
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DIVIDE-VERIFY-REFINE: ALIGNING LLM RE-
SPONSES WITH COMPLEX INSTRUCTIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent studies show that LLMs, particularly open-source models, struggle to fol-
low complex instructions with multiple constraints, hindering their adoption in
mission-critical applications. Despite the importance, methods to improve LLMs’
adherence to such constraints remain largely unexplored, and current research fo-
cuses primarily on evaluating this ability rather than developing solutions. While
a few studies enhance constraint adherence through model tuning, this approach
is computationally expensive and heavily reliant on training data quality. An al-
ternative is to leverage LLMs’ self-correction capabilities, allowing them to adjust
responses to better meet specified constraints. However, this self-correction abil-
ity of LLMs is limited by the feedback quality, as LLMs cannot autonomously
generate reliable feedback or detect errors. Moreover, the self-refinement process
heavily depends on few-shot examples that illustrate how to modify responses
to meet constraints. As constraints in complex instructions are diverse and vary
widely (e.g., text length, number of bullet points, or inclusion of specific key-
words), manually crafting few-shot examples for each constraint type can be
labor-intensive and sub-optimal. To deal with these two challenges, we propose
the Divide-Verify-Refine (DVR) framework with three steps: (1) Divide com-
plex instructions into single constraints and prepare appropriate tools; (2) Verify:
To address the feedback quality problem, these tools will rigorously verify re-
sponses and provide reliable feedback (e.g., Python scripts for format checking
or pre-trained classifiers for content analysis); (3) Refine: To address the con-
straint diversity challenge, we design a refinement repository that collects suc-
cessful refinement processes and uses them as few-shot demonstrations for future
cases, allowing LLMs to learn from the past experience during inference. Ad-
ditionally, recognizing that existing datasets lack complexity and have internal
conflict, we develop a new dataset of complex instructions, each containing 1-6
constraints. Experiments show that the framework significantly improves perfor-
mance, doubling LLama3.1-8B’s constraint adherence and tripling Mistral-7B’s
performance on instructions with 6 constraints. The code and dataset are available
at https://anonymous.4open.science/r/CODE_ICLR2025-52CE/README.md.

1 INTRODUCTION

Large language models (LLMs), like ChatGPT, have shown significant improvements across a va-
riety of language tasks (Ouyang et al., 2022; Touvron et al., 2023). The success of LLMs relies on
their instruction-following ability to comprehend and execute complex instructions. Misinterpre-
tations or failures to follow instructions can result in unintended outputs, which may have severe
consequences (Mu et al., 2023; Zhou et al., 2023). This issue becomes particularly critical when
LLMs are deployed as in high-stakes environments, such as legal documentation or technical writ-
ing. For example, when drafting legal contracts, LLMs must strictly adhere to constraints related
to format, specific terminology, and precise language usage to avoid misinterpretations or legal li-
abilities. Similarly, in technical writing, adhering to strict format guidelines, word limits, and the
inclusion of essential technical terms is critical to ensure clarity, consistency, and compliance with
industry standards.

Recently, several studies show that LLMs, particularly open-source ones, struggle to follow complex
instructions that contain multiple constraints, such as response length or formatting (He et al., 2024a;

1

https://anonymous.4open.science/r/CODE_ICLR2025-52CE/README.md

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Response:

Fashion is a dynamic ……

⚫ The cyclical nature …

⚫ Sustainable fashion is …

LLM LLM

Feedback:

The response contains 4

bullet points, which

satisfies the constraint

Tools LLM
Sentence Number Checker

Bullet Points Number Checker

Topic Classifier

Sentiment Classifier

Response:

Fashion is a dynamic ……

⚫ The cyclical nature …

⚫ Sustainable fashion is …

Feedback:

The response only contains

2 bullet points. 2 more bullet

points should be added.

Refinement

(next round)

Refinement Repository

Retrieve Refinement examples

Save Refinement examples

(a) Self-correction (b) DVR: Self-correction with Tool feedback and Refinement repository

……

Instruction: Compose a text with a fashion

topic. Include exactly 4 bullet points in

your response….

Figure 1: (a) The LLMs hallucinate and cannot give reliable feedback. (b) The tools can check
the response rigorously and provide reliable and directional feedback. The refinement repository
provides past refinement examples and stores the current refinement process.

Jiang et al., 2024b; Chen et al., 2024b). Despite the recognition of this issue, research on enhanc-
ing LLMs’ ability to follow constraints is still limited. Current efforts mainly focus on evaluating
LLMs’ constraint-following ability rather than on improving this ability (Jiang et al., 2024b; Chen
et al., 2024b; Zhou et al., 2023). Only very few studies improve the LLMs’ constraint-following
ability through fine-tuning (He et al., 2024a; Sun et al., 2024; Li et al., 2024). Among them, one
approach (He et al., 2024a) specifically enhances LLMs’ ability to follow multiple constraints. It
employs a teacher model to iteratively refine the outputs of a student model. This step-by-step cor-
rection process, along with the final accurate responses, is used to train the student model. Although
fine-tuning is an effective approach, it usually requires a large amount of computation resources
and heavily depends on the data quality. In contrast to training-based methods, the concept of
“self-correction” offers an alternative approach, where LLMs autonomously correct their responses
(Madaan et al., 2024; Shinn et al., 2024). Self-correction has been applied on various tasks such
as question answering (Dhuliawala et al., 2023; Shinn et al., 2024) or mathematics (Madaan et al.,
2024), where an LLM will evaluate its responses, give feedback, and further refine responses. For
constraint-following, this self-correction process can be divided into two phases: verification and
self-refinement (see Fig. 1(a)). During the verification phase, LLMs assess whether their responses
align with the specified constraints. If the responses do not align with the constraints, the LLMs will
give feedback that pinpoints errors and suggests adjustments. Following this, the self-refinement
phase takes place where LLMs use the feedback to refine and improve their responses accordingly.

However, there are several challenges for an LLM to correct its response for multi-constraints. The
first one is feedback reliability. Recent studies indicate that LLMs often exhibit only modest per-
formance gains from self-correction, and the improvements can be unstable, occasionally even de-
grading performance in areas such as question answering (Huang et al., 2024) and code generation
(Olausson et al., 2024). Several studies claim that the significant bottleneck in self-correction is the
generation of reliable feedback (Tyen et al., 2024; Gou et al., 2024; Jiang et al., 2024a). LLMs,
including advanced models like GPT-4 and Claude 3, tend to have low recall in detecting LLMs
errors, underperforming significantly compared to humans (Kamoi et al., 2024). On the other hand,
research reveals that the self-correction performance on reasoning tasks is boosted if the error loca-
tion is given, indicating LLMs have the self-correction ability given reliable feedback (Tyen et al.,
2024). From a constraint-following perspective, LLMs are also not good at checking simple and
easy-to-verify constraints. As shown in Fig. 1(a), given a response, the LLMs struggle to accurately
count the bullet points, sentences, or words. The second challenge is constraint diversity which lies
in the self-refinement process. Given the response and the feedback, the LLMs should refine the
response according to the feedback. However, to perform this task effectively, a set of representa-
tive few-shot examples is needed to demonstrate how to appropriately modify the response (Brown
et al., 2020). These constraints can vary widely, from adhering to a length limit to including spe-
cific keywords. Each type of constraint needs distinct modifications. For example, meeting a length
limit might require removing content, whereas incorporating specific keywords requires adding text.
Manually crafting representative few-shot examples for each constraint type is labor-intensive.

To address these challenges, we propose a novel framework named Divide-Verify-Refine (DVR)
as illustrated in Fig. 1(b). To enhance feedback reliability, we observe that constraints that LLMs
struggle to verify, such as exact word counts, sentences counts, or bullet points, can be readily
assessed using external tools. These tools include coding methods for quantitative measures, such
as counting the number of words, sentences, paragraphs, or bullet points, as well as pre-trained

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

classifiers for content analysis, such as topic and sentiment analysis, which are easily accessible and
widely available (Antypas et al., 2022; Loureiro et al., 2022). Instead of relying on LLMs to verify
their responses, we instruct LLMs to interact with external tools to handle the verification process.
We first instruct LLMs to divide the complex constraint into single constraints and then select one
tool for each single constraint. By integrating these tools, we overcome the limitations of LLMs
in verification and feedback, enabling more rigorous checking and providing reliable and detailed
feedback for subsequent refinement. To address the constraint diversity problem, we propose the
refinement repository. This repository is a memory module that collects and stores successfully
refined examples for future use. Since the verification reliability is guaranteed by external tools, the
successful refinement processes can be recorded and saved in the refinement repository. This allows
LLMs to learn from past experiences during inference time.

