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ABSTRACT

Frontier Large Vision-Language Models (LVLMs) exhibit remarkable capabili-
ties in Visual-Language Comprehension (VLC) tasks, enabled by pretraining on
vast visual-textual corpus. However, they are often deployed as zero-shot solu-
tion in a black-box manner, as retraining challenges remain due to data privacy
or model inaccessibility. Validating and understanding the behavior of the models
become important for generalization to new task. We propose a Logic Channel,
in parallel with the black-box model channel, to perform explicit logic reasoning
for validation and enhancement. The frontier LVLM, encapsulating latent vision-
language knowledge, can be considered as an Implicit Logic Channel. The pro-
posed Explicit Logic Channel, mimicking human logic reasoning, incorporates a
Large Language Model (LLM), a Visual Foundation Model (VFM), and a logical
reasoning module involving novel probabilistic inference for factual, counterfac-
tual, relational, and causal condition reasoning over the extracted and grounded
visual-textual facts. Cross-channel logic consistency analysis enables model vali-
dation and selection, even without ground-truth annotations. Additionally, cross-
channel integration further improves performance in zero-shot tasks over SOTA
models. Our experiments on three recent challenging VLC benchmarks, Neg-
Bench, HC-RefCOCOg, and HC-RefLoCo, demonstrate the effectiveness of the
proposed Logic Channel for logic-based model validation, selection and improve-
ment on LVLM with enhanced explainability and trustworthiness.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable general intelligence in text-based
tasks [Zhao et al.| (2025)). Recently, LLMs have been extended as Multimodal LLMs (MLLMs) by
incorporating visual inputs. LVLMs have advanced significantly, as evidenced by the frequent re-
lease of frontier models by leading Al organizations and the rapid growth of vision-language (VL)
benchmarks in both data diversity and quantity |Li et al.| (2025a). While LVLMs have achieved ad-
vanced capabilities in visual language comprehension (VLC) across a wide range of multi-modal
tasks, recent research increasingly highlight the limitations of LVLMs in terms of reliability, fac-
tuality, explainability, and logic reasoning |Dang et al.| (2024). Frontier LVLMs are often deployed
for new tasks as black-boxes in zero-shot learning, due to data privacy concern, large model size, as
well as inaccessibility of closed-source model. It is crucial to be able to identify reliable model and
enhance the accuracy of predictions without re-training the model for new tasks Khan & Ful(2024).

Human make decision and judgment on facts and logical rules Wang et al.|(2022). The faithfulness,
reasonability, and trustworthiness of a decision are justified based on explicit and concrete facts,
relations, and logic causation. On this observation, we propose a Logic Channel, in parallel with
LVLM, to perform a logic validation of LVLLM’s prediction on logic consistency, as well as enhance
the accuracy of LVLM’s prediction. Since a LVLM has been pre-trained on vast vision-language
datasets, it is assumed to have learned human logic on visual-language problems. It can be con-
sidered as an Implicit Logic Channel (ILC). However, human natural language is not a complete
logic language |Gomes| (2024)). The ground truth (gt) annotations based on natural language may be
ambiguous, uncertain, or logically incomplete, leading to logically inconsistent predictions. To com-
plement ILC, we propose an Explicit Logic Channel (ELC), where we prompt a LLM as Language
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Parser to extract concept-level logic conditions from the input text, employ a VFM to ground the the
facts explicitly in the image, and design a Logic Reasoning module with novel probabilistic infer-
ence approach to make decisions explicitly on the grounded facts, relations, and causal conditions.
The consistency between the two logic channels can be exploited for model validation, justification,
and selection, even when gt annotations are not available for evaluation. In addition, the combination
of both channels further enhance the accuracy of prediction without additional fine-tuning.

To investigate the effectiveness of the proposed Logic Channel for VLC validation and accuracy
enhancement under zero-shot setting, we perform experiments on three recent VLC challenges, i.e.,
NegBench, HC-RefCOCOg and HC-RefL.oCo. Our experimental results show that, (a) the Logic
Channel with probabilistic inference is able to produce accurate and robust predictions with explicit
visual justification; (b) logic consistency between the ILC and ELC is effective for model validation
and selection even without gt annotation; (c) the combination of ILC and ELC can further improve
SOTA performance with enhanced explainability and trustworthiness.

