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ABSTRACT

Neural networks are vulnerable to adversarial attacks: adding well-crafted,
imperceptible perturbations to their input can modify their output. Adversarial
training is one of the most effective approaches in training robust models against
such attacks. However, it is much slower than vanilla training of neural networks
since it needs to construct adversarial examples for the entire training data at
every iteration, which has hampered its effectiveness. Recently, Fast Adversarial
Training (Wong et al., 2020) was proposed that can obtain robust models within
minutes. However, the reasons behind its success are not fully understood, and
more importantly, it can only train robust models for `∞-bounded attacks as it
uses FGSM during training. In this paper, by leveraging the theory of coreset
selection we show how selecting a small subset of training data provides a more
principled approach towards reducing the time complexity of robust training.
Unlike Fast Adversarial Training, our approach can be adapted to a wide variety
of training objectives, including TRADES, `p-PGD, and Perceptual Adversarial
Training. Our experimental results indicate that using coreset selection, one
can train robust models 2-3 times faster while maintaining the clean and robust
accuracy almost intact.

1 INTRODUCTION

Neural networks have achieved great success in the past decade. Today, they are one of the primary
candidates in solving a wide variety of machine learning tasks, from object detection and classifi-
cation (He et al., 2016; Wu et al., 2019) to photo-realistic image generation (Karras et al., 2020;
Vahdat & Kautz, 2020) and beyond. Despite their impressive performance, neural networks are
vulnerable to adversarial attacks (Biggio et al., 2013; Szegedy et al., 2014): adding well-crafted, im-
perceptible perturbations to their input can change their output. This unexpected behavior of neural
networks prevents their widespread deployment in safety-critical applications including autonomous
driving (Eykholt et al., 2018) and medical diagnosis (Ma et al., 2021). As such, training robust neural
networks against adversarial attacks is of paramount importance and has gained lots of attention.

Adversarial training is one of the most successful approaches in defending neural networks against
adversarial attacks.1 In this approach, a perturbed version of the training data is constructed first.
Then, the neural network is optimized using these perturbed inputs instead of the clean samples. This
procedure needs to be done iteratively as the perturbations depend on the neural network weights.
Since the weights are optimized during training, the perturbations also need to be adjusted for each
data sample in every iteration.

Various adversarial training methods primarily differ in the ways that they define and find the per-
turbed version of the input (Madry et al., 2018; Zhang et al., 2019; Laidlaw et al., 2021). However,
they all require repetitive constriction of these perturbations during training which is often cast as
another non-linear optimization problem. As such, the time/computational complexity of adversar-
ial training in neural networks is massively higher than their vanilla training. In practice, neural

1Note that adversarial training in the literature generally refers to a particular approach proposed by Madry
et al. (2018). For the purposes of this paper, we refer to any method that builds adversarial attacks around
the training data and incorporates them into the training of the neural network as adversarial training. Using
this taxonomy, methods such as TRADES(Zhang et al., 2019), `p-PGD (Madry et al., 2018) or Perceptual
Adversarial Training (PAT) (Laidlaw et al., 2021) are all considered as different versions of adversarial training.
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networks require massive amounts of training data (Adadi, 2021) and need to be trained multiple
times with various hyper-parameters to get their best performance (Killamsetty et al., 2021a). Thus,
reducing the time/computational complexity of adversarial training is critical to enable the envi-
ronmentally efficient application of robust neural networks in real-world scenarios (Schwartz et al.,
2020; Strubell et al., 2019).

Fast Adversarial Training (Wong et al., 2020) is a successful approach proposed for efficient training
of robust neural networks. Contrary to the common belief that building the perturbed versions of the
inputs using Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015) does not help training
arbitrary robust models (Tramèr et al., 2018; Madry et al., 2018), Wong et al. (2020) show that
by carefully applying uniformly random initialization before the FGSM step one can make this
training approach work. Using FGSM to generate the perturbed input in a single step combined with
implementation tricks such as mixed precision and cyclic learning rate, Fast Adversarial Training
can greatly reduce the time/computational complexity of training robust neural networks.

Despite its success, Fast Adversarial Training may exhibit unexpected behavior under different set-
tings. For instance, it was shown that Fast Adversarial Training may suffer from catastrophic over-
fitting where the robust accuracy during training may suddenly drop to 0% (Wong et al., 2020;
Andriushchenko & Flammarion, 2020). A more fundamental issue with Fast Adversarial Train-
ing and its variations such as GradAlign (Andriushchenko & Flammarion, 2020) is that they are
specifically designed for `∞ adversarial training. This is because FGSM, which is particularly an
`∞ perturbation generator, is at the heart of these methods. As a result, the quest for finding a unified
approach that can reduce the time complexity of adversarial training is not over.

