting is preferred if the two-component model M2 achieves a lower BIC than the single Gaussian
model M1.
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ii) Log-likelihood gain (LLG). The log-likelihood gain (Fisher, 1922; Wilks, 1938) measures the
improvement in data fit when replacing the single Gaussian model (M1) with the two-component
GMM (M2). It is computed as:

∆ logL =

N∑
i=1

[log pM2
(xi)− log pM1

(xi)] , (4)

where pM1(xi) and pM2(xi) are the likelihoods of xi under models M1 and M2, respectively. A
positive ∆ logL indicates that the two-component GMM (M2) provides a better fit to the data.

If the splitting rule is satisfied, the parent granular-ball B(l) is divided into two child granular-balls
B(l+1)
1 and B(l+1)

2 , each modeled as Gaussian components. After splitting, these child granular-balls
inherit local data properties and are treated as new candidates for further splitting. This recursive
process continues until no granular-ball satisfies the splitting criteria, resulting in a hierarchical rep-
resentation of the data. However, splitting alone may leave some data points assigned to suboptimal
granular-balls. To address this, a dynamic reassignment step is performed after each split.

Step 3: Dynamic Reassignment. To ensure consistency and improve local fit, each data point
x ∈ X is reassigned to the granular-ball that maximizes its log-likelihood:

B∗(x) = argmax
Bj

log pBj
(x), (5)

where pBj
is the Gaussian density parameterized by (µj ,Σj) for granular-ball Bj . Dynamic re-

assignment ensures that the hierarchical structure adapts to the evolving density distribution. By
reallocating data points to the granular-balls that best represent their local characteristics, the frame-
work maintains an accurate and adaptive representation of the data. After each round of splitting,
dynamic reassignment is performed to refine the data distribution within the granular-balls.

This alternating process of splitting and reassignment continues iteratively until the hierarchical
structure stabilizes. The resulting tree hierarchy encapsulates the global structure at the root, pro-
gressively refines intermediate levels, and captures fine-grained local patterns at the leaves. This
hierarchical organization enables the framework to effectively balance global and local density esti-
mation, providing both coarse and fine-grained insights into the data distribution.

The whole construction procedure is summarized in Algorithm 1 in Appendix B.

2.2 HIERARCHICAL ANOMALY SCORING

After constructing the hierarchical structure of probabilistic granular-balls, the PGBC framework
represents the normal data distribution in a coarse-to-fine manner. Each level l ∈ {1, . . . , L} in the
hierarchy contains a set of granular-balls {B(l)j }K

(l)

j=1 . Specifically, the hierarchical scoring aggre-
gates information from levels l = 1 to L. The root level (l = 0) serves as a fallback representation:
in the degenerate case where no splitting occurs (L = 0), the anomaly score is derived exclusively
from the single global Gaussian at l = 0.

For a test sample x′, an anomaly score is calculated by combining information from all levels of the
hierarchy. At each level l, the anomaly score is based on the negative log-likelihood of the sample
under the Gaussian components defined by the granular-balls at that level:

s(l)(x′) = − log

K(l)∑
j=1

π
(l)
j · N (x′ | µ(l)

j ,Σ
(l)
j )

 , (6)

whereN (x′ | µ(l)
j ,Σ

(l)
j ) is the Gaussian density defined by the j-th granular-ball, and π

(l)
j represents

the normalized weight of the j-th granular-ball. The weight π(l)
j reflects the relative importance of

the granular-ball in the overall probabilistic distribution and is computed as:

π
(l)
j =

nj∑K(l)

k=1 nk

, (7)

where nj is the number of data points covered by granular-ball B(l)j . This level-wise score s(l)(x′)
evaluates how well the sample aligns with the normal data distribution at level l, with higher scores
indicating greater deviation.

5
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Level Weighting with Entropy. To fully utilize the hierarchical structure, anomaly scores are ag-
gregated across all levels. First, the scores at each level are normalized using min-max scaling to
ensure consistency: s̃(l)(x′) = s(l)(x′)−min(s(l))

max(s(l))−min(s(l))
, where min(s(l)) and max(s(l)) are computed

from the training data. The final anomaly score is then calculated as a weighted sum of the normal-
ized scores across all levels:

sfinal(x
′) =

L∑
l=1

w(l) · s̃(l)(x′), (8)

where w(l) is the weight assigned to level l, reflecting its importance in the anomaly scoring
process. Here, the weights w(l) are determined using an entropy-based scheme. The entropy
of level l quantifies its granularity and confidence in representing the data distribution: H(l) =

−
∑K(l)

j=1
nj

N log
(nj

N

)
, where nj is the number of samples covered by granular-ball B(l)j , and N is

the total number of samples. Higher entropy indicates a finer-grained partition of the data at that
level. The weight for each level is then computed as: w(l) = H(l)∑L

l′=1
H(l′) . Since the root layer

(l = 0) encompasses the entire dataset, it yields zero entropy and is inherently excluded from the
weighted sum when L ≥ 1. This allows the scoring mechanism to focus on the refined structural
information provided by subsequent levels. Consequently, the root node B(0) contributes to the final
score only in the degenerate case (L = 0), as established earlier. By combining information across
levels, the PGBC framework produces a hierarchical anomaly score that effectively captures devia-
tions in both global and local patterns. The detailed pseudocode for the scoring process is provided
in Algorithm 2 in Appendix B.

3 EXPERIMENT

Setup. We evaluate the proposed PGBC framework across three key tasks: (i) tabular anomaly
detection, (ii) time series anomaly detection, and (iii) time series open-set recognition. For each
task, PGBC is systematically compared against a diverse range of classical and deep learning base-
line methods, including Isolation Forest (Liu et al., 2008), Local Outlier Factor (LOF) (Breunig
et al., 2000), k-Nearest Neighbors (k-NN) (Peterson, 2009), AutoEncoder (Sakurada & Yairi, 2014),
DeepSVDD (Ruff et al., 2018), DAGMM (Zong et al., 2018), the hierarchical Gaussian-mixture
method HGAD (Yao et al., 2024), as well as granular-ball-based approaches GBMOD (Cheng et al.,
2025) and GBDO (Su et al., 2025).

All experiments are conducted on a single NVIDIA RTX 4090 GPU, with fixed random seeds to en-
sure reproducibility. Model performance is evaluated using the Area Under the Curve (AUC) metric,
averaged over five independent runs for robustness. Detailed descriptions of the datasets, encoder
configurations, baseline implementations, and evaluation protocols are provided in Appendix C.

3.1 TABULAR ANOMALY DETECTION

Overall Results. We evaluate PGBC on 19 tabular datasets spanning manufacturing, cybersecurity,
and medical diagnostics (Cheng et al., 2025). Features are normalized and models are trained only
on normal samples. This evaluation tests PGBC’s ability to model heterogeneous, static data across
a range of anomaly ratios. Table 1 presents the mean AUC scores (averaged over five independent
runs), with standard deviations provided in Appendix D. PGBC achieves the highest mean AUC on
13 out of 19 datasets and consistently ranks among the top-performing methods, highlighting its
robustness and effectiveness across diverse data types.

Analysis of Representative Scenarios. i) Typical Datasets: On datasets with clear structures,
such as the Bands and Tictac variants, PGBC demonstrates exceptional performance by achieving a
perfect AUC score of 100.0%, demonstrating reliable performance even in cases where data exhibit
no significant structural challenges. ii) Imbalanced Datasets with Low Anomaly Ratios: PGBC
excels on datasets with extremely low anomaly ratios. On Thyroid (0.81% anomalies), it obtains the
state-of-the-art AUC of 71.2%, surpassing all baselines including GBMOD (69.7%). Similarly, on
Yeast (0.44% anomalies), it scores a perfect 100.0% AUC, matching the strongest competitors. This
robustness stems from its hierarchical scoring strategy, which integrates information across multiple
levels of granularity to mitigate majority-class bias in highly imbalanced settings.
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Table 1: AUC results (%) on tabular anomaly detection tasks averaged over five runs. Standard devi-
ations are omitted for brevity (see Appendix D for full results). Bold indicates the best performance,
and underline indicates the second best. Abbreviations: AE = AutoEncoder, D.SV = DeepSVDD,
DAG = DAGMM, GBM = GBMOD.

Datasets LOF IForest KNN AE D.SV DAG HGAD GBM GBDO Ours

Abalone 75.6 70.2 69.3 79.9 68.2 57.0 75.2 78.0 76.3 72.1
Bands34 74.8 79.2 77.5 77.8 64.8 53.0 80.7 71.7 71.0 100.0
Bands42 75.9 78.3 76.3 76.1 63.1 51.0 77.9 76.9 70.4 100.0
Cardio 82.6 85.9 80.5 76.5 77.3 70.0 75.8 86.5 66.4 84.0
Ecoli 85.1 84.1 87.6 88.1 86.8 40.0 88.3 85.1 89.8 89.4
Iris 91.6 100.0 97.8 93.8 83.4 99.0 98.5 100.0 74.8 100.0
Musk 100.0 96.9 100.0 100.0 99.7 100.0 100.0 91.1 25.9 100.0
Pageblocks 98.2 98.3 99.6 92.2 98.4 66.0 99.7 99.5 96.2 99.9
Pendigits 99.3 97.5 98.9 94.4 91.1 77.0 99.4 98.4 74.2 99.5
Satellite 84.5 79.4 87.6 80.6 83.3 80.0 82.3 85.5 80.4 83.1
Sick35 73.7 89.3 89.1 85.2 83.8 57.0 88.8 89.1 83.6 87.4
Sick72 61.2 81.4 83.5 81.4 77.3 56.0 82.2 79.1 79.6 87.3
Sonar 98.9 99.4 99.6 99.1 76.3 79.0 98.4 98.9 63.7 100.0
Thyroid 53.5 63.3 65.8 60.3 63.9 44.0 66.0 69.7 68.6 73.0
Tictac12 97.6 98.6 93.6 84.6 75.9 54.0 97.0 96.8 60.7 100.0
Tictac26 92.8 95.6 91.1 76.7 64.3 48.0 95.0 88.1 54.2 100.0
Tictac32 92.2 95.4 93.1 76.1 64.1 46.0 93.2 86.3 55.1 100.0
Waveform 76.5 70.7 76.1 52.5 60.0 56.0 73.7 74.2 65.0 78.1
Yeast 99.1 99.7 99.4 99.6 99.9 43.0 99.7 100.0 99.2 100.0

Average 84.9 87.6 87.8 83.0 78.0 61.9 87.6 87.1 71.4 91.1

Table 2: AUC results (%) on time series anomaly detection tasks, averaged over five runs. Standard
deviations are omitted here for clarity (full results in Appendix D). Bold indicates the best perfor-
mance, and underline indicates the second best. AE = AutoEncoder, D.SV = DeepSVDD, DAG =
DAGMM, GBM = GBMOD.

Datasets LOF IForest KNN AE D.SV DAG HGAD GBM GBDO Ours

NAB Traffic 80.4 78.6 91.2 79.6 83.4 59.2 84.3 80.6 77.5 85.4
WSD WebService 94.3 87.2 97.0 96.0 88.6 68.5 94.0 93.6 75.1 98.8
SMD Facility 93.3 93.4 97.1 98.5 94.5 78.3 96.4 95.1 91.1 97.9
IOPS WebService 91.0 81.7 85.5 77.8 79.3 62.7 87.0 79.3 44.4 96.4
UCR Medical 95.6 90.8 93.0 66.4 93.2 75.5 88.7 88.5 67.7 93.5
YAHOO Synthetic 71.3 77.2 88.6 44.8 71.4 48.1 67.2 67.0 88.9 99.8

Average 87.6 84.8 92.1 77.2 85.1 65.4 86.3 84.0 74.1 95.3

(a) UCR medical (b) WSD WebService (c) Synthetic control

Figure 3: Visualization of probabilistic granular-ball coverings on representative time series datasets.
(a) UCR Medical, (b) WSD WebService, and (c) Synthetic Control.

Summary. The experimental results align with PGBC’s design: covariance-aware, ellipsoidal mod-
eling improves robustness on anisotropic data, while entropy-weighted hierarchical aggregation
helps maintain adaptability across varying anomaly ratios.

3.2 TIME SERIES ANOMALY DETECTION

We evaluate PGBC on six benchmarks from the TSB-AD suite (Liu & Paparrizos, 2024), which
contain real-world monitoring data with accurate anomaly labels. Sequences are segmented into
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Table 3: AUC results (%) on time series open-set recognition tasks, averaged over five runs. Stan-
dard deviations are omitted for brevity (see Appendix D for detailed tables). Bold indicates the best
performance, and underline indicates the second best. Abbreviations: AE = AutoEncoder, D.SV =
DeepSVDD, DAG = DAGMM, GBM = GBMOD.

