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Figure 1: Image generation with our MaskGIL models. We show samples from our class-
conditional generation (top left) and text-conditional generation in various resolutions.

ABSTRACT

Autoregressive (AR) models and their variants are re-revolutionizing visual gener-
ation with improved frameworks. However, unlike the well-established practices
for diffusion models, a comprehensive recipe for AR models is lacking, e.g., se-
lecting image tokenizers, model architectures, and AR paradigms. In this work,
we delve into the design space of general AR models, including Mask Autoregres-
sive (MAR) models, to identify optimal configurations for efficient and scalable
image generation. We first conduct a detailed evaluation of four prevalent image
tokenizers across both AR and MAR settings, examining the impact of codebook
size (ranging from 1,024 to 262,144) on generation quality, and identify the most
effective tokenizer for image generation. Building on these insights, we propose
an enhanced MAR model architecture, named Masked Generative Image LLaMA
(MaskGIL), comprising of LlamaGen-VQ and Bidirectional LLaMA. To ensure
stable scaling, we introduce modifications like query-key normalization and post-
normalization, resulting in a series of class-conditional MaskGIL models, rang-
ing from 111M to 1.4B parameters. MaskGIL significantly improves the MAR
baseline, achieving a 3.71 FID comparable to state-of-the-art AR models on the
ImageNet 256ˆ256 benchmark, with only 8 inference steps, far fewer than the
256 steps needed for AR models. We also introduce a text-conditional MaskGIL
model with 775M parameters, capable of flexibly generating images at any reso-
lution. To bridge AR and MAR image generation, we explore their combination
during inference time. We release all models and code to foster further research1.

1https://anonymous.4open.science/r/ICLR-1299
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1 INTRODUCTION

Autoregressive (AR) generative models have garnered increasing attention in image genera-
tion (Razavi et al., 2019; Esser et al., 2021; Ramesh et al., 2021b; Lee et al., 2022; Yu et al., 2022;
Sun et al., 2024; Liu et al., 2024), inspired by the success of Transformer (Vaswani, 2017) and
GPT (Brown, 2020; OpenAI, 2022; Achiam et al., 2023) in NLP. This paradigm typically unfolds
in two stages: the first stage is to quantize an image to a sequence of discrete tokens. In the second
stage, an AR model is trained to predict the next token sequentially, based on the previously gener-
ated tokens. While AR models exhibit strong generative capabilities, their efficiency is hindered by
the extensive number of inference steps, as the AR model generates one token at a time.

To overcome this limitation, Mask Autoregressive (MAR) generative models (Chang et al., 2022;
Lezama et al., 2022; Li et al., 2023; Qian et al., 2023; Chang et al., 2023; Li et al., 2024b) have
been developed, aiming to deliver high-quality image generation with fewer inference steps. Unlike
traditional AR models that predict the next token, MAR models predict a subset of tokens, offering
a potential speed advantage. However, due to the inherent difficulties in training and prediction, the
generative capabilities of existing MAR models remain less robust compared to AR models.

In addition, the choice of discrete-value image tokenizer is pivotal in both AR and MAR paradigms,
as it significantly influences the quality of image generation. Despite the availability of various
tokenizers (Esser et al., 2021; Chang et al., 2022; Sun et al., 2024; Luo et al., 2024) with reducing
reconstruction errors, they often demonstrate inconsistent performance in downstream text-to-image
generation tasks. This raises key questions: Which tokenizer is the most effective for image genera-
tion tasks, and how can tokenizers be designed to be both efficient and practical?

In this paper, we first conduct a comprehensive study on four prevalent tokenizers, including
MaskGIT-VQ (Chang et al., 2022), Chameleon-VQ (Team, 2024), LlamaGen-VQ (Sun et al., 2024)
and Open-MAGVIT2-VQ (Luo et al., 2024), across both AR and MAR generation paradigms. We
observe that as the codebook size2 increases (from 1,024 to 262,144), the tokenizer’s image re-
construction ability improves progressively. However, this does not always lead to better image
generation quality, as larger codebook sizes place higher demands on the model’s learning ability
and training parameters. Among the evaluated tokenizers, LlamaGen-VQ, with a codebook size of
16,384, demonstrates the best performance in both AR and MAR generation.

Building on these insights, we further explore the design space of MAR models to achieve efficient
and scalable image generation. While previous MAR models have utilized the Bidirectional Trans-
former architecture, the success of LLaMA (Touvron et al., 2023) in AR generation inspires us to
develop a Bidirectional LLaMA architecture. Through comparative analysis, we find that the Bidi-
rectional LLaMA demonstrates superior image generation capabilities. To ensure stable training
at larger scales, we introduce query-key normalization and post-normalization to manage the norm
growth (Dehghani et al., 2023; Team, 2024; Gao et al., 2024). Based on this architecture, we present
a series of class-conditional image generation models, ranging from 111M to 1.4B parameters. Ad-
ditionally, we provide a text-conditional image generation model with 775M parameters, capable of
flexibly generating images at various resolutions with high aesthetic quality.

