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Abstract

Graph Neural Networks (GNNs) have garnered increasing attention in recent years, given
their significant proficiency in various graph learning tasks. Consequently, there has been
a notable transition away from the conventional and prevalent shallow graph embedding
methods which pre-dated GNNs. However, in tandem with this transition which is pre-
supposed in the literature, an imperative question arises: do GNNs always outperform
shallow embedding methods in node representation learning? This question remains inade-
quately explored, as the field of graph machine learning still lacks a systematic understand-
ing of their relative strengths and limitations. To address this gap, we propose a principled
framework that unifies the ideologies of representative shallow graph embedding methods
and GNNs. With comparative analysis, we show that GNNs actually bear drawbacks that
are typically not shared by shallow embedding methods. These drawbacks are often masked
by data characteristics in commonly used benchmarks and thus not well-discussed in the
literature, leading to potential suboptimal performance when GNNs are indiscriminately
adopted in applications. We further show that our analysis can be generalized to GNNs un-
der various learning paradigms, which provides further insights to emphasize the research
significance of shallow embedding methods. Finally, with these insights, we conclude with
a guide to meet various needs of researchers and practitioners.
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1 Introduction

Graph-structured data is ubiquitous across a plethora of applications, including recom-
mender systems (Ying et al., 2018b; Fan et al., 2019; Tang et al., 2022), predictive user
behavior models (Pal et al., 2020; Zhao et al., 2021), and chemistry analysis (You et al.,
2018; Li et al., 2018). To gain deeper understanding on graph data and exploit the rich
relational information, there has been a surge of interest in learning informative represen-
tations for graphs (Hamilton et al., 2017a; Xu et al., 2019). These methods typically learn
representations via optimizing mappings that encode nodes or subgraphs as data points in
a low-dimensional hidden space (Kipf and Welling, 2017). Their primary goal is to preserve
as much task-relevant information of the graph (e.g., the proximity of nodes over the graph
topology) as possible. Once the mapping is optimized, the learned representations can serve
as the input features to perform a wide spectrum of downstream tasks on graphs, such as
node classification (Kipf and Welling, 2017) and link prediction (Zhang and Chen, 2018).

In general, commonly used graph representation learning methods in practice can be
divided into two categories, i.e., shallow graph embedding methods and deep graph learning
methods (Hamilton et al., 2017b). Shallow graph embedding methods are mostly character-
ized by using an embedding lookup table as the mapping from nodes to their representations.
For example, DeepWalk (Perozzi et al., 2014) and node2vec (Grover and Leskovec, 2016)
directly consider node representations as free parameters. These representations are opti-
mized with a skip-gram model (Mikolov et al., 2013) based on randomly generated walks.
On the other hand, deep graph learning methods learn mappings from node attribute space
to the latent space. For example, GNNs typically take node attributes and graph topology
as input and exploit the topology and attribute information concurrently via neighborhood
aggregation. In practice, GNNs are often found to show superior performance in node repre-
sentation learning to power various tasks over attributed graphs (Dwivedi et al., 2023), such
as node classification (Kipf and Welling, 2017; Xu et al., 2019; Dwivedi et al., 2023), link
prediction (Zhang and Chen, 2018; Chamberlain et al., 2023; Ying et al., 2018b), and graph
classification (Xu et al., 2019; Ying et al., 2019). Such a success has placed GNNs among
the most popular graph representation learning methods, attracting increasing attention
from researchers and practitioners (Zhou et al., 2020; Wu et al., 2020).

Nevertheless, close on the heels of the tremendous success of GNNs, several recent stud-
ies have revealed that GNNs may also exhibit weaknesses in downstream tasks compared
with shallow embedding methods across different scenarios (Wang et al., 2022a; Chamber-
lain et al., 2023; Kipf and Welling, 2016). For example, DeepWalk can easily outperform
Variational Graph Auto-Ecoders (Kipf and Welling, 2016), which is commonly believed to
exhibit better performance, on multiple real-world graph datasets (Wang et al., 2022a).
Additionally, multiple other shallow embedding methods (Bordes et al., 2013; Trouillon
et al., 2016; Yang et al., 2015; Postavaru et al., 2020) also exhibited superior performances
over GNNs in link prediction tasks (Chamberlain et al., 2023). Moreover, graph embed-
ding methods have been widely deployed in various high-stake application scenarios to aid
decision making in industry (Dong et al., 2023a; Chang et al., 2021). Correspondingly,
if practitioners shift from shallow embedding methods to GNNs without careful proof-of-
concept evaluations, they may end up with suboptimal results when GNNs are not suitable
for their data and task (Altae-Tran et al., 2017; Chen et al., 2018; Li et al., 2017). There-
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fore, given the rising interest in GNNs within the graph machine learning field, there is
an urgent need to have a systematic understanding about when GNNs fall short in node
representation learning (compared with shallow embedding methods), which helps foster
the meticulous advancement of this area. To bridge this research gap, we ask:

When do GNNs exhibit drawbacks compared with shallow embedding methods?

To answer this question, we pioneer a comprehensive investigation SEESAW (Shallow
Embedding MEthods veSus GrAph Neural NetWorks) to systematically compare the two
branches of node representation learning methods. Specifically, we first perform a sys-
tematic analysis to compare the data flow of the two branches with a unified framework.
Through such analysis, we attribute the primary differences between shallow embedding
methods and GNNs to two factors: (i) whether the learning method uses a prior based on
node attributes for representation learning; and (ii) whether the learning method explicitly
performs neighborhood aggregation. Then we present a comprehensive study to compare
the performance of methods from the two branches, and explore whether these differences
bring drawbacks to GNNs or not. Despite the significant performance superiority of GNNs
in most use-cases, we highlight two key drawbacks based on their differences from shallow
embedding methods. First, in terms of the learning priors, we found that when only a lim-
ited number of attributes are available (i.e., in attribute-poor scenarios), the representations
yielded by GNNs usually collapse into a lower-dimensional subspace (instead of spanning
the entire available hidden space), a.k.a. dimensional collapse (Zhuo et al., 2023; Jing et al.,
2022; He and Ozay, 2022). Second, in terms of neighborhood aggregation, we found that
performing aggregation is prone to jeopardizing the performance over certain subgroups,
e.g., nodes connected in a heterophilic manner. Armed with the above-mentioned observa-
tions, we emphasize the research significance of shallow embedding methods, and present a
guide for practitioners to select an appropriate learning models given their settings. In par-
ticular, despite the overall performance superiority of GNNs, we suggest adopting shallow
embedding methods instead of more commonly used GNNs in (i) attribute-poor scenarios,
as shallow embedding methods excel at avoiding dimensional collapse by avoiding using
node attributes; (i) highly heterophilic networks, as shallow embedding methods do not
perform neighborhood aggregation that jeopardizes the performances of heterophilic nodes.

2 Preliminaries

Notations. We denote an attributed graph as G = {V, £}, where V = {vy,...,v,} is the
set of n nodes; &€ C V x V is the set of edges. Let A € {0,1}"*™ and X € R"™*¢ be the
adjacency matrix and attribute matrix of G, respectively. Here n represents the total number
of nodes, while ¢ is the number of dimensions! of the node attributes. In self-supervised
node representation learning, an embedding model is denoted as fg, where 6 denotes the
learnable parameters. Specifically, fg takes a node v; as input, and outputs its associated
embedding. In node classification, a decoder takes the embedding of a node as input, and
outputs the predicted label. In link prediction, a decoder takes the representations of a pair
of nodes as input and output the probability of being connected.

1. For simplicity, we refer to the total number of dimensions of a space as its dimensionality.



Dong, SHIAO, L1U ET AL.

Shallow Embedding Methods. Common shallow embedding methods include those
based on matrix factorization and those based on random walks. Without loss of gen-
erality, in this paper, we focus on the walk-based ones, since they are observed to yield
better performance and thus become the most popular options amongst shallow embedding
methods (Hamilton et al., 2017b). Specifically, the mapping from nodes to representations
in walk-based shallow embedding methods is usually an embedding lookup table. Such
mapping is optimized to extract topological information into node representations. We for-
mulate the mapping as fg(v;) = Zv;, where Z € R is a matrix of representations, while
v; € I" is a one-hot vector indicating the column in Z associated with node v;. Here the
learnable parameter set @ = {Z}, which is usually optimized with a walk-based objective.
We denote the embedding of node v; as z,, (i.e., the i-th column of Z), and a common
walk-based objective (Perozzi et al., 2014) is

Liyalk (20;) = — log (U (Z;:-Zvj)) -Q- Evkwpn(v) log (U (—Z;Z%)) . (1)

Here z,; denotes the embedding of node v;, which is a node that co-occurs near v; within a
fixed-length random walk; o () denotes the activation function; ) is the number of negative
samples; P, is a negative sampling distribution. The topology proximity can be preserved
in the embedding of each node via optimizing %k for each node.

Graph Neural Networks (GNNs). There have been a plethora of GNNs designed for
different purposes over the years. Here we introduce the general paradigm of GNNs (Wu
et al., 2020). Typically, a GNN model takes the input G and outputs Z as the learned
embedding matrix for the nodes in V. The basic operation of GNN between I-th and (I+1)-
th layer can be summarized as z£i+1) = J(COMBINE(Z&),AGG({Z&) cv; € N(vi)}))),

0 (-+1)

where zy, and z, is the embedding of node v; at I-th and (I 4+ 1)-th layer, respectively.

In the first layer, zq(,?) can be initialized as the input node feature x,,. N (v;) is the set
of one-hop neighbors of v; according to A. AGG(-) represents the aggregating function,
e.g., weighted sum. COMBINE(:) is the combining function for output of AGG(-) and
zf,li), which combines the representation from the centering node and the representations
of its neighbors. Various objective functions can be adopted to optimize GNNs, including
supervised (e.g., cross-entropy loss in classification) and self-supervised objectives (e.g., the

objective in Equation 1).

3 Shallow Embedding Methods vs. GNNs: A Unified View

Here we design a systematic analysis named SEESAW to characterize the connections and
differences between shallow graph embedding methods and GNNs. Based on such analysis,
we aim to reveal the benefits and drawbacks of GNNs brought by the identified differences.

To perform rigorous analysis between the two branches of representation learning meth-
ods, it is critical to enforce a fair comparison. As discussed in section 2, most popular shallow
embedding methods (e.g., DeepWalk and node2vec) are optimized in a self-supervised learn-
ing paradigm with an objective based on random walks On the other hand, GNNs can be
optimized either in an end-to-end or self-supervised learning paradigm with various types
of objectives. Considering the overlapping in the objectives and learning paradigms of two
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branches, we utilize the widely studied self-supervised learning paradigm with a walk-based
optimization objective (Equation 1) (Hamilton et al., 2017a) to establish a unified view.
We unify the data flow of the two
branches of methods from the perspec-
tive of prior-posterior process, with Fig-
ure 1 presenting an overview of it. Specif-
ically, we consider the distribution of

_Shallow Methods ] | GNNs )

Prior

node representations in the hidden space > > |
after model initialization as the prior dis- Embedding Space Embedding Space
tribution. For shallow graph embedding — ~ 5 = "o~ ~ 4 T OO A garegation
methods, as their embedding matrix is Wl o O— QT
randomly initialized, the adopted distri- oo

bution for node embedding initialization [17 pagy  pade) )

is the prior for representation learning,
e.g., a uniform distribution. For GNNs
e.g., GCN (Kipf and Welling, 2017) and
GraphSAGE (Hamilton et al., 2017a),
the node attributes transformed by the
randomly initialized learnable parame-
ters are regarded as the prior distribu-
tion of node representations in the hidden space. Based on the prior formulations, we
characterize the first difference below.