Datasets LOF IForest KNN AE D.SV DAG HGAD GBM GBDO Ours

Adiac 96.6 98.1 98.2 97.6 98.5 82.7 97.9 98.8 97.3 99.2
CBF 99.7 76.7 99.7 51.0 78.3 52.1 92.7 95.3 61.9 100.0
Synthetic Control 98.8 69.8 100.0 84.4 87.7 75.2 96.5 80.9 66.1 99.5
SwedishLeaf 88.8 95.1 96.3 84.6 94.5 73.9 97.2 95.7 88.6 99.7
Trace 87.3 89.6 94.9 62.9 66.9 80.0 97.1 73.1 72.2 99.6

Average 89.8 85.9 97.8 76.1 85.2 72.8 96.3 88.8 77.2 99.6

sliding windows and encoded by a lightweight CNN (Krizhevsky et al., 2012). This evaluation ex-
amines PGBC’s behavior in noisy and dynamic environments. As shown in Table 2, we report mean
AUC over five independent runs (std omitted here for clarity; full tables with std are in Appendix D),
PGBC achieves the highest or second-highest AUC on all datasets. Furthermore, to demonstrate su-
periority over specialized deep time-series methods, we conducted an extended comparison against
generative and flow-based models such as OCFlow, and OCSVM. Detailed results are provided in
Appendix E.1, where PGBC consistently outperforms these baselines. Figure 3(a) and (b) further
illustrate the learned granular-ball coverings on the UCR medical and WSD WebService datasets,
where each contour corresponds to a 2σ boundary.

On datasets with extremely low anomaly ratios, such as SMD (0.64%) and Yahoo (0.28%), PGBC
remains highly competitive. It achieves an AUC of 97.9% on SMD, slightly below AutoEncoder
(98.5%) but higher than all other baselines, and reaches an AUC of 99.8% on Yahoo, surpassing the
second-best method (88.9%) by over 10 points. These two datasets also span the extremes of se-
quence length in our benchmarks (Yahoo with 1,421 time steps and SMD with 22,700), underscoring
PGBC’s robustness across diverse temporal scales.

Figure 4: Visualization result of PGBC
anomaly detection results on the IOPS Web-
Service dataset.

On WebService datasets such as WSD and IOPS,
the underlying time series exhibit clear periodic
patterns, which pose challenges for distance-based
methods that cannot adapt to recurring fluctuations.
PGBC achieves the highest AUC scores on both
datasets: 98.8% on WSD (surpassing KNN’s 97.0%)
and 96.4% on IOPS (outperforming LOF’s 91.0%).
This demonstrates its ability to effectively align el-
lipsoidal granular-balls with intrinsic temporal struc-
tures. Figure 4 further illustrates this effect on the
IOPS dataset: PGBC produces probabilistic bound-
aries where high anomaly scores closely coincide
with ground-truth anomalies despite the strong pe-
riodicity.

Compared with tabular data, time series embeddings
often lie on smooth manifold-like trajectories, where
adjacent segments tend to follow intrinsic orientations. Therefore, modeling such anisotropic and
continuous patterns requires flexible local structures. By orienting ellipsoidal granular-balls along
these directions, PGBC adapts naturally to temporal data and maintains robustness under noisy and
non-stationary conditions.

3.3 TIME SERIES OPEN-SET RECOGNITION

We further evaluate PGBC on five datasets from the UCR archive (Chen et al., 2015), repurposed
for open-set recognition. The smallest class in each dataset is designated as anomalous; 80% of
the remaining classes are used for training and 20% for testing, with an additional 10% anomalous
samples injected into the test set. This setting explicitly evaluates the ability to recognize previously
unseen categories under distributional shift.
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Table 4: Summary of False Positive Rate (FPR %) and False Negative Rate (FNR %) on 19 tabular
datasets. Full per-dataset results are provided in Appendix D.

Metric IForest LOF KNN AE D.SV DAG HGAD GBM GBDO Ours
Avg FPR (%) ↓ 3.14 3.19 2.54 3.31 3.88 4.29 2.40 3.07 4.57 2.36
Avg FNR (%) ↓ 52.8 50.1 46.5 57.2 75.7 84.9 38.7 50.2 77.7 35.9

Figure 5: Comparison of model complexity (number of granular-balls) between traditional GBC and
PGBC on 19 tabular datasets.

As shown in Table 3, PGBC achieves the best performance on four out of five datasets. PGBC
achieves the highest AUC on four datasets—reaching 99.2% on Adiac, 100.0% on CBF, 99.7% on
SwedishLeaf, and 99.6% on Trace. Even on the more challenging Synthetic Control dataset, PGBC
attains 99.5% AUC, remaining competitive with the best baseline (KNN, 100.0%). These results
highlight both robustness across sequence lengths (60–275) and reliable detection of unseen classes,
enabled by entropy-weighted score aggregation.

As illustrated in Figure 3(c), PGBC adapts its ellipsoidal granular-balls to cover the interleaved
clusters of the Synthetic Control dataset. Overall, these findings demonstrate PGBC’s capability to
generalize to open-set scenarios by forming precise decision boundaries. Specifically, the ellipsoidal
modeling allows PGBC to wrap the complex manifolds of known classes tightly, minimizing the
inclusion of void space where out-of-distribution samples might erroneously fall. Furthermore,
the entropy-weighted aggregation ensures that anomaly scores reflect structural deviations across
multiple granularities, preventing the model from overfitting to specific scales. This enables reliable
rejection of unseen categories even under distributional shifts.

3.4 FALSE POSITIVE AND FALSE NEGATIVE RATE ANALYSIS

Balancing False Positive (FPR) and False Negative Rates (FNR) is critical for practical deployment.
As shown in Table 4 (full details in Appendix D), PGBC achieves both the lowest average FPR
(2.36%) and FNR (35.9%) across 19 datasets. Unlike methods such as DeepSVDD and GBDO,
which achieve low FPR by being overly conservative (resulting in high FNR), PGBC’s probabilistic
ellipsoidal modeling constructs a precise decision boundary that minimizes false alarms without
sacrificing recall, offering a superior trade-off for safety-critical applications.

3.5 EFFICIENCY AND MODEL COMPACTNESS

PGBC drastically reduces model complexity compared to traditional isotropic Granular-Ball Com-
puting, requiring 1.3× to 41.9× fewer components (see Figure 5). As detailed in Appendix I,
this compactness directly translates to computational efficiency. On an NVIDIA RTX 2060 GPU,
PGBC achieves an average total runtime of 13.03s, nearly 2× faster than the deep probabilistic
baseline HGAD (24.67s) and striking an optimal balance between expressiveness and speed.

9
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Table 5: Average AUC (%) comparison on Visual Datasets. (a) Results on CIFAR-10 and FashionM-
NIST. (b) Results on MVTec-AD. Bold indicates the best performance, and underline indicates the
second best. Full details in Appendix F. Abbreviations: AE = AutoEncoder, D.SV = DeepSVDD,
DAG = DAGMM, GBM = GBMOD, U.S=U-student.

(a) Comparison on CIFAR-10 and F-MNIST

Datasets D.SV AE GBM KNN HGAD CutPaste Ours
CIFAR-10 69.5 94.6 94.6 94.9 95.3 73.3 95.5
FashionMNIST 58.5 94.1 92.5 93.3 94.6 70.1 94.9

(b) Comparison on MVTec-AD

Datasets KNN GBM HGAD CutPaste U.S PSVDD Ours
MVTec-AD 87.1 81.9 91.2 90.9 92.5 92.1 93.0

3.6 EXTENSION TO VISUAL ANOMALY DETECTION

To further validate the generalization of PGBC, we extended evaluation to visual domains using
pre-trained feature embeddings (512-D ViT) following the ADBench protocol (Han et al., 2022).
Our comparison includes feature-based baselines (DeepSVDD, AE, GBMOD, KNN, HGAD) on all
datasets, and a comprehensive mixed benchmark on MVTec-AD incorporating both feature-based
and image-based SOTA methods (e.g., CutPaste (Li et al., 2021), U-student (Bergmann et al., 2020),
P-SVDD (Yi & Yoon, 2020)). Full experimental details are provided in Appendix F.

As summarized in Table 5, PGBC consistently achieves the highest average AUC across all bench-
marks. On CIFAR-10 and FashionMNIST, PGBC outperforms all feature-based baselines, surpass-
ing the second-best method HGAD (e.g., 95.5% vs. 95.3% on CIFAR-10). Crucially, on the chal-
lenging MVTec-AD industrial dataset, PGBC attains a leading AUC of 93.0%, exceeding both
feature-based competitors and specialized image-based SOTA methods such as U-student (92.5%)
and P-SVDD (92.1%). This demonstrates that PGBC effectively leverages deep feature represen-
tations to model complex visual manifolds, outperforming even methods designed for raw pixel
data. The results underscore the advantage of PGBC’s probabilistic ellipsoidal modeling over rigid
geometric approaches (e.g., DeepSVDD’s 69.5% on CIFAR-10), confirming its robustness in high-
dimensional spaces.

3.7 ABLATION STUDY SUMMARY

We rigorously validate PGBC’s design via component-wise ablations (full details in Appendix G
and Appendix H). Regarding Construction, results confirm that dynamic reassignment is critical
for refining local fits, while the BIC criterion acts as an essential statistical regularizer—removing
it leads to severe overfitting (e.g., component explosion from 25 to 668 on Abalone). Regarding
Scoring, comparisons verify four key elements: (1) Hierarchy: Hierarchical aggregation consis-
tently outperforms flat “Leaf-only” strategies; (2) Metric: Probabilistic log-likelihood significantly
surpasses Euclidean distance (preventing ≈18% drop on Bands34); and (3) Weighting & Nor-
malization: Entropy-based weighting and score normalization are proven essential for adaptively
prioritizing informative levels and aligning scales across granularities.

CONCLUSION

This work presented Probabilistic Granular-ball Computing (PGBC), a hierarchical framework for
one-class data description. By leveraging ellipsoidal granular-balls, PGBC effectively aligns with
the anisotropic geometry of data while requiring fewer granular-balls to represent complex distri-
butions. Its recursive refinement process governed by statistical criteria ensures precise multi-scale
data descriptions. Extensive experiments on tabular, time series, open-set, and visual benchmarks
demonstrate consistent improvements and robustness over classical and deep learning baselines, un-
derscoring its effectiveness. Future work could explore extending PGBC to streaming and online
anomaly detection, enabling deployment in dynamic, real-world environments.
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ETHICS STATEMENT

This work focuses solely on methodological advances in anomaly detection. All datasets employed
are standard, publicly available benchmarks, and no human subjects, sensitive personal information,
or proprietary data were involved. We therefore do not anticipate direct ethical risks arising from
this study. Nonetheless, as with other anomaly detection techniques, the proposed method could
be deployed in domains such as surveillance or security, where ethical considerations regarding
fairness, privacy, and potential misuse must be carefully assessed by practitioners.

REPRODUCIBILITY STATEMENT

We ensure reproducibility by providing a precise mathematical description of the proposed PGBC
framework in the main text, including its model formulation, splitting and reassignment rules, and
scoring functions. Additional implementation details, covering datasets, preprocessing procedures,
evaluation metrics, model configurations, and experimental settings, are included in the Appendix.
To assess robustness, three main experimental tables report the mean and standard deviation over
five independent runs. To support transparency and reproducibility, all source code and scripts will
be released upon acceptance of this paper.

USE OF LARGE LANGUAGE MODELS

This paper utilized a large language model to aid in the refinement of writing and grammar. Specifi-
cally, the model was used for tasks such as rephrasing sentences for clarity, correcting typographical
errors, and improving overall stylistic coherence. All content, research ideas, and core arguments
remain the sole intellectual property of the authors. The use of the language model was strictly
limited to polishing the written text.
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A PRELIMINARIES: GRANULAR-BALL COMPUTING

We briefly review the basic concepts of traditional granular-ball computing (GBC), which form the
foundation for our probabilistic extension.
Definition 2 (Granular-ball). A granular-ball gb is defined by its center c and radius r. For a set of
objects o belonging to gb, these are typically determined as

c =
1

|gb|
∑
o∈gb

o, r = max
o∈gb
∥o− c∥, (9)

where ∥ · ∥ denotes the Euclidean distance.

