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Abstract

Variational inference often minimizes the “reverse” Kullbeck-Leibler (KL) DKL(q||p)
from the approximate distribution q to the posterior p. Recent work studies the “forward”
KL DKL(p||q), which unlike reverse KL does not lead to variational approximations that
underestimate uncertainty. Markov chain Monte Carlo (MCMC) methods were used to
evaluate the expectation in computing the forward KL. This paper introduces Transport
Score Climbing (TSC), a method that optimizes DKL(p||q) by using Hamiltonian Monte
Carlo (HMC) but running the HMC chain on a transformed, or warped, space. A function
called the transport map performs the transformation by acting as a change-of-variable
from the latent variable space. TSC uses HMC samples to dynamically train the transport
map while optimizing DKL(p||q). TSC leverages synergies, where better transport maps
lead to better HMC sampling, which then leads to better transport maps. We demonstrate
TSC on synthetic and real data, including using TSC to train variational auto-encoders. We
find that TSC achieves competitive performance on the experiments.

1 Introduction

A main goal in probabilistic modeling and inference is to find the posterior distribution of latent variables
given observed data (Gelman et al., 2013). Probabilistic modeling allows using both structured knowledge and
flexible parameterizations, including neural networks, but the posterior is often intractable. In this situation,
we can resort to approximate inference to estimate the posterior distribution (Bishop, 2006).

Variational Inference (VI) is an optimization-based approximate inference method. It posits a family of
distributions, and chooses a distribution q in that family to approximate the posterior p of a probabilistic model.
It is a popular method for complex models because of its computational convenience, particularly when
optimizing the “reverse”, or “exclusive”, Kullbeck-Leibler (KL) divergence DKL(q||p) through stochastic
gradient descent (SGD) (Jordan et al., 1999; Hoffman et al., 2013; Blei et al., 2017).

However, reverse VI - VI that uses the reverse KL - leads to approximations that may underestimate the
uncertainty in p (Minka, 2005; Yao et al., 2018). As an alternative, forward VI minimizes the “forward”, or
“inclusive”, KL DKL(p||q). This approach better captures posterior uncertainty, but it is more computationally
challenging (Bornschein & Bengio, 2015; Gu et al., 2015; Finke & Thiery, 2019; Naesseth et al., 2020).

Another approach to approximate inference is Markov chain Monte Carlo (MCMC). MCMC methods sample
from a Markov chain whose stationary distribution is the posterior, and produce good samples if run for long
enough. However, in practice MCMC methods can be more computationally demanding than reverse VI in
that they can take many iterations to converge.
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To combine the advantages of both paradigms, Naesseth et al. (2020) introduce Markovian score climbing
(MSC). MSC is a variational method for minimizing the forward DKL(p||q), which uses a Markov chain to
approximate its intractable expectation over p. MSC uses an MCMC chain to approximate the expectation
without asymptotic biases. However, this method uses basic MCMC kernels that can lead to slow exploration
of the sampling space.

In this paper, we develop transport score climbing (TSC), a new algorithm that reliably and efficiently
minimizes DKL(p||q). TSC uses the MSC framework, but replaces the simple MCMC kernel with a
Hamiltonian Monte Carlo (HMC) on a transformed, or warped, space (Marzouk et al., 2016; Mangoubi &
Smith, 2017; Hoffman et al., 2019). In particular, we adaptively transform the HMC sampling space, where
the transformation is based on the current iteration of the variational approximation.

In more detail, TSC optimizes a normalizing flow (Rezende & Mohamed, 2015), where the flow (or,
equivalently, transport map) is trained from HMC samples from the warped space. Thus, TSC trains
its transport map from scratch and leverages a synergy between the Markov chain and the variational
approximation: an updated transport map improves the HMC trajectory, and the better HMC samples help
train the transport map.

Finally, we show how TSC is amenable to SGD on large-scale IID data. To this end, we use TSC to improve
training of deep generative models with a variational autoencoder (VAE) (Kingma & Welling, 2014; Rezende
et al., 2014).

Contributions. 1) We minimize DKL(p||q) with flow posteriors and an adaptive HMC kernel. The
HMC kernel reuses the flow posterior to warp the underlying latent space for more efficient sampling. 2)
Under the framework of VI with DKL(p||q), we show that the transport map of the warped space can be
trained adaptively, instead of requiring a separate pre-training suggested by previous methods. 3) Empirical
studies show that TSC more closely approximates the posterior distribution than both reverse VI and MSC.
Furthermore, we use this methodology to develop a novel VAE algorithm competitive against four benchmarks.
TSC continuously runs HMC chains and requires no reinitializations from the variational approximation q at
each epoch, but these reinitializations are used by previous methods.

Related Work. Forward VI is explored by several approaches. Bornschein & Bengio (2015); Finke &
Thiery (2019); Jerfel et al. (2021) study VI with DKL(p||q) by using importance sampling (IS), and Gu et al.
(2015) uses sequential Monte Carlo (SMC). Dieng & Paisley (2019) combines IS and VI in an expectation
maximization algorithm. IS and SMC introduce a non-vanishing bias that leads to a solution which optimizes
DKL(p||q) and the marginal likelihood only approximately (Naesseth et al., 2019; 2020). Closest to the
method proposed here is Naesseth et al. (2020); Ou & Song (2020); Gabrié et al. (2021), which all use MCMC
kernels to minimize DKL(p||q). Ou & Song (2020); Gabrié et al. (2021) can be considered to be instances of
MSC (Naesseth et al., 2020). We build on MSC and propose to use the more robust HMC kernel together
with a space transformation. The work of Kim et al. (2022), running parallel Markov chains for improved
performance, can be combined with TSC for potential further gains.