Our main contributions are: (i) It is the first work to improve the LLMs’ constraint-following abil-
ity without training. Our framework enhances feedback reliability by integrating easily accessible
and widely available tools for verifying responses against specified constraints. (ii) To address the
constraint diversity challenge, we propose a novel refinement repository to store successfully refined
examples, which enables LLMs to learn from past experience and avoids crafting demonstrations
manually. (iii) Most benchmarks only contain 1-2 constraints (Chen et al., 2024b). Current com-
plex instruction datasets He et al. (2024a) combine seed instructions with external constraints but
often overlook existing ones, causing conflicts and incomplete evaluations. To overcome the limita-
tions and ensure a comprehensive evaluation, we construct a new complex instruction dataset with
instructions containing 1-6 constraints.

2 RELATED WORK

Instruction-Following of LLMs. Since the ability to follow instructions is crucial for the practical
use of LLMs, many recent studies evaluate this capability from various perspectives (Dubois et al.,
2024; Zhou et al., 2023; Jiang et al., 2024b; Chen et al., 2024b; Zhou et al., 2023; He et al., 2024b).
They evaluate LLMs’ instruction-following ability by testing on length (Dubois et al., 2024), format
(Zhou et al., 2023), semantic and topic constraints (Chen et al., 2024b). Most works only test
LLMs on simple instructions with only 1-2 constraints. Recently, some works generate instructions
with multiple constraints (He et al., 2024a; Jiang et al., 2024b). They find that LLMs struggle
to follow complex instructions as the number of constraints increases. Moreover, there is a big
performance gap between the open-source models and the closed-source models on instruction-
following. Upon finding these problems, some seminal works aim to improve instruction-following
the ability of LLMs (Chen & Wan, 2023; Sun et al., 2024; Wang et al., 2024; He et al., 2024a). They
use various prompting strategies to generate instructions and responses with advanced LLM models
(e.g., GPT4) and then use the generated data to fine-tune open-source LLMs. Though most methods
only consider instructions with few constraints, one of them (He et al., 2024a) focuses on improving
the LLMs’ ability to follow multiple constraints. They generate complex instruction datasets by
merging instructions with external constraints. Then, they adopt GPT4 (teacher model) to modify
the response of the open source model (student model) iteratively. The student model is finetuned
by both the intermediate modification process and the final modified response. Although fine-tuning
is an effective approach, it usually requires a large number of computation resources and heavily
de- pends on the data quality. In addition, the fine-tuned model will still suffer from new constraints
not seen before. Different from previous methods, our framework uses in-context learning with tool
interaction to effectively identify and rectify unsatisfactory responses using the LLM itself, which
is more practical and accessible.

Self-Correction of LLMs. Self-correction is a framework where LLMs refine their own responses
during inference by reflecting on their initial responses (Shinn et al., 2024; Madaan et al., 2024).
This process can be divided into two phases. Initially, LLMs are prompted to analyze and provide
feedback on their own responses. Subsequently, based on the feedback LLMs refine the responses to
correct their mistakes. However, recent studies report negative results indicating that LLMs cannot
self-correct their own mistakes (Hong et al., 2024; Tyen et al., 2024; Kamoi et al., 2024; Gou et al.,
2024). For example, Kamoi et al. (2024) reveal that top LLMs like GPT-4 and Claude 3 have low
recall in detecting LLM errors, with LLMs significantly underperforming compared to humans.
Additionally, feedbacks provided by LLM self-correction tend to hallucinate and lack reliability.
This unreliability suggests that even when errors are detected, the guidance offered for corrections

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Response R:

Fashion is a dynamic expression of ……

⚫ The cyclical nature …

⚫ Sustainable fashion is ….
Feedback: f

Response R

Few-shots Examples:

(R1, I1, f1, R1’)….

Refinement Repository

…. Refined Response R’:

Fashion is a dynamic

expression…

● The cyclical …

● Sustainable …

● ….

● ….

Compose a statement

whose topic is fashion

or style. The number

of sentences in your

response should be at

least 5. Include

exactly 4 bullet points

in your response. ….

Feedback: The response only

contains 2 bullet points. 2 more

bullet points should be added.

Decompose

Tool options: Topic_cls,

Sent_num, Bullet_points ….

LLM Generation

Feed Forward

Sent_num(at least, 5)

Bullet_points(4)

Topic_cls(fashion&style)

Prepare

C2: At least 5 sentences.

C3: 4 bullet points.

C1: fashion&style topic.

Tools

(a) Divide: Tool Prepare

(b) Verify: Verification and Feedback

(c) Refine: Self-refine

Input Instruction

Tools

Instruction I

Save: (𝑰, 𝑹, 𝒇, 𝑹′ | bullet points)

Retrieve

Few-shots Examples:

(𝐼𝑖, 𝑅𝑖 , 𝑓𝑖, 𝑅𝑖
′) ….

….

Few-shots Examples:

(𝐼𝑖, 𝑅𝑖 , 𝑓𝑖, 𝑅𝑖
′
| bullet

points) ….

(𝐼𝑖 , 𝑅𝑖 , 𝑓𝑖, 𝑅𝑖
′
| Bullet Points)…

Figure 2: The DVR framework: (a) Divide: The LLMs decompose constraints and instantiate tools
for each constraint, (b) Verify: Tools will give feedback on the response, (c) Refine: The refinement
repository provides past refinement process as few-shot examples. The current refinement process
will be stored in the repository.

may be incorrect or misleading. Hong et al. (2024) find that LLMs struggle to accurately identify
logical fallacies, casting doubt on their inherent ability to detect errors and conduct self-verification
reasoning effectively. However, the self-correction performance on reasoning tasks is boosted if
the error location is given (Tyen et al., 2024). A study also shows that LLMs do have the ability
to correct their responses with the help of tools (Gou et al., 2024). All these observations indicate
that LLMs themselves are not reliable in analyzing their responses and a more reliable feedback
mechanism is needed to pinpoint the mistakes. The most closely related work is CRITIC (Gou
et al., 2024), which uses tools for verification, such as an external API for testing the toxic score
of the response. Our method differs from CRITIC by incorporating a refinement repository module
that accumulates successful past refinements, thereby enhancing the effectiveness of self-correction
over time. Moreover, we use multiple tools to provide a detailed analysis of various aspects of the
response and give modification suggestions, instead of giving a single toxic score.

LLMs Using Tools. Tools have been extensively employed to enhance the capabilities of LLMs
across various domains. For instance, retrievers are used to augment response generation of LLMs
by fetching relevant information (Khandelwal et al., 2019), while search engines enhance the
model’s access to real-time data Nakano et al. (2021). Similarly, calculators are adopted to sup-
port math reasoning of LLMs (Cobbe et al., 2021), interpreters are used to facilitate accurate code
generation (Chen et al., 2022; Gao et al., 2023), and mathematical provers help in verifying theo-
retical proofs (Jiang et al., 2023). We observe that following complex instructions can be hard, but
checking them with tools is much easier. Because of this, we integrate external tools to our LLMs to
help with this process. This integration can provide reliable verification and detailed feedback and
also enable the LLMs to save past refinement examples for future use.