Posterior

Embedding Space Embedding Space

Figure 1: A unified view of data flow.

Difference 1 (Difference in Learning Priors). Shallow embedding methods take any distri-
bution as the prior of representations in the hidden space, while GNNs take the transformed
node attributes as the prior of representations.

Both branches of models perform optimization w.r.t. the graph topology based on the
prior. As such, the proximity of nodes over the topology could be preserved in the learned
representations. For shallow graph embedding methods, the prior distribution is directly
optimized with a walk-based objective function. For GNNs, the output node representations
can be optimized with the same objective, but only after the layer-wise neighborhood aggre-
gation is performed. Therefore, we characterize the second difference from the perspective
of neighborhood aggregation.

Difference 2 (Difference in Updating Operations). Shallow graph embedding methods do
not explicitly perform neighborhood aggregation, while GNNs do.

According to the two differences characterized above, we formulate the research problem
this paper aims to explore, with the goal of revealing the implicit drawbacks of GNNs
compared with shallow methods and re-calibrate the meticulous advancement of this field.

Problem 1 Given an attributed graph G = {V,E}, consider the above two classes of node
representation learning methods, i.e., the shallow embedding methods and GNN methods,
we seek to characterize (1) the implicit drawbacks of using an attribute-based prior; and (2)
the implicit drawbacks of performing neighborhood aggregation.
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Figure 2: The pipeline of SEESAW: exploring the drawbacks of (1) using attribute-based
priors and (2) adopting neighborhood aggregation of GNNs.

In the following section, we conduct comprehensive experiments to analyze what the
two differences bring to GNNs. Through thorough analysis, we aim to present a systematic
understanding of (i) the overall superiority of GNNs when node attributes are abundant
and (i) the scenarios where shallow embedding methods exhibit superiority while GNNs
fall short. We show a brief pipeline of the proposed SEESAW exploratory study in Figure 2.
Additionally, we note that GNNs can also be optimized with other learning paradigms such
as contrastive learning (Zhu et al., 2020b; Ying et al., 2018a) and end-to-end training (Kipf
and Welling, 2017). Nonetheless, they generally still adhere to the unified view delineated
in Figure 1. Consequently, we also incorporate them to facilitate a comprehensive and
generalizable analysis below.

4 Empirical Analysis: What Do the Differences Bring to GNNs?

4.1 Experimental Settings

Datasets and Tasks. We conduct experiments with 10 commonly used real-world graph
benchmark datasets with different scales, including Cora (Yang et al., 2016), CiteSeer (Yang
et al., 2016), PubMed (Yang et al., 2016), CoraFull (Bojchevski and Giinnemann, 2018),
DBLPFull (Bojchevski and Giinnemann, 2018), Amazon-Computers (Shchur et al., 2018),
Amazon-Photo (Shchur et al., 2018), Coauthor-CS (Shchur et al., 2018), Coauthor-Physics
(Shchur et al., 2018), and Flickr (Zeng et al., 2020). More details including dataset statis-
tics are in subsection B.1. We present the most representative results in this section, and
we include more comprehensive evaluations in Appendix C.

Models. We adopt representative models from shallow embedding methods and GNNs for
analysis. Specifically, we utilize DeepWalk (Perozzi et al., 2014) as the representative shal-
low embedding method, and select GCN with the walk-based loss in Equation 1 (Walk-GCN)
as the default GNN for comparison, unless otherwise indicated. To take a step further, we
will also present comprehensive empirical results of GNNs in different designs and learning
paradigms to demonstrate the generality of our analysis. In terms of GNNs with different
designs, there are multiple GNNs designed with contrastive and non-contrastive objectives
under the same self-supervised learning paradigm (Shiao et al., 2023). We adopt four repre-
sentative ones from both branches to study. For contrastive self-supervised GNNs, we adopt
GRACE (Zhu et al., 2020b) and a GCN trained with max-margin loss (ML-GCN) (Ying
et al., 2018a). For non-contrastive self-supervised GNNs, we adopt Graph Barlow Twins
(GBT) (Bielak et al., 2022) and Bootstrapped Graph Latents (BGRL) (Thakoor et al.,
2022). In terms of different learning paradigms, we also adopt the vanilla GCN trained in
an end-to-end manner (E2E-GCN) for comparison. We report the average results across
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Table 1: Node classification accuracy comparison between shallow methods and GNNs
trained under different learning paradigms on 10 real-world graph datasets, with
the best performances highlighted in Bold. Best performances showing statisti-
cally significant superiority over the shallow method are marked with grey. All
accuracy values are in percentages.

Shallow Walk-GCN GBT BGRL ML-GCN GRACE E2E-GCN

Cora 69.33 £09 7007x14 756314 7433£10 71.87 +£19 80.87 0.4 81.40 = 0.4
CiteSeer 46.37 £0.9 51.77 £14 56.90 £ 0.8 57.03 £2.8 53.07 £ 0.3 69.83 £0.7 70.90 &+ 0.5
PubMed 60.77 £ 0.3 71.13+£29 7863 £03 7727+ 3.5 72.03 +£1.7 80.50 £ 0.4 79.00 + 0.4
CoraFull 50.37 £1.1 53.77 £0.5 57.69 £ 0.7 54.10 £ 0.9 49.32 £0.3 50.23 £1.1 52.18 + 8.3
DBLPFull 81.68 £ 0.7 84.54 £0.4 85.07+ 0.0 84.74 £0.3 81.66 = 0.4 83.25 £ 0.3 85.19 £ 0.4
Amz-C. 88.23 £ 0.8 88.74 £ 1.3 89.15£0.3 8846+ 0.6 89.12 + 0.5 86.30 £ 0.2 91.03 £ 0.5
Amz-P. 92.57 £ 0.5 93.64 £ 0.3 93.07 £04 93.68 £ 0.5 93.36 £ 0.5 92.07 £ 0.2 91.66 = 0.6
Co-CS 87.69 £ 0.2 90.08 £ 0.3 93.75 £ 0.2 92.92 £ 0.1 92.95 + 0.2 92.68 £ 0.6 93.23 £0.1
Co-Phy. 9340 £0.4 95.83+£0.3 9584 +0.2 9574 +£0.0 95.19 &£ 0.0 OOM 95.86 + 0.2
Flickr 52.45 +£ 0.1 46.26 £ 0.2 51.87 £ 0.1 51.89 £ 0.2 51.16 = 0.3 OOM 48.19 £+ 0.2

three separate runs with standard deviation. We present more experimental details such
as dataset split, evaluation protocol, and implementation details in Appendix B.2. We fur-
ther show a detailed comparison of the complexity and the scalability between the adopted
methods in in Appendix C.14.

4.2 Overall Performance Evaluation

We first present an overall performance comparison between shallow embedding methods
and GNNs in Table 1. Without loss of generality, we take node classification as an exem-
plary downstream task. We observe that GNNs exhibit significant superiority over shallow
embedding methods in most datasets. We assume that such superiority comes from two
perspectives, where each perspective associates with one difference identified in section 3.
First, in terms of the learning prior, GNNs are able to exploit the information encoded in
the node attributes, which could lead to more task-relevant information in the learned node
representations. As a comparison, shallow embedding methods typically are not capable of
incorporating node attributes. Second, in terms of neighborhood aggregation, GNNs are
able to exploit more abundant localized information by explicitly performing neighborhood
aggregation between a node and its direct neighbors. On the other hand, shallow embed-
ding methods preserve the topological proximity only through optimizing the walk-based
loss, which may leave relatively more neighbors unexplored. We note that consistent ob-
servations have also been reported in recent studies on other graph learning tasks such as
link prediction (Shiao et al., 2023; Zhu et al., 2020b; Thakoor et al., 2022). We present
more discussions in Appendix C. Interestingly, the only dataset which shallow embedding
method exhibits superiority on is Flickr. We attribute such phenomenon to the limited
number of available node attributes and less homophily in this dataset, which will be further
discussed in the following subsections.
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(a) Accuracy in Node Classification. (b) Hits@50 in Link Prediction.

Figure 3: A comparison between GNNs with different ratios of available node attribute
dimensionality in node classification and link prediction. (a): Comparison of
node classification accuracy; (b): Comparison of Hits@50 in link prediction.

Despite the significant superiority of GNNs over shallow embedding methods, we found
GNNs could also exhibit clear drawbacks associated with the two differences. We discuss
the drawbacks of GNNs brought by 1 and 2 in the following two subsections.

4.3 Are There Any Drawbacks of Using An Attribute-Based Prior?

We note that using an attribute-based prior could enable GNNs to exploit the information
from both attributes and graph topology, which usually brings advantages. However, we
found that their differences may also jeopardize the performance of GNNs in certain sce-
narios. Here we focus on the potential drawbacks brought by using a prior based on node
attributes in GNNs, i.e., 1. Our rationale is that if the prior is directly obtained based on
node attributes, then the performance of GNNs could also heavily rely on the quality of at-
tributes. Nevertheless, we note that in practice, the rich high-dimensional node attributes
are not always available. In those attribute-poor scenarios (i.e., when the attributes are
only partially available), GNNs may struggle to learn high quality node representations,
and thus could also end up with limited performance in downstream tasks. On the con-
trary, shallow graph embedding methods typically do not bear such a problem since they
usually do not rely on node attributes. In light of this, here we study the drawbacks of
GNNs in attribute-poor scenarios. We present our observations below, and we introduce
the complementary results under the same settings in Appendix C.

Observation 1: GNN Performance Drops Under Limited Input Attributes. We
first compare the performance of GNNs under different attribute dimensionalities by man-
ually controlling the number of available attribute dimensions. Specifically, we refer to
the ratio of available attribute dimensions for GNN as attribute dimensionality ratio, and
we vary such a ratio in {100%, 1%, 0.01%} with a minimum number of node attribute
dimensionality being one. Here, the subset of attributes are randomly selected from the
original node attributes. We present the performance comparison between different ratios
of attribute dimensions on node classification and link prediction in Figure 3(a) and Fig-
ure 3(b), respectively. We observe that, when using 100% node attributes, GNN yields
satisfying performance on all datasets, demonstrating the superiority of GNNs when abun-
dant attributes are available. However, when the attribute dimensionality becomes limited,
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i.e., in cases with 1% and 0.01% node attributes, the performance of GNN drops significantly
in both tasks. Such a phenomenon reveals that limited attribute dimensionality jeopardizes
the performance of GNNs. As a comparison, shallow embedding methods typically do not
bear such an issue, since they usually do not take node attributes as input. In fact, when
the attribute dimensionality is limited, the representations yielded by GNNs collapse into a
lower-dimensional subspace instead of spanning the entire hidden space, a.k.a. dimensional
collapse (Zhuo et al., 2023; Jing et al., 2022; He and Ozay, 2022). We provide analysis
between dimensional collapse and the common learning low-rank node representations in
Appendix C.12 and show more detailed discussion in Observation 2 below.