The main contributions can be summarized as: (1) A Logic Channel on Foundation Models and
Logic Reasoning for VLC tasks, producing concrete prediction on explicit facts and logic relations
without training; (2) Logic consistency between ILC and ELC for model validation without the
need of gt annotation; (3) Effective LC solutions with novel probabilistic inference approach for
VLC with explicit logic reasoning on factual and counterfactual evidence, relations, and conditions
of causation, achieving significant improvement over SOTA performance on three VLC benchmarks.

2 RELATED WORK

LVLMs. There is a growing number of LVLMs released in recent years [Li et al.| (2025b). One
cluster are jointly embedding-based Vision Language Models (VLMs), where the visual and textual
inputs are encoded separately, and then embedded into a shared latent space. Contrastive learning
is then used to align the embedded image-text pairs by optimizing an objective function. Repre-
sentative VLMs, particularly CLIP cluster models Radford et al.| (2021)), and those developed on
BLIP [Li et al|(2022) and ALIGN Jia et al.| (2021])), are pre-trained on large-scale VL datasets. An-
other large group are Multimodal LLM (MLLM), which employs pre-trained LLM as backbone Yin
et al.| (2024). The visual features are extracted by a vision encoder, projected into a shared embed-
ding space of text tokens, and inserted into text sequence as input to LLM to predict next tokens
auto-regressively. Recent MLLMs are LLaVA [Liu et al.| (2023), GPT-4V |[Yang et al.| (2023), Gem-
ini |(Gemini Team!| (2025)), InternVL |Chen et al.| (2024), and Qwen-VL [Bai et al.| (2023b). In this
study, we employ EvaCLIP and InternVL2(8b) as representative VLM and MLLM, respectively.
These models are less than 10B, and are more portable and practical for downstream applications.

VLC benchmarks. The benchmarks for evaluating the capabilities of latest LVLM on VLC are
growing rapidly |Li et al.| (2025b); [Fu et al.| (2024). VLC capabilities are mostly evaluated us-
ing Visual Question Answering (VQA) and Referring Expression Comprehension (REC) or Visual
Grounding. Traditional VQA benchmarks typically involved multiple choice formats or answers
with limited text length. Subsequent VL benchmarks have been extended to include a wider range
of question types, field of expertise, and tasks such as math reasoning and chart understanding. The
VQA datasets have also been extended to investigate bias in dataset distributions |Li et al. (2024)
and negations |Alhamoud et al.| (2025). Standard VQA datasets are considered less challenging to
frontier models [Li et al.| (2025b) due to vast and extended pre-training datasets. We perform ex-
periments on a latest benchmark with negations to evaluate the effectiveness on zero-shot setting.
The REC task aims to identify and localize a specific image region of the referred object on text
description |Xiao et al.| (2024). RefCOCOQO/+/g are standard datasets for REC, built on top of MS
COCO dataset. RefCOCO/+ might not be adequate for evaluating LVLM due to their limitations on
overly concise referring phrases and limited vocabulary. On the other hand, zero-shot REC is still a
very challenging task [Han et al.| (2024)). In this study, we conduct experiments on HC-RefCOCOg
with enriched phrase of 8.9 words in average, wrt 3.3 and 3.4 of RefCOCO/+, and a recent challenge
HC-RefLoCo with long context expression of 93 words in average [Wei et al.|(2024).

Logic reasoning on LLMs and VLM. Efforts to enhance LLM with logical reasoning abilities have
attracted researches’ attention |Cheng et al.| (2025)); [Pournemat et al.[(2025)). The goal is to improve
the logical accuracy and consistency of the generated text answers and expressions. The approaches
include introducing an external logic solver Olausson et al.[(2023)); IDiego et al.|(2025) or building
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Figure 1: The Logic Channel for validation (left) and enhancement (right).

additional dataset with logically consistent annotations to fine-tune a model [Feng et al.|(2024). In
BIRD [Feng et al.| (2025)), probabilistic inference is used to improve the trustworthiness of LLM.
Existing NeuroSymbolic framework and programming require additional learning to perform logic
reasoning |L1 et al.[(2023);|Huang et al.[(2025);|Yang et al.| (2024)).