3 THE PROPOSED FRAMEWORK: DVR

As shown in Fig. 2, we propose the Divide-Verify-Refine (DVR) framework which consists of three
modules: (a) Divide instructions and prepare tools accordingly, (b) Verify responses and provide
feedback, and (c) Refine and store responses in a repository. First, The tool preparation module aims
to identify constraints, select appropriate tools, and fill out parameters. In this module, LLMs first
decompose the complex instructions into single constraints. For each single constraint, the LLMs
will prepare appropriate tools for verification. Second, in the verification and feedback module, the
prepared tools will verify the response and give detailed feedback if the response does not adhere
to the constraint. Third, in the self-refinement module, given the feedback and past refinement
experience for the same constraint as few-shot examples, the response is refined to adhere to the
target constraint. The successfully refined response will be stored in the refinement repository so
that it can be retrieved as refinement examples in the future. Next, we introduce each model in detail.

3.1 DIVIDE: TOOL PREPARATION

To provide accurate feedback, we propose to adopt tools for verification. To enable LLMs to use
external tools, we construct tools for different types of constraints. We build Python verifiers for

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

structural constraints (e.g., the number of words, the number of paragraphs, or the number of bullet
points). To handle constraints where existing tools are unavailable, we can request advanced code-
generation models such as DeepSeek-Coder (Zhu et al., 2024) or Code-Llama Roziere et al. (2023)
to generate required tools. We also adopt existing classifiers as verifiers for content constraints (e.g.,
the topic classifier (Antypas et al., 2022) and the sentiment classifier (Loureiro et al., 2022)).

Given an input instruction I , the LLM M first decomposes it into a series of individual constraints.
We use a decomposition prompt pdecomp asking LLMs for decomposition. With input instruction
and decomposition prompt, LLM then generates a set of decomposed constraints: M(pdecomp, I) →
{ci}i=1,2,3..., where ci is the i-th single constraint. For each constraint ck, the LLM determines the
appropriate tool by matching ck to a tool tk from the predefined toolset: M(pselect, ck) → tk, where
tk ∈ {ti}i=1,2,3... is the selected tool for the constraint ck. The prompts for decomposition pdecomp

and tool selection pselect are in Table 20 in Appendix A.13. After selecting the tools, the LLM sets
the necessary parameters for each tool, such as specifying the required number of bullet points or
the desired sentiment for the response. Finally, all tools relevant to instruction I are compiled into
the set TI = {ti}i=1,2,3..., ready to be utilized in the subsequent verification and feedback phase.

3.2 VERIFY: VERIFICATION AND FEEDBACK

Given the instruction, the LLM will first generate the initial response R0 = M(pgenerate, I), where
pgenerate is the prompt for generation (detailed in Appendix A.13). We denote the current response
as R and R = R0 for the first round of refinement and will be updated to the refined response in
subsequent rounds. The current response is verified by each tool in toolset TI as follows:

fi = ti(R),∀ti ∈ TI (1)

where fi is the feedback from tool ti for constraint ci. If the response adheres to the constraint,
the feedback is a boolean value “true”. Otherwise, fi is a textual feedback that first identifies the
error in the response and then suggests modification. For example, as shown in Fig. 2, the tool
“Bullet_points(4)” counts the number of bullet points in the response and outputs “true” if there
are 4 bullets; while the response only contains 2 bullets. It finds that the response does not satisfy
the constraint and gives out the feedback “The response only contains 2 bullet points. 2 more
bullet points should be added.” This detailed feedback points out the errors in the response and
gives directional information for LLMs to modify the response. We collect all feedback FI =
{fi}i=1,2,3... which will be used to refine the response R.

3.3 REFINE: SELF-REFINE WITH FEEDBACK AND FEW-SHOT DEMONSTRATION

In the self-refinement phase, the LLM leverages the feedback collected to refine the response. To
improve the performance, we propose to adopt representative demonstrations in the prompt to in-
struct LLMs on how to conduct refinement using feedbacks. As constraints vary widely, each type
of constraint requires specific demonstrations for effective refinement. Manually creating few-shot
examples for each constraint type is labor-intensive and impractical for real-world applications. To
solve this issue, we propose to store the successful refinement process in the refinement reposi-
tory. When LLMs need to refine a new response involving the same constraint type, the few-shot
examples can be retrieved from the refinement repository as in-context examples.

Specifically, the refinement process targets one unsatisfied constraint at a time, cycling through a
refine-verify-refine loop until all constraints are satisfied. For a given response R and the feedback
f ∈ FI , f ̸= True, the refinement response can be written as follows:

R′ = M(prefine, s
t, I, R, f) (2)

where prefine is the prompt for refinement (detailed in Appendix A.13), st =
{(Ii, Ri, fi, R

′
i)

t}i=1,2,3... is the set of refinement examples selected from the refinement
repository Q, which contains refinement examples having the same constraint type associated with
f . There might be many refinement examples having the same constraint type with f available in
the refinement repository. Retrieval techniques like semantic similarity can be employed to select
the most relevant examples. In this paper, we randomly select relevant examples for simplicity and
leave more advanced techniques as future work. Some refinement examples are in Table 18 and 19
in Appendix A.12.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

If the refined response adheres to the constraint, i.e., t(R′) = True, the current successful refine-
ment process will be stored in the repository as Q = Q ∪ {(I,R, f,R′)t}.

Discussion. Our method, DVR introduces a novel approach to enhancing LLMs’ ability to follow
complex instructions with multiple constraints. The detailed algorithm of DVR is shown in Algo-
rithm 1 in Appendix A.1. By integrating external tools for reliable and detailed feedback and a
refinement repository for storing successful refinement examples, we provide a scalable and robust
framework for improving instruction compliance without the need for extensive retraining. More-
over, the external tools and the refinement repository work jointly. Without reliable feedback, the
refinement repository would risk accumulating incorrect or noisy examples, which could deteriorate
the performance of LLMs over time. The detailed feedback gives “directional” information, which
guides the LLMs to adjust their responses. Compared to directly following complex instructions,
decomposing these instructions and selecting the appropriate tools are simpler tasks for LLMs. This
inherent advantage allows our framework to be very effective, as it leverages these easier tasks to
build a robust system that enhances the LLMs’ adherence to constraints.

4 EMPIRICAL VALIDATION

In this section, we conduct experiments to answer the following research questions: (RQ1) Can
our DVR improve the ability of LLMs to follow complex constraints? (RQ2) How does the perfor-
mance of LLMs differ across various types of constraints, and which constraints pose the greatest
challenges? (RQ3) How does each module of DVR (the tool-assisted verification and the few-shot
self-refinement library) individually contribute to improving LLMs’ ability to follow constraints?

4.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on two datasets: (i) We conduct experiments on CoDI (Control-
lable Generation under Diversified Instructions) (Chen et al., 2024b). It has 500 instructions with
2 constraints. Each instruction has a topic constraint and a sentiment constraint. (ii) ComplexIn-
struct: Since the complexity of CoDI is limited, we construct a new complex instruction datasets
called ComplexInstruct. We use CoDI (topic instruction set) (Chen et al., 2024b) as seed instruc-
tions which ask users to generate text on certain topics. Some instructions ask users to generate
“a paragraph of...” or “a sentence of...” which already contain length constraints. To avoid con-
flicts and hidden constraints, we remove these constraints by replacing the keywords “paragraph”
and “sentence” with “text”. Then, we synthesize complex instructions by adding constraints to
these seed instructions (Zhou et al., 2023). To simulate instruction of different levels, we generate
6000 complex instructions with 1-6 constraints for each instruction as 6 levels (1000 instructions for
each level). We have 21 types of constraints categorized into 8 general categories (such as length
constraint, punctuation, and case change). Each type of constraint is diversified into 8 different
expressions. The detailed information about the constraint types is in Appendix A.3 and Table 6.

Baselines. We compare our method with representative and state-of-the-art baselines, which can
be categorized into three main types: (i) Self-reflection based methods, which iteratively improve
response via feedback from LLMs reflection, such as Reflexion (Shinn et al., 2024); (ii) Prompting
based methods, which use different prompting strategies to get the best response, including Branch-
solve-Merge (BSM) (Saha et al., 2024) and Universal Self-Consistency (U-SC) (Chen et al., 2024a);
and (iii) Tool based methods, which use external tools for feedback or selection, such as Rejection
sampling (Saunders et al., 2022), React (Yao et al., 2023), and CRITIC (Gou et al., 2024). For the
refinement repository of our framework, we consider two variants, i.e., warm-start and cold-start.
For warm-start, we have an additional set of instructions (6000 samples for ComplexInstruct and
500 samples for CoDI). Note that these data samples are totally independent with test set. Our
framework will first run on these samples to collect examples to fill the refinement repository. For
cold-start, since the refinement repository is empty at beginning, we use 5 fixed few-shot examples
if there are no examples that can be retrieved from the repository. The detailed information about
each baseline is in Appendix A.2.