Motivated by the limited scope of Fast Adversarial Training, in this paper we take an important step
towards finding a general yet principled approach for reducing the time complexity of adversarial
training. We notice that repetitive construction of adversarial examples for each data point is the
main bottleneck of robust training. While this needs to be done iteratively, we speculate that perhaps
we can find a subset of the training data that is more important to robust network optimization than
the rest. Specifically, we ask the following research question:

Can we train an adversarially robust neural network using a subset of the entire training data
without sacrificing clean or robust accuracy?

In this paper, we show that the answer to this question is affirmative. In particular, we draw an
elegant connection between adversarial training and adaptive coreset selection algorithms. To this
end, we use Danskin’s Theorem and show how we can effectively approximate the entire training
data with an informative subset. To conduct this selection, our study shows that one needs to build
adversarial examples for the entire training data and solve a respective subset selection objective.
Afterward, training can be performed on this selected subset of the training data. We show that our
adaptive coreset selection process is only required every few epochs, hence, effectively reducing the
time complexity of robust training algorithms. We show how our proposed approach can be used as
a general framework in conjunction with different adversarial training objectives, opening the door
to a more principled approach for efficient training of robust neural networks in a general setting.
Our experimental results show that one can reduce the time complexity of various robust training
objectives by a factor of 2-3 times without sacrificing too much clean and robust accuracy.

In summary, we make the following contributions:

• We propose a practical, yet principled algorithm for efficient training of robust neural networks
based on adaptive coreset selection. To the best of our knowledge, we are the first to use coreset
selection for robust training of neural networks at scale.

• We show that our approach can be applied to a variety of robust learning objectives, including
TRADES (Zhang et al., 2019), `p-PGD (Madry et al., 2018) and Perceptual (Laidlaw et al.,
2021) Adversarial Training. As such, our approach encompasses a broader range of robust
models, unlike Fast Adversarial Training which is specifically designed for `∞ robustness.

• Through our extensive experiments, we show that the proposed approach can result in a 2-3
fold reduction of the time complexity in adversarial training, while preserving the clean and
robust accuracy.
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2 BACKGROUND AND RELATED WORK

In this section, we review the related background to our work.

2.1 ADVERSARIAL TRAINING

Let D = {(xi, yi)}ni=1 ⊂ X × C denote a training dataset consisting of n i.i.d samples. Each
data point contains an input data xi from domain X and an associated label yi taking one of k
possible values C = [k] = {1, 2, . . . , k}. Without loss of generality, in this paper we focus on the
image domain X. Furthermore, assume that fθ : X → Rk denotes a neural network classifier with
parameters θ that takes x ∈ X as input and maps it to a softmax value fθ(x) ∈ Rk. Then, training
a neural network in its most general format can be written as the following minimization problem

min
θ

n∑
i=1

Φ (xi, yi; fθ) . (1)

Here, Φ (x, y; fθ) is a function that takes a data point (x, y) and a function fθ as its inputs, and its
output is a measure of discrepancy between the input x and its ground-truth label y. By writing the
training objective in this format, we can denote both vanilla and robust adversarial training using the
same notation. Below we show how various choices of the function Φ amounts to different training
objectives.

Vanilla Training. In case of vanilla training, the function is a simple evaluation of an appropriate
loss function over the neural network output fθ(x) and the ground-truth label y. In other words, for
vanilla training we have

Φ (x, y; fθ) = LCE (fθ(x), y) , (2)

where LCE(·, ·) is the cross-entropy loss.

FGSM, `p-PGD, and Perceptual Adversarial Training. In these cases, the training objective is
itself an optimization problem

Φ (x, y; fθ) = max
x̃
LCE (fθ(x̃), y) s.t. d (x̃,x) ≤ ε (3)

where d(·, ·) is an appropriate distance measure over image domain X, and ε denotes a scalar. The
constraint over d (x̃,x) is used to ensure visual similarity between x̃ and x. It can be shown that
solving Eq. (3) amounts to finding an adversarial example x̃ for the clean sample x (Madry et al.,
2018). Different choices of the visual similarity measure d(·, ·) and solvers for Eq. (3) results in
different adversarial training objectives.

• FGSM (Goodfellow et al., 2015) assumes that d (x̃,x) = ‖x̃− x‖∞. Using this `∞ assump-
tion, the solution to Eq. (3) is computed using one iteration of gradient ascent.

• In `p-PGD, Madry et al. (2018) utilize `p norms as a proxy for visual similarity d(·, ·). Then,
several steps of projected gradient ascent is taken to solve Eq. (3).

• Finally, Perceptual Adversarial Training (Laidlaw et al., 2021) replaces d(·, ·) with Learned
Perceptual Image Patch Similarity (LPIPS) distance (Zhang et al., 2018). Then, Laidlaw et al.
(2021) propose to solve this maximization objective using either projected gradient ascent or
Lagrangian relaxation.