Intuitively, a granular-ball represents a localized region in feature space summarizing a group of
similar data points. Construction is usually performed in two stages. In the first stage, the dataset is
coarsely partitioned into initial granular-balls via K-Means clustering, with the number of clusters
often set to

√
n, where n is the dataset size. Each cluster forms a ball with its centroid and maximum

intra-cluster radius (Definition 2). This initialization provides a coarse but efficient covering of the
data space.

The most widely used quality measure is the distribution measure (DM) (Definition 3), which quan-
tifies the average dispersion of points within a ball.
Definition 3 (Distribution Measure (DM)). Given a granular-ball gb with center c and data points
{oi}|gb|i=1, the DM score is computed as

DM(gb) =
1

|gb|
∑
oi∈gb

∥oi − c∥. (10)

A smaller DM value indicates higher internal consistency. To refine representations, balls with
large DM are recursively split using 2-means clustering. A split is accepted if the weighted DM of
the resulting child balls is lower than that of the parent:
Definition 4 (Refinement Criterion). A granular-ball gb is refined into gb1 and gb2 if

DMw =
|gb1|
|gb|

DM(gb1) +
|gb2|
|gb|

DM(gb2) < DM(gb), (11)

with both sub-balls containing at least smin points (e.g., smin = 8).

This recursive refinement continues until no further DM-reducing splits are possible, yielding a
hierarchical partition of the dataset into compact granular-balls.

In anomaly detection, methods such as Granular-Ball Mean-Shift Outlier Detector (GB-
MOD) (Cheng et al., 2025) and Granular-Ball Density Outlier (GBDO) (Su et al., 2025) apply GBC
to identify outliers via heuristic criteria. However, these approaches are non-probabilistic, which
limits their applicability in statistical analysis. Our PGBC framework extends GBC by associating
each granular-ball with a probabilistic Gaussian component and building a hierarchical structure via
statistically grounded refinement.
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B ALGORITHMS

For clarity and reproducibility, we provide the pseudocode of the PGBC framework. Algorithm 1 de-
scribes the construction of the probabilistic granular-ball hierarchy, starting from a global Gaussian
model and recursively applying statistical splitting criteria (BIC and log-likelihood improvement).
The resulting tree-structured representation provides hierarchical coverage of the data distribution.
Algorithm 2 presents the inference procedure for computing anomaly scores, where test samples are
evaluated across all levels of the hierarchy, normalized, and aggregated with entropy-based weights.

Algorithm 1: Probabilistic Granular-ball Construction (PGBC)

Input: Training data X = {x1, . . . , xN} ⊂ Rd; regularizer ε
Output: Tree-structured hierarchy T of probabilistic granular-balls

1 Initialize:
2 Compute global mean µ(0) and covariance Σ(0) + εI

3 Create root ball B(0) with (µ(0),Σ(0)), initialize tree T
4 Queue Q ← [B(0)]
5 while Q not empty do
6 Pop granular-ball B from Q
7 Fit single GaussianM1 and two-component GMMM2 on data in B
8 Compute BIC(M1), BIC(M2), and ∆ logL = logL(M2)− logL(M1)
9 if BIC(M2) < BIC(M1) and ∆ logL > 0 then

10 Split B into B1,B2 using GMM responsibilities
11 Add B1,B2 as children of B in T
12 Push B1,B2 into Q

// Dynamic reassignment after each split
13 foreach xi ∈ X do
14 Reassign xi to B∗ = argmaxBj log pBj (xi)

15 else
16 Mark B as leaf

17 return T

Algorithm 2: Hierarchical Anomaly Scoring

Input: Test sample x′ ∈ Rd; PGBC tree T with maximum depth L
Output: Final anomaly score sfinal(x

′)
1 if L = 0 then
2 Let B(0) be the root granular-ball with (µ(0),Σ(0))

3 return − logN (x′ | µ(0),Σ(0))

4 for l = 1 to L do
5 Let {B(l)j }K

(l)

j=1 be granular-balls at level l

6 Compute weights π(l)
j =

nj∑K(l)

k=1 nk

where nj = |B(l)j |

7 Compute level-wise score: s(l)(x′) = − log
(∑K(l)

j=1 π
(l)
j · N (x′ | µ(l)

j ,Σ
(l)
j )

)
8 Compute level entropy: H(l) = −

∑K(l)

j=1
nj

N log
(nj

N

)
9 Normalize s(l)(x′) to s̃(l)(x′) using training stats

10 Compute entropy weights w(l) = H(l)∑L
l′=1

H(l′)

11 Compute final score: sfinal(x′) =
∑L

l=1 w
(l) · s̃(l)(x′)

12 return sfinal(x
′)
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C MORE EXPERIMENTAL SETTINGS

C.1 DATASETS

Our experiments cover three dataset categories—tabular, benchmark time series (TSB-AD), and
repurposed classification datasets (UCR)—spanning both static and temporal anomaly detection
scenarios. Below we summarize sources, preprocessing steps, and key statistics; full dataset details
are given in Tables 6–8.

(1) Tabular datasets. We evaluate PGBC on 19 real-world tabular datasets collected from pub-
lic repositories and prior anomaly-detection benchmarks; full per-dataset statistics are reported in
Table 6. The collection covers diverse domains (manufacturing, cybersecurity, biology, and health-
care) and varies widely in scale (100–6,870 samples) and dimensionality (7–166 features), creating
heterogeneous evaluation conditions. Anomaly proportions span from 0.44% (Yeast) to 31.64%
(Satellite), providing both extremely sparse and relatively dense anomaly scenarios. For tabular in-
puts we apply per-dataset feature normalization (zero mean, unit variance); categorical attributes,
when present, are one-hot encoded (see Appendix C.4 for encoder and preprocessing details). This
benchmark stresses PGBC across low-anomaly-ratio cases and high-dimensional, anisotropic fea-
ture geometries—settings where covariance-aware modeling is particularly beneficial.

Table 6: Information of 19 tabular anomaly detection datasets.

No. Datasets Samples Features Anom. (%) Subject Area

1 Abalone 4177 8 1.89 Biology
2 Bands34 346 39 9.83 Phys./Chem.
3 Bands42 354 39 11.86 Phys./Chem.
4 Cardio 1,688 21 1.95 Health/Med.
5 Ecoli 336 7 2.68 Biology
6 Iris 111 4 9.91 Biology
7 Musk 3,062 166 3.17 Biology
8 Pageblocks 5,171 10 4.99 CS
9 Pendigits 6,870 16 2.27 CS

10 Satellite 6,435 36 31.64 Climate/Env.
11 Sick35 3,576 29 0.98 Health/Med.
12 Sick72 3,613 29 1.99 Health/Med.
13 Sonar 107 60 9.35 Phys./Chem.
14 Thyroid 9,172 28 0.81 Health/Med.
15 Tictac12 638 9 1.88 Games
16 Tictac26 652 9 3.99 Games
17 Tictac32 658 9 4.86 Games
18 Waveform 3,443 21 2.9 Phys./Chem.
19 Yeast 1,141 8 0.44 Biology

(2) Benchmark time series datasets (TSB-AD). We use six real-world monitoring datasets from
the TSB-AD benchmark, chosen for diversity in source (network traffic, system diagnostics, web
services) and sequence length (see Table 7). Each dataset provides point-level anomaly labels; fol-
lowing common practice, we segment continuous sequences into fixed-length overlapping windows
and encode each window with the same CNN encoder used across experiments (window size and
step are listed in Appendix A.4, Table 8). Windowing preserves local temporal context while en-
abling batch training and fair comparisons across baseline encoders. Because anomalies are labeled
at the point level, reported metrics correspond primarily to window-level detection; where applicable
we additionally report sequence-level aggregated results (see main text).

(3) Repurposed classification datasets (UCR). From the UCR archive we select five datasets and
adapt them to a one-class / open-set evaluation protocol. For each dataset we designate the smallest
class as the anomalous class and treat the remaining classes as normal. Normal samples are split
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Table 7: Information of 6 time series anomaly detection datasets.

No. Datasets Length Anomalies Anom. (%)

1 NAB Traffic 2,494 248 9.94
2 WSD WebService 15,403 203 1.32
3 SMD Facility 22,700 146 0.64
4 IOPS WebService 6,138 53 0.86
5 UCR iMedical 12,000 45 0.38
6 YAHOO Synthetic 1,421 4 0.28

80%/20% into training/testing; the test set is then augmented so that approximately 10% of test
samples are anomalous (drawn from the designated anomalous class), creating a controlled open-set
scenario. This protocol ensures anomalies are genuine class examples (not synthetic perturbations)
while allowing consistent cross-dataset comparisons. Per-dataset statistics (sample counts, length,
anomaly counts) are provided in Table 8.

Collectively, Tables 6–8 summarize dataset scales, modalities, and anomaly ratios, forming a com-
prehensive testbed for evaluating PGBC’s robustness and generalization.

Table 8: Information of 5 open-set recognition (UCR) datasets.

No. Datasets Samples Length Anomalies Anom. (%)

1 Adiac 778 176 17 10.00
2 CBF 633 128 13 9.49
3 Synthetic Control 511 60 11 9.91
4 SwedishLeaf 1,073 128 23 9.87
5 Trace 153 275 3 9.09
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C.2 BASELINES

We provide implementation details and hyperparameter settings of the baseline methods evaluated
in our experiments. To evaluate model stability, we introduced randomness through random sub-
sampling (Bootstrap) of the training data across five independent runs, applying this uniformly to
all methods. All methods use consistent random seed control via random state=seed to ensure
reproducibility.

Isolation Forest (Liu et al., 2008). Isolation Forest is a tree-based ensemble method that isolates
anomalies by using random partitioning to create ”isolation” for each data point. Anomalies, being
few and different, are isolated in fewer steps than normal points. We use the scikit-learn implemen-
tation with contamination set to the true anomaly ratio, which is the proportion of outliers in
the dataset.

Local Outlier Factor (LOF) (Breunig et al., 2000). LOF is a density-based method that identifies
anomalies by comparing the local density of a data point to the local densities of its neighbors. A
point is considered an outlier if its local density is lower than that of its neighbors. We use a
neighborhood size of n neighbors=20 and set contamination to the known anomaly ratio.

k-Nearest Neighbors (kNN) (Peterson, 2009). The kNN method defines the anomaly score of a
point as its distance to the k -th nearest neighbor. This score measures how far a point is from its
local neighborhood. We set the number of neighbors to n neighbors=5.

AutoEncoder (Sakurada & Yairi, 2014). An AutoEncoder is a neural network with an encoder
and a decoder, trained to reconstruct its input. By training only on normal data, it learns a compact
representation of the normal distribution, so any point with a high reconstruction error is consid-
ered an anomaly. We use a feedforward encoder-decoder network trained to minimize reconstruc-
tion error. The network is configured with a latent dim=16, trained for 50 epochs, with a
batch size=64, and a learning rate of 1e-3. All models are trained exclusively on normal data.

Deep SVDD (Ruff et al., 2018). Deep SVDD learns a compact representation of the normal data
by training a deep neural network to map the data points into a feature space where they are en-
closed within a minimal hypersphere. The radius of this hypersphere is learned during training
with a nu parameter that controls the trade-off between the volume of the sphere and the number
of allowed outliers. We use a three-layer encoder with hidden dims=[128, 64, 32] and an
output dim=32. The hypersphere radius is learned with nu=0.1 using a soft-boundary objective.
Pretraining is performed using an AutoEncoder with a latent dim=16, trained for 50 epochs.

Deep Autoencoding Gaussian Mixture Model (DAGMM) (Zong et al., 2018). Deep Autoen-
coding Gaussian Mixture Model (DAGMM) is a deep learning method that combines a deep autoen-
coder with a Gaussian Mixture Model (GMM) for unsupervised anomaly detection. It is designed
to overcome the limitations of traditional two-stage methods by jointly optimizing the parameters of
the autoencoder and GMM in an end-to-end fashion. The model utilizes the autoencoder to generate
a low-dimensional representation and reconstruction error, which are then fed into the GMM to esti-
mate the density of the normal data. We configure the autoencoder with a latent dim=3, trained
for epochs=50, a batch size=128, and a learning rate of 1e-3. The estimation network
parameters are set with n components=4 for the GMM, and we use regularization parameters
lambda energy=0.1 and lambda cov diag=0.005 for the combined loss function.