Implementation. We test on popular open-source models including Mistral-7B, Llama3-8B,
Llama3.1-8B and Llama3.1-70B. The temperature of the model is 0.8. We set the number of few-
shot demonstrations for initial response generation and self-refinement (without repository) as 5 for

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Instruction Satisfaction Rate (ISR) across levels 1 to 6 (Llama-3.1-8B-Instruct). The values
in parentheses (+xx) indicate the improvement compared to the best performing baseline.

Method Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Vanilla 90.5 76.6 62.5 50.1 35.6 25.3
Reflxion 91.6 78.1 63.7 49.8 35.8 25.7
BSM 90.1 75.3 62.0 47.5 35.5 24.1
U-SC 90.9 76.3 62.4 47.1 36.0 25.8
Rejection Sampling 92.1 86.7 71.1 60.4 49.8 36.3
ReAct 94.2 86.1 72.5 60.7 50.2 37.2
CRITIC 93.8 87.1 75.4 64.4 52.4 43.2
DVR (coldstart) 94.5 (+0.7) 87.9 (+0.8) 78.4 (+3.0) 69.5 (+5.1) 60.9 (+8.5) 49.2 (+6.0)

DVR (warmstart) 95.2 (+1.4) 88.7 (+1.6) 79.2 (+3.8) 69.7 (+5.3) 60.5 (+8.1) 49.6 (+6.4)

Table 2: Instruction Satisfaction Rate (ISR) across levels 1 to 6 (Mistral-7B-Instruct-v0.3)

Method Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Vanilla 77.0 55.3 34.1 19.9 12.4 6.3
Reflxion 77.2 55.8 35.1 20.1 12.0 5.8
BSM 78.1 56.2 33.8 19.3 11.3 5.2
U-SC 76.8 56.0 34.3 20.4 12.9 5.8
Rejection Sampling 78.4 58.3 37.6 23.0 13.5 6.8
ReAct 86.0 67.8 46.0 32.5 18.2 10.7
CRITIC 88.9 72.5 55.6 43.5 28.1 18.1
DVR (coldstart) 94.9 (+6.0) 80.2 (+7.7) 64.1 (+8.5) 49.3 (+5.8) 35.8 (+7.7) 23.6 (+5.5)

DVR (warmstart) 95.0 (+6.1) 81.3 (+8.8) 66.6 (+11.0) 51.4 (+7.9) 36.4 (+8.3) 23.4 (+5.3)

our method and every baseline. We use the same set of few-shot demonstrations both for baselines
and our method. We also set the maximum number of few-shot demonstrations for refinement (with
repository) as 8. We set the number of trials as 5 for our method and every baseline.

Evaluation Metrics. We assess the constraint-following ability by calculating the Instruction Sat-
isfaction Rate (ISR) (Jiang et al., 2024b). Specifically, each single instruction is satisfied when all
constraints in that instruction are satisfied. It is calcualted as ISR = 1

N

∑N
i=1

∏mi

j=1 cij , where N is
the total number of instructions in the dataset, mi is the number of constraints in the i-th instruction,
cij = 1 if the j-th constraint in i-th instruction is satisfied; otherwise cij = 0.

4.2 RQ1: ASSESSING THE CONSTRAINT-FOLLOWING ABILITY

To answer RQ1, we evaluate our framework on two datasets. We evaluate structural constraints (e.g.,
text length, number of sections, and bullet points) on ComplexInstruct and content constraints (e.g.,
topic and sentiment constraints) on CoDI respectively.

For ComplexInstruct, there are six difficulty levels. Each level corresponds to the number of con-
straints in the instruction. For example, each instruction in Level 3 contains three constraints. There
are 1000 instructions for each level. Results are shown in Table 1 and Table 2 (more results in
Appendix A.4). (i) Single constraints vs Multi-constraints: For instructions in different difficulty
levels, responses to instructions with more constraints tend to have a lower satisfaction rate. The
satisfaction rate of instructions at Level 1 can approach close to 100%. However, at Level 6, the
satisfaction rates for models like Llama3.1-8B and Mistral-7B drastically fall to 25% and 6.3%, re-
spectively. This indicates that LLMs struggle to satisfy instructions with multiple constraints even
though LLMs can satisfy them individually. (ii) Self-Reflection is unreliable: We can observe that
Reflxion (Shinn et al., 2024) where LLMs reflect on and self-correct their responses, provides little
improvement over Vanilla. This result indicates that LLMs themselves can not effectively iden-
tify their errors in constraint-following tasks. Similarly, Universal Self-consistency (Chen et al.,
2024a), which allows LLMs to choose the most consistent answers from a set of candidates, has
small improvements over Vanilla. These observations indicate that self-reflection and conventional
prompting techniques may not sufficiently enhance LLMs’ ability to follow constraints, highlight-
ing the potential need for external tools to assist LLMs in this area. (iii) Tools are helpful: ReAct
and CRITIC can be viewed as two variants in our framework. In contrast, CRITIC offers more
granular feedback by specifically identifying which constraint within an instruction is not satisfied.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6
Number of Constraints Satisfied

0
5

10
15
20
25
30
35

Pe
rc

en
ta

ge
 o

f I
ns

tru
ct

io
ns

 (%
) Mistral-7B

Vanilla
DVR

1 2 3 4 5 6
Number of Constraints Satisfied

0

10

20

30

40

Pe
rc

en
ta

ge
 o

f I
ns

tru
ct

io
ns

 (%
) Llama3-8B

Vanilla
DVR

1 2 3 4 5 6
Number of Constraints Satisfied

0

10

20

30

40

50

Pe
rc

en
ta

ge
 o

f I
ns

tru
ct

io
ns

 (%
) Llama3.1-8B

Vanilla
DVR

1 2 3 4 5 6
Number of Constraints Satisfied

0
10
20
30
40
50
60

Pe
rc

en
ta

ge
 o

f I
ns

tru
ct

io
ns

 (%
) Llama3.1-70B

Vanilla
DVR

Figure 3: Distribution of satisfied constraints number per instruction (level 6).

Table 3: Instruction Satisfaction Rate (ISR) on CoDI dataset
Method Mistral 7B Llama3 8B Llama3.1 8B
Vanilla 68.8 68.8 68.6
Reflexion 69.4 70.0 69.8
Branch-Solve-Merge 68.2 68.4 68.6
Universal Self-consistency 69.2 70.2 69.6
Rejection Sampling 79.8 80.8 81.4
ReAct 80.4 81.0 81.8
CRITIC 88.6 93.0 91.2
DVR (coldstart) 92.0 94.2 94.6
DVR (warmstart) 93.2 94.4 94.6

Compared with ReAct Yao et al. (2023), CRITIC Gou et al. (2024) has better performance, which
means even identifying the unsatisfied constraint can also be helpful. This extra information helps
the LLMs to locate the error when the number of constraints increases. Our method outperforms all
baselines and the performance gain is larger for more complex instructions (level 4 to level 6).

By comparing the performance between different models, the larger model (Llama3.1-70B) per-
forms better than the smaller models (Llama3.1-8B, Llama3-8B, and Mistral-7B). Additionally, with
the same model size, Llama3.1-8B performs better than Llama3-8B in constraint-following.

The results in Figure 3 illustrate the distribution of constraints satisfied per instruction at the level
6 difficulty. There is a shift in the distribution towards the right when using our framework, indi-
cating an enhancement in the ability to meet multiple constraints. Specifically, for the Mistral-7B
model, the implementation of our framework shifts the center of the distribution from satisfying 4
constraints to satisfying 5 constraints.