TRADES Adversarial Training. This approach uses a combination of Eqs. (2) and (3). The
intuition behind this method is creating a trade-off between clean and robust accuracy. In particular,
the TRADES (Zhang et al., 2019) objective can be written as

Φ (x, y; fθ) = LCE (fθ(x), y) + max
x̃
LCE (fθ(x̃), fθ(x)) /λ s.t. d (x̃,x) ≤ ε, (4)

where λ is a regularization parameter that controls the trade-off.
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2.2 CORESET SELECTION

Adaptive data subset selection, and coreset selection in general, is concerned with finding a weighted
subset of the data that can approximate certain attributes of the entire population (Feldman, 2020).
Traditionally, coreset selection has been used for different machine learning tasks such as k-means
and k-medians (Har-Peled & Mazumdar, 2004), Naı̈ve Bayes and nearest neighbor classifiers (Wei
et al., 2015), and Bayesian inference (Campbell & Broderick, 2018).

Recently, coreset selection algorithms are developed for neural network training (Mirzasoleiman
et al., 2020a;b; Killamsetty et al., 2021b;a). The main idea behind such methods is to give an
approximation of the full gradient using a subset of the training data. These algorithms start with
computing the gradient of the loss function with respect to the neural network weights. This
gradient is computed for every data sample in the training set. Then, an objective function is
formed. The goal of this optimization problem is to find a weighted subset of the training data that
can approximate the full gradient.

It can be shown that this problem is NP-hard (Mirzasoleiman et al., 2020a;b). Roughly speaking,
various coreset selection methods differ from each other in how they approximate the solution of the
aforementioned objective. For instance, CRAIG (Mirzasoleiman et al., 2020a) casts this objective as
a submodular set cover problem and uses existing greedy solvers to get an approximate solution. As
another example, GRAD-MATCH (Killamsetty et al., 2021a) analyzes the convergence of stochastic
gradient descent using adaptive data subset selection. Based on this study, Killamsetty et al. (2021a)
propose to use Orthogonal Matching Pursuit (OMP) (Pati et al., 1993) as a greedy solver of the data
selection objective. More information about these methods is provided in Appendix A.

The aforementioned coreset selection algorithms can only be used for vanilla training of neural
networks. As such, they still suffer from adversarial vulnerability. Different from these methods, in
this paper we extend coreset selection algorithms for robust training of neural networks, and show
how they can be adapted to various robust training objectives including TRADES (Zhang et al.,
2019), `p-PGD (Madry et al., 2018) and Perceptual (Laidlaw et al., 2021) Adversarial Training.

3 PROPOSED METHOD

As discussed in Section 1, the main bottleneck in the time/computational complexity of adversarial
training stems from constructing adversarial examples for the entire training set at each epoch. Fast
Adversarial Training (Wong et al., 2020) tries to eliminate this issue by using FGSM as its adver-
sarial example generator. However, this simplification 1) may lead to catastrophic overfitting (Wong
et al., 2020; Andriushchenko & Flammarion, 2020), and 2) is not easy to generalize to all types of
adversarial training as FGSM is specifically designed for `∞ attacks.

Instead of using a faster adversarial example generator, here we take a different, orthogonal path and
try to effectively reduce the training set size. This way, the original adversarial training algorithm can
still be used on this smaller subset of training data. This approach can reduce the time/computational
complexity while optimizing the same objective as the original training. In this sense, it leads to a
more unified method that can be used along with various types of adversarial training objectives;
including the ones that already exist, and the ones that are going to be proposed in the future.

The main hurdle in materializing this idea is the following question:

How should we select this subset of the training data without hurting either the clean or robust
accuracy?

To answer this question, we propose to use coreset selection on the training data to reduce the
sample size and improve training efficiency. However, the issue with existing coreset selection
methods such as CRAIG (Mirzasoleiman et al., 2020a) or GRAD-MATCH (Killamsetty et al., 2021a)
is that they are specifically designed for vanilla training of neural networks, and they do not reflect
the requirements of adversarial training. As such, we should modify these methods to make them
suitable for our purpose of robust neural network training. Meanwhile, we should also consider the
fact that the field of coreset selection is still evolving. Thus, we aim to find a general modification
that later can be used alongside newer versions of greedy coreset selection algorithms.
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To find this general modification, recall from Section 2.2 that coreset selection can be seen as a
two-step process. First, the gradient of the loss function with respect to the neural network weights
is computed for each training sample. Then, based on the gradients obtained in step one, a weighted
subset (a.k.a the coreset) of the training data is formed. This subset is obtained such that the weighted
gradients of the samples inside the coreset can provide a good approximation of the full gradient.