Observation 2: Limited Input Attributes Typically Cause Dimensional Collapse.
) i ) To explore to what extent dimen-
° [ZZ3 Shallow Embedding Method [ GNN with 1 % Attributes .
= 20 GNN with 100 % Attributes 221 GNN with 0.01 % Attributes ~ sional collapse happens, here we
< . . .
characterize the effective dimen-

= 1.00
20.75 sion as the rank of the learned em-
é’ 0.50 bedding matrix. Then, we mea-
A 0‘ 25 sure the level of dimensional col-
E ) lapse with the ratio of the effec-
30.00

= 0‘ e@; ER\ \)\\ Q Xﬂ o‘é‘ tive dimension number to the to-
- C §I\Qo\ﬂQ ?Q 6\ C S tal number of hidden dimensions,

i.e., r/d, where r is the rank of the
node representation matrix and d
is dimension of the hidden space. As a comparison, shallow embedding method consistently
yields a maximal effective dimension ratio, As such, the lower the ratio, the more severe
the dimension collapse becomes. Figure 4 presents the effective dimension ratio across dif-
ferent datasets and attribute dimensionalities in node classification task. We observe that
more available node attribute dimensions play a critical role in learning representations that
span a higher dimensional space, which prevents GNNs from dimensional collapse. which
attributes to the difference in their learning priors. Specifically, shallow embedding meth-
ods randomly initialize the representations, and thus it consistently tends to learn full-rank
node representation matrix. As such, in attribute-poor scenarios, it’s difficult for GNNs to
learn representations spanning a higher dimensional space. We present further discussions
on the ranks of the learned representations in subsection C.4.

o\@

Figure 4: Representation effective dimension ratios.

Observation 3: Dimensional Collapse Ties to Performance & Attribute Dimen-
sionality. To further understand the influence of the dimensionality of the representation
subspace, we conduct experiments by enforcing a bound over the effective dimensionality of
the learned representations. In this way, we are able to adjust other factors while avoiding
increasing rank (e.g., increasing the dimension of representations). This allows us to man-
ually control the level of dimensional collapse in the learned embedding matrix and explore
how rank reduction restricts the embedding space and hinders the model performance. For
example, if the performance is only improved when the rank is allowed to improve while it
does not change w.r.t. other factors, we are then confident to say that it is the rank being
too low that is affecting the performance. Specifically, we propose to consider the learned
embedding matrix from GNNs as Z = CF, where Z € R4 C € R"*", and F € R™*¢
(1 < r <d). Assuch, r naturally serves as an upper bound of the rank for Z without chang-
ing the dimensionality of the hidden space. In practice, we consider the output matrix of
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Figure 5: (a) and (b): Tendencies of performance and collapse under different rank bounds
(enforced for embedding matrix). (c): Performance comparison of other popular
GNNs across different available attribute dimensionality ratios.

GNN model and a matrix with learnable parameters as C' and F', respectively. First, we
present the tendency of node classification accuracy on Amazon-Computers in Figure 5(a),
where both 7 and d vary within a wide range between 2° and 22 to cover most commonly
used values. We observe that the performance (indicated by the color) improves as long
as the bound of the rank r improves under any embedding dimension number d. This fur-
ther demonstrates that rank being too low can severely affect the performance no matter
how the embedding dimension is improved or reduced. In other words, spanning a higher-
dimensional subspace (within the available hidden space) is beneficial for the quality of the
learned representations. Second, we present the tendency of effective dimension w.r.t. the
bound of rank on DBLPFull under different input attribute dimensionalities in Figure 5(b).
We observe that, in attribute-poor scenarios, it is difficult for GNNs to learn representations
with large effective dimensions even if the bound raises to a larger value. We note that such
observations are consistent across datasets and provide additional results and discussion in
subsection C.3 and subsection C.4.

Finally, Figure 5(c) shows the performances of DeepWalk and GNNs under different
learning paradigms under different node attribute availabilities. We can observe that the
performance reduction due to dimensional collapse (as discussed above) can also be ob-
served with other GNNs. By contrast, shallow embedding method learns representations
spanning a maximum subspace (i.e., effective dimensionality equals to the bound of rank).
These observations demonstrate that small attribute dimensionality indeed prevents a wide
spectrum of GNNs from learning representations that span a larger subspace, while shallow
embedding methods typically do not bear such an issue.

4.4 Are There Any Drawbacks of Performing Neighborhood Aggregation?

In this subsection, we explore the potential drawbacks brought by performing neighborhood
aggregation in GNNs, i.e., 2. We note that explicitly performing neighborhood aggregation
enables GNNs to extract information from its direct neighbors. In this way, GNNs allows
each node to take advantage of abundant localized information around it. However, multiple
existing works have pointed out that the neighborhood aggregation mechanism could jeopar-
dize the performance of GNNs (Zhu et al., 2021; Luan et al., 2022). For example, when most
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Figure 6: Cumulative node classification accuracy comparison across nodes with different
levels of homophily: (a) shallow embedding methods w/ vs. w/o neighborhood
aggregation; (b) GNNs w/ vs. w/o neighborhood aggregation. Performance is
on Amazon-Computers for both figures. The dashed curves represent density
functions of node homophily score.

labels of a node’s neighbor are different from its own (i.e., heterophilic cases), the learned
embedding associated with this node could be misled by the information aggregated from
its neighbors. To exclude the influence of differences in their priors, we propose to adopt
(i) shallow embedding methods w/ neighborhood aggregation and (i) GNNs w/o neigh-
borhood aggregation for comparison with normal shallow embedding methods and GNNs,
respectively. Specifically, for the former, we add a layer of the mean aggregator (Hamilton
et al., 2017a) in DeepWalk during both training and inferencing. For the latter, we remove
the neighborhood aggregation before the non-linear transformation.

Observation 4: Heterophilic Nodes Barely Benefit From Aggregation. We empir-
ically validate whether neighborhood aggregation mechanism could jeopardize the perfor-
mance of GNNs or not in the self-supervised learning paradigm. Figure 6(a) and Figure 6(b)
present comparisons between (i) shallow embedding methods w/ and w/o neighborhood
aggregation and (ii) GNNs w/ and w/o neighborhood aggregation, respectively. The ho-
mophily score of each node is measured with the ratio of its neighbors with the same labels
(as this node) to the total number of its neighbors (Zhu et al., 2020a).

With the settings above, we

can observe that the overall perfor- g %SEEL %S[}EA&?N [CIE2E-GCN

mance (i.e., the performance at ho- Z A o Aeerena S — ,1_02
mophily score equals to one) are sim- 2 0.4 Swle fg;%g;ggn % ] 2
ilar between w/ and w/o aggrega- B 7 2
tion for shallow embedding method, & % Z
while the overall performance for .::) 02 ¢ 70‘5'%
GNN w/o aggregation reduces sig- % b %
nificantly compared with vanilla g g
GNN. This demonstrates that neigh- = 0.0 Heterophilic Nodes Homophilic Nodes 00z

borhood aggregation could be crit-
ical to effectively exploit the infor-
mation encoded in node attributes.

Figure 7: Performance comparison of other GNNs
across heterophilic and homophilic nodes.
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This validates the phenomenon of heterophily nodes suffering from neighborhood aggre-
gation. Similar observations are found on other datasets, and more results are in subsec-
tion C.5. Furthermore, we observe that neighborhood aggregation reduces the performance
on nodes with low levels of homophily (i.e., high levels of heterophily) for both models.

Finally, Figure 7 shows the performances of different GNNs w/ and w/o neighborhood
aggregation for top 10% most heterophilic and homophilic nodes in Amazon-Photo. We
observe that performance reduction from neighborhood aggregation widely exists in different
GNNs across different learning paradigms.

5 Discussion: A Guide for Practitioners

Based on the discussion above, we conclude that it is necessary to meticulously select the
branches of models to use, instead of adopting GNNs as a panacea. Armed with such in-
sights, in this section, we provide a guide for practitioners to choose an appropriate type
of models to learn high-quality node representations, such that the performance in vari-
ous downstream tasks can be improved. It’s worth noting that neither shallow embedding
methods nor GNNs are flawless: it is difficult for shallow embedding methods to properly ex-
ploit information encoded in node attributes, while GNNs also bear drawbacks as discussed
in subsection 4.3 and subsection 4.4. To properly handle their drawbacks, a straightfor-
ward way to leverage the advantages from both is by simply combining the representations
learned from both types of models. The rationale is two-fold: (i) The number of effective
dimensions of the learned representations (i.e., the rank of the node representation matrix)
from GNNs could be promoted by representations from shallow methods, which helps to
tackle the problem of dimensional collapse even in attribute-poor scenarios (i.e., when node
attributes are only partially available). (i) Information from both aggregated and unaggre-
gated node attributes could be preserved at the same time, which improves the performance
on heterophilic nodes.

%GNN, 100% %GNN, 1% %GNN, 0.01%
OConcat, 100% OConcat, 1% QConcat, 0.01%
>\‘ e

As an example, we found that

simply concatenating the representa-

tions from both models helps achieve

2 0.8 V7 Shallow & o - ;6 satisfying performance across different
§ / attribute dimensionality ratios. We
i 0.7 // present a performance comparison be-
° / tween shallow method, GNN, and the
:é 0.6 2 strategy of using the concatenation of
£ /~/ node representations yielded by the two
‘% 0.5 —%@ methods on DBLPFull dataset in Fig-
A %" i i ure 8. We observe that the perfor-
0.0 0.5 1.0 mance and effective dimension ratio

Effective Dimension Ratio of GNNs reduce significantly when at-

tribute dimensionality ratio declines.

Figure 8:

Comparison between GNNs, GNNs with
concatenated representations from shal-

low embedding method (Concat), and
shallow embedding methods (Shallow).
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ality ratio, achieving a more stable performance along both axes. We also have similar
observations on other datasets. Nevertheless, such combination would result in significantly
higher computational complexity as well as the need of maintaining two models instead
of one, which is often much less preferred in industrial applications given cost and human
resourcing concerns. Hence, it’s of practical significance to provide guidance in choosing
between the two branches of methods. Below, we formulate the guidance from two perspec-
tives: (1). data perspective, as discussed in previous sections, and (4i). model perspective,
which has been extensively discussed in literature. We further show a detailed empirical
guidance about determining attribute-poor scenarios in Appendix C.13.

Data - Attribute-Rich vs. Attribute-Poor Networks. As discussed in subsection 4.3,
GNNs often achieve superior performance in scenarios with rich attribute compared to shal-
low embedding methods. Correspondingly, adopting GNNs for representation learning on
attribute-rich networks is an obvious choice. Nevertheless, in attribute-poor scenarios, e.g.,
when the attribute dimensionality is limited, GNNs are prone to exhibit dimensional col-
lapse, while shallow embedding methods do not bear such a drawback. Therefore, we recom-
mend adopting GNNs and shallow embedding methods on attribute-rich and attribute-poor
networks, respectively.

Data - Homophilic vs. Heterophilic Networks. According to discussion in sub-
section 4.3, shallow embedding methods and GNNs exhibit different performance on nodes
with different levels of heterophily. In particular, GNNs exhibit superior and inferior perfor-
mance on homophilic and heterophilic nodes (compared with shallow embedding methods),
respectively. A preliminary reason is that explicitly performing neighborhood aggregation is
helpful for homophilic nodes while harmful to heterophilic nodes. Therefore, GNNs are rec-
ommended for representation learning if the network data is homophilic, otherwise shallow
embedding methods could be more suitable.