Compared to AR generation, MAR generation has made a significant qualitative leap in speed.
However, despite our comprehensive exploration of MAR’s generation capabilities, it remains a
performance gap compared to AR. To harness the strengths of both paradigms, we propose a hybrid
framework during the inference stage. Specifically, we use an AR model to generate a portion of
the tokens, which then serve as prompts for the MAR model to complete the remaining tokens. Our
experiments on class-conditional and text-conditional generation tasks indicate that this strategy
effectively strikes a balance between generation quality and speed, presenting a promising avenue
for future research.

In summary, our contributions to the community include:

• Discrete-Value Image Tokenizer Evaluation. We evaluate the performance of four main-
stream image tokenizers, with codebook sizes ranging from 1,024 to 262,144, across both
AR and MAR generation paradigms. Through this evaluation, we identify the most ef-

2Codebook size design plays a critical role in determining image tokenization performance.
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fective image tokenizer for image generation, providing insights into the optimal balance
between codebook size and generation quality in both paradigms.

• Scalable Mask Autoregressive Model Architecture. We identify the optimal MAR model
architecture and develop a series of class-conditional image generation models with pa-
rameter sizes ranging from 111M to 1.4B. The largest model achieves 3.71 FID on the
ImageNet 256ˆ256 benchmark, requiring only 8 inference steps. We further develop a
text-to-image MAR model equipped with 775M parameters, unlocking efficient generation
of photorealistic images at arbitrary resolution.

• A Unified Framework for Fusion AR and MAR Generation. To generate images both
efficiently and with high quality, we propose a fusion framework that combines AR and
MAR paradigms during the inference stage. By leveraging partial tokens generated by AR
as initialization for MAR, we achieve a seamless transition between these two paradigms,
which offers a flexible trade-off between efficiency and performance.

2 PRELIMINARIES

2.1 DISCRETE-VALUE IMAGE TOKENIZER

To begin with, we revisit the discrete-value image tokenizer, which plays a crucial role in both
autoregressive and mask autoregressive image generation. The most commonly used model in this
domain is the VQ-VAE (Van Den Oord et al., 2017), an encoder-quantizer-decoder architecture, as
shown in Figure 2a. This architecture employs a ConvNet for both the encoder and the decoder,
featuring a downsampling ratio p. The encoder projects the image pixels x P RHˆWˆ3 to a feature
map f P RhˆwˆC , where h “ H{p and w “ W {p. The core of this process lies in the quantizer,
which includes a codebook Z P RKˆC with K learnable vectors. Each vector f pi,jq in the feature
map is mapped during quantization to the code index qpi,jq of its nearest vector zk in the codebook.
Consequently, the image pixels x P RHˆWˆ3 are efficiently quantized into q P Qhˆw. During the
decoding phase, the code index qpi,jq is remapped to the feature vector and the decoder converts
these feature vectors back to the image pixels x̂. There are various works (Razavi et al., 2019;
Esser et al., 2021; Yu et al.) that continue to explore the design space of VQ-VAE for improving
reconstruction quality. Among them, VQGAN (Esser et al., 2021) introduces an adversarial loss that
is proven to effectively preserve the perpetual visual details.

2.2 AUTOREGRESSIVE GENERATIVE MODELS

Autoregressive models revolutionize the fields of language modeling (Brown et al., 2020; Achiam
et al., 2023; Team et al., 2023; Touvron et al., 2023; Meta, 2024) and multimodal understanding (Liu
et al., 2023; Lin et al., 2023; Team, 2024) using the unified next-token prediction paradigm for all
modalities with a casual transoformer, as illustrated in Figure 2b. This paradigm has been ex-
tended to the visual generation domain by early works such as DALL-E (Ramesh et al., 2021a),
Cogview (Ding et al., 2021), and Parti (Yu et al., 2022). These works leverage a two-stage approach
where the image tokenizer first encodes continuous images into discrete tokens then the transformer
decoder models the flattened one-dimensional sequences. During training, the casual transformer
is trained to predict the categorical distribution pθpxi|xăi; cq at each position conditioned on the
additional information c, e.g., text prompts or class labels. During inference, image token sequences
can be sampled in the same way as language generation and further decoded back to pixels. De-
spite this simple and unified paradigm for image synthesis, autoregressive-based visual generative
models have long been overlooked for a while, particularly after the exploding of diffusion models.
One potential reason is their inferior generation quality restricted by the image tokenizer. Recently,
LlamaGen (Sun et al., 2024) improves the design of image tokenizer and leverages the Llama archi-
tecture for scaling, which significantly enhance the performance of autoregressive models.