3 METHODOLOGY

Typical VLC tasks could be: (A) given a query image and a text expression to predict a right answer,
or (B) given a query image and a text prompt to localize a target object in the image. They can be
viewed as a logic problem of if I (image) and T (text), then D (decision). We propose a Logic
Channel in parallel with LVLM, as shown in Figure[I] The upper channel employs a LVLM to make
prediction directly as a black box, which can be viewed as an Implicit Logic Channel. The lower
channel, mimicking human logic reasoning, employs LLM and VFM to ground the facts explicitly,
and performs logic reasoning on the grounded facts for final decision, which can be considered as
an Explicit Logic Channel.

The two channels are complementary as LVLM, LLM and VEM are trained on different purposes.
ELC provides explicit facts and relations to support the prediction. The logic consistency between
the two channels can be used for model validation and selection, while the combination of the two
predictions would further enhance the accuracy of final prediction.

Validation: When applying a LVLM for a new task, we may just have some test examples without
gt annotation. We can run the model with Logic Channel to evaluate the logic consistency between
the two channels. We define a Consistency Rate (C'R) as

Number of Aligned Predictions

CR (D

~ Total Number of Test Samples ’
where an aligned prediction means that the both channels give the same prediction. Naturally, if C'R
is higher, the LVLM is more logically reliable and trustworthy for the new task. The metric C'R can
be used to select a most suitable model for a new VLC task even the gt annotations are not ready
for evaluation. The difference between the two channels may also guide user to perform a manual
validation effectively on grounded visual evidence.

Enhancement: Fusing the outputs of the two complementary channels could also enhance the ac-
curacy of the final prediction without additional re-training or fine-tuning, and the explicit visual
evidence from ELC can provide a concrete logic justification of the prediction.

In this study, we investigate the effectiveness of Logic Channel with three general logic capabilities
on VLC tasks, i.e., (a) logical decision on factual and counter-factual evidence, (b) logical decision
on evidence of facts and relations, and (c) logical decision on conditions of causation. We propose
three LC solutions on these VLC requirements and evaluate their effectiveness on three recent VLC
challenges on zero-shot setting.

3.1 LOGICAL DECISION ON FACTS AND NEGATIONS

A typical task of vision-language understanding is that, given an image (I), the model is required to
predict a correct text description (77). A latest challenging benchmark, NegBench |Alhamoud et al.
(2025), involves both positive and negative phrases. Four choices of text descriptions are provided
for each image. The choices are classified into three linguistic templates: Affirmation, Negation, and
Hybrid. An affirmation text contains only positive elements {pos}, i.e., objects or concepts present
in the image. A negation text includes only negative elements {neg}, which are absent from the
image but commonly associated with the present objects. A hybrid text contains both positive and



Under review as a conference paper at ICLR 2026

negative elements. The SOTA performance shows the difficulty of existing LVLMs to understand
both positive and negative descriptions on a query image.

A: This image features a car and a frisbee. i I
B: This image features a traffic light, but no l Implicit logic channel

car is visible.
C: A traffic light is visible in this image.
D: No car is present in this image.

LVLM [—— [0.98,0.0,0.02,0.0]
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Pos =[*car", “frisbee”], Neg =[] Reasoning £¥ L
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Figure 2: Logic Channel for NegBench.

Logically, the NegBench task requires decision to be made and justified on concrete factual and
counter-factual evidence, i.e., the presence of pos elements (facts) and absence of neg elements
(counter-facts). We implement a LC solution for the MCQ task of the NegBench benchmark, as
illustrated in Figure [2] A representative LVLM is employed for the ILC. Following the protocol
in |/Alhamoud et al.| (2025), for each problem, the query image is presented to the model along-
side four choice texts. The model is prompted to select the correct answer as well as provide the
confidence-level of correctness (0%-100%) for all four choices. In the ELC, first, a SOTA LLM is
employed as the Language Parser to extract the pos and neg nouns. The nouns are then fed to a
VEM. For each object category, the VFM locates all instances in the image with the probabilities of
their presence. The probability of an object category is obtained as the maximum of all the instances.
Assuming there are K pos object categories and L neg object categories, the presence of the object
categories in the image are denoted as { P(OF)};—,; and {P(O},)}/~,. The presence of pos objects
gives a factual evidence on 7" and the presence of neg objects gives a counter-factual evidence on T'
can be computed logically as