We notice that various coreset selection methods proposed for vanilla neural network training only
differ in the second step of the aforementioned process. As such, we can narrow down the changes
that we want to make to the first step of coreset selection: gradient computation. Then, existing
greedy solvers can be used to find the subset of training data that we are looking for. To this end,
we draw a connection between coreset selection methods and adversarial training using Danskin’s
Theorem as outlined next.

3.1 CORESET SELECTION FOR EFFICIENT ADVERSARIAL TRAINING

As discussed above, the first step in finding a weighted subset of training data is the computation of
the loss gradient with respect to the neural network weights. This computation needs to be done for
the entire training set. In particular, using our notation from Section 2.1, this step can be written as

∇θΦ (xi, yi; fθ) ∀ i ∈ V, (5)

where V = [n] = {1, 2, . . . , n} denotes the training set indices.

For vanilla neural network training (see Section 2.1) the above gradient is simply equal to
∇θLCE (fθ(xi), yi) which can be computed using standard backpropagation. In contrast, for the
adversarial training objectives in Eqs. (3) and (4), this gradient requires taking partial derivative of a
maximization objective. To this end, we use the famous Danskin’s (1969) Theorem as stated below.

Theorem 3.1 (Danskin (1967) (Theorem A.1 in Madry et al. (2018))) Let S be a nonempty com-
pact topological space, ` : Rm × S → R be such that `(·, δ) is differentiable for every δ ∈ S,
and ∇θ`(θ, δ) is continuous on Rm × S. Also, let δ∗(θ) = {δ ∈ argmaxδ∈S `(θ, δ)}. Then, the
corresponding max-function

φ(θ) = max
δ∈S

`(θ, δ)

is locally Lipschitz continuous, directionally differentiable, and its directional derivatives along
vector h satisfy

φ′(θ,h) = sup
δ∈δ∗(θ)

h>∇θ`(θ, δ).

In particular, if for some θ ∈ Rm the set δ∗(θ) = {δ∗θ} is a singleton, then the max-function is
differentiable at θ and

∇φ(θ) = ∇θ` (θ, δ∗θ) .

In summary, Theorem 3.1 indicates how to take the gradient of a max-function. To this end, it
suffices to 1) find the maximizer, and 2) evaluate the normal gradient at this point.

Now that we have stated Danskin’s Theorem, we are ready to show how it can provide the connection
between coreset selection and the adversarial training objectives of Eqs. (3) and (4).

3.1.1 `p-PGD AND PERCEPTUAL ADVERSARIAL TRAINING

Going back to Eq. (5), we know that to perform coreset selection we need to compute this gradient
term for our objective in Eq. (3). In other words, we need to compute

∇θΦ (x, y; fθ) = ∇θmax
x̃
LCE (fθ(x̃), y) s.t. d (x̃,x) ≤ ε (6)

for every training sample. Based on Danskin’s Theorem, we can deduce

∇θΦ (x, y; fθ) = ∇θLCE (fθ(x
∗), y) , (7)

where x∗ is the solution to

max
x̃
LCE (fθ(x̃), y) s.t. d (x̃,x) ≤ ε. (8)
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Note that the conditions under which Danskin’s Theorem hold might not be satisfied for neural net-
works in general. This is due to the existence of discontinuous functions such as ReLU activation
in neural networks. More importantly, finding the exact solution of Eq. (8) is not straightforward as
neural networks are highly non-convex. Usually, the exact solution x∗ is replaced with its approx-
imation, which is an adversarial example generated under the Eq. (8) objective (Kolter & Madry,
2018). Based on this approximation, we can re-write Eq. (7) as

∇θΦ (x, y; fθ) ≈ ∇θLCE (fθ(xadv), y) . (9)

In other words, to perform coreset selection for `p-PGD (Madry et al., 2018) and Perceptual (Laid-
law et al., 2021) Adversarial Training, one needs to add a pre-processing step to the gradient com-
putation. During this step, adversarial examples for the entire training set need to be constructed.
Afterwards, the coresets can be built as in vanilla neural networks.