We also observe that LLMs perform better on the CoDI dataset Chen et al. (2024b). There are two
reasons. The first reason is that instructions are relatively simple, and only contain two constraints.
Additionally, another study also shows that LLMs perform relatively better on sentiment and topic
constraints Chen et al. (2024b) compared with format constraints. The LLMs inherently have bet-
ter performance on semantic constraints over structural constraints. Our methods also outperform
baselines and successfully improve the instruction satisfaction rate on CoDI.

4.3 RQ2: COMPARISON ACROSS DIFFERENT CONSTRAINT TYPES

Comparison across different constraint types is shown in Table 4 (warmstart). Coldstart results are
provided in Table 9 in Appendix A.4. The 21 constraints in ComplexInstruct are categorized into 8
general categories as shown in the table. We have the following observations. (i) We can find that
length constraints are the most challenging constraints for every language model. Length constraints
have three levels: a minimum or maximum word count, a minimum or maximum sentence count, and
an exact number of paragraphs. The reason might be that there is a lack of instructions containing
length constraints during the instruction-tuning process. As a result, the language model struggles to
understand the relationship between the output and the specified length in the instruction. Moreover,
LLMs must plan from the beginning of the generation process to not only meet the length constraint
but also ensure that the response remains complete and coherent. (ii) Language constraints, which
require the use of languages such as Italian, German, or Japanese, are the second most challenging.
This might be due to the limited multilingual capabilities of the LLMs. (iii) Punctuation constraint
which requires LLMs not to use any commas in their responses, is especially challenging for Mistral-
7B. However, our framework improves it significantly and triples the performance from 24% to

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Comparison Across Different Constraints Types

Mistral-7B Llama3-8B Llama3.1-8B Llama 3.1-70B

Constraint Type Vanilla DVR Vanilla DVR Vanilla DVR Vanilla DVR

Detectable Content 76.36 88.90 84.18 96.81 86.29 96.31 97.06 98.59
Keywords 76.04 84.23 83.84 88.32 84.94 88.77 87.88 92.03
Punctuation 24.34 72.93 91.03 95.64 97.01 98.04 98.38 98.39
Case Change 70.08 81.28 81.28 93.38 82.97 90.71 80.23 96.28
Start End 81.29 90.41 84.88 90.03 84.07 91.92 89.37 96.46
Detectable Format 69.59 80.70 81.57 89.23 84.69 92.31 90.52 95.30
Language 69.11 81.80 77.06 88.38 81.96 89.76 90.83 95.26
Length Constraints 50.42 73.23 65.29 80.85 68.55 83.57 80.50 90.20

2 4 6
Difficulty Level

10

20

30

Pe
rfo

rm
an

ce
 G

ai
n

(%
) ISR Gain for Mistral-7B

2 4 6
Difficulty Level

10

20

ISR Gain for Llama3.1-8B

2 4 6
Difficulty Level

10

20

ISR Gain for Llama3-8B

w/o Detailed Feedback w/o Repository w/o both Ours (coldstart) Ours (warmstart)

Figure 4: Ablation study on Mistral-7B, Llama3.1-8B and Llama3-8B.

73% satisfaction rate. The reason might be that Mistral 7B tends to ignore this constraint and needs
external feedback to correct the answer.

4.4 RQ3: CONTRIBUTION OF INDIVIDUAL MODULES

In addition to comparing our method with existing baselines, we conduct an ablation study to assess
the effectiveness of individual modules. Specifically, we investigate three variants: (i) w/o Detailed
Feedback: The detailed feedback from the tool is removed but the refinement repository is kept
to provide relevant few-shot examples showing the responses before and after refinement. Here,
the refinement repository is empty in the beginning (coldsart). (i) w/o Repository: The refine-
ment repository is removed, and only 5 fixed examples are used for the self-refine process. (i) w/o
both: The refinement repository and detailed feedback are all removed. Tools only give whether
the whole instruction is satisfied. Figure 4 shows performance gaps between each method and the
Vanilla. Both detailed feedback and the refinement repository are crucial. Without the repository,
performance gains are limited, as fixed few-shot examples aren’t optimal for each refinement target.
Detailed feedback is also important for LLMs, because it locates the error and provides the direc-
tion for LLMs to modify their responses. Llama3-8B and Llama3.1-8B show higher gains on more
difficult instructions. Mistral-7B’s gains are modest, because of the limited capacity of Mistral-7B
in following complex instructions, it can only follow 6.3% of level 6 instructions (shown Table 2).
Despite this, the gains are notable from its low starting point. In conclusion, both detailed feedback
and the refinement repository contribute to the performance of our framework.

4.5 HYPER-PARAMETER SENSITIVITY ANALYSIS

We also conduct a hyper-parameter sensitivity analysis of our framework, testing different numbers
of refinement few-shots and trials for successful refinement on Llama3.1-8B. As shown in Figure
5, performance improves with more trials but saturates at five, with minimal gains beyond that.
Similarly, increasing the few-shot examples boosts performance in the beginning. The performance
saturates after 8 shots. On the CoDI dataset, performance improves rapidly with initial increases in
trials and examples, indicating that the first few numbers of trials and few-shot examples are most
effective for refining the response.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 2 4 6 8

Number of Trials
1
2
34

56Levels

0
5

10
15
20
25ISR Gain (%

)

ISR Gain

0 2 4 6 8 10

Number of Shots1
2

3456

Levels

5
10
15
20
25ISR Gain (%

)

ISR gain

0 2 4 6 8
Number of Trials

0

5

10

15

20

25

Pe
rfo

rm
an

ce
 G

ai
n

(%
)

ISR Gain

Mistral 7B
Llama3 8B
Llama3.1 8B

0 2 4 6 8 10
Number of Shots

20

21

22

23

24

25

26

Pe
rfo

rm
an

ce
 G

ai
n

(%
)

ISR Gain

Mistral 7B
Llama3 8B
Llama3.1 8B

Figure 5: Parameter study on ComplexInstruct (first two charts) and CoDI dataset (last two charts).

Table 5: LLMs Performance on Tool Selection (%)

Models Hamming Loss Accuracy Precision Recall F1 Score

Mistral-7B 4.13 52.85 92.98 81.39 86.80
Llama3-8B 2.64 67.60 94.39 89.48 91.87
Llama3.1-8B 2.90 61.77 94.69 87.50 90.95
Llama3.1-70B 0.86 86.40 98.41 96.38 97.38

4.6 TOOL SELECTION ACCURACY

Correctly decomposing and selecting tools are essential for feedback and refinement. We define tool
selection as a multi-label prediction task for LLMs, evaluated using hamming score, accuracy, preci-
sion, recall, and F1-score. The total number of tools is 21. Results are shown in Table 5. Hamming
loss, which measures the fraction of incorrect labels, is low across all models, indicating minimal
mispredictions. Every model demonstrates a very high precision score, meaning that the tools they
select are mostly correct, avoiding misleading feedback with incorrect tool selection. Accuracy,
which measures the exact match between the selected tools and the ground truth, is the strictest
metric. Despite this, all models achieve over 50% accuracy. Considering the limited performance
of these models on constraint-following tasks, tool selection is a relatively easier task for LLMs.
This performance gap makes it possible for our method to provide reliable feedback, collect past
refinement examples and be effective in improving LLMs’ constraint-following ability.

4.7 WOULD DVR AFFECT COMPREHENSIBILITY AND FLUENCY OF RESPONSES

In this subsection, we investigate if our framework would sacrifice comprehensibility and fluency
in order to follow complex-constraints. We focus on evaluating key metrics such as readability,
perplexity, and coherence. These metrics assess the comprehensibility and fluency of the responses.
Results on ComplexInstruct (Table 11) and CoDI (Table 12) are in Appendix A.6. They both show
that our framework has performance comparable to those of Vanilla, indicating that it does not
degrade fluency and readability. The reason is that our method does not change any weights in
LLMs, which maintains their ability in generating fluent and comprehensible text.