Hierarchical Gaussian Mixture Normalizing Flow Modeling (HGAD) (Yao et al., 2024). Hi-
erarchical Gaussian Mixture Normalizing Flow Modeling (HGAD) is a novel method for unified
anomaly detection that addresses the ’homogeneous mapping’ issue in traditional normalizing flow-
based models. It achieves this by leveraging a hierarchical probabilistic approach with two key
components: inter-class Gaussian mixture modeling and intra-class mixed class centers learning. We
extract features from feature levels=1 layer. The model is configured with n classes=1
for anomaly detection, and n intra centers=5 for intra-class modeling. The loss function
weights include lambda g=1.0, lambda g intra=1.0, lambda z=1.0, lambda e=0.1,
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and lambda mi=0.1. The model is trained for epochs=50 with a batch size=64 and a
learning rate of 1e-3.

GBMOD (Cheng et al., 2025). GBMOD, or Granular-Ball Mean-shift Outlier Detector, is a
granular-ball based anomaly detection method addressing the limitations of traditional mean-shift
techniques. It combines neighborhood-based density modeling with deep autoencoding. It uses
granular-balls as anchors to guide the mean-shift process, which effectively avoids the influence of
noisy points and improves efficiency. We use k=10 nearest neighbors, iteration number=3,
and pretrain an AutoEncoder with the same configuration as described above.

GBDO (Su et al., 2025) GBDO, or Granular-ball Discrimination Outlier, is a method that im-
proves density-based anomaly detection by operating at a granular-ball level. It detects anomalies
based on local granular-ball density, which is calculated using the local reachability similarity among
granular-balls. We set k neighbors=15 and min points ratio=0.1 to control neighbor-
hood and granularity.

C.3 METRICS

Area Under the Receiver Operating Characteristic Curve (AUC) For all experiments, we use
AUC as the primary evaluation metric. AUC is a widely adopted performance measure in anomaly
detection, particularly suitable for highly imbalanced datasets where the number of anomalies is
significantly smaller than normal instances. It quantifies the model’s ability to distinguish between
normal and anomalous samples across various classification thresholds, providing a comprehensive
assessment independent of a specific decision threshold. To evaluate the robustness and repro-
ducibility of our model and baselines on tabular datasets, we performed multiple independent runs
and reported the average AUC with its standard deviation (AUC ± std).

False Positive Rate (FPR) In addition to AUC, we also evaluate our model’s performance using
the False Positive Rate (FPR). FPR is crucial in scenarios where the cost of misclassifying a normal
instance as anomalous (i.e., a false alarm) is high. By analyzing both AUC and FPR, we provide a
more holistic view of the model’s performance, balancing its overall discriminative power with its
precision in minimizing false alarms. We report the FPR for 19 tabular datasets.

False Negative Rate (FNR) Complementing FPR, we incorporate the False Negative Rate (FNR)
to evaluate the model’s sensitivity and reliability. FNR quantifies the proportion of actual anoma-
lies that are incorrectly classified as normal (i.e., missed detections). This metric is paramount
in safety-critical or high-risk applications—such as mechanical failure prediction or disease diag-
nosis—where failing to identify an anomaly can lead to severe consequences. By reporting FNR
alongside FPR, we ensure that the model achieves a robust trade-off, verifying that a low false alarm
rate is not obtained at the expense of missing actual threats.
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C.4 ENCODERS & COMPARISONS

To ensure fair comparisons across all baselines and to provide a unified vector input for different data
types, we employ a feature encoder to transform our data. For tabular datasets, we apply standard
feature normalization without additional preprocessing. For time series datasets, a sliding window
mechanism is used to segment sequences into fixed-length windows. These windows are then en-
coded by a lightweight Convolutional Neural Network (CNN) into a fixed-dimensional vector. The
detailed architecture and key parameters for our CNN encoder and the time series preprocessing
steps are summarized in Table 10.

While our proposed PGBC model is agnostic to the choice of encoder—meaning its core architecture
can operate on any fixed-dimensional vector representation—the quality of learned features signifi-
cantly affects downstream detection accuracy. To investigate this impact, we conducted a compara-
tive study using five common encoder types: MLP, CNN, LSTM, Transformer, and ResNet. These
encoders were evaluated on four representative datasets from the TSB-AD and UCR benchmark
suites, each representing a distinct feature learning paradigm.

Our experimental findings, with complete results summarized in Table 9, show that the lightweight
CNN encoder consistently achieves strong performance, ranking first or second in AUC on all four
datasets. Considering its computational efficiency and strong empirical performance, we adopt the
CNN architecture as our default feature encoder for all subsequent experiments. This design ensures
a fair and robust evaluation across all baselines while maintaining a practical and effective model
architecture.

Table 9: Ablation study on feature encoders. AUC results (%) of PGBC using different encoder
architectures on selected datasets from TSB-AD and UCR. Bold indicates the best performance.
Trans = Transformer.

Dataset CNN MLP LSTM Trans ResNet

Adiac 99.6 100.0 97.8 98.7 99.5
Synthetic Control 100.0 80.0 98.2 98.7 100.0
WSD WebService 99.5 99.4 77.7 100.0 100.0
YAHOO Synthetic 100.0 100.0 63.8 75.9 99.2

Table 10: Configuration of key parameters. Details for the CNN encoder architecture and time series
preprocessing steps used in the experiments.

Parameter Value Description
CNN Encoder Architecture

Convolutional Layers 3 3-layer convolutional encoder, mirrored by 3-layer transposed convolutional decoder
Kernel Size 5 5×1 kernel for all (transposed) convolutional layers
Stride 2 Stride of 2 for downsampling/upsampling in all layers
Padding 2 Padding of 2 for all (transposed) convolutional layers
Channel Progression 1→16→32→64 Encoder channel increase across layers
Activation Function ReLU ReLU activation for all intermediate layers
Latent Dimension 16 Default latent space dimension, configurable via ae latent dim

Time Series Processing

Window Size 32 Sliding window size for time series segmentation
Window Step 8 Step size for sliding window
AE Latent Dimension 16 Autoencoder latent space dimension
AE Epochs 50 Number of training epochs for autoencoder
AE Batch Size 64 Batch size for autoencoder training
AE Learning Rate 10−3 Learning rate for autoencoder training
Device Auto GPU/CPU, automatically selected
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D MORE RESULTS

In this section, we present a more comprehensive view of our experimental results by including the
standard deviation (std) of the AUC scores, which reflects model stability.

Tabular anomaly detection. The full results are detailed in Table 11. A key observation is that
PGBC, in addition to achieving the highest average AUC, also demonstrates superior stability with
the second-lowest average standard deviation among all baselines. This indicates that the high per-
formance of our method is consistently reproducible across different data splits, a crucial factor for
reliable real-world applications.

Table 11: Full AUC results (%) with mean and standard deviation on 19 tabular datasets. Results
are averaged over five independent runs. Bold indicates the best performance. Abbreviations: AE =
AutoEncoder, D.SV = DeepSVDD, DAG = DAGMM, GBM = GBMOD.

Datasets LOF IForest KNN AE D.SV DAG HGAD GBM GBDO Ours

Abalone 75.6
±1.2

70.2
±1.1

69.3
±1.0

79.9
±1.3

68.2
±1.9

57.0
±4.3

75.2
±2.5

78.0
±1.3

76.3
±1.0

72.1
±1.1

Bands34 74.8
±0.8

79.2
±1.3

77.5
±2.7

77.8
±1.2

64.8
±5.6

53.0
±6.8

80.7
±1.6

71.7
±0.4

71.0
±4.4

100.0
±0.0

Bands42 75.9
±0.8

78.3
±1.3

76.3
±2.7

76.1
±1.2

63.1
±5.6

51.0
±5.6

77.9
±1.4

76.9
±0.4

70.4
±4.4

100.0
±0.0

Cardio 82.6
±1.0

85.9
±1.8

80.5
±1.6

76.5
±2.5

77.3
±8.7

70.0
±7.5

75.8
±2.0

86.5
±0.7

66.4
±1.4

84.0
±0.8

Ecoli 85.1
±0.5

84.1
±0.9

87.6
±1.1

88.1
±2.0

86.8
±1.5

40.0
±33.5

88.3
±2.1

85.1
±0.2

89.8
±0.5

89.4
±0.4

Iris 91.6
±3.8

100.0
±0.0

97.8
±1.0

93.8
±10.0

83.4
±13.0

99.0
±1.7

98.5
±0.9

100.0
±0.0

74.8
±2.6

100.0
±0.0

Musk 100.0
±0.0

96.9
±1.6

100.0
±0.0

100.0
±0.0

99.7
±0.6

100.0
±0.5

100.0
±0.0

91.1
±1.7

25.9
±1.5

100.0
±0.0

Pageblocks 98.2
±0.1

98.3
±0.2

99.6
±0.1

92.2
±0.8

98.4
±0.1

66.0
±23.4

99.7
±0.1

99.5
±0.1

96.2
±0.2

99.9
±0.0

Pendigits 99.3
±0.1

97.5
±0.8

98.9
±0.3

94.4
±3.3

91.1
±6.0

77.0
±17.9

99.4
±0.3

98.4
±0.6

74.2
±2.6

99.5
±0.6

Satellite 84.5
±0.2

79.4
±1.3

87.6
±0.1

80.6
±0.6

83.3
±5.0

80.0
±4.9

82.3
±0.3

85.5
±0.4

80.4
±0.2

83.1
±1.5

Sick35 73.7
±1.3

89.3
±1.2

89.1
±0.8

85.2
±1.4

83.8
±2.7

57.0
±15.1

88.8
±0.4

89.1
±0.4

83.6
±0.6

87.4
±3.3

Sick72 61.2
±1.7

81.4
±2.3

83.5
±0.4

81.4
±2.1

77.3
±2.6

56.0
±4.8

82.2
±1.1

79.1
±0.2

79.6
±1.1

87.3
±3.6

Sonar 98.9
±0.1

99.4
±0.5

99.6
±0.3

99.1
±0.2

76.3
±8.7

79.0
±12.6

98.4
±0.7

98.9
±0.3

63.7
±8.3

100.0
±0.0

Thyroid 53.5
±0.9

63.3
±1.9

65.8
±0.7

60.3
±3.3

63.9
±6.5

44.0
±10.9

66.0
±3.2

69.7
±0.7

68.6
±0.3

73.0
±4.8

Tictac12 97.6
±0.5

98.6
±0.6

93.6
±3.5

84.6
±6.4

75.9
±6.4

54.0
±8.1

97.0
±1.5

96.8
±0.9

60.7
±3.0

100.0
±0.0

Tictac26 92.8
±0.9

95.6
±0.9

91.1
±1.8

76.7
±5.7

64.3
±6.5

48.0
±4.5

95.0
±2.6

88.1
±0.8

54.2
±0.8

100.0
±0.0

Tictac32 92.2
±1.3

95.4
±0.9

93.1
±0.8

76.1
±5.9

64.1
±9.8

46.0
±8.3

93.2
±2.7

86.3
±2.9

55.1
±0.7

100.0
±0.0

Waveform 76.5
±0.5

70.7
±3.9

76.1
±0.6

52.5
±3.3

60.0
±3.6

56.0
±13.6

73.7
±2.3

74.2
±0.2

65.0
±1.2

78.1
±0.0

Yeast 99.1
±0.0

99.7
±0.0

99.4
±0.2

99.6
±0.4

99.9
±0.1

43.0
±29.6

99.7
±0.1

100.0
±0.0

99.2
±1.1

100.0
±0.0

Average 84.9
±13.3

87.6
±11.4

87.8
±10.5

83.0
±12.4

78.0
±12.8

61.9
±17.7

87.6
±10.7

87.1
±9.8

71.4
±16.2

91.1
±10.0
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Time series anomaly detection. The complete results for the six TSB-AD benchmarks are
shown in Table 12. PGBC not only achieves the highest or second-highest mean AUC across
all datasets, but also maintains low variance compared with deep baselines such as AutoEncoder
and DeepSVDD. This demonstrates that the probabilistic granular-ball hierarchy provides stable
anomaly detection under the noisy and dynamic conditions typical of real-world monitoring data.

Table 12: Full AUC results (%) with mean and standard deviation on 6 time series datasets. Results
are averaged over five independent runs. Bold indicates the best performance.