3.1.2 TRADES ADVERSARIAL TRAINING

For TRADES (Zhang et al., 2019), the gradient computation is slightly different as the objective in
Eq. (4) consists of two terms. In this case, the gradient can be written as

∇θΦ (x, y; fθ) = ∇θLCE (fθ(x), y) +∇θmax
x̃
LCE (fθ(x̃), fθ(x)) /λ s.t. d (x̃,x) ≤ ε. (10)

The first term is the normal gradient of the neural network. For the second term, we apply Danskin’s
Theorem to get

∇θΦ (x, y; fθ) ≈ ∇θLCE (fθ(x), y) +∇θLCE (fθ(xadv), fθ(x)) /λ, (11)

where xadv is an approximate solution to

max
x̃
LCE (fθ(x̃), fθ(x)) /λ s.t. d (x̃,x) ≤ ε. (12)

Then, we compute the gradient term∇θLCE (fθ(xadv), fθ(x)) in Eq. (11) using the multi-variable
chain rule. To show this, let us assume that w(θ) = fθ(xadv) and z(θ) = fθ(x). We can write the
aforementioned gradient as

∇θLCE (fθ(xadv), fθ(x)) = ∇θLCE (w(θ), z(θ))

(1)
= ∂LCE

∂w ∇θw(θ) + ∂LCE

∂z ∇θz(θ)
(2)
= ∇θLCE (fθ(xadv),freeze (fθ(x)))

+∇θLCE (freeze (fθ(xadv)) , fθ(x)) . (13)

Here, step (1) is derived using the multi-variable chain rule. Also, step (2) is the re-writing of step (1)
by using the freeze(·) kernel that stops the gradients from backpropagating through its argument
function. Putting Eqs. (11) and (13) together, we can write the TRADES gradient as

∇θΦ (x, y; fθ) = ∇θLCE (fθ(x), y) +∇θLCE (fθ(xadv),freeze (fθ(x))) /λ

+∇θLCE (freeze (fθ(xadv)) , fθ(x)) /λ. (14)

After the gradient is computed for the entire training data using the above formulation, one can use
coreset selection algorithms to find the weighted subset of the training data.

3.1.3 PRACTICAL CONSIDERATIONS AND THE FINAL ALGORITHM

Following the above discussion, to effectively reduce the training set size using coreset selection we
need to compute the loss gradient for the entire training data. For adversarial training this amounts
to adding a pre-processing step where we need to build perturbed versions of the training data using
their respective objectives in Eqs. (8) and (12). Then, the gradients can be computed using Eqs. (9)
and (14). Afterwards, greedy subset selection algorithms can be used to construct the coresets based
on the value of the gradients. Finally, having selected the coreset data, one can run adversarial
training only on the data that remains in the coreset. As can be seen, we are not changing the
essence of the training objective in this process. We are just reducing the training size to enhance
the computational efficiency of our proposed solution and as such, we are able use it along with
any adversarial training objectives. We stress once again that our approach is orthogonal to the
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Figure 1: Overview of neural network training using coreset selection.

existing work around efficient adversarial training in the sense that it can also be combined with
those approaches to make them even faster. We leave this direction for future work.

Since coreset selection depends on the current values of the neural network weights, it is important
to update the coresets as the training evolves. Prior work (Killamsetty et al., 2021b;a) has shown
that this selection needs to be done every T epochs, where T is usually greater than 15. Further-
more, there are small, yet important practical changes that we employ while using coreset selection
to increase efficiency. We summarize these practical tweaks below. Further detail can be found
in Killamsetty et al. (2021a); Mirzasoleiman et al. (2020a).

• Gradient Approximation: As we saw, both Eqs. (9) and (14) require computation of the
loss gradient with respect to the neural network weights. This is equal to backpropagation
through the entire neural network, which is not very efficient. Instead, it is common to replace
the exact gradients in Eqs. (9) and (14) with their last-layer approximation (Katharopoulos &
Fleuret, 2018; Mirzasoleiman et al., 2020a; Killamsetty et al., 2021a). In other words, instead
of backpropagating through the entire network, one can backpropagate up until the last layer.
This estimate has an approximate complexity equal to forwardpropagation, and it has been
shown to work well in practice (Mirzasoleiman et al., 2020a;b; Killamsetty et al., 2021b;a).

• Batch-wise Coreset Selection: As discussed in Section 3.1, data selection is usually done in
a sample-wise fashion where each data sample is separately considered to be selected. This
way, one needs to find the data candidates out of the entire training set. To increase efficiency,
Killamsetty et al. (2021a) proposed the batch-wise variant. In this type of coreset selection,
the data is first split into several batches. Then, the algorithm makes a selection out of these
batches. Intuitively, this change can increase efficiency as the sample size reduces from the
number of data points to the number of batches.

• Warm-start with the Entire Data: Finally, as we shall see in the experiments, it is important
to warm-start the training using the entire dataset. Afterwards, the coreset selection is activated
and training is only performed using the data that remains in the coreset.

Figure 1 summarizes the coreset selection for vanilla and adversarial training.