5 CONCLUSION

In conclusion, this paper presents the Divide-Verify-Refine (DVR) framework to enhance LLMs’
ability to follow multi-constraint instructions. There are three steps in our framework: (1) Di-
vide complex instructions into single constraints and assign appropriate tools for each constraint.
(2) Verify: To deal with the feedback quality problem, these tools rigorously verify the response
and generate reliable feedback. (3) Refine: To tackle the constraint diversity challenge, we design
the refinement repository to store successful refinement processes, allowing LLMs to retrieve and
learn from past examples. Our framework improves LLMs’ adherence to complex multi-constraint
instructions without the need for retraining, offering a scalable solution to enhance the practical
usability of LLMs in real-world applications. Additionally, we construct a new dataset free from
hidden or conflicting constraints, providing a more comprehensive and accurate evaluation of LLM
performance on multi-constraint instructions.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Dimosthenis Antypas, Asahi Ushio, Jose Camacho-Collados, Vitor Silva, Leonardo Neves, and
Francesco Barbieri. Twitter topic classification. In Proceedings of the 29th International Confer-
ence on Computational Linguistics, 2022.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Proceedings of the 34th International Conference on Neural Information
Processing Systems, pp. 1877–1901, 2020.

Tianle Cai, Xuezhi Wang, Tengyu Ma, Xinyun Chen, and Denny Zhou. Large language models as
tool makers. In The Twelfth International Conference on Learning Representations, 2024.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Xiang Chen and Xiaojun Wan. A comprehensive evaluation of constrained text generation for large
language models. arXiv preprint arXiv:2310.16343, 2023.

Xinyun Chen, Renat Aksitov, Uri Alon, Jie Ren, Kefan Xiao, Pengcheng Yin, Sushant Prakash,
Charles Sutton, Xuezhi Wang, and Denny Zhou. Universal self-consistency for large language
models. In ICML 2024 Workshop on In-Context Learning, 2024a.

Yihan Chen, Benfeng Xu, Quan Wang, Yi Liu, and Zhendong Mao. Benchmarking large language
models on controllable generation under diversified instructions. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pp. 17808–17816, 2024b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, Roberta Raileanu, Xian Li, Asli Celikyilmaz,
and Jason Weston. Chain-of-verification reduces hallucination in large language models. arXiv
preprint arXiv:2309.11495, 2023.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
pacaeval: A simple way to debias automatic evaluators. Conference on Language Modeling,
2024.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yujiu Yang, Nan Duan, Weizhu Chen, et al. Critic: Large
language models can self-correct with tool-interactive critiquing. In The Twelfth International
Conference on Learning Representations, 2024.

Qianyu He, Jie Zeng, Qianxi He, Jiaqing Liang, and Yanghua Xiao. From complex to simple:
Enhancing multi-constraint complex instruction following ability of large language models. arXiv
preprint arXiv:2404.15846, 2024a.

Qianyu He, Jie Zeng, Wenhao Huang, Lina Chen, Jin Xiao, Qianxi He, Xunzhe Zhou, Jiaqing Liang,
and Yanghua Xiao. Can large language models understand real-world complex instructions? In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 18188–18196,
2024b.

Ruixin Hong, Hongming Zhang, Xinyu Pang, Dong Yu, and Changshui Zhang. A closer look at
the self-verification abilities of large language models in logical reasoning. In Proceedings of the
2024 Conference of the North American Chapter of the Association for Computational Linguistics
(NAACL 2024), 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck, and Heming Cui. Agentcoder: Multi-agent-
based code generation with iterative testing and optimisation. arXiv preprint arXiv:2312.13010,
2023.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In The Twelfth
International Conference on Learning Representations, 2024.

Albert Qiaochu Jiang, Sean Welleck, Jin Peng Zhou, Timothee Lacroix, Jiacheng Liu, Wenda Li,
Mateja Jamnik, Guillaume Lample, and Yuhuai Wu. Draft, sketch, and prove: Guiding formal
theorem provers with informal proofs. In The Eleventh International Conference on Learning
Representations, 2023.

Dongwei Jiang, Jingyu Zhang, Orion Weller, Nathaniel Weir, Benjamin Van Durme, and Daniel
Khashabi. Self-[in] correct: Llms struggle with refining self-generated responses. arXiv preprint
arXiv:2404.04298, 2024a.

Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun Zhong, Liangyou Li, Fei Mi, Lifeng Shang, Xin
Jiang, Qun Liu, and Wei Wang. Followbench: A multi-level fine-grained constraints following
benchmark for large language models. In Proceedings of the 62nd Annual Meeting of the Associ-
ation for Computational Linguistics (ACL 2024), 2024b.

Ryo Kamoi, Sarkar Snigdha Sarathi Das, Renze Lou, Jihyun Janice Ahn, Yilun Zhao, Xiaoxin Lu,
Nan Zhang, Yusen Zhang, Ranran Haoran Zhang, Sujeeth Reddy Vummanthala, et al. Evaluating
llms at detecting errors in llm responses. In Proceedings of the 2024 Conference on Language
Modeling (COLM 2024), 2024.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generaliza-
tion through memorization: Nearest neighbor language models. In International Conference on
Learning Representations, 2019.

Ming Li, Han Chen, Chenguang Wang, Dang Nguyen, Dianqi Li, and Tianyi Zhou. Ruler: Improv-
ing llm controllability by rule-based data recycling. arXiv preprint arXiv:2406.15938, 2024.

Daniel Loureiro, Francesco Barbieri, Leonardo Neves, Luis Espinosa Anke, and Jose Camacho-
Collados. Timelms: Diachronic language models from twitter. In Proceedings of the 60th Annual
Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 251–260,
2022.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

Norman Mu, Sarah Chen, Zifan Wang, Sizhe Chen, David Karamardian, Lulwa Aljeraisy, Dan
Hendrycks, and David Wagner. Can llms follow simple rules? arXiv preprint arXiv:2311.04235,
2023.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-
Lezama. Is self-repair a silver bullet for code generation? In The Twelfth International Conference
on Learning Representations, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Swarnadeep Saha, Omer Levy, Asli Celikyilmaz, Mohit Bansal, Jason Weston, and Xian Li. Branch-
solve-merge improves large language model evaluation and generation. In Proceedings of the
2024 Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies (Volume 1: Long Papers), pp. 8345–8363, 2024.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan
Leike. Self-critiquing models for assisting human evaluators. arXiv preprint arXiv:2206.05802,
2022.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Haoran Sun, Lixin Liu, Junjie Li, Fengyu Wang, Baohua Dong, Ran Lin, and Ruohui Huang.
Conifer: Improving complex constrained instruction-following ability of large language models.
arXiv preprint arXiv:2404.02823, 2024.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Gladys Tyen, Hassan Mansoor, Victor Cărbune, Yuanzhu Peter Chen, and Tony Mak. Llms cannot
find reasoning errors, but can correct them given the error location. In Findings of the Association
for Computational Linguistics ACL 2024, pp. 13894–13908, 2024.

Fei Wang, Chao Shang, Sarthak Jain, Shuai Wang, Qiang Ning, Bonan Min, Vittorio Castelli, Yas-
sine Benajiba, and Dan Roth. From instructions to constraints: Language model alignment with
automatic constraint verification. arXiv preprint arXiv:2403.06326, 2024.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023.

Bosi Wen, Pei Ke, Xiaotao Gu, Lindong Wu, Hao Huang, Jinfeng Zhou, Wenchuang Li, Binxin
Hu, Wendy Gao, Jiaxin Xu, et al. Benchmarking complex instruction-following with multiple
constraints composition. arXiv preprint arXiv:2407.03978, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
and Le Hou. Instruction-following evaluation for large language models. In The Twelfth Interna-
tional Conference on Learning Representations, 2023.

Qihao Zhu, Daya Guo, Zhihong Shao, Dejian Yang, Peiyi Wang, Runxin Xu, Y Wu, Yukun Li,
Huazuo Gao, Shirong Ma, et al. Deepseek-coder-v2: Breaking the barrier of closed-source models
in code intelligence. arXiv preprint arXiv:2406.11931, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 ALGORITHM

Algorithm 1 Algorithm for DVR
Input: Language Model M, Input Instructions X , Toolset T
Output: Response set Y
Select: Number of trials n

1: Initialize the refinement repository Q = {}
2: for I ∈ X do
3: Generate initial response: R0 = M(pgenerate, I).
4: Initialize the toolset for instruction I: TI = {}.
5: Decompose constraints: M(pdecomp, I) → {ci}i=1,2,3...