Datasets LOF IForest KNN AE D.SV DAG HGAD GBM GBDO Ours

NAB Traffic 80.4
±0.4

78.6
±0.6

91.2
±0.9

79.6
±2.3

83.4
±2.0

59.2
±5.9

84.3
±1.7

80.6
±0.7

77.5
±0.3

85.4
±3.8

WSD WebService 94.3
±0.2

87.2
±0.9

97.0
±0.3

96.0
±0.2

88.6
±1.9

68.5
±13.5

94.0
±1.1

93.6
±0.6

75.1
±0.5

98.8
±0.4

SMD Facility 93.3
±0.7

93.4
±0.3

97.1
±0.6

98.5
±0.1

94.5
±1.6

78.3
±6.9

96.4
±1.0

95.1
±1.5

91.1
±0.7

97.9
±0.0

IOPS WebService 91.0
±0.5

81.7
±2.4

85.5
±0.4

77.8
±14.7

79.3
±4.5

62.7
±4.0

87.0
±3.4

79.3
±4.5

44.4
±1.2

96.4
±0.1

UCR Medical 95.6
±0.7

90.8
±3.0

93.0
±0.3

66.4
±1.2

93.2
±5.3

75.5
±9.1

88.7
±2.3

88.5
±1.2

67.7
±0.3

93.5
±0.1

YAHOO Synthetic 71.3
±7.4

77.2
±2.1

88.6
±4.9

44.8
±8.8

71.4
±21.9

48.1
±12.5

67.2
±29.8

67.0
±8.8

88.9
±0.0

99.8
±0.0

Average 87.6
±1.7

84.8
±1.6

92.1
±1.2

77.2
±4.6

85.1
±6.2

65.4
±8.7

86.3
±6.6

84.0
±2.9

74.1
±0.5

95.3
±0.7

Time series open-set recognition. For the UCR-based open-set recognition task, the full results
are summarized in Table 13. Across the five datasets, PGBC achieves competitive or superior mean
AUC while keeping consistently small standard deviations. This stability highlights the robustness
of the entropy-weighted hierarchical scoring mechanism, which balances coarse and fine represen-
tations and prevents overfitting to specific runs. Overall, PGBC generalizes well under distributional
shifts, as evidenced by both high average accuracy and low variability across repeated experiments.

Table 13: Full AUC results (%) with mean and standard deviation on 5 open-set recognition tasks.
Results are averaged over five independent runs. Bold indicates the best performance.

Datasets LOF IForest KNN AE D.SV DAG HGAD GBM GBDO Ours

Adiac 96.6
±0.7

98.1
±0.5

98.2
±0.1

97.6
±0.2

98.5
±0.3

82.7
±14.9

97.9
±0.2

98.8
±0.6

97.3
±0.0

99.2
±0.2

CBF 99.7
±0.1

76.7
±3.9

99.7
±0.2

51.0
±3.7

78.3
±14.0

52.1
±17.5

92.7
±2.9

95.3
±2.4

61.9
±0.4

100.0
±0.0

Synthetic Control 98.8
±0.4

69.8
±4.8

100.0
±0.1

84.4
±4.6

87.7
±3.3

75.2
±18.0

96.5
±1.6

80.9
±2.9

66.1
±1.5

99.5
±1.1

SwedishLeaf 88.8
±1.1

95.1
±0.6

96.3
±0.1

84.6
±4.6

94.5
±3.4

73.9
±16.7

97.2
±0.9

95.7
±0.5

88.6
±0.1

99.7
±0.1

Trace 87.3
±6.1

89.6
±2.0

94.9
±5.5

62.9
±23.1

66.9
±35.4

80.0
±34.2

97.1
±4.2

73.1
±11.8

72.2
±0.0

99.6
±1.0

Average 89.8
±2.9

85.9
±2.4

97.8
±1.6

76.1
±7.2

85.2
±18.1

72.8
±20.3

96.3
±1.9

88.8
±3.6

77.2
±0.4

99.6
±0.5
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False Positive Rate (FPR) Results. In this section, we provide the complete false positive rate
(FPR) results for all 19 tabular datasets, as detailed in Table 14. This comprehensive view comple-
ments the main text and highlights the superior reliability of PGBC in controlling false alarms across
diverse data distributions. As shown in the table, PGBC achieves the lowest average FPR of 2.36%.
A closer inspection reveals that methods relying on isotropic boundaries (e.g., DeepSVDD, 3.88%)
or simple geometric distances (e.g., GBDO, 4.57%) tend to generate higher false alarms, particu-
larly on datasets with complex cluster shapes. In contrast, PGBC’s advantage is most pronounced in
these scenarios, as its probabilistic ellipsoidal granular-balls can stretch to fit the normal data tightly
without encompassing the surrounding void space, thereby minimizing the risk of misclassifying
normal boundary points as anomalies.

Table 14: Full False Positive Rate (FPR %) results on 19 tabular datasets. Lower values indicate
fewer false alarms. Abbreviations: AE = AutoEncoder, D.SV = DeepSVDD, DAG = DAGMM,
GBM = GBMOD.

Datasets LOF IForest KNN AE D.SV DAG HGAD GBM GBDO Ours

Abalone 4.56 4.73 4.37 4.61 4.88 5.05 4.66 4.71 5.05 4.64
Bands34 4.17 5.13 2.88 4.49 5.13 5.45 0.00 4.17 6.09 0.00
Bands42 3.85 4.81 2.88 3.85 5.13 5.45 0.00 3.21 3.21 0.00
Cardio 4.53 4.35 3.93 4.71 4.53 4.65 4.35 4.05 4.95 4.65
Ecoli 3.06 3.06 3.06 3.06 3.06 5.20 3.06 3.06 3.98 3.06
Iris 0.00 2.00 0.00 3.00 2.00 2.00 0.00 0.00 5.00 0.00
Musk 1.92 1.92 1.92 1.92 1.92 2.02 1.92 1.92 5.19 1.92
Pageblocks 1.61 0.83 0.49 0.55 1.04 3.91 0.57 1.14 2.06 0.22
Pendigits 3.66 2.80 2.80 3.71 4.71 4.72 2.80 3.05 4.54 2.80
Satellite 0.00 0.00 0.00 0.02 1.20 0.23 0.00 0.00 0.43 0.00
Sick35 4.94 4.94 4.63 4.83 4.74 5.06 4.80 4.66 5.06 4.57
Sick72 5.00 4.91 4.57 4.77 4.74 5.17 4.83 4.69 5.06 4.80
Sonar 1.03 0.00 0.00 0.00 2.06 2.06 1.03 1.03 5.15 0.00
Thyroid 5.02 4.96 4.95 4.98 4.95 5.05 4.98 4.90 5.06 4.89
Tictac12 3.19 3.35 3.19 3.99 4.79 5.11 3.19 3.35 5.75 3.19
Tictac26 2.24 2.24 1.12 2.40 4.63 4.95 1.28 3.19 4.63 1.12
Tictac32 1.44 1.76 0.16 2.24 4.79 5.27 0.32 2.40 5.75 0.16
Waveform 4.82 4.10 2.57 5.12 4.67 5.00 3.20 4.07 5.12 4.07
Yeast 4.67 4.67 4.67 4.67 4.75 5.11 4.67 4.67 4.75 4.75

Average 3.14 3.19 2.54 3.31 3.88 4.29 2.40 3.07 4.57 2.36
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False Negative Rate (FNR) Results. While a low FPR is essential for system usability, a low
False Negative Rate (FNR) is critical for safety, as missing a genuine anomaly can have severe con-
sequences. The full FNR results in Table 15 reveal a significant trade-off made by many baselines.
PGBC achieves the lowest average FNR of 35.9%, edging out the second-best HGAD (38.7%) and
drastically surpassing DeepSVDD (75.7%) and GBDO (77.7%). The extremely high FNRs of these
methods suggest they achieve reasonable FPRs only by being overly conservative—resulting in an
overly loose decision boundary that fails to capture a significant portion of anomalies. In contrast,
when combined with the FPR analysis in Section 3.4 (where PGBC also leads with 2.36%), these
results confirm that PGBC does not trivially trade off precision for recall. Instead, its hierarchical
probabilistic structure provides a fundamentally more accurate description of the data, successfully
identifying diverse anomalies that other methods miss.

Table 15: Full False Negative Rate (FNR %) results on 19 tabular datasets. Lower values indi-
cate fewer missed anomalies. Abbreviations: AE = AutoEncoder, D.SV = DeepSVDD, DAG =
DAGMM, GBM = GBMOD.

Datasets IForest LOF KNN AE D.SV DAG HGAD GBM GBDO Ours

Abalone 72.2 81.0 74.7 86.1 86.1 91.1 74.7 88.6 83.5 75.9
Bands34 85.3 94.1 97.1 79.4 82.4 97.1 47.1 79.4 97.1 47.1
Bands42 85.7 92.9 95.2 63.3 97.6 97.6 57.1 88.1 97.6 57.1
Cardio 69.7 60.6 69.7 66.7 81.8 100.0 60.6 57.6 84.8 48.5
Ecoli 22.2 22.2 22.2 88.9 44.4 100.0 11.1 22.2 22.2 22.2
Iris 45.5 63.6 45.5 45.5 100.0 81.8 45.5 45.5 100.0 45.5
Musk 0.0 0.0 0.0 0.0 18.6 13.4 0.0 0.0 84.5 0.0
Pageblocks 30.2 15.5 10.9 22.5 39.1 70.9 12.0 22.5 38.8 3.1
Pendigits 37.2 0.0 0.0 92.3 100.0 94.9 0.0 17.9 64.7 0.0
Satellite 84.2 84.2 84.2 84.2 84.2 85.5 84.2 84.2 94.7 84.2
Sick35 88.6 88.6 71.4 74.3 91.4 100.0 71.4 71.4 85.7 45.7
Sick72 94.4 90.3 86.1 83.3 95.8 100.0 84.7 86.1 93.1 72.2
Sonar 50.0 40.0 40.0 50.0 70.0 90.0 40.0 50.0 70.0 40.0
Thyroid 97.3 89.2 89.2 89.2 83.8 97.3 91.9 82.4 98.6 79.7
Tictac12 0.0 8.3 8.3 0.0 83.3 100.0 8.3 0.0 91.7 0.0
Tictac26 26.9 26.9 11.5 30.8 100.0 96.2 3.8 42.3 84.6 0.0
Tictac32 25.0 31.2 9.4 50.0 90.6 96.9 9.4 50.0 90.6 0.0
Waveform 88.0 64.0 69.0 81.0 89.0 100.0 33.0 66.0 95.0 61.0
Yeast 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Average 52.8 50.1 46.5 57.2 75.7 84.9 38.7 50.2 77.7 35.9
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E EXTENDED BASELINES AND METRICS

In this section, we provide detailed comparisons with additional baselines requested by the reviewers
to demonstrate the superiority of PGBC across different task domains.

E.1 ADDITIONAL BASELINES ON TIME-SERIES ANOMALY DETECTION

To demonstrate the superiority of PGBC against a broader range of state-of-the-art methods in time-
series anomaly detection, we incorporated additional baselines: OCFlow (Maziarka et al., 2022) and
OCSVM. We evaluated them on our six Time-Series Benchmark datasets (TSB-AD) to compare our
approach against representative normalizing flow and kernel-based methods.

Implementation Details. To ensure a fair comparison, we configured each baseline with key hyper-
parameters optimized for the task. For OCFlow, a flow-based model, we utilized 8 coupling layers
(n couplings=8, n layers=4) with a hidden dimension of 512 and variable Jacobian determi-
nants (det type=’var’) to map data to a latent hypersphere. For OCSVM, we utilized the standard
RBF kernel with gamma=’scale’, dynamically setting the nu parameter equal to the ground-truth
anomaly ratio of each dataset.

Analysis. As shown in Table 16, PGBC consistently outperforms these baselines by a significant
margin. While normalizing flows (OCFlow) achieve a decent average AUC of 81.5%, they show
significant variance (e.g., ± 26.4% on YAHOO). This instability indicates the inherent difficulty
Normalizing Flows face in accurately mapping the complex, locally varying geometry of time-series
embeddings to a regular latent density, compared to PGBC’s adaptive granular-balls. Furthermore,
traditional kernels (OCSVM) perform reasonably well (Avg 75.3%) but still lag behind PGBC (e.g.,
41.0% vs. 99.8% on YAHOO), confirming that fixed kernels are insufficient to model locally varying
anisotropic structures.

Table 16: Comparison with additional baselines on time-series anomaly detection (AUC %). Bold
indicates the best performance.