Mangoubi & Smith (2017) show that MCMC algorithms are more efficient on simpler spaces, such as on
strongly log-concave targets. Marzouk et al. (2016); Hoffman et al. (2019) use transformations to create
warped spaces that are easy to sample from. The transformation is defined by functions called “transport
maps” that are pre-trained by reverse VI. The proposed algorithm differs in the optimization objective and by
learning the transport map together with model parameters end-to-end.

Using MCMC to learn model parameters based on the maximum marginal likelihood is studied in many
papers, e.g., Gu & Kong (1998); Kuhn & Lavielle (2004); Andrieu & Moulines (2006); Andrieu & Vihola
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(2014). In contrast TSC proposes a new method for the same objective, by adapting the MCMC kernel using
VI.

Kingma & Welling (2014); Rezende et al. (2014) introduce variational autoencoders (VAE) where both the
generative model and the approximate posterior are parameterized by neural networks. They optimize a lower
bound to the marginal log-likelihood, called the evidence lower bound (ELBO), with the reparameterization
trick. Salimans et al. (2015); Caterini et al. (2018) incorporate MCMC or HMC steps to train a modified
ELBO with lower variance. Hoffman (2017); Hoffman et al. (2019); Ruiz et al. (2021) instead formulate the
optimization as maximum likelihood while utilizing MCMC methods. The work proposed here also targets
maximum likelihood, but we neither augment the latent variable space (Ruiz et al., 2021) nor reinitialize
the Markov kernel from the posterior at each epoch (Hoffman, 2017; Hoffman et al., 2019). Instead, we
continuously run the Markov kernel on the warped latent variable space.

2 Background

Let p(x, z) be a probabilistic model, with z as latent variables and x as observed data. The probabilistic model
factorizes into the product of the likelihood p(x|z) and prior p(z), which are known and part of the modeling
assumptions. A main goal of Bayesian inference is to calculate or approximate the posterior distribution of
latent variables given data, p(z|x).

VI approximates the posterior by positing a family of distributions Q, where each distribution takes the form
q(z; λ) with variational parameters λ. The most common approach, reverse VI, minimizes the reverse KL
using gradient-based methods: minλ DKL(q(z; λ)||p(z|x)). The main strength of reverse VI is computational
convenience.

2.1 Variational Inference with Forward KL

Reverse VI often underestimates the uncertainty in p. An alternative approach, which is the focus of this
work, is to minimize the forward KL: minλ DKL(p(z|x)||q(z; λ)). While more challenging to work with, this
objective does not lead to approximations that underestimate uncertainty (Naesseth et al., 2020). Moreover, if
Q is the subset of exponential family distributions with sufficient statistics T and Ep[T ] exist and are finite,
the optimal q matches the expected sufficient statistics values under the posterior p exactly.

The forward KL divergence from p to q is

DKL(p(z|x)||q(z; λ)) := Ep(z|x)

[
log p(z|x)

q(z; λ)

]
. (1)

To minimize eq. (1), the gradient w.r.t. the variational parameters is,

Ep(z|x)[−∇λ log q(z; λ)]. (2)

Approximating the expectation over the unknown posterior p(z|x) is a major challenge. Bornschein & Bengio
(2015); Gu et al. (2015) approximate the expectation in eq. (2) through importance sampling and sequential
Monte Carlo, but these methods gives estimates of the gradient with systematic bias.

In this work we leverage Markovian score climbing (MSC) (Naesseth et al., 2020), which uses samples z
from an MCMC kernel with the posterior p(z|x) as its stationary distribution. The resulting SGD method
leads to an algorithm that provably minimizes DKL(p||q) (Naesseth et al., 2020).
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Normalizing Flow. In this work we focus on the variational family of normalizing flows. Normalizing
flows transform variables with simple distributions and build expressive approximate posteriors (Rezende
& Mohamed, 2015; Tabak & Turner, 2013), and are tightly linked with warped space HMC. Given a d-
dimensional latent variable z, the transformation uses an invertible, smooth, trainable function Tλ : Rd 7→ Rd

and introduces a random variable ϵ with a simple distribution q0(ϵ), oftentimes an isotropic Gaussian. Using
the change-of-variable identity, the probability density function q of Tλ(ϵ) is,

q(Tλ(ϵ)) = q0(ϵ)
∣∣∣det

dTλ

dϵ

∣∣∣−1
,

where dTλ

dϵ is the Jacobian matrix.

2.2 Hamiltonian Monte Carlo (HMC) and Neural Transport HMC

The HMC kernel used in the algorithm proposed below is closely related to Neural Transport HMC (Neu-
traHMC), proposed by Hoffman et al. (2019). NeutraHMC simplifies the geometry of the sampling space
through neural network-parameterized transport maps. Compared to HMC, it explores the target distribution
more efficiently. We briefly explain HMC and NeutraHMC.

Hamiltonian Monte Carlo. HMC is an MCMC algorithm that produces larger moves in latent variable z
by introducing “momentum” variables m of the same dimension as z (Duane et al., 1987; Neal, 2011). It
constructs a joint proposal on the augmented space (z, m) to target p(z|x)p(m), where x is data. A common
choice for the distribution p(m) is N(0, I).

In a given iteration, a proposal involves L “leapfrog steps” of step-size s, where the l-th leapfrog step is
defined by

m(l)′
= m(l−1) + 1

2s
d log p(x, z(l))

dz(l) ,

z(l) = z(l−1) + sm(l)′
,

m(l) = m(l)′
+ 1

2s
d log p(x, z(l)′)

dz(l)′ ,

starting from (z(0), m(0)), m(0) ∼ N(0, I), z(0) randomly initialized or set to the previous MCMC state.
The final leapfrog step gives the proposed state (z(L), m(L)). The new state is accepted with probability

min{1, p(x,z(L))p(m(L))
p(x,z)p(m) } (Neal, 2011; Robert & Casella, 2004).