4 EXPERIMENTAL RESULTS

In this section, we present our experimental results. We show how our proposed approach can
efficiently reduce the time complexity of various robust training objectives in different settings. To
this end, we train our approach using TRADES (Zhang et al., 2019), `p-PGD (Madry et al., 2018)
and Perceptual (Laidlaw et al., 2021) Adversarial Training on CIFAR-10 (Krizhevsky & Hinton,
2009), SVHN (Netzer et al., 2011), and a subset of ImageNet (Russakovsky et al., 2015) with 12
classes. For TRADES and `p-PGD training, we use ResNet-18 (He et al., 2016) classifiers, while
for Perceptual Adversarial Training we use ResNet-50 architectures. Further implementation details
can be found in Appendix B.

TRADES and `p-PGD Robust Training. In our first set of experiments, we train ResNet-18
classifiers on CIFAR-10 and SVHN datasets using TRADES, `∞ and `2-PGD adversarial training
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Table 1: Clean and robust accuracy (%), and total training time (mins) of different adversarial train-
ing methods. For each method, all the hyper-parameters were kept the same as full training. For
our proposed approach, the difference with full training is shown in parentheses. Note that the ro-
bust accuracy for each objective was computed accordingly, the detail of which can be found in the
Appendix.

O
bj

ec
t.

D
at

as
et

Training Performance Measures

Clean Acc. (%) Robust Acc. (%) Train. Time (mins)

T
R

A
D

E
S

C
IF

A
R

-1
0 Adversarial CRAIG (Ours) 79.31 (−1.07) 30.20 (−0.56) 486.18 (−615.66)

Adversarial GRADMATCH (Ours) 79.22 (−1.16) 30.66 (−0.10) 475.68 (−626.16)
Full Adversarial Training 80.38 30.76 1101.84

` ∞
-P

G
D

C
IF

A
R

-1
0 Adversarial CRAIG (Ours) 84.00 (−0.84) 34.56 (−0.72) 352.98 (−480.36)

Adversarial GRADMATCH (Ours) 84.30 (−0.54) 35.01 (−0.27) 342.54 (−490.80)
Full Adversarial Training 84.84 35.28 833.34

` 2
-P

G
D

SV
H

N Adversarial CRAIG (Ours) 94.65 (−0.54) 93.51 (−0.66) 211.08 (−709.50)
Adversarial GRADMATCH (Ours) 93.61 (−1.58) 92.30 (−1.87) 206.22 (−714.36)

Full Adversarial Training 95.19 94.17 920.58

objectives. In each case, we set the training hyper-parameters such as the learning rate, the number
of epochs, and attack parameters. Then, we train the network using the entire training data as well
as using our adversarial coreset selection approach. For our approach, we use batch-wise versions
of CRAIG (Mirzasoleiman et al., 2020a) and GRADMATCH (Killamsetty et al., 2021a) with warm-
start. We set the coreset size (the percentage of training data to be selected) to 40% for CIFAR-10
and 20% for SVHN to get a reasonable balance between accuracy and training time. We report the
clean and robust accuracy (in %) as well as the total training time (in minutes) in Table 1. For our
approach, we also report the difference with respect to full training in parenthesis. As can be seen,
in all of the cases we can reduce the training time by more than a factor of two while keeping both
the clean and robust accuracy almost intact.

Perceptual Adversarial Training and Robustness vs. Unseen Attacks. As discussed in Sec-
tion 2, Perceptual Adversarial Training (PAT) (Laidlaw et al., 2021) replaces the visual similarity
measure d(·, ·) in Eq. (3) with LPIPS (Zhang et al., 2018) distance. The logic behind this choice is
that `p norms can only capture a small portion of images that are similar to the clean one, limiting
the search space of adversarial attacks. Motivated by this reason, Laidlaw et al. (2021) proposes two
different ways of finding the solution to Eq. (3) when d(·, ·) is the LPIPS distance. The first version
uses PGD, and the second one is a relaxation of the original problem using the Lagrangian form.
We refer to these two versions as PPGD (Perceptual PGD) and LPA (Lagrangian Perceptual Attack),
respectively. Then, Laidlaw et al. (2021) proposed to utilize a fast version of LPA to enable its usage
in adversarial training. More information about this approach can be found in Laidlaw et al. (2021).

For our next set of experiments, we train ResNet-50 classifiers using Fast-LPA. In this case, we
train the classifiers on CIFAR-10 and ImageNet-12 datasets. Like our previous experiments, we set
the hyper-parameters of the training to be fixed, and then train the models using the entire training
data and our adversarial coreset selection method. For our method, we use batch-wise versions of
CRAIG (Mirzasoleiman et al., 2020a) and GRADMATCH (Killamsetty et al., 2021a) with warm-
start. The coreset size for CIFAR-10 and ImageNet-12 were set to 40% and 50%, respectively. As
in Laidlaw et al. (2021), we measure the performance of the trained models against unseen attacks
during training, as well as the two variants of perceptual attacks. The unseen attacks for each dataset
were selected in a similar manner to Laidlaw et al. (2021), and the attack parameters can be found
in Appendix B. We also record the total training time taken by each method.