P(pos) = min{P(Ozl)), e ,P(Of)}, P(neg) = max{P(O}), - ,P(O,LL)}. 2)

For a pair of image I and text 7', the probability of factual and counter-factual evidence can be
computed as
P(pos), affirmation
P(T|I)={ 1- P(neg), negatiorll (3)
[P(pos)(1 — P(neg))]* , hybrid

where the geometric mean is used for normalization for the hybrid case. The choice of maximum
P(T|I), out of the four given choices, is selected as the correct answer.

When performing logic consistency validation, the two channels are run independently, and the CR
is then computed. For enhancement, the combined probability is obtained as the sum of the two
channels’ outputs, and the best choice is selected as the final prediction.

3.2 LOGICAL DECISION ON FACTS AND RELATIONS

Recent HC-REC (Human-Centric Referring Expression Comprehension) benchmarks, sourced from
general REC task, are created for the evaluation of large multi-modal models on VLC capabili-
ties Wei et al.| (2024). Given a query image (/) and a text expression (7"), the model is required to
predict and localize the referred person (/) within the image. The prediction should be made on
the presence of the person and relevant objects, as well as the evidence of their relations in the im-
age. The presence of a person is the core factual evidence, and his/her relations with the mentioned
objects provide the evidence of association on logic relations for prediction.

The Logic Channel solution for HC-REC is shown in Figure[3] In the ILC, we first employ a VFM
to locate every person in the image. Then, each person is cropped, and fed to a LVLM along with
the referring expression. The LVLM makes a prediction on each person with a confidence value on
its learned VLC knowledge. In the ELC, the Language Parser is prompted to extract the nouns of
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Figure 3: Logic Channel for HC-REC task.

persons and objects from 7. The nouns are then fed to a VFM to locate all instances of persons and
relevant objects with the probabilities of their presence in the image.

Assuming that there are (X + 1) nouns extracted from 7', of which the first is human and the rest
are object names, denoted as {H,O1,--- ,O }. The VEM locates a set of instances of human and
objects. There may be multiple instances of one object category. In addition, due to errors of zero-
shot detection, there may be missed detection and false positives. Let us denote the box of the ith
detected person as h;, and the box of the Ith instance of object O; as 0.

We compute the probability of the targeted person on accumulated evidence, as inspired by the
principle of perceptual decision-making on evidence accumulation [Balsdon et al.| (2020). Formally,
it can be expressed as

POIT) = 1 (Zf_l P(Olhy) + P(hiIH)) , )

where P(h;|H) represents the probability of a person present at h;, and P(Og|h;) denotes the
association of region h; with object O. Assuming that there are L instances of object O}, detected
in the image, i.e., {okl}le, then, the association rate of og; with h; can be computed as

Ra(ogi, hi) = Aint(0rt, hi) JA(ogr), )

where A;,¢(0k1, h;) means the area of intersection of boxes og; and h;, and A(oy;) is the area of box
ok;- The probability of association of h; with an object named Oy, is obtained as

P(Og|hi) = maxjepy 1) {Ra(okt, hi)} (6)

Finally, the person of maximum P(h;|T") is selected as the grounded person referred by text expres-
sion on explicit visual evidence.

For model validation, the two channels are run independently. In ELC, P(h;|H) = 1.0 is used
in (@), which means every detected person is assumed as a potential target person. Then, the CR
is computed. For enhancement, the confidence value of LVLM’s prediction of h; on T is used as
P(h;|H) in (), which integrates the power of LVLM in logic reasoning.

3.3 LOGICAL DECISION ON CONDITIONS OF CAUSATION

A recent challenge of REC is HC-RefLoCo, i.e., Human-Centric Referring Expression Comprehen-
sion with Long Context (2024). The very long text expression, which contains multiple
sentences about the scene, global events and activities, to individual appearance and action, cause
difficulty and even failure of many LVLMs for zero-shot task.