Model - Transductive vs. Inductive Settings. As the shallow embedding methods rely
on training an embedding vector for each of the node in the graph, they naturally do not
support inductive learning. That is, given any newly appeared nodes, shallow embedding
methods cannot produce it’s representation without retraining or at least fine-tuning the
model. On the other hand, as feature-based models, GNNs are naturally inductive and
are able to inference node representations for the newly appeared nodes (Hamilton et al.,
2017a). Hence, for use-cases such that the graphs are rapidly updating (e.g., social networks,
e-commerce networks, etc), GNNs are recommended given their inductive bias, whereas
shallow embedding methods require frequent costly retrains.

Model - Low-parameter vs. High-parameter Settings. Modern machine learning
usually requires loading all learnable parameters into limited GPU memory to achieve higher
training speed. The number of learnable parameters for shallow embedding methods grows
linearly with the number of nodes. On the other hand, the parameters size of GNNs is only
proportional to the dimension of node attributes and not the number of nodes. Therefore, for
graphs with a large number of nodes, GPU training is not be feasible for shallow embedding
methods without techniques such as parallelism (Li, 2023).
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6 Conclusion

In this study, we aimed to emphasize the research significance of shallow embedding meth-
ods, challenging the prevailing emphasis on Graph Neural Networks (GNNs) in the field of
graph representation learning. Specifically, we proposed a framework that unifies the data
flow of representative shallow graph embedding methods and GNNs, allowing for systematic
comparison. Through careful analysis, we characterized their primary differences from two
perspectives: the use of attribute-based priors and explicit neighborhood aggregation. We
then performed comprehensive experiments to analyze the benefits and drawbacks these
differences bring to GNNs. Notably, we found that GNNs can suffer from dimensional col-
lapse in attribute-poor scenarios and that neighborhood aggregation can harm performance
for heterophilic nodes. These drawbacks were consistent across different GNN architectures
and learning paradigms, highlighting their practical significance. Armed with these insights,
we developed a structured guide for practitioners on selecting appropriate graph represen-
tation learning methods for different scenarios. We also demonstrated that in some cases,
combining shallow methods with GNNs can leverage the strengths of both approaches. Our
primary endeavor is to recalibrate the academic perspective, accentuating the benefits and
drawbacks of GNNs compared with conventional shallow embedding methods. We hope our
work enlighten researchers to foster the meticulous advancement.
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This research has substantial positive societal impacts by advancing the effective deploy-
ment of graph learning technologies. By providing clear guidance on when to use simpler
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Appendix A. Related Work

Shallow Embedding Methods. Shallow embedding methods simply consider the map-
ping to representations in the hidden space as lookup tables, and the representations are
optimized w.r.t. the objective function (Hamilton et al., 2017b; Perozzi et al., 2014; Grover
and Leskovec, 2016). In general, shallow embedding methods can be divided into two types,
i.e., those based on matrix factorization (Ahmed et al., 2013; Belkin and Niyogi, 2001; Cao
et al., 2015; Ou et al., 2016) and those based on random walks. Among them, the approaches
based on random walks, e.g., DeepWalk (Perozzi et al., 2014) and node2vec (Grover and
Leskovec, 2016), have shown superior performance in a plethora of settings.

Graph Neural Networks. Graph Neural Networks (GNNs) have emerged to be powerful
frameworks to tackle learning problems on graphs (Wu et al., 2020; Zhou et al., 2020; Hamil-
ton et al., 2017a; Kipf and Welling, 2017; Dong et al., 2021a). GNNs learn low-dimensional
representations by extracting information from both attributes and graph topology (Velick-
ovic et al., 2018; Dong et al., 2021b, 2022). Such success can be attributed to its carefully
designed neighborhood aggregation Kipf and Welling (2017); Dong et al. (2023b), through
which a node iteratively extracts information from its direct neighbors (Velickovic et al.,
2018; Wu et al., 2020; Zhou et al., 2020; Wang et al., 2022b). Correspondingly, GNNs have
been widely used in many real-world applications (Ying et al., 2018b; Fan et al., 2019; Pal
et al., 2020; Zhao et al., 2021; You et al., 2018; Li et al., 2018; Dong et al., 2024).
Comparison of Shallow Embedding Methods vs. GNNs. Several existing works
have compared traditional shallow embedding methods and GNNs from different perspec-
tives, including optimization objectives (Cai et al., 2018; Zhang et al., 2018; Cui et al., 2018;
Amara et al., 2021; Hamilton et al., 2017b), properties learned (Cai et al., 2018; Goyal and
Ferrara, 2018; Zhang et al., 2018), computational complexity (Goyal and Ferrara, 2018; Cui
et al., 2018), and applications (Cai et al., 2018; Amara et al., 2021). Nevertheless, the per-
formance comparison over real-world datasets and practical settings of data availability and
heterogeneity are ignored. A few recent studies have performed performance comparison
between the two branches (Makarov et al., 2021), with the conclusion that GNNs consis-
tently achieve superior performance. However, we argue they do not sufficiently explore
the drawbacks of GNNs. Different from the works above, we present a systematic study
to compare the two branches based on both theoretical and experimental discussion. This
allows us to (i) elaborate on the drawbacks of GNNs in a finer granularity; and (4) propose
simple yet effective strategies to tackle the drawbacks.

Appendix B. Experimental Settings

Open-source code can be accessed at: https://github.com/snap-research/SEESAW.

B.1 Datasets

We perform the empirical evaluations on 10 real-world network datasets, which span differ-
ent fields such as scientific publications (citation networks and co-authorship networks) and
e-commerce (merchandise networks), including Cora (Yang et al., 2016), CiteSeer (Yang
et al., 2016), PubMed (Yang et al., 2016), CoraFull (Bojchevski and Giinnemann, 2018),
DBLPFull (Bojchevski and Giinnemann, 2018), Amazon-Computers (Shchur et al., 2018),
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Amazon-Photo (Shchur et al., 2018), Coauthor-CS (Shchur et al., 2018), Coauthor-Physics
(Shchur et al., 2018), and Flickr (Zeng et al., 2020). We present their statistics in Table 2.
We directly utilize the APIs provided by PyTorch Geometric (Fey and Lenssen, 2019) to
access and load all datasets.

Among these datasets, Cora, CiteSeer, PubMed, CoraFull, and DBLPFull are citation
networks, where nodes represent documents and edges are citation links. Amazon-Computers
and Amazon-Photo are networks of merchandise, where nodes denote goods and edges repre-
sent that two goods are frequently bought together. Coauthor-CS and Coauthor-Physics
are co-author networks. Here nodes are authors, and two authors are connected if they have
co-authored a paper. Flickr is a social network of images (as nodes), and a pair of images
are connected if they share similar properties such as geographic locations.

B.2 Implementation Details

Dataset Split. We first introduce the dataset split for node classification tasks. For all
datasets with available public splits (i.e., Cora, CiteSeer, and PubMed), we utilize the given
public splits to train an MLP model based on the learned node representations and mea-
sure the utility such as node classification accuracy. For those datasets without available
public splits (i.e., CoraFull, DBLPFull, Amazon-Computers, Amazon-Photo, Coauthor-CS,
Coauthor-Physics, and Flickr), we utilize a commonly used with 60%/20%/20% split
for the train/validation/test split, following the same settings explored by other litera-
ture. (Maekawa et al., 2022; Chien et al., 2021) We first introduce the dataset split for link
prediction tasks. For all datasets, we explore the random split of 85%/5%/10%, following
the same standard as existing works (Shiao et al., 2023; Zhang and Chen, 2018; Cai et al.,
2021). Only training edges are visible during the training phase.

Evaluation Protocol. We consider the representation learning models as the encoder,
and we follow a standard evaluation protocol to train a decoder to perform downstream
tasks on graphs based on the learned representations. Specifically, we train an MLP model
as the decoder in both node classification and link prediction tasks, which is a commonly
adopted approaches in a series of related works (Kipf and Welling, 2016; Tan et al., 2023).
In node classification, we input each node embedding into an MLP model and predict the
associated label. In link prediction, we take the Hadamard product for representations of
each node pair. An MLP takes the resulted vector as input, and output the associated
predicted probability of being connected. All results are presented as an average value
across three different runs together with the associated standard deviation.

Details of GINNs for Comparison. In this paper, we adopt vanilla GCN and vanilla
GraphSAGE as the most representative GNNs for comparison. In addition, we also adopted
state-of-the-art contrastive and non-contrastive self-supervised learning GNNs. We present
a more detailed discussion below. For contrastive self-supervised GNNs, we propose to
adopt GRACE (Zhu et al., 2020b) and a GCN trained with max-margin loss, i.e., ML-
GCN (Ying et al., 2018a). Specifically, GRACE first generates two correlated graph views by
randomly performing corruption. Then, the embedding model is trained with a contrastive
loss to maximize the agreement between node representations in these two views. On
the other hand, ML-GCN is trained with a walk-based max-margin loss, which forces the
agreement between nodes appear in same walks (measured with inner product) to exceed a
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certain positive margin. For non-contrastive self-supervised GNNs, we adopt Graph Barlow
Twins (GBT) (Bielak et al., 2022) and Bootstrapped Graph Latents (BGRL) (Thakoor
et al., 2022). Specifically, GBT computes the representations cross-correlation matrix of two
distorted views of a single graph. The objective function is formulated to force the cross-
correlation matrix to be as close as possible to the identity matrix. In this way, no negative
sample is needed for optimization, which improves the practical efficiency. On the other
hand, BGRL maintains two distinct graph encoders, and learns the node representations
by training an online encoder to predict the embedding of a target node. This also enables
BGRL to avoid using negative samples during learning.

Downstream Tasks and Metrics. In this work, we use the two most commonly studied
tasks for graph data: node classification and link prediction. Following the literature, we
use node classification accuracy and F1 score for node classification (Dwivedi et al., 2023),
and Hits@50 is adopted for link prediction (Shiao et al., 2023).

Machine Details. We ran our experiments on Google Cloud Platform. For all experimen-
tal results reported in this paper, we run the corresponding experiments on either NVIDIA
P100 or V100 GPUs. Specifically, the machine is configured with 12 virtual CPU cores and
64 GB of RAM for most experiments.

Open-Sourced Code. Open-source code can be accessed at: https://github.com/snap-
research/SEESAW.

Appendix C. Additional Experimental Results and Analysis

In this section, we present additional experimental results and corresponding analysis.
Specifically, we first discuss the overall performance across different GNNs. Then, we present
an additional analysis on the GNN performance on nodes with different levels of degrees
between attribute-rich and attribute-poor scenarios. After that, we present comprehensive
results from both shallow embedding methods and GNNs to demonstrate the relationship
between dimensional collapse, embedding dimensionality, and performance. In the last two
sections, we first present the relationship between the bound of the rank and the actual rank
of the learned node embedding matrix between shallow embedding methods and GNNs. We
then compare the performance of (1) shallow embedding method and that with the enforced
neighborhood aggregation; (2) GNNs and that without the neighborhood aggregation.

C.1 Analysis: Performance of Different GNNNs

We first present the performance of different state-of-the-art GNNs from a different per-
spective to reveal their superiority over shallow embedding methods in terms of overall
performance. Here we take the widely studied node classification as an example, and we
measure the performance with F1 score (macro). We present the corresponding performance
in Table 3. We observe that GNNs exhibit significant performance superiority over shallow
embedding method on almost all datasets, which remains consistent with the discussion in
subsection 4.2. It is worth note that the only dataset where shallow embedding method
exhibits superiority over all other GNNs is Flickr, where we have the smallest available
node attribute dimensionality (see Table 2). This implies that such superiority could be
undermined when only limited node attribute dimensionality is available, which is in align
with the discussion in 1.
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Table 2: Statistics of the 10 real-world datasets we adopted in this paper. We utilize Amz-C.,
Amz-P., Co-CS, and Co-Phy. to represent Amazon-Computers, Amazon-Photo,
Coauthor-CS, and Coauthor-Phy, respectively.