6: for c ∈ {ci}i=1,2,3... do
7: M(pselect, c) → t, where t ∈ T .
8: M sets parameters for t.
9: TI = TI ∪ t.

10: end for
11: R = R0, a = n.
12: while a > 0 do
13: a = a− 1
14: Verify and get feedback from tools: FI = {fi}i=1,2,3..., where fi = t(R).
15: if f = True,∀f ∈ FI then
16: return R
17: end if
18: Retrieve few-shot examples: st = {(Ii, Ri, fi, R

′
i)

t}i=1,2,3..., where st ⊆ Q.
19: Refine: R′ = M(prefine, s

t, I, R, f), where f ∈ Fi and f ̸= True.
20: if t(R′) = True then
21: Save the refinement process: Q = Q ∪ {(I,R, f,R′)t}
22: Update the current response: R = R′

23: a = n
24: end if
25: end while
26: Y = Y ∪R
27: end for

A.2 BASELINE DETAILS

• Reflexion (Shinn et al., 2024): This method allows LLMs to self-reflect on their own re-
sponses and provide valuable feedback for future outputs. With the feedback, LLMs will
refine their responses.

• Branch-solve-Merge (BSM) (Saha et al., 2024): BSM uses a "Divide and Conquer" ap-
proach to break complex instructions as individual branches. Then the LLMs will merge
the responses from branches as the final answer. Similarly, in our experiment, we use LLMs
to generate a response for each single constraint and then merge them together.

• Universal Self-Consistency (U-SC) (Chen et al., 2024a): This study extends the idea of
Self-Consistency (Wang et al., 2023) to free-form generation. It first generates several
candidate responses and then asks LLMs to select the most consistent one.

• Rejection Sampling (Saunders et al., 2022): Since we have tools for reliable verification,
the most simple method is to select the best one from a set of responses. Here, we give the
maximum number of trials as 5.

• ReAct (Yao et al., 2023): In ReAct, LLMs take actions based on the observation of the
environment. Here, we adopt this method by letting the tools as the environment and giving
LLMs boolean signals indicating whether the generated response adheres to all constraints
in the instruction.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

• CRITIC (Gou et al., 2024): CRITIC uses tools for verification such as using external API
for evaluating the toxic score of the response or code executor for checking code generation.
We adopt this method into our scenario, where tools will pinpoint which constraint of the
instruction is not satisfied.

A.3 COMPLEXINSTRUCT

We have 21 types of constraints which can be divided into 8 general categories (Zhou et al., 2023):

• Keywords:
(1) Include keyword,
(2) Include keyword at least/less than certain frequency,
(3) Forbidden word,
(4) At least/less than certain frequency of letters.

• Length:
(1) At least/less than certain number of words,
(2) At least/less than certain number of sentences,
(3) Exact number of paragraphs.

• Detectable Content:
(1) postscript,
(2) Exact number of placeholders.

• Detectable Format:
(1) Number of bullet points,
(2) Add title,
(3) Answer from options,
(4) Minimum of highlighted sections,
(5) Json format.

• Change Cases:
(1) All uppercase,
(2) All lowercase,
(3) At least/less than certain number of all-capital words.

• Startend:
(1) End the text with a certain sentence,
(2) Wrap whole response in double quotation.

• Punctuation:
(1) No commas in response.

• Language:
(1) Respond with certain language.

Table 6: Instruction Examples (6 levels)

Instruction (level 1):
Write something with a topic of film or tv or video. At the end of your response, please
explicitly add a postscript starting with P.S.
Constraint Type:
(1) Detectable Content - postscript
Instruction (level 2):
Produce a brief writing piece with emphasis on culture. The answer should be in all lowercase
letters, with no capitalization. Response must also contain exactly 3 bullet points in markdown
format. Use * to indicate bullets, like:
* xyz.
* abc.
* opq.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 6: Instruction Examples (continued)

Constraint Type:
(1) Change Cases - All lowercase
(2) Detectable Format - Number of bullet points
Instruction (level 3):
Produce a text with a focus on food. Your answer must have a title contained in double angular
brackets, such as «title». Make sure you don’t use any commas. Make sure to include the words
‘ingredients’.

Constraint Type:
(1) Detectable Format - Add title
(2) Punctuation - No commas in response
(3) Keywords - Include keyword

Instruction (level 4):
Write a text with a technology theme. be sure the letter ’l’ appears at least 7 times in your
response. Your entire response should be in all lowercase letters (no capital letters whatsoever).
The word "artificial" should not appear in your response. make sure the response has less than
82 words.

Constraint Type:
(1) Keywords - At least/less than certain frequency of letters
(2) Change Cases - All lowercase
(3) Keywords - Forbidden word
(4) Length: At least/less than certain number of words

Instruction (level 5):
Assist me in writing on a scientific topic. Highlight at least 3 text sections, i.e. *highlighted
section*. Mention the word "research" for less than 4 times. make sure that words with all
capital letters appear less than 2 times. The number of sentences in your response should be
less than 5. Include a title wrapped in double angular brackets, i.e. «title».

Constraint Type:
(1) Detectable Format - Minimum of highlighted sections
(2) Keywords - Include keyword at least/less than certain frequency
(3) Keywords - At least/less than certain frequency of letters
(4) Length: At least/less than certain number of sentences
(5) Detectable Format - Add title

Instruction (level 6):
Write a short description of entrepreneurs. The very end of your entire response should read
exactly like: Is there anything else I can help with? The total number of words in your response
should be at least 23. Include a title wrapped in double angular brackets, i.e. «title». Separate
your response into 2 parts, where each part is separated with ***. Your answer must contain
exactly 4 bullet point in Markdown using the following format:
* Bullet point one.
* Bullet point two.
...
Don’t forget to include the keywords risk-taking.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 6: Instruction Examples (continued)

Constraint Type:
(1) Startend - End the text with a certain sentence
(2) Length: At least/less than certain number of words
(3) Detectable Format - Add title
(4) Length: Exact number of paragraphs
(5) Detectable Format - Number of bullet points
(6) Keywords: Include keyword

A.4 DETAILED EXPERIMENTS

We can observe that our methods consistently outperform baselines on differen LLMs.

Table 7: Performance of methods across levels 1 to 6 (Llama-3-8B-Instruct)

Method Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Vanilla 89.1 71.7 56.4 44.2 30.4 20.4
Reflxion 88.8 72.1 57.5 41.5 30.0 20.9
BSM 89.2 71.9 56.0 41.3 28.8 19.5
U-SC 89.5 71.8 56.7 45.1 31.2 20.6
Rejection Sampling 90.8 80.9 64.5 52.9 39.8 31.0
ReAct 93.6 81.3 68.8 54.4 39.1 30.7
CRITIC 94.1 85.8 74.4 61.2 51.1 41.5
DVR(coldstart) 95.0 86.7 76.9 65.3 53.7 43.8
DVR(warmstart) 95.4 87.6 77.0 67.4 55.4 46.9

Table 8: Performance of methods across levels 1 to 6 (Llama-3.1-70B-Instruct-AWQ-INT4)

Method Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Vanilla 95.5 83.7 72.4 63.2 51.3 35.9
Reflexion 95.3 83.5 72.8 63.0 51.6 36.1
BSM 95.0 84.5 72.6 64.8 49.6 34.2
U-SC 96.0 83.3 71.8 64.0 52.5 36.3
Rejection Sampling 97.3 90.8 83.2 72.2 63.8 50.7
ReAct 97.5 91.0 83.5 72.4 65.0 52.1
CRITIC 98.1 93.2 87.6 79.1 73.7 61.3
DVR(coldstart) 98.0 94.3 88.2 82.0 75.7 63.1
DVR(warmstart) 98.2 94.6 88.7 82.2 76.0 64.2