The challenges are not simply caused by long context expression, but also by sentences that are
not logically complete for the cause-effect prediction. On logic cause-effect relation (2024),
given image I, the text 7" should be sufficient and necessary to cause the localization of H in I.
However, many sentences in 7" are neither sufficient nor necessary to lead to the visual attention to
H in I. This can be explained in the following example. Suppose a long context expression on an
image of human activities in a public park in a weekend is given as: “This is a scene of a public park
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in Sunday. People play various activities in the morning. A young lady in red sportswear is sitting
on a bench for a rest. A blue bottle is placed on the bench beside her.” The first sentence (57) is
neither sufficient nor necessary to lead to the attention to the young lady (H). The second (S2) is a
sufficient but not necessary cause to H since it may lead to attention to every person in I, not just
H. The third (S3) is a sufficient and necessary cause to H, if there is no other young lady in red
sportswear sitting on a bench in I. The fourth (S4) is necessary but may not be sufficient cause as it
does not focus on person.

1 Implicit logic channel

LVLM
(Long — [0.99, 0.01, 0.0]
Context)

[0.89,0.10,0.01,c1] Logic £,
S1: [The individual ... single activit
[ ‘cw‘\ ividual : ‘wt c‘wc ivity] LVLM [0.45,0.30, 0.25,c¢2) Reasoning QO
Short [+l
5: [Thoy are atancing . group activiy] Context) L I
|

Explicit logic channel
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(person)

(Language
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Figure 4: Logic Channel for HC-RefLoCo.

A LC solution for HC-RefLoCo is developed, as shown in Figure[d On this challenge, we focus on
the effectiveness of understanding the logic causation conditions on long context expressions with
LVLMs.We employ LVLMs in both channels, one works on the long text of full expression, and
another works on short text of sentence. The persons detected by VFM are used in both channels as
potential visual grounds. In ILC, each person is cropped from the image, and fed to a LVLM along
with the full expression. The LVLM produces predictions on its learned VLC knowledge, each with
a confidence value of its prediction. In ELC, a logic reasoning approach on LLM and LVLM is
developed. First, each sentence is extracted from the full expression and a LLM is prompted to
classify each sentence into four categories: single activity (e.g., S3), object (e.g., S4), group activity
(e.g., S2) and scene (e.g., S1). On logic formation, they could be assumed to correspond to different
logic conditions of causation, i.e., (a) Single Activity: a sufficient and necessary cause; (b) Object:
a necessary but not sufficient cause; (c) Group Activity: a sufficient but not necessary cause; and (d)
Scene: a neither sufficient nor necessary cause.

Then, for a detected person, the cropped patch and each sentence form a VL pair. It is fed to a
lightweight LVLM. Hence, for each person and each sentence, we obtain a probability of LVLM’s
prediction on the VL association. If there are /N persons detected and K sentences extracted from
T, the predicted H S matches can be denoted as {{Prv s (hn|Sk) <} ;. On the principles of
probabilistic logic causation|Gomes| (2024), probabilistic inference framework on factors|Feng et al.
(2025)), and human decision-making theory |Bradley| (2018)), the logical prediction is obtained as

P(ha|T) = 3" Prvrar(hal Se)u(Se) ™

where u(S)) can be considered as a utility weight of Sy, for perceptual decision-making, which can
be selected on sentence category (see Sec. Experiments and Supplementary Material). The h,, of
maximum P (h,,|T) is selected as H.

Different LV LMs can be used for the Implicit and Explicit Logic Channels, on their performance
on long/short text expressions. For model validation, the two channels are run independently, and the
results are compared for logic validation and model selection. For enhancement, a simple weighted
sum can further improve the accuracy of the final prediction.

4 EXPERIMENTS

In this section, we present the quantitative results and analysis on the effectiveness of Logic Channel
for model validation, justification, selection, and enhancement of prediction when applying LVLM
to challenging VLC tasks in zero-shot setting. In our experiments, we employ two LVLMs, i.e.,
EvaCLIP and InternVL2(8b), as representative models of VLM and MLLM, respectively. The LLM
used as Language Parser is Mistral Jiang et al.|(2023)), and the VFM for person and object detection
is GroundingDINO [Liu et al.|(2024). In the following, ILC-LVLM denotes the results from ILC,
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and ELC-LVLM for the results from ELC, where LVLMe {EvaCLIP, InternVL2(8b)}, referring to
the corresponding LVLM used in the channel.