Cora CiteSeerPubMedCoraFullDBLPFull Amz-C. Amz-P. Co-CS Co-Phy. Flickr

#nodes 2,708 3,327 19,717 19,793 17,716 13,752 7,650 18,333 34,493 89,250
F#edges 10,556 9,104 88,648 126,842 105,734 491,722238,162163,788 495,924 899,756
#features 1,433 3,703 500 8,710 1,639 767 745 6,805 8,415 500
F£classes 7 6 3 70 4 10 8 15 5 7
Density 0.29% 0.16% 0.05% 0.06%  0.07% 0.52% 0.81% 0.10% 0.08% 0.02%

Homophily 81.0% 74.0% 80.0% 56.7%  828% T7.7% 82.7% 80.8% 93.1% 31.9%
Attr. Sparsity98.73% 99.15% 89.98% 99.35%  99.68% 65.16% 65.26% 99.12% 99.61% 53.61%
Avg. Degree 3.90 2.74 4.50 6.41 5.97 35.76  31.13 893 14.38 10.08
Std. Degree 5.23 3.38 7.43 8.79 9.35 70.31 4728 9.11 15.57 31.75

C.2 Analysis: Performance on Nodes with Different Levels of Degrees

To gain a deeper understanding of the performance on a finer granularity, we propose to also
explore the influence of limited attributes on nodes with different levels of degrees, which
allows us to gain an understanding of performance w.r.t. available attribute dimensionality
at a fine-grained level.

Specifically, we propose to first compute the ranking of all nodes based on their degree.
Then we divide the nodes in the test set into high- and low-degree nodes with a percentile
threshold. Without loss of generality, here we take the percentile threshold as 50%. We
present the experimental results in Table 4. We observe that low-degree nodes bear more
significant accuracy reduction in seven out of the 10 adopted datasets. A potential rea-
son is that low-degree nodes rely more on the information contained in the attribute-based
prior (than high-degree nodes). Specifically, compared with high-degree nodes, low-degree
nodes tend to receive relatively less information from its neighbors through the neighbor-
hood aggregation mechanism. Therefore, the information encoded in their attributes could
dominate the performance. We have consistent observations in link prediction.

C.3 Analysis: Dimensional Collapse vs. Performance

We then present the experimental results of performance w.r.t. the level of dimensional
collapse. We utilize the same strategy introduced in Observation 8 in subsection 4.3 to
enforce different levels of dimensional collapse. Specifically, instead of directly obtaining the
learned node embedding matrix from the GNN model, we consider the learned embedding
matrix as Z = CF, where Z ¢ R™*? C € R"™", and F € R"™*? (1 < r < d). In practice,
C is the direct output of the GNN model, while F' is a matrix with learnable parameters.
We optimize both the learnable parameters in the GNN model and all elements in F' during
the end-to-end learning process. Without loss of generality, we present two sets of results
as representative performances of shallow embedding methods and GNNs: (1) for shallow
embedding methods, we present the results from DeepWalk in node classification task as an
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Table 3: F1 score (macro) comparison between shallow embedding method, vanilla GCN,
and other state-of-the-art self-supervised learning GNNs on 10 real-world graph
datasets. We highlight the best performances in Bold. All numerical numbers are
in percentages.

Shallow Walk-GCN  GBT BGRL ML-GCN GRACE E2E-GCN

Cora 69.45 £ 0.9 69.80£0.7 7485 £12 7431 £15 679315 7991 £0.2 80.34 + 0.7
CiteSeer 44.82 +£ 1.0 50.21 £1.2 54.65 £ 0.4 54.38 £ 2.7 48.39 £ 1.3 65.51 £ 1.2 67.30 £ 0.8
PubMed 5892 £ 0.3 70.19 £3.0 77.79 £ 04 76.81 £3.2 71.98 £ 3.3 81.45 £ 0.5 78.49 £ 0.1
CoraFull 29.38 £ 0.5 32.37 £04 39.54 £ 1.0 3737 £ 1.0 33.35 £ 1.3 32.15 + 0.8 40.55 £ 7.5
DBLPFull 76.26 £ 0.9 80.32 £ 0.1 80.44 £+ 0.1 81.22 + 0.3 76.70 £ 0.6 80.89 £ 0.1 81.19 =+ 0.3
Amz-C. 86.78 £ 0.9 86.54 £1.4 87.21 £0.7 8.73 £1.3 85.98 £ 1.2 79.92 + 0.3 89.45 £+ 0.4
Amz-P. 91.77 £ 1.0 92.49 £ 0.5 91.30 £ 0.7 92.28 £ 0.9 90.45 £ 0.6 90.31 £ 0.1 88.60 £ 0.8
Co-CS 84.25 £ 0.7 86.94 £ 0.7 91.68 £ 0.4 90.97 £ 0.4 89.13 &£ 0.5 91.94 + 0.2 91.40 £ 0.4
Co-Phy. 91.04 £ 0.5 9442 £ 0.3 94.41 £ 0.3 94.25 £ 0.0 93.57 £ 0.3 OOM 94.48 + 0.3
Flickr 23.29 £ 0.0 16.58 £ 0.0 21.00 £ 0.2 21.13 +£ 0.4 20.23 £+ 0.3 OOM 16.41 £ 0.1

Table 4: Node classification accuracy of GNNs under different numbers of attribute dimen-
sions. We highlight the performances with the most significant reduction when
transitioning from using 100% to 1% attributes in Bold. All numerical numbers
are in percentages.

GNN 4+ 100% Attributes GNN + 1% Attributes

High-Degree Low-Degree High-Degree Low-Degree
Cora 747+ 1.3 61.0 + 1.7 35.6 + 0.8 (— 52.3 %) 36.9 + 0.7 (— 39.6 %)
CiteSeer 53.4 + 0.9 39.3 + 1.6 321 +0.4(-399%) 18.1 + 0.1 (— 54.1 %)
PubMed 73.1+£ 0.9 63.5 + 2.1 51.9 + 1.3 (— 29.0 %) 56.3 + 0.6 (— 11.3 %)
CoraFull  59.3 + 0.5 49.1 + 1.1 11.8 + 0.3 (— 80.1 %) 7.09 + 0.2 (— 85.6 %)
DBLPFull  87.1 +0.3 81.8 4+ 0.2 61.7 + 0.8 (— 29.2 %) 32.5 + 1.4 (- 60.2 %)
Amz-C. 92.4 + 0.5 88.0 + 0.4 63.9 + 1.3 (— 30.9 %) 42.2 + 2.3 (— 52.0 %)
Amz-P. 95.6 + 0.2 91.0 £ 0.9 67.1 + 1.7 (- 299 %) 45.4 £+ 0.9 (— 50.1 %)
Co-CS 93.0 + 0.4 87.9 + 0.4 727+ 1.5 (- 21.8%) 57.3 £ 0.5 (— 34.8%)
Co-Phy. 97.5 + 0.3 93.8 +£0.2 96.9 £ 0.1 (— 0.69 %) 92.6 + 0.3 (— 1.35 %)

Flickr 43.0 £ 02  496+01  37.8+0.1 (— 12.1 %) 48.2 + 0.0 (— 2.82 %)
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Figure 9: The node classification performance (measured with classification accuracy) of

shallow embedding method on 10 different real-world graph datasets.

A lower

value of Bound of Rank implies a heavier level of dimensional collapse. We utilize
Amz-Computers to refer to the dataset Amazon-Computers.
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Figure 10: The node classification performance (measured with classification accuracy) of
GNN on 10 different real-world graph datasets. Here the available ratio of the
node attribute dimensionality is 100%. A lower value of Bound of Rank implies
a heavier level of dimensional collapse. We utilize Amz-Computers to refer to
the dataset Amazon-Computers.

example in Figure 9.;
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task as an example in Figure 10. We also have similar observations in link prediction task,
other shallow embedding methods, and GNNs. We have the following observations.

First, we observe that in all cases, improving the value of embedding dimension does not
significantly change the performance, which implies that the value of embedding dimension
does not play a key role in learning high-quality node representations.

Second, we found that in almost all cases, improving the bound of the rank is able to
significantly improve the performance (i.e., lead to deeper colors in the heatmap). Here,
a smaller value of the bound of the rank generally implies a heavier level of dimensional
collapse. This because no matter what value the embedding dimension takes, the learned
representations will be guaranteed to collapse into a lower dimensional subspace as long as
the the bound of the rank is small. The dimensionality of the lower dimensional subspace
is upper-bounded by the bound of the rank. Such an observation demonstrates that as long
as dimensional collapse happens, the performance then significantly drops no matter how
large the embedding dimensionality is. On the contrary, if dimensional collapse is relieved,
the performance is then also improved under a given embedding dimension. We note that
improving the bound of the rank could also bring performance reduction in very few cases,
e.g., on the PubMed dataset for both shallow embedding methods and GNNs. Such a
phenomenon could be caused by overfitting, which goes beyond the scope of this paper.

To summarize, we conclude that no matter what value embedding dimension takes,
dimensional collapse always leads to significantly performance drop, which implies a worse
quality of the node representations. At the same time, mitigating the dimensional collapse
will be beneficial to the performance in most cases. This remains consistent with our
conclusion discussed in subsection 4.3.

C.4 Analysis: Ranks of Learned Representations

We now present an analysis on the rank of the learned node representations between shallow
embedding methods and GNNs with different levels of attribute availability. Specifically,
we utilize the strategy introduced in subsection 4.3 and subsection C.3 to control the level
of dimensional collapse. At each value of the bound of the rank, we calculate the actual
rank of the learned node embedding matrix. Note that the actual rank of the learned node
embedding matrix cannot exceed the bound of the rank. Correspondingly, in an ideal case,
an representation learning model should yield an embedding matrix with a rank equivalent
to the bound of the rank, such that the node representations will span a hidden subspace
as large as possible. In Figure 11, we present the curves of effective dimension vs. bound of
rank for each of the 10 real-world graph datasets. In each subfigure, we present curves from
four different scenarios, namely using shallow embedding method, using GNN with 100%
attributes, using GNN with 1% attributes, and using GNN with 0.01% attributes. Here
we adopt DeepWalk and GCN as the representative model for shallow embedding methods
and GNNs, respectively. We have the following observations.