2.3 MASK AUTOREGRESSIVE GENERATIVE MODELS

Different from the next token prediction paradigm typical of autoregressive generation, mask au-
toregressive models (Chang et al., 2022; Li et al., 2023; Chang et al., 2023) leverage a bidirectional
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Figure 2: Illustration of (a) discrete-value image tokenizer (encoder and quantizer) and decoder via
image reconstruction, (b) training the autoregressive model through causal attention modeling and
(c) training the mask autoregressive model through bidirectional attention modeling.

transformer to simultaneously generate all visual tokens through a masked-prediction mecha-
nism, as illustrated in Figure 2c. These models are trained using a proxy task similar to the mask
prediction task employed in BERT (Kenton & Toutanova, 2019). In this setup, bidirectional atten-
tion allows all known tokens to see each other while also permitting all unknown tokens to view all
known tokens, enhancing communication across tokens compared to causal attention. In contrast to
causal attention, where training loss is computed on sequentially revealed tokens, non-autoregressive
models compute the loss solely on the unknown tokens. At inference time, these models utilize a
novel decoding method that synthesizes an image in a constant number of steps, typically between
8 and 15 (Chang et al., 2022). Specifically, during each iteration, the model predicts all tokens in
parallel, retaining only those predicted with high confidence. Less certain tokens are masked and
re-predicted in subsequent iterations. This process repeats, progressively reducing the mask ratio
until all tokens are accurately generated through several refinement iterations.

3 RETHINKING IMAGE TOKENIZER FOR HIGH-QUALITY GENERATION

For high-quality image generation, the choice of a discrete-value image tokenizer is critical, as it
determines the upper limit of the generation quality. Various tokenizers have been developed, and in
this study, we evaluate four mainstream tokenizers based on their codebook sizes, which range from
1,024 to 262,144. This range allows for a comprehensive analysis of how codebook size affects im-
age generation quality. The tokenizers we selected include MaskGIT-VQ (Besnier & Chen, 2023),
Chameleon-VQ (Team, 2024), LlamaGen-VQ (Sun et al., 2024), and Open-MAGVIT2-VQ (Luo
et al., 2024), as shown in Table 1. All tokenizers use a downsampling ratio of 16 and are trained
on the ImageNet dataset (Deng et al., 2009). Given a set of compact discrete image tokens, two
prominent frameworks are commonly used, including autoregressive and mask autoregressive gen-
eration. We conduct detailed experiments using both frameworks to provide comprehensive insights
into image tokenizers.

3.1 VISUAL RECONSTRUCTION EVALUATION

Before assessing the impact of the image tokenizer on generation quality, we initially focus on eval-
uating the performance of each tokenizer itself. We analyze the reconstruction quality and codebook
utilization using the ImageNet validation set, with results detailed in Table 1.
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Table 1: Reconstruction performance and codebook usage of different discrete-value image
tokenizers on ImageNet validation set. All tokenizers employ a downsampling ratio of 16 and are
trained on the ImageNet training set at a training resolution of 256 ˆ 256.

Method Tokens Ratio Train Codebook rFIDÓ
Codebook

Resolution Size UsageÒ

MaskGIT-VQ (Besnier & Chen, 2023) 16 ˆ 16 16 256 ˆ 256 1024 10.79 44.3%
Chameleon-VQ (Team, 2024) 16 ˆ 16 16 256 ˆ 256 8192 8.34 38.3%
LlamaGen-VQ (Sun et al., 2024) 16 ˆ 16 16 256 ˆ 256 16384 4.54 100%
Open-MAGVIT2-VQ (Luo et al., 2024)] 16 ˆ 16 16 256 ˆ 256 262144 4.03 100%

From the results, we can find that as the codebook size increases, the relative rFID3 value decreases,
indicating that the reconstruction image quality is gradually improving. However, when the code-
book size reaches a certain level, the improvement in the reconstructed image quality is limited. For
instance, despite Open-MAGVIT2-VQ expanding its codebook size 16ˆ compared to LlamaGen-
VQ, the rFID reduction is a mere 0.51, indicating that blindly increasing the codebook size for the
sole purpose of improvement is not a wise choice in the design of a discrete-value image tokenizer.
In terms of codebook utilization, LlamaGen-VQ and Open-MAGVIT2-VQ achieve 100%, which
is primarily due to replacing traditional code assignment (i.e., pair-wise distance) with lookup-free
quantization (LFQ) (Luo et al., 2024).