4.1 EVALUATIONS ON NEGBENCH BENCHMARK

NegBench |Alhamoud et al.| (2025) is one of most recent VLC challenges. There are three natu-
ral image MCQ tasks, i.e., COCO, VOC2007, and HardNeg-Syn. Our experiments are conducted
on the publicly available data, i.e., 5914 MCQ questions on COCO and 5032 MCQ questions on
VOC2007. The SOTA accuracies are extracted from Table 2 and Figure 7 in the Appendix of the
paper |Alhamoud et al.| (2025).

Validation. First, we evaluate the C'R without gt annotation. The results of the ILC on EvaCLIP
and InternVL2(8b) are presented in Table[l} The C'R of EvaCLIP is around 27%, slightly over 25%
of random chance. Even without gt annotation, one can predict that EvaCLIP is poor for the task,
according to the logic validation on the factual and counter-factual evidence. On the other hand,
the C'R of InternVL2(8b) is around 70% across the two datasets, much higher than EvaCLIP, which
provides a logic validation that InternVL2(8b) may be more suitable for the task.

Benchmark  Dataset | EvaCLIP  InternVL2(8b)
COCO 27.05 62.80 Model RefCOCOg
NegBench  VOC 27.25 79.25 Val Test
ALL 27.14 70.36 ReCLIP(2022) 59.33 59.01
RelVLA(2024) 57.60 56.64
Table 1: Logic Consistency Rates on NegBench. GroundVLP(2024) | 6430  63.54
Model HC-RefCOCOg
Model COCO VOC2007 Val Test
CLIP-Laiond00M (2022) 24.26%  27.01% ReCLIP(2022) 6836  67.33
CLIP-L14(2021) 22.44%  23.69% RelVLA(2024) 65.65 64.57
CLIP-H14(2021) 32.14%  38.26% GroundVLP(2024) | 7444 7431
LLaVA(7b)(2023) 48.00%  56.00% ILC-EvaCLIP 7840  78.66
LLaVA(13b)(2023) 54.00%  63.00% ILC-InternVL2(8b) | 47.80 51.66
ILC-EvaCLIP 24.82%  26.60% ELC 67.68 67.52
ILC-InternVL2(8b) 63.26% 85.41% ILC-EvaCLIP+ELC | 80.70 80.05
ELC 75.77%  86.84%
ILC-InternVL2+ELC 70.34%  88.25% Table 3: Performance evaluation on

HC-RefCOCOg.
Table 2: MCQ Total Accuracy (%) on NegBench.

When the gt annotations are used for performance evaluation, one can observe the results of individ-
ual ILC or ELC in Table[2] The accuracy of EvaCLIP is around 25%, agreeing with C'R validation
and the results of CLIP cluster models reported in |Alhamoud et al| (2025). As indicated by C'R
validation, InternVL2(8b) produces much better performance than EvaCLIP, and achieves a large
jump over the SOTA by LLaVA(13b), one of the MLLMs.

Enhancement. When we simply sum up the predictions from both ILC and ELC, we obtain per-
formance better than the end-to-end model on COCO, but lower than the best single channel due to
a large gap between the two channels. Nonetheless, we obtain further improvement on VOC2007,
increasing SOTA accuracy from 63% to over 88%.

4.2 EVALUATIONS ON HC-REFCOCOG BENCHMARK

In this experiment, we focus on HC-RefCOCOg with enriched phrase. As there is still a lack of
benchmarks on HC-RefCOCOg, we download publicly available SOTA models on RefCOCOg and
run on HC-RefCOCOg. In Table [3] to compare with SOTA of zero-shot REC, we list the published
results on RefCOCOg, as well as the corresponding results on HC-RefCOCOg obtained by us.

Validation. First, we evaluate the logic consistency on the val set without gt annotation. The C' R on
EvaCLIP and InternVL2(8b) are 63.1% and 40.8% respectively. The former is around 20% higher
than the latter, which may indicate that EvaCLIP may be more suitable for the task than InternVL2.