First, the curve of effective dimension of shallow embedding method is a straight line
of y = x in all cases. This reveals the clear advantage of shallow embedding method in
defending against dimensional collapse, since it can always learn node embedding matrices
spanning the whole available hidden subspace. As discussed in subsection 4.3, such an
advantage can be attributed to avoiding using a prior based on the node attributes.
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Figure 11: A comparison between shallow embedding method and GNNs under different
ratios of available attributes on 10 real-world graph datasets. Here, Effective
Dimension represents the rank of the learned node embedding matrix, which is
upper bounded by the Bound of Rank. The dimensionality of hidden space is
29, We utilize Amz-Computers to refer to the dataset Amazon-Computers.
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ways difficult for GNNs to avoid dimen-
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0.75 E i E sional collapse when the dimensionality
£0.50 SR’ i’ of the input node attributes is limited.
0 0.25 i i ,l I i We take Cora dataset (given in Fig-
;80-00 - é 6 . ”y ure 11(a)) as an example. GNNs with
m S G S \\500‘%3%\’ 0 P@ﬁx\c e 100% available node attributes can al-

ways achieve a value of effective dimen-
sion (i.e., the rank of the learned node
embedding matrix) equal to the bound
of the rank. Nevertheless, when only
1% node attributes are available, dimensional collapse begins to happen when the bound of
rank is larger than 26. When only 0.01% node attributes are available, dimensional collapse
even begins to happen when the bound of rank is larger than 22. As a comparison, shallow
embedding method can always achieve an effective dimension that is equals to the bound of
the rank. This demonstrates that available node attribute dimensionality directly influences
the level of dimensional collapse. We also present the effective dimension ratio of the learned
node representations in Figure 12, revealing that dimensional collapse also happens under
representations learned for link prediction in GNNs, while shallow embedding methods do
not encounter such a problem. As discussed in subsection 4.3, such a drawback should

Figure 12: Effective dimension ratio of representa-
tions learned for link prediction task.
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be attributed to using a prior based on the node attributes. Such a conclusion remains
consistent with the discussion in subsection 4.3.

C.5 Analysis: Performance w/ Aggregation vs. Performance w/o Aggregation

We finally present a comparison of the performance between representation learning models
with and without neighborhood aggregation. Specifically, we adopt the same strategy as dis-
cussed in subsection 4.4, where shallow embedding method with neighborhood aggregation
(with a mean aggregator) and GNNs without neighborhood aggregation are implemented
for comparison. In this way, we are able to rigorously compare the effect of performing
neighborhood aggregation within each branch of models, and whether using a prior based
on node attributes or not will not influence the conclusion. Without loss of generality,
we take DeepWalk and GraphSAGE as the representative example of shallow embedding
methods and GNNs, respectively. For any node, we measure the homophily score with the
ratio of the total number of its direct neighbors with the same label as itself to the total
number of its direct neighbors. We have the following observations.

First, the shallow embedding methods without neighborhood aggregation can achieve
better performance on those nodes with small homophily scores in almost all cases. As a
comparison, the cumulative performance of shallow embedding methods with neighborhood
aggregation improves faster than that of shallow embedding methods without neighbor-
hood aggregation. This indicates a better performance of shallow embedding method with
neighborhood aggregation on those nodes with large homophily scores.

Second, we found that a similar phenomenon also exists in GNNs. Specifically, the
GNNs without neighborhood aggregation can achieve better performance on those nodes
with small homophily scores in almost all cases. As a comparison, GNNs with neighborhood
aggregation can always achieve a similar or even better performance compared with that
without neighborhood aggregation. This indicates a better performance of GNNs with
neighborhood aggregation on those nodes with large homophily scores.

To summarize, we conclude that for both types of models, performing neighborhood
aggregation typically helps the performance on those nodes with larger homophily scores,
while this could also do harm to the performance on those nodes with smaller homophily
scores. This remains consistent with our conclusion discussed in subsection 4.4.

C.6 Analysis: Combining Shallow Embedding Methods and GNNs

We now present the analysis on the performance of combining shallow embedding methods
and GNNs by directly concatenating their node representations. The rationale here is two-
fold: (i) The number of effective dimensions of the learned representations (i.e., the rank of
the node embedding matrix) from GNNs could be promoted by representations from shal-
low methods, which helps to tackle the problem of dimensional collapse in attribute-poor
scenarios (mentioned in subsection 4.3). (i) Information from both aggregated and unag-
gregated node attributes could be preserved at the same time, which helps to alleviate the
performance reduction on heterophilic nodes (mentioned in subsection 4.4). This remains
consistent with the disucssion in section 5. Without loss of generality, we take DeepWalk
and GCN as the shallow embedding model and the GNN model, respectively. We take the
performance of node classification accuracy on the DBLPFull dataset as an example, and
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present the results across different levels of available attribute dimensionalities in Figure 8.
We present the observations below.

First, the performance of GNNs with 100% available node attributes is superior to that
of shallow embedding method, which reveals that useful information could be encoded in
the node attributes, which contribute to the performance of GNNs.

Second, when the available attribute dimensionality is decreased, the performance of
GNNs reduces significantly together with the performance (measured with node classifica-
tion accuracy). This generally reflects that less available node attributes will typically lead
to dimensional collapse, which remains consistent with the discussion in subsection 4.3.

Third, when we use the concatenation of the node representations from the two methods,
we observe that the performance does not significantly reduce when the available node at-
tributes become limited. This validate the superiority of combining the representations from
the two methods across scenarios with different available node attribute dimensionalities.

To summarize, we observe that although GNNs with 100% node attributes can achieve
the best performance, its performance reduces significantly once the available node at-
tributes are limited. However, by simply concatenating their representations, we can obtain
much more stable performance across scenarios with different available node attribute di-
mensionalities. However, this approach will lead to a higher computational complexity,
since both models need to be optimized. Hence such method can hardly be recommended
in industrial settings due to the high computational cost.

C.7 Selection of Shallow Method

We select DeepWalk as a representative shallow graph embedding method to compare with
in this paper. The reason why DeepWalk is adopted is that DeepWalk is a representative
example of walk-based shallow methods in its design. Specifically, DeepWalk is among the
most commonly used shallow graph embedding methods, and a large amount of following
works under the umbrella of shallow methods are developed based on DeepWalk. Therefore,
DeepWalk is among the best options we can choose to obtain generalizable analysis, and
adopting more follow-up methods that share similar design with DeepWalk does not change
the observation and conclusion.

C.8 Experimental Results with Heterophilic Graphs

We would like to note that our analysis does not depend on whether the adopted datasets
are homophilic or not. Here we present the comparison between GNNs and shallow methods
on the heterophilic dataset. Specifically, we select the Squirrel dataset and present the cor-
responding performances below as a representative example, since the Squirrel dataset has
a comparable scale (5,201 nodes) with the datasets adopted in our paper and is also highly
heterophilic (homophilic ratio 0.22). First, we perform experiments to evaluate dimensional
collapse. Here utility is measured by node classification accuracy, while the effective dimen-
sion ratio (EDR) is measured by the ratio of the value of rank (of representation matrix)
to the representation dimensionality. We present the experimental results in Table 5. We
observe a similar tendency as presented in our paper: the GNN model bears severe dimen-
sional collapse when available attributes become limited, while the shallow method is not
influenced since it does not take any node attribute as its input.
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Table 5: Performance comparison between shallow embedding method and GNNs on the
Squirrel dataset under different levels of attribute availibility ratio.

100%Att, Acc100%Att, EDR1%Att, Acc1%Att, EDR0.01%Att, Acc0.01%Att, EDR

GNN 38.8% 74.2% 26.3% 21.9% 19.0% 1.56%
Shallow 31.5% 99.6% 31.5% 99.6% 31.5% 99.6%

Table 6: Node classification accuracy comparison between GNN (w/ Aggregation) and GNN
w/o Aggregation on the Squirrel dataset under different of node heterophily scores.

le-3 5e-3 le-2 5e-2 le-1 5e-1 1e0

GNN (w/ Aggregation) 26.88% 26.88% 26.88% 26.73% 25.44% 36.64% 38.75%
GNN w/o Aggregation 30.10% 30.10% 30.10% 30.69% 26.48% 32.20% 33.17%

Table 7: Node classification accuracy comparison between shallow method (w/o Aggrega-
tion) and shallow method w/ Aggregation on Squirrel dataset under different levels
of node heterophily score.

le-3 5e-3 le-2 He-2 le-1 5e-1 1le0

Shallow w/ Aggregation 21.86% 21.86% 21.86% 23.23% 26.35% 30.36% 31.54%
Shallow (w/o Aggregation) 25.14% 25.14% 25.14% 26.26% 26.71% 29.95% 31.44%

31



Dong, SHIAO, L1U ET AL.

Table 8: Node classification accuracy comparison between GNN and GNN under two types
of attribute augmentation approaches (including concatenating a random matrix
denoted as R and concatenating a matrix of structural features denoted as S onto
the original node attribute matrix) on Cora dataset. Here we adopt the walk-based
GCN (denoted as W-GCN) as the backbone GNN.

100%Att-Accl00%Att-EDR1%Att-Accl%Att-EDRO0.01%Att-Acc0.01%Att-EDR

W-GCN 67.8% 96.9% 36.9% 35.5% 32.3% 1.56%
W-GCN (R)  68.0% 97.3% 29.9% 67.2% 10.6% 5.08%
W-GCN (S)  69.0% 97.3% 37.3% 35.2% 32.3% 2.34%

Second, we also perform experiments to study how the performance changes from highly
heterophilic nodes to highly homophilic nodes. We first present the study between GNN
(w/ neighborhood aggregation) and GNN w/o neighborhood aggregation. We present their
cumulative performances in node classification accuracy under different values of the ho-
mophilic score below (the same setting as in Figure 6 in our paper). We present the
experimental results in Table 6. We observe a similar tendency as presented in our paper:
neighborhood aggregation will jeopardize the performances over those highly heterophilic
nodes while benefiting highly homophilic nodes. In addition, we also perform experiments
to compare shallow method w/ neighborhood aggregation vs. shallow method w/o neigh-
borhood aggregation. We present the experimental results in Table 7, and the observations
remain consistent.

In conclusion, we also have similar observations on heterophilic datasets from both
studied perspectives, and our analysis does not depend on whether the adopted datasets
are homophilic or not.

C.9 Experimental Results with Attribute Augmentation

We performed experiments by (1) concatenating a random matrix with the same dimension-
ality as the original node attributes onto the node attribute matrix and (2) concatenating
a matrix encoded with structural information following the state-of-the-art degree strat-
egy (Cui et al., 2022) onto the node attribute matrix. We present the unsupervised learning
performances on the Cora dataset below as an example. Here utility is measured by node
classification accuracy, while the effective dimension ratio (EDR) is measured by the ratio
of the value of rank (of representation matrix) to the representation dimensionality. We
present the experimental results in Table 8. We observe that: (1) concatenating a matrix
with structural information slightly improves the node classification accuracy, while such a
strategy does not stop the significant drop in the rank of node representations; (2) concate-
nating random node attributes successfully improves the rank of the node representations,
however, the classification accuracy is reduced. Therefore, both strategy does not really
solve the problem of dimensional collapse, and we believe handling such a problem is non-
trivial. Correspondingly, this paper is particularly interesting to researchers working in this
area and such a problem is also worth to be explored in future works.
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Table 9: Node classification accuracy comparison between GNN and APPNP on Cora
dataset. Here we adopt the walk-based GCN as a representative GNN for com-
parison, and both models are optimized with the walk-based loss.

100%Att-Acc 100%Att-EDR 1% Att-Acc 1%Att-EDR 0.01%Att-Acc 0.01%Att-EDR

GCN 67.8% 96.9% 36.9% 35.5% 32.3% 1.56%
APPNP 75.5% 56.3% 42.4% 13.7% 10.6% 0.78%

C.10 Observations over Other Types of GNNs

Performance of APPNP. We perform empirical experiments based on APPNP. We
present the unsupervised learning performances on the Cora dataset below as an exam-
ple. Here utility is measured by node classification accuracy, while the effective dimension
ratio (EDR) is measured by the ratio of the value of rank (of representation matrix) to
the representation dimensionality. We present the experimental results in Table 9. We
observe that similar to GCN, APPNP also bears severe dimensional collapse (exhibited by
the significant reduction in the value of EDR).