HMC on Warped Space. Marzouk et al. (2016); Mangoubi & Smith (2017); Hoffman et al. (2019) propose
running MCMC methods on a simpler geometry through transforming, or warping, the sampling space with a
transport map. A transport map is defined as a parameterized function Tλ(·). The warped space is defined by
the change in variable z0 = T −1

λ (z) for z ∼ p(z|x). If Tλ is chosen well, z0 will be simpler than z to sample.
The target distribution in the MCMC algorithm is defined as the distribution of z0. Each z

(k)
0 generated by

MCMC at the k-th iteration is passed to the transport map with z(k) = Tλ(z(k)
0 ). (z(1), z(2), ...) then have

the true target distribution as its stationary distribution, but with faster mixing than MCMC on the original
space. Hoffman et al. (2019) introduces NeutraHMC that uses HMC instead of general MCMC. NeutraHMC
utilizes both affine and neural network transport maps that are pretrained using VI based on KL(q||p).
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Figure 1: Outline of the TSC algorithm. HMC generates samples of latent variable z that are used to train the
normalizing flow transformation. The refined transformation further improves the geometry of HMC, which
goes on to generate the next sample.

3 Transport Score Climbing
We now develop Transport Score Climbing (TSC), a method for VI with forward DKL(p||q). TSC uses
HMC on warped space to estimate the intractable expectation in the gradient (eq.(2)). A transport map is
defined to act as both flow transformation in the variational posterior q and mapping between HMC sampling
spaces. As q is updated, the mapping is updated simultaneously which further refines the HMC sampling
space. Figure 1 shows the synergy between HMC sampling and variational approximation. Under conditions
(Section A.1), TSC converges to a local optimum of DKL(p||q).

3.1 Types of Transport Maps
Let ϵ ∼ N(0, Id), let Tλ(·) be a function Rd 7→ Rd, or transport map, with trainable parameter λ, and define
the variational distribution q(z; λ) such that z = Tλ(ϵ) ∼ q(z; λ). The variational distribution and transport
map share trainable parameters. We consider three concrete examples.

Affine Transformation. Consider an affine transformation Tλ(ϵ) = µ + σ ⊙ ϵ, where ⊙ denotes ele-
mentwise multiplication. The variational distribution is q(z; λ) = N(z; µ, σ2I). In the empirical studies,
Section 4, we find that the affine transport map is simple and effective.

IAF Transformation. A popular flow transformation is the inverse autoregressive flow (IAF) (Kingma
et al., 2016). Tλ is chosen with the autoregressive property, that is, along each dimension i of ϵ,

Ti(ϵ) = ϵiσi(ϵ1:i−1; ϕ) + µi(ϵ1:i−1; ϕ).

Here µ and σ are neural networks that act as shift and scale functions. IAF is flexible because of neural
networks; its determinant is cheap to compute because of the autoregressive property that leads to a lower
triangular Jacobian matrix. However, the inverse IAF T −1

λ (z), required to evaluate the density q, is costly to
compute. Thus, we only use IAF in studies where latent variables are low-dimensional.

RealNVP Transformation. RealNVP is an alternative to IAF with slightly less flexibility for the same
number of parameters but fast invertibility (Dinh et al., 2016). RealNVP uses an affine coupling layer to
transform the input ϵ. In practice, we use a checkerboard binary mask b to implement the transformation, as
detailed in Dinh et al. (2016),

T (ϵ) = b ⊙ ϵ + (1 − b) ⊙
(

ϵ ⊙ exp
(
σ(b ⊙ ϵ)

)
+ µ(b ⊙ ϵ)

)
.

where µ and σ are also neural networks. The idea is that the part of ϵ that is transformed by neural networks
depend only on the other part of ϵ that goes through the identity function. This construction allows for fast
inversion.
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Algorithm 1 TSC

Input: Probabilistic model p(z, x; θ); transformation Tλ : Rd 7→ Rd; HMC kernel H[z(k+1)
0 |z(k)

0 ; λ, θ] with
target distribution p(z0|x; θ, λ) and initial state z

(0)
0 ; variational distribution q(z; λ); step-sizes α1, α2. λ, θ

randomly initialized.
Output: λ, θ.

for k ∈ {0, 1, 2, ...} do
z

(k+1)
0 ∼ H[z(k+1)

0 |z(k)
0 ; λ, θ].

z = Tλ(z(k+1)
0 ).

z = stop-gradient(z).
λ = λ − α1∇λ[− log q(z; λ)].
θ = θ − α2∇θ[− log p(x|z; θ) − log p(z)].
z

(k+1)
0 = T −1

λ (z).
end for

Both IAF and RealNVP flow transformations can be stacked to form more expressive approximations. Let
T

(l)
λ denote one IAF or RealNVP transformation. We stack L transformations, and define the transport

map as Tλ(ϵ) = T
(L)
λL

◦ ... ◦ T
(1)
λ1

(ϵ). The variational distribution q(z; λ) is a flow-based posterior with

q(z; λ) = N(ϵ; 0, I)
∣∣∣det

dTλ(ϵ)
dϵ

∣∣∣−1
.

3.2 VI with HMC on Warped Space
In order to sample the latent variables z, we define the target of the HMC kernel H(·|z0) as the distribution
of z0 = T −1

λ (z), z ∼ p(z|x),

p(z0|x; λ) ∝ p(x, Tλ(z0))|detJTλ
(z0)|, (3)

where Jf (x) is the Jacobian matrix of function f evaluated at x. This means that we are sampling on the
warped space defined by Tλ(·) rather than the original space of latent variables. After z0 is sampled, we pass
it to the transport map with z = Tλ(z0) to acquire the latent variable sample. As in MSC (Naesseth et al.,
2020), we do not re-initialize the Markov chain at each iteration, but use the previous sample z(k) to both
estimate the gradient and serve as the current state of the HMC kernel H to sample z(k+1).