When the gt annotations are used for performance evaluation, one can observe the results of indi-
vidual ILC with EvaCLIP and InternVL2(8b) in Table [3| As indicated by C'R, the performance
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of EvaCLIP is more than 20% over InternVL2, and achieves an improvement of around 4% over
the SOTA. The ELC obtains performance of over 67%, close to the performance of RelVLA and
ReCLIP, indicating that it can be used as an effective and reliable tool for model validation with
explicit visual evidence.

Enhancement. By introducing the predictions of ILC into Eq. (d), the integrated LCR model (last
row) produces new SOTA performance of over 80%, around 6~15% over previous SOTA and 1.8%
over ILC with EvaCLIP, demonstrating the effectiveness of Logic Channel for enhancing the accu-
racy of the final prediction.

4.3 EVALUATIONS ON HC-REFLOCO BENCHMARK

The recent challenge HC-RefLLoCo [Wei et al.| (2024) is built on various image datasets, e.g., COCO,
Objects365, Openlmage v7, and LAION-5B. On a query image, the long context annotation is
generated by GPT-4V with user prompts and reviewed manually. The long text expressions form a
great challenge to most LVLMs not pre-trained on long texts. Here, we show that it is possible to
develop a LC solution with lightweight LVLMs and FMs (Figure ) for the HC-RefLoCo challenge.

Model Val+Test Val Test
Accos Accors  Accpg mAcc | mAcc | mAcc
Qwen-VL[Bai et al.[(20234) 67.9 56.8 34.8 52.8 53.1 52.6
CogVLM |Wang et al.[(2024) 66.0 59.6 43.8 55.8 56.3 55.5
ONE PEACE Wang et al.| (2023) 79.3 69.0 43.8 63.1 634 62.9
SPHINX-MoE-1k|Lin et al.[ (2023 85.8 77.3 53.7 714 71.5 71.4
SPHINX-v2-1k|Lin et al.[(2023) 84.1 77.1 56.2 71.7 71.6 71.7
ILC-EvaCLIP B 75.3 70.5 59.1 67.6 67.2 67.8
ILC-InternVL2(8b) 335 314 24.9 29.6 29.1 29.8
ELC-EvaCLIP 67.7 634 52.5 60.6 60.2 60.8
ELC-InternVL2(8b) 80.8 75.9 63.4 72.7 71.8 73.1
ILC-EvaCLIP+ELC-InternVL2 83.4 78.3 65.2 75.0 74.5 75.2

Table 4: Performance evaluation on HC-RefLoCo benchmark.

Validation. First, we evaluate if a LVLM is effective on long context expressions on the logic
consistency without gt annotation. We use EvaCLIP or InternVL2(8b) in both the ILC and ELC
respectively. In the ELC, we simply sum up the probabilities on sentences. The C' R between the
two channels on EvaCLIP and InternVL(8b) are 72.8% and 15.8% respectively. The results indicate
that, EvaCLIP might be less sensitive to the truncated long context expressions, while InternVL2(8b)
might be too sensitive to the truncation of long context expressions.

The ILC with EvaCLIP and InternVL2(8b) are evaluated directly on the full expressions. The results
are listed in Table [ (i.e., ILC-EvaCLIP and ILC-InternVL2(8b)). Both LVLMs may truncate the
long text input. However, in EvaCLIP, the truncated text input is embedded as a text vector of a
fixed length and compared with the visual feature vector embedded as the same length. The result
shows that EvaCLIP still lags behind the SOTA (SPHINX) but it achieves better result of Accg.g
than SOTA, with the localization by GroundingDINO. On the other hand, InternVL2(8b) interprets
the input text tokens one-by-one for next prediction, the truncation of the long text input causes poor
performance on the HC-RefLoCo task.

Statistics of Sentence Effectiveness with EvaCLIP Statistics of Sentence Effectiveness with InternVL2

0.4 0.4

0.3 0.3

: | B G ]