Datasets OCSVM OCFlow Ours
NAB Traffic 78.9 ± 2.3 74.0 ± 2.7 85.4 ± 3.8
WSD WebService 92.9 ± 0.4 94.8 ± 1.0 98.8 ± 0.4
SMD Facility 88.0 ± 2.8 97.1 ± 2.2 97.9 ± 0.0
IOPS WebService 84.4 ± 1.9 84.0 ± 4.4 96.4 ± 0.1
UCR Medical 66.3 ± 4.7 80.7 ± 8.6 93.5 ± 0.1
YAHOO Synthetic 41.0 ± 8.4 58.4 ± 26.4 99.8 ± 0.0
Average 75.3 ± 3.4 81.5 ± 7.6 95.3 ± 0.7

E.2 COMPARISON WITH OSR METHOD

To further validate the effectiveness of PGBC from an Open-Set Recognition (OSR) perspective, we
compared it against the foundational baseline method: OpenMax (Bendale & Boult, 2016), which
estimates the probability of an input being from an unknown class by fitting Weibull distributions
to the tail activation distances of known classes. We followed the same OSR protocol described in
Section 3.3, evaluating on five datasets from the UCR archive.

Analysis. As shown in Table 17, PGBC demonstrates overwhelming superiority over OpenMax,
achieving an average AUC of 99.6% compared to 68.7%. OpenMax relies on calibrating SoftMax
scores, which implicitly assumes that known classes form tight, separable clusters in the penultimate
layer. However, strictly enforcing such compactness on time-series data can be challenging, leading
to feature distributions that defy OpenMax’s distributional assumptions. Consequently, OpenMax
struggles significantly, performing near random guessing on datasets like CBF (49.5%). In contrast,
PGBC is inherently well-suited for this data geometry. Its **adaptive ellipsoidal granular-balls**
can stretch and rotate to locally approximate these manifold structures, creating a tight and precise
boundary around the normal data. This geometric alignment enables robust rejection of open-set
samples regardless of the classification margin.
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Table 17: Comparison with the Open-Set Recognition (OSR) baseline on time series tasks. Reported
metric is AUC (%). PGBC significantly outperforms the classic method OpenMax. Bold indicates
the best performance.

Datasets OpenMax Ours
Adiac 92.4 ± 7.4 99.2 ± 0.2
CBF 49.5 ± 0.3 100.0 ± 0.0
Synthetic Control 53.0 ± 5.0 99.8 ± 1.1
SwedishLeaf 63.9 ± 4.8 99.7 ± 0.1
Trace 84.9 ± 1.8 99.6 ± 1.0
Average 68.7 ± 3.9 99.6 ± 0.5

E.3 PRECISION, RECALL, AND F1-SCORE ANALYSIS

To provide a comprehensive evaluation beyond threshold-independent metrics like AUC, we re-
port the Precision (P), Recall (R), and F1-score on 12 representative tabular datasets. The decision
threshold for all methods is strictly determined by the ground-truth anomaly ratio (contamination)
of each dataset.

Analysis. As detailed in Table 18, PGBC demonstrates exceptional robustness, achieving the high-
est F1-score on all 12 datasets. First, on datasets with complex structures such as Bands42 and
Pendigits, PGBC achieves perfect performance (100.0% F1), whereas the strong probabilistic base-
line HGAD lags behind (90.2% and 95.6%, respectively), and distance-based methods like KNN
struggle significantly. Second, the results on the challenging Sick72 dataset highlight the precision-
recall trade-off. While baselines like DAGMM achieve 100% Recall, they suffer from catastrophic
Precision (2.0%), indicating they classify almost all samples as anomalies. In contrast, PGBC main-
tains a significantly higher Precision (63.6% vs. next best 17.6%), securing the highest F1-score
(29.8%). This confirms that PGBC’s high performance stems from a precise, well-fitted decision
boundary rather than loose over-coverage.
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F EXTENDED EXPERIMENTS ON VISUAL DATASETS

To demonstrate the versatility of PGBC on high-dimensional data beyond tabular and time-series
domains, we conducted experiments on three widely recognized visual benchmarks: CIFAR-10,
FashionMNIST, and MVTec-AD.

Experimental Setup. Adhering to the standard protocol established by ADBench (Han et al., 2022),
we utilized the provided pre-extracted deep feature embeddings as input for all methods. This stan-
dardized setup allows for a direct and focused comparison regarding the ability to model complex,
anisotropic distributions inherent in semantic feature spaces. Specifically, the input data consists of
512-dimensional feature vectors derived from a pre-trained Vision Transformer (ViT) backbone.

Implementation Details and Baselines. We compared PGBC against a diverse set of baselines.
For the CIFAR-10 and FashionMNIST datasets, we compare PGBC against five classical feature-
based methods: DeepSVDD, AutoEncoder (AE), GBMOD, KNN, and HGAD. For all these meth-
ods (DeepSVDD, AE, GBMOD, KNN, HGAD), we maintained the hyperparameter configurations
described in Appendix C.2, adjusting only the input layer size to match the 512-dimensional feature
vectors. PGBC was applied directly to these feature vectors without any additional fine-tuning.

For the MVTec-AD industrial benchmark, we adopt a comprehensive mixed comparison strategy.
The results of the five aforementioned feature-based baselines and PGBC are obtained by running
them on the 512-dimensional ViT feature vectors (ADBench protocol). However, to benchmark
against leading methods that inherently rely on raw spatial information, we also include results from
three prominent image-based methods, namely CutPaste (Li et al., 2021), U-student (Uninformed
students) (Bergmann et al., 2020), and P-SVDD (Patch-level SVDD) (Yi & Yoon, 2020). Since
the core mechanisms of these image-based methods (such as self-supervised spatial augmentation)
cannot be fairly tested on pre-extracted feature vectors, their performance on MVTec-AD is cited
directly from the original CutPaste paper (Li et al., 2021).

Results and Discussion. The detailed results for CIFAR-10 and FashionMNIST subsets are re-
ported in Table 19, while the MVTec-AD results, including the image-based baselines, are reported
separately in Table 20. PGBC consistently achieves the highest average AUC scores across all three
benchmarks: 95.5% on CIFAR-10, 94.9% on FashionMNIST, and 93.0% on MVTec-AD.

First, when comparing with feature-based baselines, PGBC outperforms the second-best method,
HGAD, across all three datasets. On CIFAR-10 and FashionMNIST, PGBC achieves 95.5% and
94.9% respectively, both exceeding HGAD (95.3% and 94.6%). On the MVTec-AD dataset,
PGBC (93.0% AUC) also clearly outperforms the best feature-based competitor, HGAD (91.2%
AUC). This stable leading performance across diverse visual domains demonstrates that our adap-
tive granular-ball construction is superior to standard density estimation techniques like hierarchical
Gaussian mixtures in modeling complex feature distributions.

Second, we analyze the competitive landscape on MVTec-AD, which includes image-based state-
of-the-art methods. PGBC (93.0% Avg AUC) achieves the highest overall average score, surpass-
ing specialized image-based methods such as CutPaste (90.9% Avg AUC), P-SVDD (92.1% Avg
AUC), and the competitive U-student (92.5% Avg AUC). This superior performance is highly
significant: it confirms that PGBC effectively leverages powerful deep feature representations to
achieve state-of-the-art detection on challenging industrial data, even when benchmarked against
methods that operate directly on raw pixels.

Finally, we emphasize the advantage provided by PGBC’s probabilistic ellipsoidal modeling. We
observe that methods relying on simple geometric boundaries, such as DeepSVDD, show limited
capability when dealing with complex visual feature manifolds. For instance, on the CIFAR-10
and F-MNIST datasets shown in Table 19, DeepSVDD exhibits significantly lower average AUCs
(69.5% and 58.5%, respectively), which is consistent with the rigidity of its hyperspherical boundary
assumption being ill-suited for complex data distributions. In contrast, PGBC’s probabilistic ellip-
soidal modeling successfully captures these inherent geometries, providing consistently superior and
stable performance across all benchmarks.
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Table 19: Full quantitative results (AUC ↑ and FPR ↓ in %) on CIFAR-10 and FashionMNIST.
Bold indicates the best performance, and underline indicates the second best. Abbreviations:
GBM=GBMOD, U.S=U-student.

Datasets Subset DeepSVDD AutoEncoder GBMOD KNN HGAD Ours
AUC FPR AUC FPR AUC FPR AUC FPR AUC FPR AUC FPR

CIFAR10

0 78.7 15.4 93.5 8.0 92.0 8.4 91.9 7.0 94.1 6.3 94.4 2.6
1 78.9 21.4 95.7 3.3 95.9 2.1 95.7 4.6 96.6 1.1 96.7 3.2
2 67.1 37.2 89.0 11.3 89.0 12.6 91.0 13.8 90.1 9.0 90.6 6.8
3 68.4 19.9 92.7 7.1 93.3 4.9 94.1 4.9 93.3 7.5 93.9 3.5
4 66.8 48.2 95.7 2.1 95.2 4.0 95.5 4.6 96.1 4.4 96.2 6.7
5 63.3 64.1 92.7 3.3 94.0 5.2 94.1 4.5 94.0 4.8 94.1 3.6
6 67.7 35.1 96.8 3.2 96.2 3.2 97.1 4.4 97.2 2.9 97.4 2.9
7 66.3 37.8 97.1 5.4 96.7 4.3 96.9 6.9 97.4 5.0 97.5 4.5
8 73.3 25.4 96.7 3.5 97.0 3.3 96.9 3.5 97.0 2.8 97.0 3.3
9 64.4 31.5 95.9 3.3 96.7 3.5 95.9 3.6 96.8 1.4 96.9 4.4

Avg 69.5 33.6 94.6 5.1 94.6 5.2 94.9 5.8 95.3 4.5 95.5 4.2

F-MNIST

0 47.8 99.9 91.3 7.1 89.9 5.6 90.1 4.5 92.2 6.4 92.6 3.0
1 55.1 67.8 99.7 1.2 98.9 3.7 99.7 0.9 99.8 1.5 99.8 1.1
2 55.3 23.6 93.4 4.8 93.1 5.7 93.7 2.4 93.8 4.5 93.8 4.1
3 58.5 31.8 90.4 9.7 85.9 8.2 86.6 3.9 91.7 7.1 92.2 5.9
4 61.8 33.0 89.2 2.7 87.2 4.1 88.2 6.2 89.7 5.5 90.0 2.6
5 77.6 18.2 94.8 0.4 94.0 1.8 93.8 0.5 96.2 1.1 96.8 0.5
6 55.8 79.7 87.6 2.2 83.9 9.8 87.1 2.2 87.7 1.8 88.1 2.0
7 71.8 31.6 98.3 0.8 97.5 1.8 97.8 1.0 98.6 1.2 98.7 0.6
8 50.5 78.1 98.3 4.4 96.4 4.6 98.5 4.2 98.6 3.6 98.6 4.2
9 50.4 100.0 98.0 0.9 97.9 1.4 98.1 1.2 98.3 1.3 98.3 1.2

Avg 58.5 56.4 94.1 3.4 92.5 4.7 93.3 2.7 94.6 3.4 94.9 2.5

Table 20: Full AUC results (%) on the MVTec-AD dataset. Abbreviations: GBM=GBMOD,
U.S=U-student. Bold indicates the best performance, and underline indicates the second best.

Datasets KNN GBM HGAD CutPaste U.S PSVDD Ours
bottle 99.7 99.3 99.9 99.2 96.7 98.6 99.9
cable 94.6 90.0 93.7 87.1 82.3 90.3 96.4
capsule 77.7 72.4 82.3 87.9 92.8 76.7 91.5
carpet 97.1 96.1 97.4 67.9 95.3 92.9 97.9
grid 73.9 60.6 85.0 99.9 98.7 94.6 87.6
hazelnut 82.1 77.2 87.6 91.3 91.4 92.0 87.0
leather 100.0 100.0 100.0 99.7 93.4 90.9 100.0
metalnut 89.7 82.8 93.0 96.8 94.0 94.0 95.9
pill 77.0 73.9 85.1 93.4 86.7 86.1 85.3
screw 67.1 60.3 76.7 54.4 87.4 81.3 77.0
tile 98.9 98.0 99.7 95.9 95.8 97.8 99.7
toothbrush 96.2 81.7 96.2 99.2 98.6 100.0 97.5
transistor 83.3 79.6 84.6 96.4 83.6 91.5 89.9
wood 85.2 74.5 94.9 94.9 95.5 96.5 98.0
zipper 84.5 82.0 92.3 99.4 95.8 97.9 91.7

Avg 87.1 81.9 91.2 90.9 92.5 92.1 93.0
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G ABLATION STUDIES

In this section, we conduct a comprehensive ablation analysis to validate the contribution of key
components in PGBC: the dynamic reassignment step and the BIC splitting criterion.