A crucial element is that the transport map Tλ is trained jointly as we update the DKL(p||q) objective in eq.(2).
This is because the map is also the flow transformation part of the variational distribution q. Specifically,
HMC at iteration k uses variational parameters of the previous iteration, λ(k−1), in its target distribution
(eq.(3)) at iteration k. By construction, if q is close to the true posterior, target p(z0|x; λ) will be close to the
isotropic Gaussian. Therefore, TSC keeps refining the geometry of the HMC sampling space throughout the
training process.

3.2.1 Model Parameters
The probabilistic model p(z, x; θ) can also contain unknown parameters θ. The corresponding warped space
posterior is

p(z0|x; λ, θ) ∝ p(x, Tλ(z0); θ)|detJTλ
(z0)|. (4)

Taking samples from the true posterior p(z|x; θ) allows one to learn θ using maximum likelihood, optimizing
the marginal likelihood p(x; θ). This fact follows from the Fisher identity, which writes the gradient of the
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marginal likelihood as an expectation over the posterior,

∇θ log p(x; θ) = ∇θ log
∫

p(z, x; θ)dz

= Ep(z|x;θ)[∇θ log p(z, x; θ)]. (5)

The expectation above is estimated by the same HMC sample z(k) that is used to update variational parameters
λ. Additionally, the HMC kernel at iteration k uses model parameters of the previous iteration, θ(k−1), in
its target distribution (eq.(4)) at iteration k. Under conditions on the step size, Markov chain, and gradients,
the corresponding algorithm can be shown to optimize the log-marginal likelihood and converges to a local
optima by application of (Gu & Kong, 1998, Theorem 1), see Section A.1 for details.

Algorithm 1 summarizes TSC for learning λ and θ.

3.3 Amortized Inference

When the dataset x = (x1, ..., xn) is i.i.d. with empirical distribution p̂(x) each xi has its own latent variable
z. Amortized inference then uses the approximate posterior q(z|x; λ) instead of a separate q(z; λi) for each xi.
In amortized inference, variational parameters λ are shared across data-points xi. It is known as a VAE when
both the likelihood p(x|z; θ) and the approximate posterior q are parameterized by neural networks.

TSC conducts maximum likelihood and VI with DKL(p||q) on VAE and is amenable to SGD with mini-
batches. Following derivations from Naesseth et al. (2020), the gradient with respect to λ is

E
p̂(x)

[
∇λKL(p(z|x; θ)||q(z|x; λ))

]
≈ 1

M

M∑
i=1

Ep(z|xi)[−∇λ log q(z|xi; λ)], (6)

where M is the mini-batch size. For model learning, we similarly estimate the gradient using eq. (5),

E
p̂(x)

[
∇θ log p(x; θ)

]
= E

p̂(x)
[
Ep(z|x;θ)[∇θ[log p(x|z; θ) + log p(z)]]

]
≈ 1

M

M∑
i=1

Ep(z|xi;θ)[∇θ[log p(xi|z; θ) + log p(z)]]. (7)

The expectations are approximated using HMC samples, as in Algorithm 1. Similarly with the non-amortized
case, we do not re-initialize the Markov chain at each iteration, but approximate the expectation by running
one step of the Markov chain on the previous sample z(k−1).

4 Empirical Evaluation

All implementations are made in TensorFlow and TensorFlow Probability (Abadi et al., 2015; Dillon et al.,
2017).1 On two synthetic datasets, TSC converges to near-optimal values. On survey data, TSC is more
efficient than MSC and gives more reliable approximations on this task. For VAE, TSC achieves higher
log-marginal likelihood on static MNIST, dynamic MNIST, and CIFAR10 than VAEs learned using four other
baselines.

1Code is available at link-temporarily-removed-for-anonymity.
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Figure 2: Variational parameters in TSC, MSC, and ELBO VI
across iterations, using the Diagonal Gaussian family. The fitted
Gaussian distributions approximate the funnel distribution. The
plot shows parameter values of the first dimension (i.e. the hor-
izontal dimension) of the distributions. Ground truth σ is also
drawn, but ground truth µ = 0 is not drawn here. TSC, while
slightly more volatile than ELBO maximization, converges to
parameter values closer to the ground truth.

Figure 3: Synthetic targets (orange) with
fitted posteriors laid on top. Top two: fun-
nel; bottom two: banana. Rows 1 & 3:
Gaussian family; rows 2 & 4: IAF fam-
ily. Left: VI; middle: MSC; right: TSC.
In general, TSC more accurately approxi-
mates the posterior distribution.

4.1 Synthetic Data
Neal’s Funnel Distribution. We first study the funnel distribution described by Neal (2003), a distribution
known to be hard to sample from by HMC. Let random variable z have probability density function

p(z) = N (z1|0, 1)N (z2|0, ez1/2).

Then, z follows the Funnel distribution.

Banana Distribution. Following Haario et al. (1999), we twist the Gaussian distribution to create a
banana-shaped distribution. Let (v1, v2) ∼ N (0, ( 100 0

0 1 )), we transform (v1, v2) with,

z1 = v1,

z2 = v2 + b · v2
1 − 100b,

where b is a factor set to 0.02. Then, (z1, z2) follows the Banana distribution.

Both distributions are visualized in Figure 3. We use the Adam optimizer (Kingma & Ba, 2015) with inverse
time decay, decay rate 3 · 10−4, and initial learning rate 3 · 10−3. The HMC sampler consists of 1 chain, with
step size s tuned in [0.03, 1) to target 67% acceptance rate, and number of leapfrog steps L set to ⌈ 1

s ⌉. The
HMC hyperparameter tuning follows the practice of Gelman et al. (2013).