3.2 VISUAL GENERATION EVALUATION

Evaluation Setting. To explore the impact of image tokenizers on image generation, we con-
duct detailed experiments using four tokenizers across two paradigms: Autoregressive (AR) and
Mask Autoregressive (MAR) generation. For AR generation, we utilize the LLaMA as the founda-
tional architecture, consistent with LlamaGen (Sun et al., 2024). For MAR generation, following
MaskGIT (Chang et al., 2022), we employ the Bidirectional Transformer model as the foundational
architecture and also modify LLaMA to a bidirectional variant. To facilitate a fair comparison be-
tween these foundational models, both the Transformer and LLaMA architectures are configured
under identical conditions („ 100M parameters): 12 layers, 12 heads, and 768 dimensions. All
experiments are conducted on the class-conditional image generation ImageNet benchmark with
256ˆ256 resolution and trained for 200 epochs. During the evaluation phase, we generate 50,000
images across 1,000 classes, with 50 images per class. We employ FID and Inception Score (IS) as
evaluation metrics, consistent with previous studies (Li et al., 2024b).

(a) Causal LLaMA (AR) (b) Bidirectional LLaMA (MAR) (c) Bidirectional Transformer (MAR)

Figure 3: Visual Generation Evalutation. We show FID of class-conditional ImageNet 256ˆ256
benchmark over training epochs. More detailed experimental results are given in the Appendix.

Evaluation Results. The evaluation results are shown in Figure 3, and the detailed FID and IS
results are shown in Appendix A. In our evaluation, we focus on answering two key questions:

3The reconstruction Fréchet inception distance, denoted as rFID (Heusel et al., 2017), is usually adopted to
measure the quality of reconstructed images.
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Does increasing the codebook size improve generation quality? In Section 3.1, we observe that
image reconstruction quality is directly proportional to the codebook size, this is not the case for
image generation quality. As shown in Figure 3, as the codebook size increases, the FID value
initially decreases but then increases, both AR and MAR models exhibit this trend, which indicates
that there is an optimal range for codebook size. The underlying issue is that when the number
of learned or predicted codes becomes excessively large, it complicates model training. Therefore,
when selecting an image tokenizer for generation tasks, it is crucial to consider the model’s learning
capacity in addition to the codebook size.

Which tokenizer is the best for high-quality image generation? Based on the results, LlamaGen-VQ
emerges as the superior choice, delivering the best performance in both AR and MAR image gen-
eration tasks. Open-MAGVIT-VQ, which performs best in the reconstruction evaluation, delivers
unsatisfactory results in image generation quality, especially on the Transformer architecture of the
MAR generation task, where it performs very poorly. As for Chameleon-VQ, although it is widely
adopted in many previous image generation works (Team, 2024; Liu et al., 2024), its performance
does not match that of LlamaGen-VQ. Therefore, our exploration provides guidance for the selection
of image tokenizers, suggesting that LlamaGen-VQ may be a better choice.

Discussion. Our evaluation focuses on generative models with „ 100M parameters, providing a
valuable benchmark. While we do not rule out that scaling model parameters, MAGVIT2-VQ, with
its 262,144 codebook size, could potentially yield better performance. However, its high training
complexity, large parameters for the classification head, and significant GPU resource demands
make it less practical for many applications. Further analysis is provided in the Appendix C.

4 SCALING MASK AUTOREGRESSIVE MODELS FOR IMAGE GENERATION

Numerous studies have extensively explored autoregressive generation, with notable contributions
such as LlamaGen (Sun et al., 2024), which has successfully scaled autoregressive models to 3B
parameters. However, the scaling of mask autoregressive models remains comparatively underex-
plored. To bridge this gap, we select a leading mask autoregressive model architecture and focus
on scaling it. In this process, we employ QK-Norm and Post-Norm to maintain stability when
scaling model to 1.4B parameters. Furthermore, we develop models for both class-conditional and
text-conditional image generation.

4.1 IMAGE GENERATION BY MASK AUTOREGRESSIVE MODELS

Figure 4: The performance compar-
ison between different architectures
using four tokenizers.

Autoregressive vs. Mask Autoregressive. We com-
pare the Autoregressive (AR) and Mask Autoregressive
(MAR) generation paradigms under the same model ar-
chitecture (LLaMA) and image tokenizers, as shown in
Figure 4. Based on the FID scores, it is clear that the
performance of the MAR paradigm is not inferior to AR,
and in fact, it outperforms AR on certain image tokeniz-
ers. Additionally, MAR offers a substantial advantage in
terms of inference steps, requiring only 8 inference steps,
while AR requires 256. This significant reduction in in-
ference steps underscores the speed and practicality of
MAR in various applications. Despite these advantages,
MAR models remain underexplored, and we aim to ad-
dress this performance gap.