: al - n i

0 0 =
SA oB GA SN SA oB GA SN

WRWW mRLL WRWW mRLL

Figure 5: The statistics of Ry and Ry, on sentence categories on HC-RefLoCo val set.
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In the ELC, a full expression is first separated as sentences, and the sentences are classified into
four categories, labeled as SA, OB, GA and SN, denoting single activity, object, group activity, and
scene respectively. Each sentence represents a degree of necessity or sufficiency, or a probability
of the causation. Suppose there are K sentences and /N persons in the image. Each sentence,
together with all patches of cropped persons, are fed to a LVLM, and it is prompted to find the
best match, with confidence values for its predictions. All together, we obtain LVLM predictions
{ {Pf‘}c s HE VL. If each sentence provides appropriate information and the LVLM is able to
understand the VL information correctly, when we sum up the probabilities over all sentences for
each person, the gt person would have the maximum probability, or labeled as ‘GT-Win’. For each
person, we can also sum up the probabilities of each category, e.g., Pg,. If P&, of the gt person is
also the maximum of SA cluster (denoted as ‘SA-Win’), SA contributes to GT-Win. We compute a
Rate of Win-Win for SA and a Rate of Lose-Lose for SA as

Num(SA-Win&GT-Win) Num(SA-Lose&GT-Lose)
Num(GT-Win) ’ Num(GT-Lose)

In the same way, we can obtain the Rates for OB, GA, and SN categories. The statistics of the Rates
with EvaCLIP and InternVL2(8b) on val set are shown in Figure[5} Logically, if SA-Win and GT-
Win occur, we may view SA-Win as a sufficient condition of GT-Win, i.e., if SA-Win, then GT-Win.
On the other hand, if SA-Lose and GT-Lose occur, we may view SA-Win is a necessary condition
for GT-Win, i.e., if not-SA-Win, then not-GT-Win, or if SA-Lose, then GT-Lose. When examining the
bars in Figure 5} one can observe that SA has strong relation with gt, while OB has weaker relation
with gt, but still has more positive effect (Ry 1) than negative effect (R 1), and the remaining two
categories have less relation with gt. On such statistics, we obtain the utility weights of SA, OB,
GA, and SN (see Supplementary Material), and apply them in Eq. (/) for logic prediction.

(®)

The results of Logic Channel on sentences using EvaCLIP and InternVL2(8b) in ELC are shown in
Table [ (i.e., ELC-EvaCLIP and ELC-InternVL(8b)). The performance of ELC-EvaCLIP is poorer
than ILC-EvaCLIP on full annotation, maybe due to missing information in separated sentences, but
it is still comparable with most SOTA models except SPHINX. ELC-InternVL2(8b) produces much
better performance on sentences, generates new SOTA results except Accy 5, especially, increases
Accq g from 56.2% to 63.4%, significantly improving the accuracy of localization.

Enhancement. The model validation results show that EvaCLIP is effective on full annotation, and
InternVL2(8Db) is effective on sentences. By combining the two channels with a weighted sum, we
obtain new SOTA performance except ACCy 5, improving the mAcc from 71.7% to 75.0%, Accg.75
from 77.3% to 78.3%, and Accq. g9 from 56.2% to 65.2%.

4.4  VISUAL VALIDATION AND JUSTIFICATION

One critical limitation of LVLM is the lack of explicit explanation of its decision making. The un-
certainty may be caused by visual hallucination or ambiguity of gt annotation. With Logic Channel
validation, we may effectively address such concerns by manually examining the inconsistent re-
sults between LVLM and ELC even without gt annotation. The inconsistencies may be caused by:
(a) Hallucination: LVLM makes a prediction on nonexistent object or fails to see the referred object;
(b) Ambiguity: LVLM makes a decision on neither sufficient nor necessary condition, or gt anno-
tation is incorrect; or (c) Weakness of FMs: LLM fails to extract correct concept, or VFM fails to
detect the relevant objects. The visual examples of such errors observed on explicit visual evidence
in logic reasoning are presented in the Supplementary Material with further discussions.

5 CONCLUSION

Facing the uncertainty on reliability when deploying frontier LVLM to new tasks, we proposed a
Logical Channel for model validation and enhancement w/o re-training or fine-tuning. Based on
Foundation Models and logic reasoning, the Logic Channel make decision on explicit facts and rela-
tions, which provides a way for model validation on human logic. We investigated the effectiveness
on three recent benchmark challenges in VLC. This Logic Channel enables diagnosis for model val-
idation, selection and improvement, as well as enhancement of explainability and trustworthiness.
The diversity of the three challenges demonstrates the generalization of our approach. In the future,
it is worth to investigate the LC for validation of more complex multimodal CoT reasoning tasks.
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