Results. For the first variational family, we consider a diagonal Gaussian, q(θ) = N(θ|µ, σ2I). The
optimal variational parameter for TSC is the true mean and standard deviation of θ.

Figure 2 show variational parameters of the two dimensions by iteration. While both VI and TSC converge to
near-optimal values for µ, VI significantly underestimates uncertainty by converging to low values of σ. This
problem is ameliorated by TSC, which gives σ estimates much closer to the ground truth.
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Table 1: Uncertainty estimation by the IAF family on synthetic data. The table gives standard deviation (std)
across 100 groups, each group containing 107 i.i.d. samples from fitted posteriors. In parentheses are standard
errors across the 100 groups. All methods give reasonable approximations using an expressive distribution,
but TSC more closely recovers the true target distribution.

(a) Funnel distribution.

Method Std on Dim 1 Std on Dim 2

Ground truth 2.718 1

ELBO VI 2.286 (0.002) 0.989 (0)
MSC 2.151 (0.001) 0.961 (0)
TSC 2.426 (0.002) 0.991 (0)

(b) Banana distribution.

Method Std on Dim 1 Std on Dim 2

Ground truth 10 3

ELBO VI 9.511 (0.002) 2.675 (0.001)
MSC 9.661 (0.002) 2.562 (0.001)
TSC 9.949 (0.002) 2.883 (0.001)

Figure 4: Estimates by states, where states are ordered by Republican vote in the 2016 election. We show
TSC, 5000 sample unadjusted estimates, and 60000 sample unadjusted estimates. The unadjusted estimates
are found by caluclating the mean and standard error of Bernoulli random variables. 95% confidence intervals
are plotted. The closer to green the better. TSC is robust to noise in the data sample and improves over the
5000 sample unadjusted estimate.

As a second variational approximation, we use an IAF with 2 hidden layers. With an expressive posterior,
each method gives reasonable approximations (Figure 3). Table 1 quantitatively compares these methods on
synthetic data by giving standard deviations of large numbers of samples from the fitted IAF posteriors, and
estimates from TSC are closest to the ground truth.

However, TSC still gives approximations that are often a little narrower than the true target distribution. One
reason is the difficulty of the HMC chain to sample from certain areas in the target distribution. While an
expressive flow further simplifies the geometry for HMC, it still does not guarantee perfect approximation in
finite time.

4.2 Survey Data

We use the multilevel regression and post-stratification (MRP) model from Lopez-Martin et al. (2021) and
apply it to a survey dataset provided by the same authors. Details of the model are given in Supplement
A.2.1. The dataset originally comes from the 2018 Cooperative Congressional Election Study (Schaffner
et al., 2019). The survey response is a binary variable representing individual answers to the question of
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Table 2: The sum of squared difference from MRP MCMC estimates of mean and std of the response variable,
one row for each method. Lower is better.

Method Mean Difference Std Difference

ELBO VI 1.18 · 10−3 1.95 · 10−3

MSC 2.44 · 10−2 1.53 · 10−2

TSC 5.86 · 10−4 1.02 · 10−3

Figure 5: Cumulative ESS of TSC and MSC over number of samples across epochs. Higher is better. As the
transport map is learnt, TSC achieves higher ESS.

whether to allow employers to decline coverage of abortions in insurance plans (Support / Oppose). Each
response is attached with a set of features about the individual. The dataset consists of 60,000 data-points,
but as suggested by the study, inference methods are trained on a randomly selected 5,000 subset. Reliable
estimations are demonstrated by the ability to generalize from the 5,000 subset to the full 60,000 set, and
closeness to gold-standard MRP MCMC results (Lopez-Martin et al., 2021).

We implement MSC and TSC with diagonal Gaussian approximations, and use the Adam optimizer with
inverse time decay, decay rate 10−3, and initial learning rates 0.01. The HMC sampler has 1 chain, with step
size s tuned in [0.03, 1] to target 67% acceptance rate and number of leapfrog steps L set to ⌈ 1

s ⌉.

Figure 4 shows estimates by individuals’ U.S. state, with states ordered by Republican vote share. The
large-sample (60,000) estimates show an upward trend, which is intuitive. The estimates for TSC comes from
10,000 posterior samples. Figure 4 shows that TSC gives reasonable approximations since it generalizes from
the 5,000 data points and gives estimates that are robust against noise in the data sample and are close to
60,000 sample estimates.

Asymptotic sample behavior measured through effective sample size (ESS) shows that the warped HMC
chain underlying TSC outperforms the vanilla HMC chain used by MSC (Figure 5). It also suggests that
dynamic training of the transport map actually hurts HMC efficiency when the variational approximation is
still poor, but it quickly catches up when the approximation is better trained.

ELBO VI and MSC also provide reasonable approximations, but TSC is closer to MRP MCMC. We
quantitatively compare TSC, ELBO VI, and the gold-standard MRP MCMC estimates (Lopez-Martin et al.,
2021). Table 2 shows that TSC results are closer to MRP MCMC results than VI is to MRP MCMC.
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4.3 Variational Autoencoders

Finally, we study TSC with amortized inference on statically binarized MNIST, dynamically binarized
MNIST, and CIFAR10. With DKL(p||q) and dynamic updates of transport maps, a continuously run TSC is
able to achieve higher log-marginal likelihood than several benchmarks.