Table 2 summarizes our results on PAT using Fast-LPA. As can be seen, our adversarial coreset
selection approach can deliver almost the same performance while reducing the training time by a
factor of two. These results indicate the flexibility of our adversarial coreset selection that can be
combined with various objectives. This is due to the orthogonality of the proposed approach with
the existing efficient adversarial training methods. In this case, we see that using our approach we
can make Fast-LPA even faster.

8



Under review as a conference paper at ICLR 2022

Table 2: Clean and robust accuracy (%), and total training time (mins) of Perceptual Adversarial
Training for CIFAR-10 and ImageNet-12 datasets. The training objective uses Fast Lagrangian
Perceptual Attack (LPA) (Laidlaw et al., 2021) to train the network. At test time the networks
are evaluated against attacks that were not seen during training, as well as different versions of
Perceptual Adversarial Attack (PPGD and LPA). In each dataset, the unseen attacks were selected
similar to Laidlaw et al. (2021). For more information about the settings, please see the Appendix.

D
at

as
et

Training Clean Unseen Attacks Seen Attacks Train. Time
(mins)

Auto-`2 Auto-`∞ JPEG StAdv ReColor Mean PPGD LPA

C
IF

A
R

-1
0 Adv. CRAIG (Ours) 83.21 39.98 33.94 - 49.60 62.69 46.55 19.56 7.42 767.34

Adv. GRADMATCH (Ours) 83.14 39.20 34.11 - 48.86 62.26 46.11 19.94 7.54 787.26
Full PAT (Fast-LPA) 86.02 43.27 37.96 - 48.68 62.23 48.04 22.62 8.01 1682.94

Im
ag

eN
et

-1
2 Adv. CRAIG (Ours) 86.99 51.54 60.42 71.79 37.47 44.04 53.05 29.04 14.07 2817.06

Adv. GRADMATCH (Ours) 87.08 51.38 60.64 72.15 35.83 45.83 53.17 28.36 13.11 2865.72
Full PAT (Fast-LPA) 91.22 57.37 66.89 76.25 19.29 46.35 53.23 33.17 13.49 5613.12

(a) (b) (c) (d)

Figure 2: Relative error vs. speed up curves for different versions of adversarial coreset selection in
training CIFAR-10 models using the TRADES objective. In each curve, the coreset size is changed
from 50% to 10% (left to right). (a, b) Clean and robust error vs. speed up compared to full TRADES
for different version of Adversarial CRAIG. (c, d) Clean and robust error vs. speed up compared to
full TRADES for different version of Adversarial GRADMATCH.

Trade-offs. Finally, we study the accuracy vs. speed-up trade-off in adversarial coreset selec-
tion. For this study, we train our adversarial coreset selection method using different versions of
CRAIG (Mirzasoleiman et al., 2020a) and GRADMATCH (Killamsetty et al., 2021a) on CIFAR-10
using TRADES. In particular, for each method, we start with the base algorithm and add the batch-
wise selection and warm-start one by one. Also, to capture the effect of the coreset size, we vary
this number from 50% to 10% in each case. Figure 2 shows the clean and robust error vs. speed-up
compared to full adversarial training. As can be seen, in each case the combination of warm-start
and batch-wise versions of the adversarial coreset selection gives the best performance. This obser-
vation is in line with that of Killamsetty et al. (2021a) around vanilla coreset selection. Moreover,
as we gradually decrease the coreset size, we see that the training speed goes up. However, this gain
in training speed is achieved at the cost of increasing the clean and robust error.

5 CONCLUSION

In this paper, we proposed a general yet principled approach for efficient adversarial training based
on the theory of coreset selection. We discussed how repetitive computation of adversarial attacks
for the entire training data can impede the training speed. Unlike previous works that try to solve
this issue by making the adversarial attack simpler, here, we took an orthogonal path to effectively
reduce the training set size without modifying the attacker. To this end, we discussed how coreset
selection can be viewed as a two-step process, where first the gradients for the entire training data
are computed, and then greedy solvers choose a weighted subset of data that can approximate the
full gradient. Using Danskin’s Theorem, we drew a connection between greedy coreset selection al-
gorithms and adversarial training. We then showed the flexibility of our adversarial coreset selection
method by utilizing it for TRADES, `p-PGD, and Perceptual Adversarial Training. Our experimen-
tal results indicate that adversarial coreset selection can reduce the training time by factors of more
than 2-3 while keeping the clean and robust accuracy almost intact.
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SUPPLEMENTARY MATERIALS

A GREEDY SUBSET SELECTION ALGORITHMS

In this section, we briefly review the technical details of greedy subset selection algorithms used in
our experiments. Further details can be found in Mirzasoleiman et al. (2020a); Killamsetty et al.
(2021a).