G.1 IMPACT OF DYNAMIC REASSIGNMENT

The dynamic reassignment step (Step 3 in Algorithm 1) ensures that data points are associated
with the most likely Gaussian component after each split. To verify its necessity, we compared the
performance and runtime of PGBC with and without this step.

As shown in Table 21, enabling dynamic reassignment consistently improves detection accuracy.
For instance, on the Cardio dataset, AUC increases significantly from 80.41% to 84.04%, and on
SwedishLeaf, FPR drops from 2.10% to 1.81%. This confirms that refining the data assignment
after splitting allows the granular-balls to better fit the local data geometry. While this step involves
iterative computation, the overall efficiency of our method remains high, as detailed in the compre-
hensive runtime analysis in Appendix I.

Table 21: Ablation study on the Dynamic Reassignment step. Impact on AUC (%) and FPR (%)
across six representative datasets. Bold indicates the better performance.

Datasets Reassign AUC% (↑) FPR% (↓)

NAB Traffic × 85.06 ± 0.79 7.81 ± 0.24
✓ 85.68 ± 3.04 7.58 ± 0.83

WSD WebService × 98.58 ± 0.01 0.50 ± 0.00
✓ 98.69 ± 0.04 0.44 ± 0.00

Abalone × 70.46 ± 0.76 1.78 ± 0.00
✓ 72.10 ± 0.33 1.72 ± 0.01

Cardio × 80.41 ± 0.07 1.74 ± 0.06
✓ 84.04 ± 0.96 1.63 ± 0.12

Adiac × 98.22 ± 1.20 2.09 ± 1.05
✓ 98.58 ± 1.11 1.96 ± 1.17

SwedishLeaf × 98.10 ± 0.17 2.10 ± 0.38
✓ 98.66 ± 0.39 1.81 ± 0.36

G.2 IMPACT OF BIC CRITERION

A critical challenge in hierarchical density estimation is determining the optimal stopping condition
to prevent over-partitioning, where the model fits local noise rather than the underlying distribution.
To validate the efficacy of the Bayesian Information Criterion (BIC) as a statistical regularizer in
PGBC, we compared our proposed method (”Full”) against a baseline variant (”No BIC”) that exe-
cutes splits solely based on positive Log-Likelihood Gain (LLG), effectively removing the penalty
for model complexity.

The quantitative results in Table 22 demonstrate that the BIC criterion serves as an essential de-
fense against overfitting. Without the BIC penalty (”No BIC”), the algorithm aggressively pursues
marginal likelihood gains, leading to an explosion in the number of granular-balls. For instance, on
the Cardio dataset, the number of components surges from a parsimonious 17 to an excessive 721,
and on Abalone, it increases from 25 to 668. This uncontrolled growth has severe consequences
for computational efficiency, with runtimes increasing by orders of magnitude (e.g., from 3.13s to
183.41s on Abalone and from 1.46s to 37.33s on WSD WebService). This trend is consistent across
both tabular datasets and time-series embeddings (e.g., NAB and WSD), indicating that without
the BIC penalty, the model tends to interpret insignificant local data variations as distinct structural
components. By incorporating the BIC term, PGBC successfully balances data fit with model com-
plexity, ensuring a representation that is both statistically significant and computationally efficient.
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Table 22: Ablation study on the impact of the BIC Criterion. Comparison of PGBC (”Full”) against
a variant without the BIC penalty (”w/o BIC”) across 7 datasets. (a) Model Complexity (Number of
Granular-balls). (b) Efficiency (Runtime in seconds). Bold indicates the more compact model and
efficient runtime.

(a) Model Complexity (Number of Granular-balls)

Strategy Abalone Bands34 Bands42 Cardio Ecoli NAB WSD
Full (Ours) 25 10 14 17 5 6 9
w/o BIC 668 312 161 721 314 269 382

(b) Efficiency (Runtime in seconds)

Strategy Abalone Bands34 Bands42 Cardio Ecoli NAB WSD
Full (Ours) 3.13 0.62 0.72 1.83 0.32 0.25 1.46
w/o BIC 183.41 6.44 6.29 42.80 5.07 4.35 37.33

G.3 DOES THE METHOD SUPPORT A SINGLE PRINCIPAL COMPONENT?

PGBC naturally supports data dominated by one or few principal components without any architec-
tural modification. On three 2D toy datasets with highly elongated distributions (Figure 6), the BIC
criterion correctly terminates splitting at the root level in all cases, producing exactly one ellipsoidal
granular-ball B(0) that precisely aligns with the dominant principal direction(s). This demonstrates
that PGBC gracefully degenerates to a single anisotropic Gaussian whenever the data structure war-
rants it, confirming its full adaptivity across both complex high-rank and simple low-rank scenarios.

Figure 6: Visualization of PGBC on three 2D toy datasets with highly anisotropic distributions. In all
cases, PGBC automatically stops splitting and fits a single elongated ellipsoid B(0) perfectly aligned
with the data manifold, demonstrating degeneration to a single principal component Gaussian.
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H ANOMALY SCORING MECHANISMS

To rigorously evaluate the effectiveness of our proposed hierarchical anomaly scoring mechanism,
we conducted a component-wise comparative study. We analyze four distinct aspects of the scoring
strategy in the following order: (1) the necessity of hierarchical aggregation, (2) the effectiveness
of entropy-based weighting schemes, (3) the impact of the probabilistic scoring metric, and (4) the
importance of score normalization. The detailed analysis for each component is provided below.

H.1 IMPACT OF HIERARCHICAL AGGREGATION (HIERARCHY VS. LEAF-ONLY)

To validate the necessity of the hierarchical structure, we compared PGBC against a ”Leaf-only”
strategy, which utilizes the finest-grained granular-balls at the leaf nodes to compute anomaly scores.

As shown in Table 23, the hierarchical PGBC consistently outperforms the flat ”Leaf-only” approach
across all datasets. For instance, on Thyroid, the AUC rises from 67.8% to 73.0%, and on Sick72
from 84.2% to 87.3%. This result demonstrates that relying solely on fine-grained leaf nodes is
insufficient, as they may overfit to local variations. In contrast, intermediate layers in the hierarchy
capture valuable multi-scale structural information that is critical for robust anomaly detection.

To visually illustrate this, Figure 7 plots the layer-wise AUC on the Thyroid dataset. Performance
fluctuates significantly across layers, and the finest granularity (leaves) is not necessarily optimal.
PGBC’s hierarchical aggregation effectively integrates these complementary scales.

Table 23: Comparison of Hierarchical Aggregation vs. Leaf-only strategy. Metric: AUC (%).

Method Bands34 Bands42 Ecoli Sick72 Thyroid Waveform
Leaf-only 97.4 ± 2.4 99.1 ± 0.7 88.8 ± 0.3 84.2 ± 1.0 67.8 ± 2.2 77.6 ± 0.0
Ours 100.0 ± 0.0 100.0 ± 0.0 89.4 ± 0.4 87.3 ± 3.6 73.0 ± 4.8 78.1 ± 0.0

Figure 7: Layer-wise AUC performance on the Thyroid dataset. The chart compares the perfor-
mance of individual layers against the hierarchical aggregation (Ours), validating the necessity of
multi-granularity scoring.
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H.2 IMPACT OF WEIGHTING SCHEMES (ENTROPY VS. UNIFORM)

We examined the effectiveness of our entropy-based weighting scheme by comparing it against a
”Uniform” strategy, where every hierarchical level contributes equally to the final score.

Table 24 shows that the entropy-based weighting consistently yields superior results. For exam-
ple, on Bands34, the AUC drops to 96.4% with uniform weights, and on Sick72, it falls drastically
to 78.3% (a decrease of 9.0%). This significant performance gap highlights the limitation of the
”Uniform” strategy: it treats coarse global approximations and fine local details identically. Con-
sequently, levels with lower discriminative power can dilute the precise anomaly signals captured
by more informative levels. In contrast, our entropy-based weighting adapts dynamically to the
data complexity. Specifically, when the data structure is complex and necessitates deeper recursive
splitting, the entropy metric naturally assigns higher weights to the fine-grained levels that capture
intricate local patterns. Consequently, the influence of coarse-grained levels—which provide only
rough global statistics—is automatically attenuated, ensuring that the detection is driven by the most
detailed and informative resolution.

Table 24: Comparison of Entropy-based vs. Uniform Weighting. Metric: AUC (%).

Method Bands34 Bands42 Ecoli Sick72 Thyroid Waveform
Uniform 96.4 ± 2.6 97.8 ± 0.9 88.4 ± 0.1 78.3 ± 2.4 72.9 ± 6.1 74.1 ± 0.0
Ours 100.0 ± 0.0 100.0 ± 0.0 89.4 ± 0.4 87.3 ± 3.6 73.0 ± 4.8 78.1 ± 0.0

H.3 IMPACT OF SCORING METRIC (LOG-LIKELIHOOD VS. EUCLIDEAN DISTANCE)

To isolate the contribution of our probabilistic scoring mechanism, we conducted an ablation study
using two alternative scoring strategies based on Euclidean distance. Crucially, these baselines share
the exact same hierarchical structure and granular-ball centers generated by PGBC, differing solely
in how the anomaly score is computed:

• Min-Distance: Calculates the Euclidean distance to the nearest granular-ball center. This
represents a ”vanilla” GBC approach, treating granular-balls as isotropic spheres and ig-
noring local shape information.

• Avg-Distance: Calculates the average Euclidean distance to all granular-ball centers. This
strategy, suggested for comparison, incorporates global geometric information rather than
local density.

The results in Table 25 reveal a significant performance gap between these distance-based metrics
and our proposed probabilistic scoring. First, Min-Distance consistently underperforms PGBC. For
instance, on the Bands datasets, the AUC drops from 100.0% (Ours) to approximately 82–84%. This
confirms that simple geometric distance fails to capture the anisotropic structures (e.g., elongated
clusters) inherent in the data, whereas our log-likelihood scoring successfully leverages the covari-
ance matrix to model local orientation. Second, Avg-Distance proves to be an unstable metric for
anomaly detection. While it outperforms Min-Distance on Thyroid (67.6% vs. 56.2%) and Ecoli,
it performs worse on Bands42 (75.6%). This inconsistency suggests that averaging distances in-
corporates irrelevant global geometric information that obscures the precise local anomaly signals.
Ultimately, PGBC (Log-Likelihood) surpasses both distance baselines across all datasets, demon-
strating that explicit probabilistic modeling is essential for precise data description.

Table 25: Ablation study on scoring metrics. ”Min-Dist” and ”Avg-Dist” denote the minimum and
average Euclidean distances to granular-ball centers, respectively. Metric: AUC (%).

Method Bands34 Bands42 Ecoli Sick72 Thyroid Waveform
Min-Dist 83.9 ± 1.8 81.8 ± 2.6 79.5 ± 2.8 80.9 ± 1.4 56.2 ± 1.5 71.6 ± 0.0
Avg-Dist 81.3 ± 1.4 75.6 ± 3.8 84.3 ± 0.4 79.6 ± 0.5 67.6 ± 0.2 68.8 ± 0.0
Ours 100.0 ± 0.0 100.0 ± 0.0 89.4 ± 0.4 87.3 ± 3.6 73.0 ± 4.8 78.1 ± 0.0
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H.4 IMPACT OF SCORE NORMALIZATION

Finally, to assess the importance of aligning scores across levels, we tested a variant ”w/o Normal-
ization”, which aggregates raw log-likelihood scores without min-max scaling.

As presented in Table 26, removing normalization leads to clear performance degradation. For
instance, the AUC on Sick72 drops from 87.3% to 81.2%. This degradation arises because the
raw log-likelihood scores at different hierarchical levels often exhibit vastly different value ranges,
reflecting the varying granularity of the data description from global to local scales. Without nor-
malization, levels with numerically larger score ranges could inadvertently overshadow the contri-
butions of other levels, biasing the final result. Normalization ensures that the contribution of each
level is governed strictly by its structural informativeness (entropy), rather than arbitrary differences
in numerical magnitude.

Table 26: Impact of Score Normalization. Metric: AUC (%).

Method Bands34 Bands42 Ecoli Sick72 Thyroid Waveform
w/o Norm 99.6 ± 0.7 99.1 ± 0.7 88.8 ± 0.3 81.2 ± 1.8 71.3 ± 6.5 77.8 ± 0.0
Ours 100.0 ± 0.0 100.0 ± 0.0 89.4 ± 0.4 87.3 ± 3.6 73.0 ± 4.8 78.1 ± 0.0
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I COMPUTATIONAL EFFICIENCY ANALYSIS

In this section, we provide a theoretical analysis of the time complexity of PGBC and report empir-
ical runtime comparisons against all baseline methods.