Implementation Details. For benchmark methods, we use ELBO VI (Kingma & Welling, 2014; Rezende
et al., 2014), importance-weighted (IW) autoencoder (Burda et al., 2016), MSC with the conditional im-
portance sampler (CIS-MSC) (Naesseth et al., 2020), and NeutraHMC that follows the training procedure
detailed in Hoffman (2017); Hoffman et al. (2019). We use the Adam optimizer with learning rates 0.001 and
mini-batch size 256. Inference methods share the same architecture, which is detailed in Supplement A.2.2.
For MNIST, we use a small-scale convolutional architecture and output Bernoulli parameters; for CIFAR10,
we use a DCGAN-style architecture (Radford et al., 2016) and output Gaussian means.

Hoffman (2017) gives insightful training techniques: we also add an extra shearing matrix in the generative
network and adapt HMC step-sizes s to target a fixed acceptance rate. The best target acceptance rate is
hand-tuned in [0.67, 0.95]. Number of leapfrog steps L is set to ⌈ 1

s ⌉. The HMC initial state z(0) is sampled
from the encoder, whether it is previously warmed up or not. Additionally, TSC is more computationally
demanding compared with ELBO maximization because of the HMC steps. We cap L to 4 to ensure similar
run-time with NeutraHMC, because TSC tends to lead to smaller step-sizes.

For TSC and NeutraHMC, we use one HMC step per data-point per epoch. For IWAE and CIS-MSC, we use
50 samples, suggested by Burda et al. (2016).

We estimate test log-marginal likelihood log p(x; θ) using Annealed Importance Sampling (AIS) (Neal, 2001;
Wu et al., 2017) with 10 leapfrog steps and adaptive step sizes tuned to 67% acceptance, and 2500 annealing
steps for MNIST, 7500 annealing steps for CIFAR10.

Table 3: Test log-marginal likelihood. ‘Dim.’ refers to latent dimensions; dim. 2 corresponds to Gaussian
posterior, and dim. 64 or 128 corresponds to RealNVP posterior. -W: warm-up on the encoder previous
to training. *: -2900 must be added to log p(x) for each CIFAR10 result. TSC gives better predictive
performance.

(a) Static MNIST

Dim. Method log p(x)
ELBO VI −133.94

2 NeutraHMC-W −129.11
TSC −128.88

ELBO VI −61.01
IW −58.84

64 NeutraHMC-W −59.62
CIS-MSC −60.4

TSC −57.97

(b) Dynamic MNIST

Dim. Method log p(x)*

ELBO VI −83.7
IW −82.15

64 NeutraHMC-W −83.01
CIS-MSC −85.1

TSC −82.07

(c) CIFAR10

Dim. Method log p(x)*

ELBO VI −34.61
IW −33.25

128 NeutraHMC-W −33.33
CIS-MSC −33.38

TSC −31.23

Results based on log-marginal likelihood. TSC achieves higher log-marginal likelihood with both low
dimensional latent variables on Gaussian warped space and high dimensional latent variables on Real NVP
warped space (Table 3). We use RealNVP instead of IAF for fast inversion T −1

λ (z). Two RealNVPs are
stacked to form the variational posterior, each one having two hidden layers. Every model, including baselines,
uses this flow distribution, contains a single layer of latent variables, and trains for 500 epochs.
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Table 4: Three VAE metrics: downstream linear classification accuracy based on linear classifier (Acc),
mutual information (MI), and number of active units (AU). The models come from corresponding ones in
Table 3. Higher is better for each metric. TSC gives best performance on CIFAR10, and NeutraHMC gives
best performance on MNIST. CIS-MSC and TSC achieves the most number of active units.

(a) Static MNIST

Dim. Method Acc MI AU

ELBO VI 96.25% 11.58 48
IW 96.7% 10.25 54

64 NeutraHMC-W 97.16% 11.67 64
CIS-MSC 94.48% 10.04 64

TSC 95.76% 10.61 64

(b) CIFAR10

Dim. Method Acc MI AU

ELBO VI 44.5% 9.2 62
IW 45.06% 9.07 59

128 NeutraHMC-W 45.24% 9.1 66
CIS-MSC 45.44% 9.31 128

TSC 52.36% 10.73 128

TSC demonstrates effective synergy between transport map training and HMC sampling by training both
encoders and decoders from scratch. This framework no longer requires a separate pretraining, which
NeutraHMC does by warming up the encoder (which includes the normalizing flow) with ELBO maximization
for 500 epochs. NeutraHMC then continues to train the warmed-up encoder during the main training phase
(500 more epochs), as done in Hoffman (2017). Meanwhile, in the first 10 of the 500 TSC training epochs,
the encoder is not trained, a design that improves stability.

Additional evaluation metrics. The quality of the approximate posterior is reflected in its learned latent
representations, and we use three additional metrics to evaluate these latent representations: downstream
classification accuracy based on a linear classifier (Acc), mutual information (MI), and number of latent units
(AU). The definition and implementational details of these metrics are given in Supplement A.2.2.

The metrics are computed for models trained on the static MNIST and CIFAR10 datasets (Table 4). The latent
representations allow the linear classifiers to achieve high accuracy in general on MNIST, with NeutraHMC
performing best on theeese three metrics on MNIST, even though its log marginal likelihood is lower than that
of TSC. Meanwhile, TSC significantly outperforms all benchmarks in terms of the three additional metrics
on CIFAR10. TSC and MSC, the methods that keep running the Markov chain and train parameters by
completely relying on MCMC or HMC samples, have full number of active units on both datasets.

Ablation Studies. Since we utilize both DKL(p||q) and a continuously-run, warped-space HMC, we wish
to know whether the algorithm is as effective if one of these two components is removed. In the case of
2-dimensional latent variables, we first train a model with maximum likelihood using warped space HMC
like in TSC, but it uses a pretrained encoder and no longer does DKL(p||q) to update the encoder. Next, we
train a model that, compared to TSC, uses an ordinary HMC kernel without the space transformation. Results
detailed in Supplement A.2.2 show that neither model achieves competitive performance. Therefore, not
only is warped space HMC necessary for effective performance, but the dynamic DKL(p||q) updates of the
approximate posterior and hence the transport map also play an essential role.