Mask Autoregressive Model Architecture. In Section
3.2, we explore the impact of image tokenizers on gen-
eration quality and confirm that LlamaGen-VQ is the most effective tokenizer. Furthermore, to
determine the optimal MAR model architecture, we compare the Bidirectional LLaMA and Bidi-
rectional Transformer architectures, as illustrated in Figure 4. The results clearly indicate that the
Bidirectional LLaMA architecture outperforms the Bidirectional Transformer in terms of generation
quality. Consequently, our model architecture is built on LlamaGen-VQ and Bidirectional LLaMA,
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Table 2: Model sizes and architecture configurations of our MaskGIL models. The configu-
rations are following previous works (Sun et al., 2024; Touvron et al., 2023; OpenLM-Research,
2023). We replace causal attention to bidirectional attention for mask autoregeressive modeling. We
add QK-Norm and Post-Norm for stable training.

Model Parameters Layers Hidden Size Heads QK-Norm Post-Norm
MaskGIL-B 111M 12 768 12 ✘ ✘
MaskGIL-L 343M 24 1024 16 ✘ ✘
MaskGIL-XL 775M 36 1280 20 ✘ ✘
MaskGIL-XXL 1.4B 48 1536 24 ✔ ✔

named Masked Generative Image LLaMA (MaskGIL). In LLaMA, we modify causal attention to
bidirectional attention and incorporate 2D RoPE in every layer of the model, following the imple-
mentation in prior works (Lu et al., 2024; Fang et al., 2024). Additionally, we avoid using the AdaLN
technique (Peebles & Xie, 2023) to maintain consistency with the standard LLM architecture.

Classifier-Free Guidance. Classifier-Free Guidance (CFG) (Ho & Salimans, 2021; Sanchez et al.)
is originally proposed to improve the quality and text alignment of generated samples in text-to-
image diffusion models. We integrate this technique into our MaskGIL models. During training,
the conditional input is randomly dropped and replaced by a null unconditional embedding (Peebles
& Xie, 2023; Gao et al., 2024; Liu et al., 2024; Zhuo et al., 2024). In practice, the probability of
random drop is 0.1. During inference, for each image token, the CFG adjusts logits ℓcfg , which are
formulated as ℓcfg “ ℓu ` spℓc ´ ℓuq, where ℓc is conditional logits, ℓu is unconditional logits, and
s is the scale of the classifier-free guidance. As shown in Figure 5b, CFG has a significant impact
on the generation performance of our MaskGIL models.

4.2 SCALE UP

Scaling Mask Autoregressive Models. In previous research on mask autoregressive image gen-
eration (Chang et al., 2022; Li et al., 2023), model sizes have typically ranged between 200M and
300M parameters, with limited exploration into scaling larger models. In this study, we investi-
gate scaling the parameter size from 111M to 1.4B on the class-conditioned ImageNet generation
benchmark. The detailed configurations of our MaskGIL models, with varying parameter sizes, are
presented in Table 2. We also develop text-to-image MaskGIL models with 775M parameters.

Training Stability. Maintaining stable training while scaling MaskGIL models above 1.4B pa-
rameters proved challenging, with instabilities often emerging very late in the training process. This
aligns with the observations in several prior studies (Dehghani et al., 2023; Team, 2024; Gao et al.,
2024; Zhuo et al., 2024). The fundamental reason is that the standard LLaMA architecture for visual
modeling shows complex divergences due to slow norm growth in the mid-to-late stages of training.
We implement query-key normalization (QK-Norm) (Team, 2024; Dehghani et al., 2023) and Post-
Norm (Zhuo et al., 2024) to solve this problem. QK-Norm involves applying layer normalization to
the query and key vectors within the attention mechanism, while Post-Norm applies layer normal-
ization to the output of attention and mlp layer, effectively avoiding the uncontrollable norm growth
due to un-normalized pathway and therefore stabilizing the training process.

4.3 CLASS-CONDITIONAL IMAGE GENERATION

Training and Evaluation Setup. The class embedding is drawn from a set of learnable embed-
dings (Li et al., 2024a; Esser et al., 2021) and serves as the prefilling token embedding. From this
initial token embedding, the model generates all image tokens. We conduct the class-conditional
generation experiments on ImageNet dataset. All models are trained for token unmasking, using
cross-entropy loss with label smoothing of 0.1. The optimizer employed is AdamW with learning
rate of 1e´4, betas=(0.9,0.96) and a weight decay of 1e´5. For classifier-free guidance, we set the
dropout rate for the class condition embedding to 0.1. All models are trained with a batch size of 256,
which we identify as the optimal value through scaling experiments. We employ a weak-to-strong
training strategy (Chen et al., 2024), gradually increasing the training resolution from 256ˆ256
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Table 3: Model comparisons on class-conditional ImageNet 256ˆ256 benchmark. “Step” in-
dicates the number of inference steps. Metrics include FID, IS, Precision and Recall. “Ó” or “Ò”
indicate lower or higher values are better. More detailed results are in Appendix B.