A.1 CRAIG

As discussed previously, the goal of coreset selection is to find a subset of the training data such that
the weighted gradient computed over this subset can give a good approximation to the full gradient.
Thus, CRAIG (Mirzasoleiman et al., 2020a) starts with explicitly writing down this objective as∥∥∥∥∥∥

∑
i∈V
∇θΦ (xi, yi; fθ)−

∑
j∈S

γj∇θΦ (xj , yj ; fθ)

∥∥∥∥∥∥ . (15)

Here, V = [n] = {1, 2, . . . , n} denotes the training set. The goal is to find a coreset S ⊂ V and its
associated weights γj such that the objective of Eq. (15) is minimized. To this end, Mirzasoleiman
et al. (2020a) find an upper-bound on the estimation error of Eq. (15). This way, it is shown that the
coreset selection objective can be approximated by

S∗ = arg min
S⊆V
|S|, s.t. L(S) ,

∑
i∈V

min
j∈S

dij ≤ ε, (16)

where
dij , max

θ∈Θ
‖∇θΦ (xi, yi; fθ)−∇θΦ (xj , yj ; fθ)‖ (17)

denotes the maximum pairwise gradient distances computed for all i ∈ V and j ∈ S. Then,
Mirzasoleiman et al. (2020a) cast Eq. (16) as the well-known submodular set cover problem for
which greedy solvers exist (Minoux, 1978; Nemhauser et al., 1978; Wolsey, 1982).

A.2 GRAD-MATCH

Killamsetty et al. (2021a) studies the convergence of adaptive data subset selection algorithms using
stochastic gradient descent (SGD). It is shown that the convergence bound consists of two terms:
an irreducible noise-related term, and an additional gradient error term just like Eq. (15). Based on
this analysis, Killamsetty et al. (2021a) then proposes to minimize this objective directly. To this
end, they use the famous Orthogonal Matching Pursuit (OMP) (Pati et al., 1993) as their greedy
solver, resulting in an algorithm called GRAD-MATCH. It is then proved that since GRAD-MATCH
minimizes the Eq. (15) objective directly, it achieves a lower error compared to CRAIG that only
minimizes an upper-bound to Eq. (15).

B IMPLEMENTATION DETAILS

In this section, we provide the details of our experiments in Section 4. We used a single NVIDIA
Tesla V100-SXM2-16GB GPU for CIFAR-10 (Krizhevsky & Hinton, 2009) and SVHN (Netzer
et al., 2011), and a single NVIDIA Tesla V100-SXM2-32GB GPU for ImageNet-12 (Russakovsky
et al., 2015; Liu et al., 2020). The code will be released upon publication.

B.1 TRAINING SETTINGS.

Table 3 shows the entire set of hyper-parameters and settings used for training the models of Sec-
tion 4.
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B.2 EVALUATION SETTINGS

For the evaluation of TRADES and `p-PGD adversarial training, we use PGD attacks. In particular,
for TRADES and `∞-PGD adversarial training we use `∞-PGD attacks with ε = 8/255, step-size
α = 1/255, 50 iterations, and 10 random restarts. Also, for `2-PGD adversarial training we use
`2-PGD attacks with ε = 80/255, step-size α = 8/255, 50 iterations and 10 random restarts.

For Perceptual Adversarial Training (PAT), we report the attacks’ settings in Table 4. Note that for
each case, we chose the same set of unseen/seen attacks for evaluation. However, since we trained
our model with slightly different ε bounds, we changed the attacks’ settings accordingly.

Table 4: Hyper-parameters of attacks used for the evaluation of PAT models in Section 4.

Dataset Attack Bound Iterations

C
IF

A
R

-1
0

AutoAttack-`2 (Croce & Hein, 2020) 1 20
AutoAttack-`∞ (Croce & Hein, 2020) 8/255 20

StAdv (Xiao et al., 2018) 0.02 50
ReColor (Laidlaw & Feizi, 2019) 0.06 100

PPGD (Laidlaw et al., 2021) 0.40 40
LPA (Laidlaw et al., 2021) 0.40 40

Im
ag

eN
et

-1
2

AutoAttack-`2 (Croce & Hein, 2020) 1200/255 20
AutoAttack-`∞ (Croce & Hein, 2020) 4/255 20

JPEG (Kang et al., 2019) 0.125 200
StAdv (Xiao et al., 2018) 0.02 50

ReColor (Laidlaw & Feizi, 2019) 0.06 200
PPGD (Laidlaw et al., 2021) 0.35 40
LPA (Laidlaw et al., 2021) 0.35 40
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