5 Conclusions

We develop Transport Score Climbing, improving VI with DKL(p||q) by using an HMC kernel on a simpler
geometry defined by a transport map. This framework naturally leverages synergies since the transformation
that warps the geometry is updated by HMC samples at each iteration, enabling more effective HMC sampling
in future iterations. We illustrate the advantages of this method on two synthetic examples, survey data, and
MNIST and CIFAR10 using VAE.
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A Appendix
A.1 Convergence of TSC
The TSC parameter estimates, λ and θ, may converge to a local optima of the forward KL and marginal
likelihood, respectively. We formalize this result and detail the conditions in Proposition 1 for ξ = (θ, λ).
The proposition is an application of (Gu & Kong, 1998, Theorem 1) which relies on (Benveniste et al., 1990,
Theorem 3.17, page 304), and an adaptation of the result by Naesseth et al. (2020) that focuses only on
λ.

Proposition 1. Assume A1-6, defined in the Supplement. If ξk = (θk, λk) for k ≥ 1, defined in Algorithm 1,
is a bounded sequence that almost surely visits a compact subset of the domain of attraction of ξ⋆ = (θ⋆, λ⋆)
infinitely often, then

ξk → ξ⋆, almost surely.

The proposition is an adaptation of Gu & Kong (1998, Theorem 1) based on Benveniste et al. (1990, Theorem
3.17, page 304) and a minor extension of Naesseth et al. (2020, Proposition 1). Let ξ⋆ = (θ⋆, λ⋆), where θ⋆

is a maximizer of the log-marginal likelihood and λ⋆ is a minimizer of the forward KL divergence. Consider
the ordinary differential equation (ODE), for ξ(t) = (θ(t), λ(t)), defined by

d
dt

ξ(t) =
(

Ep(z|x;θ)[∇θ log p(z, x; θ(t))]
Ep(z|x;θ)[∇λ log q(z; λ(t))]

)
, ξ(0) = ξ0, (8)

and its solution ξ(t) for t ≥ 0. If ξ(t) = ξ̂ is an unique solution to eq. 8 for ξ0 = ξ̂, we call ξ̂ a stability point.
The optima ξ⋆ is a stability point for eq. 8. We call the set Ξ a domain of attraction of ξ̂, if the solution of eq. 8
for ξ0 ∈ Ξ remains in Ξ and converges to ξ̂. Suppose that Ξ is an open set in Rdξ and that ξk ∈ Rdξ . Further,
suppose zk ∈ Rdz and that Z is an open set in Rdz . Denote the Hamiltonian Markov kernel used in TSC by
Hξ(z, dz′),and repeated application of this kernel Hk

ξ (z, dz′) =
∫

· · ·
∫

Hξ(z, dz1) · · · Hξ(zk−1, dz′). The
length of the vector z is denoted by |z|. Let Q be any compact subset of Ξ, and q > 1 a sufficiently large
(real) number so that the following assumptions holds. Like Gu & Kong (1998) we assume:

A 1. The step size sequence satisfies
∑∞

k=1 αk = ∞ and
∑∞

k=1 α2
k < ∞.

A 2 (Integrability). There exists a constant c1 such that for any ξ ∈ Ξ, z ∈ Z and k ≥ 1∫
(|z|q + 1) Hk

ξ (z, dz′) ≤ c1 (|z|q + 1)

A 3 (Markov Chain Convergence). Let p(z|x; θ) be the unique invariant distribution for Hξ. For each ξ ∈ Ξ

lim
k→∞

sup
z∈Z

∫
(|z′|q + 1) |Hk

ξ (z, dz′) − p(dz′|x; θ)|
|z|q + 1 = 0

A 4 (Continuity in ξ). There exists a constant c2 such that for all ξ, ξ′ ∈ Q,∫
(|z′|q + 1) |Hξ(z, dz′) − Hξ′(z, dz′)| ≤ c2|ξ − ξ′| (|z|q + 1)
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A 5 (Continuity in z). There exists a constant c3 such that for all z1, z2 ∈ Z

sup
ξ∈Ξ

∣∣∣∣∫ (|z′|q + 1) (Hξ(z1, dz′) − Hξ′(z2, dz′))
∣∣∣∣ ≤ c3|z1 − z2| (|z1|q + |z2|q + 1)

A 6 (Conditions on Gradients). For any compact subset Q ⊂ Ξ, there exists (positive) constants p, k1, k2, k3,
ν > 1

2 such that for all ξ, ξ′ ∈ Ξ and z, z1, z2 ∈ Z

|∇ξ (log p(z, x; θ) + log q(z; λ)) | ≤ k1
(
|z|p+1 + 1

)
|∇ξ (log p(z1, x; θ) + log q(z1; λ)) − ∇ξ (log p(z2, x; θ) + log q(z2; λ)) | ≤ k2|z1 − z2| (|z1|p + |z2|p + 1)

|∇ξ (log p(z, x; θ) + log q(z; λ)) − ∇ξ (log p(z, x; θ′) + log q(z; λ′)) | ≤ k3|ξ − ξ′|ν
(
|z|p+1 + 1

)

The results follows from Gu & Kong (1998, Theorem 1), under assumptions A1-6, by identifying:

θ = ξ

x = z
Πθ = Hξ

H(θ, x) = ∇ξ (log p(z, x; θ) + log q(z; λ))

and Γk = I , I(θ, x) = 0 where left is their notation and right is our notation.