Type Model #Param. StepÓ FIDÓ ISÒ PrecisionÒ RecallÒ

AR

RQTransfomer [Lee et al. (2022)] 3.8B 256 7.55 134.00 ´ ´

LlamaGen-B [Sun et al. (2024)] 111M 256 5.46 193.61 0.83 0.45
LlamaGen-L [Sun et al. (2024)] 343M 256 3.07 256.06 0.83 0.52
LlamaGen-XL [Sun et al. (2024)] 775M 256 2.62 244.08 0.80 0.57
LlamaGen-XXL [Sun et al. (2024)] 1.4B 256 2.34 253.90 0.80 0.59

MAR MaskGIT [Chang et al. (2022)] 227M 8 6.18 182.1 0.80 0.51
MAGE [Li et al. (2023)] 230M 20 6.93 195.8 ´ ´

MAR

MaskGIL-B (CFG=2.0) 111M 8 5.64 229.96 0.83 0.48
MaskGIL-L (CFG=2.0) 343M 8 4.01 281.11 0.84 0.51
MaskGIL-XL (CFG=2.5) 775M 8 3.90 296.25 0.87 0.49
MaskGIL-XXL (CFG=2.5) 1.4B 8 3.71 303.47 0.88 0.52

(a) Model Size (b) Classifier-Free Guidance (c) QK-Norm and Post-Norm

Figure 5: The Effect of Model Size, CFG, QK-Norm, and Post-Norm. We show the FID scores
on the ImageNet benchmark across different model sizes and CFG configurations. Scaling the model
size consistently improves FID scores throughout the training process. The impact of CFG is also
notable. To monitor training stability, we plot the model’s output norm.

to 512ˆ512. In addition to evaluating performance using the FID and IS metrics, we also report
Precision and Recall (Kynkäänniemi et al., 2019) to provide a more comprehensive assessment.

Comparisons with Other Image Generation Methods. In Table 3, we compare our model with
popular AR and MAR image generation models, including RQTransformer (Lee et al., 2022), Llam-
aGen (Sun et al., 2024), MaskGIT (Chang et al., 2022), and MAGE (Li et al., 2023). Our MaskGIL
models exhibit competitive performance across all metrics, including FID, IS, Precision, and Recall.
Notably, MaskGIL requires only 8 inference steps, highlighting its efficiency in image generation.
Further analysis of inference steps can be found in the Appendix D. A notable point is that the FID
and Recall of MakGIL are slightly inferior to the LlamaGen, it demonstrates significantly high IS
and Precision. This observation suggests a lack of diversity but high visual quality in generated
samples, which can be fixed by exploring more advanced sampling strategies for MAR.

Effective of Model Size. We train our MaskGIL models across four model sizes (B-111M, L-
343M, XL-775M, XXL-1.4B) and evaluate their performance in Table 3. Figure 5a illustrates how
FID changes as both the model sizes and the training epochs increase. Notable improvements in
FID are observed when scaling the model from MaskGIL-B to MaskGIL-XL. Further scaling to
1.4B yields only marginal improvements. A plausible explanation for this phenomenon could be the
ImageNet data size limits the performance of the scaling model (Sun et al., 2024).

Effect of Classifier-Free Guidance. Figure 5b presents the FID and IS scores of MaskGIL-L
under various classifier-free guidance (CFG) settings. MaskGIL-L achieves its best FID at CFG =
2.0, and increasing CFG beyond this point leads to a deterioration in FID, which is consistent with
previous findings (Dhariwal & Nichol, 2021; Sun et al., 2024). This demonstrates that CFG plays a
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640x384

Cybernetic forest guardians with bark-like skin
and glowing bioluminescent patterns.

640x384

A portrait of a warrior queen adorned with intricate 
armor and a flowing cape, heroic style.

A vintage steam locomotive traveling through
a snowy mountain pass, realistic rendering.

A serene lighthouse on a rugged coastline during 
a sunset, tranquil and picturesque.

512x512

512x512

384x640
A detailed map of a fantasy world with mountains, 
rivers, and enchanted forests, cartographic art style.

Minimalist vector illustration of a cat composed entirely of 
geometric shapes, set against a pastel gradient background.

448x576

Figure 6: Visualization of text-conditional image generation. The prompts are generated by GPT-
4. MaskGIL can generate images at any resolution while preserving consistency with the text.

crucial role in influencing the generation performance of our MaskGIL models. For further results
on MaskGIL models of different sizes, please refer to the Appendix B.

Effective of QK-Norm and Post-Norm. In Figure 5c, we show the output norm of the MaskGIL-
XXL (1.4B) with and without QK-Norm/Post-Norm. Without QK-Norm and Post-Norm, the output
norm grows uncontrollably, leading to non-convergence during training and the occurrence of “nan”
loss values in the future training. Normalizing the query and key embeddings before computing the
attention matrix helps to avoid attention collapse but merely mitigates this norm growth. Ultimately,
the inclusion of both QK-Norm and Post-Norm ensures the output remains stable, preventing dra-
matic increases and resulting in more stable training for scaling.