Performance of LINKX. We perform empirical experiments based on LINKX. We
present the unsupervised learning performances on the Cora dataset below as an exam-
ple. Here utility is measured by node classification accuracy, while the effective dimension
ratio (EDR) is measured by the ratio of the value of rank (of representation matrix) to
the representation dimensionality. We observe that compared with GCN, LINKX exhibits
smaller values of EDR in attribute-rich scenarios (e.g., 100% available node attributes),
while it also mitigates dimensional collapse in attribute-poor scenarios (e.g., 0.01% avail-
able node attributes). This demonstrates that (1) such an approach may jeopardize the
effective dimension ratio in attribute-rich scenarios and (2) such an approach effectively
helps to mitigate dimensional collapse in attribute-poor scenarios. However, we would also
like to point out that even if LINKX successfully mitigates dimensional collapse for GNNs,
it is not ideal, since it (1) sacrifices the capability of GNNs in inductive learning and (2)
improves the computational complexity from O(n * k) to O(n?) to perform inference (k is
the number of node attributes and n is the number of nodes). Therefore, the problem of
dimensional collapse is non-trivial to handle, and more analysis can be a great follow-up
study of our work.

Table 10: Node classification accuracy comparison between GNN and LINKX on Cora
dataset. Here we adopt the walk-based GCN as a representative GNN for com-
parison, and both models are optimized with the walk-based loss.

100%Att-Accl00%Att-EDR1%Att-Accl%Att-EDRO0.01%Att-Acc0.01%Att-EDR

GCN 67.8% 96.9% 36.9% 35.5% 32.3% 1.56%
LINKX 65.9% 50.4% 64.6% 49.6% 68.8% 24.2%
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C.11 Discussion: Works Combining Shallow Methods and GNNs

Here we present two representative works that aim to combine the advantage of shallow
graph embedding methods and GNNs (Abu-El-Haija et al., 2018; Chien et al., 2020). Specif-
ically, (Abu-El-Haija et al., 2018) successfully achieves optimization for the context hyper-
parameters of shallow graph embedding methods. However, the proposed approach cannot
take node attributes as the input and thus fails to effectively utilize the information encoded
in node attributes; (Chien et al., 2020) explored to generalize the GNNs to adaptively learn
high-quality node representations under both homophilic and heterophilic node label pat-
terns. Nevertheless, it fails to avoid using the node attributes as the learning prior, and
thus still follows a design that has been proved to bear dimensional collapse.

C.12 Discussion: Dimensional Collapse vs. Learning Low-Rank
Representations

In this subsection, we distinguish between dimensional collapse in graph machine learning
and the common objective of learning low-rank node representations to help the audience
understanding their differences. While both involve reduced-rank representation matrices,
they differ fundamentally in their causes, controllability, and desirability. Dimensional col-
lapse, as demonstrated in our experiments, is an unintended consequence that occurs when
GNNs are trained with limited node attributes, causing learned representations to involun-
tarily collapse into a lower-dimensional subspace regardless of the available hidden space
dimensionality. Such collapse is also seen in other domains such as Zhuo et al. (2023);
Jing et al. (2022); He and Ozay (2022) and is detrimental to performance and occurs due
to the attribute-based prior inherent in GNN architectures. In contrast, learning low-rank
representations is a deliberate design choice or regularization technique where practitioners
intentionally constrain the rank to achieve benefits such as computational efficiency, noise
reduction, or improved generalization. The key distinction lies in control and intent: dimen-
sional collapse is an unwanted side effect that degrades model performance in attribute-poor
scenarios, while low-rank learning is a purposeful strategy that can enhance model perfor-
mance when appropriately applied. Our findings show that shallow embedding methods
avoid this uncontrolled collapse by not relying on attribute-based priors, consistently main-
taining full-rank representations that span the entire available hidden space.

C.13 Discussion: Empirical Guidance for Determining Attribute-Poor Graph
Learning Scenarios

Based on the experimental results presented in this paper, practitioners can identify attribute-
poor graph learning scenarios through several empirical indicators. Primary indicators in-
clude: (1) Limited attribute dimensionality - when the number of available node features is
significantly reduced compared to the original dataset (e.g., less than 10% of original fea-
tures), as demonstrated in our experiments where GNN performance dropped substantially
when attribute dimensionality ratios fell to 1% or 0.01%; (2) Low feature-to-node ratio -
graphs where the number of node attributes is much smaller than the number of nodes,
as evidenced by datasets like Flickr (500 features for 89,250 nodes) where shallow methods
outperformed GNNs; and (3) High dimensional collapse tendency - measurable through
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the effective dimension ratio (rank of embedding matrix divided by embedding dimension-
ality), where ratios below 0.5 indicate severe dimensional collapse. Secondary indicators
include: (1) Sparse or noisy attributes - when available features contain significant missing
values or noise that may not provide meaningful signal; (2) Domain-specific constraints
- scenarios where collecting rich node attributes is inherently difficult or expensive (e.g.,
privacy-sensitive domains, large-scale networks); and (3) Performance degradation patterns
- observing substantial accuracy drops (>20%) when transitioning from full to limited at-
tributes, particularly affecting low-degree nodes more severely as shown in our analysis.
When these indicators are present, practitioners should consider shallow embedding meth-
ods over GNNSs to avoid the dimensional collapse problem and maintain robust performance
across varying attribute availability scenarios.

C.14 Discussion: Comparison of Complexity and Scalability

To provide a comprehensive understanding of the computational requirements for different
graph representation learning methods, we present a theoretical time complexity analysis of
all approaches evaluated in our study. Our analysis considers multiple dimensions of com-
putational cost, including training complexity, inference complexity, and space complexity.

Notation and Complexity Factors. In our complexity analysis, we use the following no-
tation: |V| represents the number of nodes in the graph, |E| denotes the number of edges, L
indicates the number of GNN layers used in deep methods, d refers to the hidden dimension
size of learned representations, W represents the number of random walks generated per
node (for walk-based methods), Lqx denotes the length of each random walk, K indicates
the number of negative samples used in contrastive learning objectives, and C represents
the number of classes in classification tasks.

Complexity Comparison. Table 11 presents a detailed theoretical time complexity anal-
ysis for all methods compared in our study. The analysis reveals fundamental differences
between shallow embedding methods and graph neural networks in terms of computa-
tional requirements. Shallow embedding methods, such as DeepWalk, exhibit complex-
ity that is independent of the number of edges in the graph, with training complexity of
O(|V| x W X Lyar X K x d) and highly efficient inference through simple lookup opera-
tions with O(|V| x d) complexity. In contrast, all GNN-based methods show complexity
that scales linearly with the number of edges, with the basic GNN component requiring
O(L x (|E| x d + |V| x d?)) operations for both training and inference. The analysis fur-
ther reveals that contrastive learning methods like GRACE incur additional computational
overhead due to dual-view processing and contrastive loss calculation, resulting in training
complexity of O(2 x L x (|E| x d + |V| x d?) + |V|? x d). Non-contrastive methods such
as BGRL and GBT demonstrate more favorable complexity profiles by avoiding expensive
negative sampling procedures. Methods that combine GNN architectures with walk-based
objectives (Walk-GCN and ML-GCN) exhibit hybrid complexity that includes both GNN

operations and random walk generation costs.

Scalability Comparison. Table 12 provides a practical scalability assessment of these
methods, ranking them from best (1) to worst (7) based on computational efficiency. The
analysis shows that shallow embedding methods offer the best scalability for certain scenar-
ios, particularly when dealing with small graphs or sparse node features, while BGRL and
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GBT represent the most scalable options among GNN-based approaches. The table also
indicates each method’s dependency on edge count, memory efficiency during training, and
recommended use cases, providing practical guidance for method selection based on specific
application requirements and computational constraints.

Table 11: Theoretical Time Complexity Analysis of Methods in Table 1.

Method Training Complexity Inference Complexity Space Complexity Key Characteristics
Shallow Embedding Methods

Shallow O([V| x W x L x K x d) O(|V| x d) O(|V| x d)

Edge-independent complexity
Lookup-based inference

Graph Neural Networks

O(L x (|E| x d+ |[V] x d?) GCN + Random walk loss

~ 2 2
Wall-GEN +|V|x W x L x K xd) O(L X (1Bl x d+ V| x &%) O(Lx[V]xd+ Lxd) Combines structure & context
O(L x (|[E| x d+ |V]| x d?) 2 o Non-contrastive learning
GBT +|V] x d?) O(L X (1Bl x d+ [V x %) O(L x|V x d+d%) Cross-correlation matrix
BGRL OLx (Bl xd+|V|xd) OLx(E|xd+[V|xd?) O2xLx|V|xd+Lxd) Dootstrap leaming
No negative sampling
O(L x (|E] x d+ |V| x d?) 2 2 Max-margin loss
ML-GCN +V|x W x L xd) O(Lx ([E| x d+ V] x d%) OLx|VIxd+Lxd) Walk-based training
O@2x Lx (|E] xd+|V]xd? 2 2 Dual-view contrastive
GRACE IV x d) O(L x (|E| xd+|V|xd*)) O@2xLx|V|xd+Lxd?) Graph augmentation
O(L x (|BE] x d+ |V| x d?) O(L x (|BE] x d+|V| x d?) 2 End-to-end supervised
E2E-GON +C x |V] x d) +C x |V] x d) O x V| xd+Lxd) Direct classification

Table 12: Complexity Factors and Scalability Analysis: FEdge indicates whether the
method’s complexity depends on the number of edges; Scalability indicates the
rank from 1 (best) to 7 (worst) based on computational efficiency; Memory refers
to memory usage during training; Use Case indicates optimal application scenar-
ios for each method.

Method Edge Scalability Memory Use Case

Shallow X 1 (Best) High Small graphs, sparse features
BGRL v 2 Medium Large sparse graphs

GBT v 3 Medium Medium-scale graphs
E2E-GCN v 4 Medium Supervised tasks
ML-GCN v 5 Low Walk-based applications
Walk-GCN v 6 Low Combined structure-context
GRACE v 7 (Worst) Very Low  High-performance requirements

C.15 Discussion: Dataset Statistics and Model Behavior

Based on careful examination of the dataset statistics in Table 2 and the experimental results
throughout the paper, there is no statistically significant correlation between key dataset
characteristics and the fundamental model behaviors observed in our study. For instance,
despite substantial variations in feature sparsity across datasets (ranging from 53.61% in
Flickr to 99.68% in DBLPFull), node counts (from 2,708 in Cora to 89,250 in Flickr), and
degree distributions (average degrees from 2.74 in CiteSeer to 35.76 in Amazon-Computers),
the core phenomena of dimensional collapse in attribute-poor scenarios and performance
degradation from neighborhood aggregation in heterophilic settings remain consistent across
all datasets. Notably, even datasets with vastly different structural properties—such as the
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dense Amazon-Computers network (0.52% density, 767 features) versus the sparse Flickr
network (0.02% density, 500 features)—exhibit similar patterns of GNN performance drops
when attribute dimensionality is reduced from 100% to 1% or 0.01%, as demonstrated in Fig-
ures 3 and 5. The dimensional collapse phenomenon occurs regardless of whether datasets
have high feature dimensionality (8,710 features in CoraFull) or low feature dimensionality
(500 features in PubMed and Flickr), and similarly affects both small-scale networks like
Cora and large-scale networks like Flickr. While we acknowledge that homophily levels
do influence the effectiveness of neighborhood aggregation—as extensively demonstrated in
Section 4.4 through our analysis of heterophilic versus homophilic nodes—the fundamental
architectural differences between shallow embedding methods and GNNs (attribute-based
priors and neighborhood aggregation mechanisms) consistently manifest their respective ad-
vantages and drawbacks across diverse graph structures, scales, and feature distributions,
suggesting that these behaviors are intrinsic to the methodological approaches rather than
artifacts of specific dataset characteristics.