A.2 Experiments
A.2.1 Survey Data
Model. Following (Lopez-Martin et al., 2021), we model binary variable x taking values 0 or 1 with a
multilevel regression model. x indicate individual responses, and each individual comes with given features:
state, age, ethnicity, education, and gender. For each data-point xi, the model is defined as,

p(xi = 1) = logit−1(zstate
s[i] + zage

a[i] + zeth
r[i] + zedu

e[i] + zgen.eth
g[i],r[i] + zedu.age

e[i],a[i] + zedu.eth
e[i],r[i] + βgen · Geni).

zstate
s ∼ N (γ0 + γsouth · 1(s in south) + γnorthcentral · 1(s in northcentral) + γwest · 1(s in west), σstate), for s = 1, ..., 50,

zage
a ∼ N (0, σage), for a = 1, ..., 6,

zeth
r ∼ N (0, σeth), for r = 1, ..., 4,

zedu
e ∼ N (0, σedu), for e = 1, ..., 5,

zgen.eth
g,r ∼ N (0, σgen.eth), for g = 1, 2 and r = 1, ..., 4,

zedu.age
e,a ∼ N (0, σedu.age), for e = 1, ..., 5 and a = 1, ..., 6,

zedu.eth
e,r ∼ N (0, σedu.eth), for e = 1, ..., 5 and r = 1, ..., 4.

Each z*
* is a latent variable. For example, zstate

: is a length-50 latent variable that indicates the effect of state
on the binary response. As another example, zedu.age

:,: indicates the interaction effect of education and age,
and is length-30 because there are 5 education levels and 6 age levels. In total, the model has a length-123
latent variable z. We model the rest, namely γ*, σ*, and βgen, as model parameters where we find fixed
estimates.
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(a) TSC, MRP MCMC, and 60000 sample unadjusted estimate.

(b) TSC, MSC, and 60000 sample unadjusted estimate.

Figure 6: Estimates by states, where states are ordered by Republican vote in the 2016 election. 95%
confidence intervals are plotted. The closer to green the better.

Results. Reliable approximations on the survey data are shown by ability to generalize from small, 5,000
sample to the full 60,000 sample, and closeness to gold-standard MRP MCMC results. We visualize TSC,
MSC, and MRP MCMC estimates by state. Figure 6a shows that the mean of TSC estimates are barely
discernible from the mean of results given by the gold-standard MRP MCMC (Lopez-Martin et al., 2021).
Figure 6b shows that MSC is also robust against noise from the small 5,000 sample, but it slightly differs in
results from TSC.

A.2.2 Variational Autoencoder

Architecture. In MNIST, both statically and dynamically binarized, the encoder uses two convolutional
layers with number of filters 32 and 64, followed by a dense layer that outputs Gaussian mean and log-
variances (so its hidden-size is two times latent variable dimension). The decoder begins with a dense layer
with hidden-size 7 · 7 · 32, followed by three transpose convolutional layers with number of filters 32, 64, and
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1, and it outputs a Bernoulli parameter for each pixel. All layers use kernel size 3, stride size 2, same padding,
and ReLU activations, except for the last transpose convolutional layer that uses stride size 1.

A DCGAN-style architecture is used for CIFAR10, featuring no dense layers, batch normalization, and leaky
ReLU. The encoder uses four convolutional layers with number of filters 64, 128, 256, and latent dimension
times 2. The last layer has no activation function and is flattened to give Gaussian mean and log-variances.
The decoder uses four transpose convolutional layers with number of filters 256, 128, 64, 3. The last layer
uses tanh activation and outputs Gaussian mean. Batch normalization and leaky ReLU (0.2) are applied after
each layer except for the last layer in encoder and decoder. All layers use kernel size are 4, stride size 2,
and same padding, except that the last layer in encoder and first layer in decoder use stride size 1 and valid
padding.

Additional evaluation metrics. In addition to log-marginal likelihood, we use three additional metrics to
evaluate the quality of the approximate posterior and its latent representations. The metrics are defined as
follows.

Downstream classification accuracy. The approximate posterior maps every data-point to a vector representa-
tion. We take these vectors that correspond to training data-points from each method, and for each method we
train a linear classifier based on the vector representations to predict the class of the data-point. Accuracy is
reported on held-out test dataset.

Mutual information (MI). MI I(z; x) measures the dependence between data x and latent representation z.
High MI is desirable because it suggests that the generative model makes use of unique information encoded
by latents z. MI is defined as follows (Hoffman & Johnson, 2016; Dieng et al., 2019),

I(z; x) = E
p̂(x)

[
DKL(q(z|x; λ)||p(z)) − DKL(q(z; λ)||p(z))

]
,

where q(z; λ) is the ‘aggregate posterior’, a marginal over the latent z defined as q(z; λ) = 1
N

∑N
i=1 q(z|xi; λ),

and N is number of data-points. I(z; x) is approximated by Monte Carlo.

Number of latent units (AU). AU measures how many units on the latent representation are ‘active’ (Burda
et al., 2016) (for instance, if a 64-dimensional latent is used, we measure how many units among the 64 total
units are active). It is desirable that all latent variables are used. A latent dimension is considered active if
Covx(Eu∼q(u|x;λ)[u]) > 0.02.

Ablation studies. We do two VAE ablation studies under the case of two dimensional latent vari-
ables.

Study I: no approximate inference with KL(p||q); only maximum likelihood on p(x; θ). First, we wonder
whether warped space HMC itself along with a pretrained transport map achieves competitive performance.
That is, the encoder is no longer trained, and the overall training is essentially Monte Carlo EM (Duane et al.,
1987; Kingma & Welling, 2014). It achieves −156.1 log-marginal likelihood after the same number of epochs
of training, lower than all baselines.

Study II: run HMC on original space instead of warped space. We also test whether running HMC on the
original space together with approximate posterior training via KL(p||q) achieves competitive performance.
The estimated log-marginal likelihood is −133.9, lower than both TSC and NeutraHMC.
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