4.4 TEXT-CONDITIONAL IMAGE GENERATION

In text-conditional image generation, we use Chameleon-VQ as the image tokenizer, aligning with
Lumina-mGPT, an autoregressive-based text-to-image model (Liu et al., 2024). To integrate the text
condition into our MaskGIL model, we employ Gemma-2B (Team et al., 2024) as the text encoder.
The encoded text features are projected through an additional MLP and then used as the prefilling
token embedding in the MaskGIL models. We also incorporate both QK-Norm and Post-Norm to
improve training stability. The training data consists of 20M high-aesthetic images with prompts
generated by a mixture of captioners. We leverage a two-stage training pipeline by first training on
256 ˆ 256 and then switching to 512 ˆ 512. To enable generating images with arbitrary shapes, we
design a multi-resolution training strategy by defining a series of size buckets and converting each
image to its nearest shape. All other training hyper-parameters follow class-conditional settings.

In Figure 6, we use prompts randomly generated by GPT-4 to generate images at various resolutions.
The generated images demonstrate a high degree of consistency with the text prompts. In the future,
we plan to support higher resolution generation, such as 1024 × 1024, with better visual quality.

5 UNIFIED FRAMEWORK FOR FUSION OF AR AND MAR GENERATION

Unified Framework at Inference Phase. In this work, we have thoroughly explored the gener-
ative capabilities of MAR and optimized them extensively. However, despite our advancements, a
performance gap remains when compared to AR models. Drawing inspiration from recent work (Li
et al., 2024b) that suggests AR and MAR can be unified into a single generative paradigm, we de-
sign a unified framework for the inference decoding stage. This framework effectively combines
the strengths of both AR and MAR paradigms, achieving efficient generation with high quality. As
illustrated in Figure 7, we initially employ AR to generate a subset of image tokens, which serve as
prompts. Subsequently, MAR is deployed to complete the generation of the remaining tokens.

9
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…

AR Generation MAR Generation

…

t=1 t=128 t=129 t=130 t=131 t=132

Predict Token

Predict Image

Figure 7: llustration of our unified framework. This framework initially employs AR to generate a
subset of image tokens. Subsequently, MAR is deployed to complete the generation of the remaining
tokens. In this example, only 132 inference steps are needed, whereas AR alone requires 256.

Lumina-mGPT (25%)

156.3s118.2s80.15s43.1s

Lumina-mGPT (50%) Lumina-mGPT (75%) Lumina-mGPT (100%)

Figure 8: Generated images and time at different
AR ratios. Our framework effectively reduces gen-
eration time while ensuring quality.

Figure 9: Ablation study on the number
of AR generated tokens. Our framework
achieves an optimal trade-off by generating
128 tokens with the AR.

Application. We apply this framework to both class-conditional and text-conditional image gen-
eration tasks. For the class-conditional AR model, we use LlamaGen (Sun et al., 2024), and for the
text-conditional AR model, we employ Lumina-mGPT (Liu et al., 2024). In Figure 8, we showcase
several examples along with the inference times for images generated using our framework. The
results indicate a substantial improvement in inference speed while maintaining high-quality image
generation. Additionally, we analyze the number of tokens generated by the AR component, as de-
tailed in Figure 9. The convex function denotes an optimal point when generating 128 (50%) tokens
with AR, offering a flexible trade-off between quality and efficiency.

6 CONCLUSION

In this work, we explore the potential of MAR models for efficient and scalable image generation.
By reevaluating commonly used image tokenizers and model architectures, we identify the optimal
MAR model configuration. We develop a variety of models for class-conditional image gener-
ation and introduce models capable of supporting text-conditional image generation. Our class-
conditional models are competitive with popular AR models in terms of quality and demonstrate
significant improvements in efficiency. Meanwhile, our text-conditional models maintain compet-
itive visual quality and text alignment. Additionally, we explore the integration of AR and MAR
paradigms at the inference stage, aiming to unify these approaches into a cohesive framework.

In the future, as more training data and computational resources become available, we will investi-
gate large-scale MAR-based visual generation models, potentially exceeding 7B parameters. Fur-
thermore, we intend to explore the end-to-end training that fuses AR and MAR paradigms.
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A DETAILED EVALUATION RESULTS OF IMAGE TOKENIZER

A.1 RESULTS ON AUTOREGRESSIVE GENERATION.

We present detailed experimental results of different image tokenizers on the AR paradigm in Ta-
ble 4. We use the Casual LLaMA model for these experiments, evaluating on the class-conditional
ImageNet benchmark. The results include FID and IS scores across 50, 100, and 200 epochs, with
CFG settings of 3.0, 2.5, and 2.0. For a detailed analysis, refer to Section 3 in the main paper.