C.16 Discussion: Computational Cost of the Combined Method

Table 13 reveals that the combined method, which concatenates representations from both
shallow embedding methods and GNNs, incurs substantially higher computational costs
compared to using either method independently. The total runtime for the combined ap-
proach consistently exceeds the sum of individual method runtimes across all datasets, with
particularly pronounced overhead on larger graphs like Flickr (1549.8s total vs. 334.1s for
shallow and 1210.7s for GNN). This burden extends beyond simple addition due to the need
to maintain and optimize two separate models simultaneously, manage their interactions,
and handle the increased dimensionality of concatenated representations. The memory re-
quirements also represent an increase that could pose challenges in resource-constrained
environments. For instance, on CoraFull, the combined method requires 683.4 MB com-
pared to much lower requirements for individual methods. This analysis underscores a crit-
ical limitation: while concatenation can leverage strengths from both approaches to handle
attribute-poor scenarios and heterophilic nodes, the computational overhead makes it im-
practical for many real-world applications, especially in industrial settings where efficiency
is paramount. These findings highlight the urgent need for novel architectures that can in-
herently capture the advantages of both shallow embedding methods (dimensional collapse
resistance) and GNNs (attribute utilization and structured learning) without requiring the
maintenance of two separate models or suffering from high computational costs.

C.17 Discussion: Further Explorations of Other Graph Learning Methods

Table 14 demonstrates that even advanced graph transformer architectures like Graphormer
fail to overcome the fundamental limitations identified in this study. When evaluated on
the DBLPFull dataset, Graphormer shows a dramatic performance degradation as attribute
availability decreases, dropping from 82.2% accuracy with full attributes to 45.9% with 1%
attributes and 44.9% with 0.01% attributes. This pattern mirrors the behavior observed
with traditional GNNs in Table 4, confirming that the dimensional collapse phenomenon is
not merely an artifact of specific GNN architectures but rather a fundamental issue stem-
ming from attribute-based priors. The rank ratio results are particularly telling, plummeting
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Table 13: Computational cost of shallow method, GNN, and combined method across dif-
ferent dataset. All numerical values of running time are in seconds (s) and all
numerical values of memory are in Megabyte (MB).

Dataset Total Time Shallow Time GNN Time Memory
Cora 84.9 £ 0.3 21.0 £ 0.2 63.4 £ 0.2 324 +£ 0.0
CiteSeer 914 +04 23.4 £ 0.1 67.5 £ 0.3 65.9 + 0.0
PubMed 289.2 + 0.5 77.0+ 1.1 211.4 £+ 0.6 59.3 £ 0.0
CoraFull 3214 4+ 0.4 82.3 £ 1.2 2377+ 1.6 6834+ 0.0
DBLPFull 271.5 + 4.0 719+ 15 198.5 £ 2.5 1322 £ 0.0
Amz-C. 2494 + 0.8 60.4 £ 0.7 187.3 £ 0.1 60.7 £ 0.0
Amz-P. 150.9 £+ 2.0 383 £ 0.1 111.6 £ 2.1 40.5 £ 0.0
Co-CS 296.2 £ 0.5 77.0 £ 0.8 216.4 £ 1.6 500.1 £ 0.0
Co-Phy. 7109 + 12,5 165.7 £ 5.7 477.8 £ 4.1 188.9 £ 0.0
Flickr 1549.8 + 5.1 334.1 £ 2.2 1210.7 £ 2.9 208.5 £ 0.0

from 31.5% to just 2.0% in extreme attribute-poor scenarios, indicating severe dimensional
collapse. Moreover, the performance disparity between low-degree and high-degree nodes
persists, with low-degree nodes experiencing more severe accuracy reductions (79.1% to
30.4%) compared to high-degree nodes (85.3% to 59.3%). These findings suggest that sim-
ply adopting more sophisticated architectures or attention mechanisms does not address
the core issues identified in this work. The consistency of these results across different GNN
variants, including now graph transformers, reinforces the paper’s central argument about
the inherent limitations of attribute-dependent graph learning methods and further empha-
sizes the critical need for fundamentally new approaches that can combine the robustness
of shallow methods with the expressiveness of deep architectures.

Table 14: Experimental Results using Graphormer as the GNN backbone with different
feature dimensions on DBLPFull dataset.

Rank Ratio Accuracy Accuracy Low Deg. Accuracy High Deg.
31.5 £ 0.7 100% 82.2+0.3 79.1 + 0.8 85.3 £ 0.2
18.0 £ 0.0 1% 45.9 £ 0.3 32.1 £ 1.2 59.7 £ 0.5
20+ 0.0 0.01% 449 £0.5 304 £ 1.1 59.3 £ 0.2

C.18 Discussion: Further Explorations of Other Combination Method

Table 15 presents results from a more sophisticated combination approach that goes beyond
simple concatenation by incorporating a contrastive learning objective to reduce mutual in-
formation between shallow and GNN representations. Such an enhanced strategy helps to
enforce the two methods to extract different (likely complementary) information during the
training process, which demonstrates notable improvements over the naive concatenation
strategy across multiple datasets. For instance, on DBLPFull, the method maintains strong
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performance even in extreme attribute-poor scenarios (81.4% at 0.01% attributes vs. 84.3%
at 100% attributes), showing remarkable robustness compared to standard GNNs that typ-
ically experience severe dimensional collapse. Similarly impressive results are observed on
datasets like Amazon-Computers and Coauthor-CS, where the accuracy degradation is min-
imal despite drastic reductions in available attributes. The method successfully prevents
dimensional collapse across most datasets, with many maintaining high rank ratios even
under extreme attribute scarcity. However, these performance gains come at the cost of in-
creased computational complexity from the joint training scheme and additional contrastive
objectives, creating a challenging trade-off between utility and efficiency. The disparity be-
tween low-degree and high-degree node performance also persists, suggesting that the con-
trastive objective alone cannot fully reconcile the fundamental differences in how shallow
methods and GNNs process graph information. While this enhanced combination method
represents a significant step forward and achieves impressive robustness in attribute-poor
scenarios, the difficulty in balancing computational efficiency with performance gains un-
derscores the paper’s core message: the field urgently requires novel architectures that can
inherently capture the advantages of both approaches without the computational overhead
of maintaining and coordinating multiple models.
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Table 15: Experimental Results of the contrastive learning method across different datasets.
Ratio represents the proportion of attribute dimensions over the original number
of dimensions adopted for GNN training.

Dataset Rank B Dim Rank Ratio Accuracy Accuracy Low Deg. Accuracy High Deg.

Cora 32.0 320 320+0.0 100% 69.8+14 63.9 £ 1.5 79.7 £ 0.7
Cora 32.0 32.0 31.5+£0.7 1% 69.7 £ 1.9 61.5 £ 3.8 76.9 £ 0.0
Cora 32.0 320 4.0+0.0 0.01% 70.6+04 64.0 £ 0.8 77.1 £ 0.0
CiteSeer 32.0 32.0 320£0.0 100% 50.2 £+ 0.6 44.6 + 3.1 58.9 £ 0.6
CiteSeer 32.0 32.0 32.0+£0.0 1% 45.2 £ 0.8 32.8 £ 0.0 57.71 £ 1.7
CiteSeer 32.0 320 3.0+0.0 0.01% 47.6+0.2 36.8 £ 0.6 58.6 £ 0.1
PubMed 32.0 32.0 30.5+0.7 100% 745+ 1.1 71.1 £ 3.0 77.8 £ 0.1
PubMed 32.0 32.0 20.5+£0.7 1% 71.1+£0.1 69.6 £ 0.0 72.5 £ 0.3
PubMed 32.0 320 15+07 001% 725+1.2 68.7 £ 1.5 76.3 £ 0.8
CoraFull 32.0 320 320+0.0 100% 52.6+0.7 47.5 £ 0.5 57.8 £ 0.9
CoraFull 32.0 32.0 32.0+£0.0 1% 47.8 £ 1.5 42.6 £ 1.1 53.0 £ 1.9
CoraFull 32.0 320 20+0.0 001% 478 +0.9 42.8 £ 0.7 529 £ 1.1
DBLPFull 32.0 320 320+0.0 100% 84.3+0.2 81.5 £ 0.5 87.1 £0.1
DBLPFull 32.0 32.0 265 +£21 1% 81.5 £ 0.5 76.7 £ 0.7 86.2 £ 0.4
DBLPFull 32.0 320 3.0+0.0 0.01% 81.4+0.2 76.4 £ 0.6 86.4 £ 0.1
Amz-C. 32.0 32.0 26.5+49 100% 89.6 + 0.6 87.6 £ 0.8 91.5 £ 0.5
Amz-C. 32.0 320 28.0+14 1% 87.9 £ 0.2 85.2 £ 0.4 90.6 £ 0.8
Amz-C. 32.0 32.0 100% 0.01% 87.4+0.7 84.9 £ 0.3 90.0 £ 1.1
Amz-P. 32.0 320 220+00 100% 93.9 £ 0.0 91.7 £ 0.1 96.1 £ 0.1
Amz-P. 32.0 32.0 29.5+£0.7 1% 92.1 £ 0.1 88.6 £ 0.2 95.5 £ 0.5
Amz-P. 32.0 320 25+0.7 001% 91.5+0.5 87.8 £ 0.6 95.2 £ 0.4
Co-CS 32.0 320 320+0.0 100% 89.5+ 0.2 86.6 = 0.5 924 £ 0.1
Co-CS 32.0 32.0 32.0+£0.0 1% 88.5 £ 0.4 85.2 £ 0.4 91.9 £ 0.3
Co-CS 32.0 320 35+0.7 0.01% 87.3+02 83.7 £ 0.0 91.0 £ 0.4
Co-Phy. 32.0 32.0 320£0.0 100% 954 + 0.2 93.2 £ 0.3 97.5 £ 0.0
Co-Phy. 32.0 32.0 30.5+£0.7 1% 95.2 +£ 0.0 93.2 £0.2 97.2 £ 0.1
Co-Phy. 32.0 32.0 100% 0.01% 93.4 +£0.2 90.0 £ 0.5 96.8 £ 0.0
Flickr 32.0 32.0 16.0+ 28 100% 524 +0.1 54.3 £ 0.2 50.5 £ 0.4
Flickr 32.0 320 75+£0.7 1% 52.3 £ 0.1 54.3 £ 0.3 50.3 £ 0.5
Flickr 32.0 320 2.0+0.0 001% 521+0.1 54.1 £ 0.5 50.0 £ 0.3
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Figure 13: A comparison between shallow embedding methods and shallow embedding

methods with an enforced neighborhood aggregation on 10 real-world graph
datasets Here performance is measured with the cumulative node classification
accuracy, and the density curve (marked with dashed line) represents the density
of nodes with a certain homophily score in the test set.
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Figure 14: A comparison between GNNs and GNNs without the neighborhood aggregation
on 10 real-world graph datasets Here performance is measured with the cumu-
lative node classification accuracy, and the density curve (marked with dashed
line) denotes the density of nodes with a certain homophily score in the test set.
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