I.1 THEORETICAL COMPLEXITY

The computational cost of PGBC is primarily determined by the hierarchical construction process
using the Expectation-Maximization (EM) algorithm. For a dataset with N samples and d dimen-
sions, let L denote the tree depth and t denote the average number of EM iterations per split. Since
the summation of samples across all granular-balls at any specific level is bounded by N , the com-
putational complexity for one level is approximately O(t ·N · d2). Consequently, the total training
complexity is O(L · t · N · d2). This is generally more efficient than deep neural networks, where
the number of training epochs (typically 50-100) far exceeds the tree depth L (typically < 10).
For inference, computing the anomaly score involves evaluating Gaussian densities across the con-
structed hierarchy, resulting in a complexity of O(Ktotal · d2), where Ktotal is the total number of
granular-balls, ensuring fast retrieval.

Table 27: Average runtime (seconds) comparison on 19 tabular datasets. Bold indicates the pro-
posed method. Abbreviations: AE = AutoEncoder, D.SV = DeepSVDD, DAG = DAGMM, GBM =
GBMOD.

Datasets IForest LOF KNN AE D.SV DAG HGAD GBM GBDO Ours
Abalone 0.22 0.13 0.04 16.63 13.04 29.95 40.38 1.14 21.13 6.28
Bands34 0.24 0.25 0.01 8.42 5.96 2.87 3.31 3.45 2.29 0.98
Bands42 0.18 0.25 0.01 16.63 5.31 2.67 3.27 2.61 7.14 2.60
Cardio 0.19 0.27 0.01 7.43 5.67 11.02 16.78 15.62 14.00 4.92
Ecoli 0.19 0.01 0.01 6.91 0.21 2.59 3.68 0.14 5.87 0.89
Iris 0.20 0.00 0.00 6.28 0.10 1.02 1.28 1.12 2.06 0.36
Musk 0.23 0.30 0.04 25.58 4.97 19.66 28.98 28.64 17.04 21.64
Pageblocks 0.22 0.23 0.08 18.88 7.99 31.86 46.76 1.54 22.15 58.46
Pendigits 0.26 0.35 0.05 45.70 10.70 42.87 63.44 8.06 25.68 49.19
Satellite 0.23 0.32 0.04 15.81 7.19 28.73 42.89 5.78 21.40 5.80
Sick35 0.21 0.28 0.02 26.51 5.81 22.79 33.96 43.46 21.94 11.99
Sick72 0.21 0.28 0.02 28.29 5.85 22.83 33.85 43.58 21.97 12.31
Sonar 0.22 0.26 0.01 19.19 0.14 1.24 1.37 0.97 1.88 1.11
Thyroid 0.26 0.90 0.10 40.77 24.85 57.76 62.22 21.39 37.22 21.12
Tictac12 0.19 0.02 0.01 8.93 0.27 4.14 6.04 0.30 7.54 15.16
Tictac26 0.19 0.02 0.01 9.19 0.28 4.31 6.16 0.31 7.83 15.27
Tictac32 0.19 0.02 0.01 9.45 0.29 4.56 6.36 0.31 7.71 15.55
Waveform 0.21 0.28 0.02 27.79 5.63 22.63 32.83 29.62 16.19 1.44
Yeast 0.19 0.05 0.02 12.80 0.52 7.66 10.98 0.54 11.45 2.41

Average 0.21 0.22 0.03 18.48 7.09 16.90 23.40 10.98 14.34 13.03

I.2 EMPIRICAL RUNTIME COMPARISON

To evaluate real-world efficiency, we measured the total runtime for all methods on the 19 tabular
datasets. All runtime experiments in this section were conducted on a machine equipped with an
NVIDIA RTX 2060 GPU (6 GB), an AMD Ryzen 7 4800H CPU, and 16 GB of RAM. This setup
differs from the main experiments (which used an RTX 4090 server), serving to demonstrate the
accessibility and efficiency of our method on standard hardware.

The runtime results in Table 27 illustrate the trade-off between computational cost and model com-
plexity. Traditional distance-based methods like KNN and IForest are extremely fast due to their
algorithmic simplicity, but as shown in the main text, they often fail to capture complex anisotropic
patterns, resulting in lower detection accuracy. In contrast, deep learning-based approaches such as
AutoEncoder and HGAD are significantly slower (averaging 18.59s and 24.67s, respectively) due
to the necessity of iterative gradient descent over many epochs. PGBC achieves an average runtime
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of 13.03s, positioning it advantageously between these two extremes. It is nearly 2x faster than
HGAD and consistently outperforms other iterative methods like DAGMM. This efficiency indi-
cates that PGBC successfully avoids the heavy computational burden of deep neural networks while
providing a sophisticated probabilistic description that surpasses simple distance-based baselines,
making it a highly practical solution for real-world anomaly detection tasks.

I.3 MODEL COMPACTNESS ANALYSIS

Tabular Data Analysis. To complement the reduction factor analysis in the main text, Figure 8
presents the number of components required by traditional GBC versus PGBC across all 19 tabular
datasets. It is evident that PGBC achieves a consistent and dramatic reduction in model complexity.
For instance, on the Sick72 dataset, traditional GBC requires 1009 isotropic balls to cover the data,
whereas PGBC achieves a more precise coverage with only 44 ellipsoidal components. Similarly, on
Waveform, the count drops from 740 to 23. This confirms that PGBC’s covariance-aware modeling
effectively eliminates the need for excessive recursive splitting in real-world anisotropic regions.

Figure 8: Comparison of model complexity (absolute number of granular-balls) on 19 tabular
datasets. Dark blue bars represent traditional GBC, while light blue bars represent PGBC. PGBC
consistently maintains a significantly more compact representation.

15.2×

16.5×
26.8× 7.5×

Figure 9: Comparison of model com-
plexity on 4 synthetic datasets. The
chart highlights the reduction in the
number of granular-balls required by
PGBC compared to traditional GBC.

Synthetic Data Verification. To evaluate the efficiency
of PGBC in idealized scenarios, we analyzed four syn-
thetic datasets: Two Circles, Two Moons, Intersecting,
and DB. Figure 9 reports the number of granular-balls re-
quired by traditional isotropic Granular-Ball Computing
(GBC) versus the proposed PGBC. Quantitatively, PGBC
achieves a dramatic reduction in model size, reducing the
component count by factors ranging from 7.5× to 26.8×.
As visually demonstrated in Appendix K (see Figure 11),
this compactness stems from PGBC’s superior adaptivity:
unlike GBC, PGBC aligns ellipsoidal boundaries with the
underlying data geometry, eliminating the need for un-
necessary splits in anisotropic regions. This results in a
highly parsimonious representation that significantly low-
ers computational cost without sacrificing data coverage
or detection accuracy.
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J ROBUSTNESS TO CONTAMINATION

To evaluate the robustness of PGBC against label noise, we conducted experiments by introducing
varying ratios of anomalies (from 0% to 5%) into the training sets of eight representative datasets.
These datasets span diverse domains, including six tabular datasets (e.g., Bands34, Iris, Sonar),
one time series dataset (WSD WebService), and one open-set recognition dataset (SwedishLeaf ),
ensuring a comprehensive assessment across different data modalities.

As shown in Figure 10, PGBC demonstrates remarkable stability across most scenarios. On datasets
with clear structural separation like Iris and WSD WebService, the performance drop is negligible
(≤ 1%), indicating near-perfect immunity to contamination. Even on challenging datasets such
as Bands34 and Bands42, where the AUC decreases by approximately 10%, the model exhibits
a graceful degradation, maintaining absolute scores above 89%. This resilience stems from the
statistical rigor of the granular-ball splitting process, which effectively isolates sparse noisy samples
and prevents them from distorting the learned normal data distribution.

Figure 10: Robustness analysis on eight datasets under varying training data contamination rates
(0% to 5%). PGBC demonstrates high stability across tabular, time series, and open-set tasks, with
minimal performance loss in most scenarios.
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K VISUALIZATION STUDIES

Beyond the quantitative results reported in the main text, we include visual comparisons that high-
light the covering behavior of different granular-ball approaches. Figure 11 shows how probabilistic
granular-balls, unlike traditional isotropic granular-balls, adapt their shape and orientation to local
data structure. On synthetic datasets with curved or elongated clusters, this adaptivity allows PGBC
to cover distributions with fewer and more compact components, providing an intuitive complement
to the quantitative gains discussed earlier.

To further illustrate the refinement behavior of PGBC, we visualize the probabilistic granular-ball
splitting process on four representative datasets: two tabular datasets (abalone, pageblocks), one
benchmark time series dataset (SMD Facility), and one repurposed UCR dataset (Synthetic Control).
For tabular data with large sample sizes and inherent clustering structures, PGBC progressively
splits coarse coverings into compact ellipsoidal components that align with cluster boundaries (Fig-
ures 12 and 13). For time series data, embeddings often lie on smooth manifold-like trajectories;
here PGBC adaptively stretches ellipsoids along principal directions, preserving continuity while
capturing subtle deviations (Figure 14). For UCR datasets with multiple interleaved classes, PGBC
refines granular-balls into anisotropic coverings that disentangle overlapping patterns and highlight
out-of-distribution behaviors (Figure 15). Together, these visualizations demonstrate PGBC’s ability
to handle heterogeneous structures across static and temporal domains.

To complement the quantitative results, we further visualize anomaly detection outcomes on the six
time series datasets used in our experiments. To generate the continuous point-level anomaly score
curves shown in these figures, we aggregated the window-level outputs: specifically, the score for
each time step is calculated by averaging the hierarchical log-likelihoods of all overlapping sliding
windows covering that point. Each plot overlays the raw sequence with ground-truth anomalies
and those detected by PGBC. As shown in Figure 16 and Figure 17, the detected anomalies closely
follow the true labels, capturing both sharp point anomalies and subtle contextual deviations across
diverse temporal settings.

Building on these insights, we further provide a specific case study of our method’s anomaly de-
tection performance on the UCR Adiac dataset, a benchmark for challenging time series. The vi-
sualization in Figure 18 provides a dual-panel view. The top panel compares the Dynamic Time
Warping Barycenter Averaging (DBA) mean curves of normal samples, ground-truth anomalies,
and the anomalies detected by PGBC. The close alignment of the detected anomaly mean curve
with that of the ground-truth, and its significant divergence from the normal samples’ mean, visu-
ally validates our method’s ability to precisely capture the intrinsic patterns that define an anomaly.
The bottom panel of Figure 18 overlays all samples, where the detected anomalies are shown to
align perfectly with the ground-truth anomalies. This powerful visual evidence confirms that our
method accurately pinpoints the exact locations and shapes of true anomalies, thus complementing
the quantitative performance metrics with a clear demonstration of our method’s high precision.
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(a) Two Circles

(b) DB

(c) Two Moons

(d) Intersecting

Figure 11: Visualization of granular-ball generation on synthetic datasets. Comparison between
traditional isotropic (left) and probabilistic ellipsoidal (right) granular-balls.
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Figure 12: Visualization of the probabilistic splitting process on the Abalone dataset. PGBC refines
coarse coverings into ellipsoids that align with natural group boundaries.

Figure 13: Visualization of the probabilistic splitting process on the Pageblocks dataset. PGBC
adapts to heterogeneous distributions by stretching ellipsoids along anisotropic directions.
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Figure 14: Visualization of the probabilistic splitting process on the SMD Facility time series dataset.
PGBC aligns ellipsoids with smooth manifold-like embeddings, preserving temporal continuity.

Figure 15: Visualization of the probabilistic splitting process on the Synthetic Control dataset.
PGBC disentangles interleaved class structures by forming anisotropic coverings.
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(a) NAB

(b) WSD

(c) SMD

Figure 16: Visualization of anomaly detection results on time series datasets (Part 1). (a) NAB, (b)
WSD, and (c) SMD. Panels show raw sequences (blue), ground-truth anomalies (red shading/bars),
and detected anomaly scores (red lines).
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(a) IOPS

(b) UCR

(c) YAHOO

Figure 17: Visualization of anomaly detection results on time series datasets (Part 2). (a) IOPS, (b)
UCR, and (c) YAHOO. Panels show raw sequences, ground-truth anomalies, and detected anomaly
scores.
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Figure 18: Case study on the UCR Adiac dataset. (Top) Comparison of DBA mean curves for
normal, anomalous, and detected samples. (Bottom) Visualization of detected anomalies (red boxes)
aligning with ground-truth patterns.
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