Table 4: Detailed Experimental Results of Different Image Tokenizers on the AR Paradigm.
results include FID and IS scores for various CFG settings across 50 to 200 epochs.

50 epoch 100 epoch 200 epoch

FID IS FID IS FID IS

CFG = 3.0 9.8846 160.1574 9.1567 170.2633 8.7525 175.5390

CFG = 2.5 10.2998 135.7815 9.4809 145.6140 9.1254 149.5679MaskGIT-VQ (1024)

CFG = 2.0 12.6750 102.6800 11.5306 110.0108 11.2182 114.8622

CFG = 3.0 8.5799 180.8341 8.1700 193.9580 7.5208 200.0188

CFG = 2.5 8.9955 153.5894 8.2882 165.1865 7.7708 175.9126Chameleon-VQ (8192)

CFG = 2.0 11.6736 115.8210 10.5847 125.7858 9.6992 133.8924

CFG = 3.0 9.2867 199.3415 8.8726 215.3014 8.0206 221.3254

CFG = 2.5 8.2499 171.4478 7.7843 185.0560 6.8314 191.7435LlamaGen-VQ (16384)

CFG = 2.0 8.7104 133.0047 7.8188 144.1255 7.0980 149.0620

CFG = 3.0 10.9688 129.7520 10.8770 131.0903 9.5125 146.1105

CFG = 2.5 15.5837 96.4929 14.8460 100.0897 14.8755 100.2676Open-MAGVIT2-VQ (262144)

CFG = 2.0 25.2163 63.6719 24.1729 66.1162 22.7751 71.5757

A.2 RESULTS ON MASK AUTOREGRESSIVE GENERATION.

We present detailed experimental results of different image tokenizers on the MAR paradigm in
Table 6. We use the Bidirection LLaMA and Bidirection Transformer model for these experiments,
evaluating on the class-conditional ImageNet benchmark. The results include FID and IS scores
across 50, 100, and 200 epochs, with CFG settings of 3.0, 2.5, and 2.0. For a detailed analysis, refer
to Section 3 in the main paper.

B DETAILED EVALUATION RESULTS OF SCALING

In this work, we scale the model parameters of MaskGIT from 111M to 1.4B. Table 7 details the
FID and IS scores for each model size at various training epochs and CFG settings. Notably, the
results for our MaskGIT-XXL currently cover only up to 300 epochs. For a detailed analysis, please
refer to Section 4 in the main paper.

C CODEBOOK SIZE AND TRAINING RESOURCE ANALYSIS

As detailed in Table 5, we compare the training resources required by LlamaGen-VQ and Open-
MAGVIT2-VQ using the same model architecture (details in Section 3.2 of the main paper), both
trained with a batch size of 192. From the results, it is evident that Open-MAGVIT2-VQ, with
201.32M parameters, has a parameter count 16 times greater than that of LlamaGen-VQ, which
has 12.58M parameters. This substantial increase primarily stems from the final classification head.
Additionally, Open-MAGVIT2-VQ requires twice the GPU resources compared to LlamaGen-VQ,
indicating significant increases in both training parameters and memory usage as the codebook size
expands.
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Table 5: Codebook Size and Training Resource Analy-
sis. We compare LlamaGen-VQ and Open-MAGVIT2-
VQ.

Method LlamaGen-VQ Open-MAGVIT2-VQ

Codebook Size 16,384 262,144
Classifier Params 12.58M 201.32M
A100 GPUs 4 8

Figure 10: Ablation Study on Different
Decoding Steps.

D DECODING STRATEGY AT INFERENCE PHASE

D.1 DECODING STRATEGY

In autoregressive decoding, tokens are sequentially generated based on previously produced tokens.
This method, inherently non-parallelizable, is particularly slow for images due to the typically large
token length, such as 256 or 1024, which is much larger than that used in language. In this work, we
adopt the decoding strategy outlined in Chang et al. (2022), where all image tokens are generated
simultaneously in parallel. This is feasible due to the bi-directional attention of MaskGIL.

This decoding strategy allows for the generation of an image in T steps, typically 8. At each iteration,
the model predicts all tokens simultaneously but retains only the most confident predictions. The less
certain tokens are masked and re-predicted in subsequent iterations, with a progressively decreasing
mask ratio, until all tokens are generated within the designated T iterations.

D.2 ABLATION STUDY ON DECODING STEPS

In the main paper, all our experimental results are based on 8-step decoding. To further explore how
the number of decoding steps affects generation quality, we conduct an ablation experiment on the
class-conditional imagenet benchmark, as shown in Figure 10. The results indicate that increasing
the number of decoding steps does not necessarily improve generation quality. Optimal results are
achieved with 8-steps decoding.
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