Table 9: Comparison Across Different Constraints Types (coldstart)

Mistral-7B Llama3-8B Llama3.1-8B Llama 3.1-70B

Constraint Type Vanilla DVR Vanilla DVR Vanilla DVR Vanilla DVR

Detectable Content 76.36 88.49 84.18 95.82 86.29 96.19 97.06 98.14
Keywords 76.04 84.32 83.84 87.53 84.94 88.77 87.88 92.05
Punctuation 24.34 71.31 91.03 95.47 97.01 98.29 98.38 98.38
Case Change 70.08 80.15 81.28 93.20 82.97 89.96 80.23 96.24
Start End 81.29 88.71 84.88 88.71 84.07 91.78 89.37 95.94
Detectable Format 69.59 81.30 81.57 89.29 84.69 92.38 90.52 95.56
Language 69.11 82.72 77.06 86.24 81.96 89.30 90.83 94.34
Length Constraints 50.42 72.61 65.29 79.66 68.55 83.93 80.50 90.17

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.5 LLM SELF-VERIFY ABILITY

We evaluate LLMs on their ability to verify whether the responses meet the given constraints. As
shown in Table 10, LLMs often fail to verify their outputs accurately, suggesting they lack the
capacity to provide reliable feedback or reflection on their own responses.

Table 10: LLMs Self-verification Accuracy (%)

Model Mistral-7B Llama3-8B Llama3.1-8B
53.1 56.8 55.7

A.6 FLUENCY AND READABILITY

Table 11: Descriptive Statistics of Responses (ComplexInstruct), where Coherence_or1 is first order
coherence and Coherence_2 is the second order coherence.

Model Method Readability ↑ Perplexity ↓ Coherence_or1 ↑ Coherence_or2 ↑
mistral7B Vanilla 62.24 18.22 0.61 0.59

DVR 61.93 18.95 0.59 0.57

llama3-8B Vanilla 63.77 18.49 0.57 0.57
DVR 63.58 18.08 0.59 0.56

llama3.1-8B Vanilla 63.43 19.68 0.62 0.61
DVR 62.75 18.30 0.62 0.60

llama3.1-70B Vanilla 61.96 17.99 0.64 0.63
DVR 63.51 18.04 0.63 0.62

Table 12: Descriptive Statistics of Responses (CoDI)
Model Method Readability ↑ Perplexity ↓ Coherence_or1 ↑ Coherence_or2 ↑
mistral7B Vanilla 63.62 15.27 0.82 0.81

DVR 63.53 15.98 0.83 0.82

llama3-8B Vanilla 63.79 14.25 0.79 0.76
DVR 64.14 16.07 0.80 0.77

llama3.1-8B Vanilla 62.18 16.27 0.81 0.83
DVR 62.02 17.58 0.81 0.80

A.7 EXPERIMENTS ON IFEVAL

We conduct experiments on IFEval (Zhou et al., 2023) which is an instruction-following benchmark
widely used for industry. The IFEval dataset evaluates the instruction-following ability and is one of
the core benchmarks used in the Open LLM Leaderboard (Hugging Face). We conduct experiments
on Mistral-7B-v0.3 and the results are shown in Table 13. DVR outperforms all other baselines on
IFEval benchmark.

Table 13: ISR (%) for IFEval Dataset
Method Vanilla Reflexion BSM U-SC Rejection Sample ReAct CRITIC DVR
ISR 47.32 47.13 47.87 46.95 53.23 53.97 55.53 60.44

A.8 EXPERIMENTS ON GPT4-TURBO

We conduct experiments on GPT-4-turbo. Shown in Table 14, we can observe that GPT-4-turbo
performs better than open-source models (Mistral and Llama). Surprisingly, applied on Llama3.1-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

8B, DVR can still outperform GPT-4-turbo, indicating that DVR exploits the potential of the open-
source model.

Table 14: Performance Comparison to GPT4-turbo
Model Level 1 Level 2 Level 3 Level 4 Level 5 Level 6
Mistral-7B 77.0 55.3 34.1 19.9 12.4 6.3
DVR (Mistral-7B) 95.0 81.3 66.6 51.4 36.4 23.4
Llama3.1-8B 90.5 76.6 62.5 50.1 35.6 25.3
DVR (Llama3.1-8B) 95.2 88.7 79.2 69.7 60.5 49.6
GPT-4-turbo 95.3 88.4 78.8 65.2 53.7 42.6

A.9 ROBUSTNESS OF DVR

We also conduct experiments to assess DVR’s performance in the presence of tool errors. Two types
of errors are introduced: random noise and systematic bias. Specifically, we evaluate the framework
on instructions with length constraints, using 600 samples (from ComplexInstruct) for word count
control and another 600 for sentence count control. A constraint example: “The response needs to
be less than (or at least) x number of words/sentences.” where x ranges from 10 to 100 for words
and 3 to 5 for sentences. We add two types of noises to tools:

Noise: Gaussian noise with a mean of 0 is added to the counted number of words (or sentences) to
simulate random errors. The DVR’s performance is then measured across different deviation levels.

Bias Errors: A fixed bias is added to the counted values of words (or sentences) to introduce
systematic errors. The tables below demonstrate DVR’s performance under different bias values.

Observations: We have several observations in Table 15 and Table 16. (1) The performance will
decrease as the noise levels (deviation, bias values) increase. (2) As the errors become large, the
performance degradation will saturate. (3) Overall, DVR will not perform much worse than vanilla
even if the bias and errors are large (20 for word count and 4 for sentence count). (4) The impact of
noise on the overall instruction satisfaction rate is less severe compared to its influence on specific
constraints.

Table 15: Satisfaction Rate for Word Number Constraints (%)
Deviation 0 5 10 20 Vanilla

Words Number Satisfaction Rate 88.00 87.17 82.83 81.50 68.16
Instruction Satisfaction Rate 48.17 45.00 43.67 43.67 10.17

Bias 0 5 10 20 Vanilla

Words Number Satisfaction Rate 88.00 87.17 84.33 82.67 68.16
Instruction Satisfaction Rate 48.17 47.83 47.00 45.67 10.17

Table 16: Satisfaction Rate for Sentence Number Constraints (%)
Deviation 0 1 2 4 Vanilla

Sentences Number Satisfaction Rate 74.50 68.17 62.50 60.50 56.33
Instruction Satisfaction Rate 42.83 38.17 35.33 34.33 10.17

Bias 0 1 2 4 Vanilla

Sentences Number Satisfaction Rate 74.50 64.67 58.67 56.50 56.33
Instruction Satisfaction Rate 42.83 40.50 32.67 31.33 10.17

A.10 COMPUTATION TIME

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

We conducted experiments with 20 instructions, each containing 6 constraints, using Mistral-7B.
The number of trials was set to 5, consistent with the paper’s settings. The average running time is
summarized below:

Table 17: The Average Running Time for One Sample
Method Vanilla Reflexion U-SC BSM Rejection Sample ReAct CRITIC DVR

Running Time (s) 5.91 20.53 41.34 46.21 32.32 36.48 37.98 33.91

As shown in Table 17, our method does not exhibit significantly higher running time compared to
other baselines. Considering the performance gains (Table 2), our method demonstrates a balance
between efficiency and effectiveness.

A.11 LIMITATIONS AND FUTURE WORKS

There are several limitations and potential future works.

(1) Currently, we consider multiple independent constraints. However, the instructions in real-world
might be more complex and constraints might have dependency with each other (Wen et al., 2024).
For example, the instruction can ask the response has 4 bullet points and 2 sentences in each bullet
point. In such scenario, simple decomposition might not work. (2) Moreover, tools may not be avail-
able for new constraints. Here, we assume that we have tools for all existing constraints. However,
users’ requirements can be very diverse and we would not have certain tools for new constraints. (3)
As shown in Table 15 and Table 16, DVR performance declines when tools produce errors.

As a result, we can consider the following future works. (1) The first one is to handle constraints
with dependency. If LLMs can correctly disentangle these constraints and find appropriate tools,
our framework can also enhance LLMs’ instruction-following ability in such a complex setting. (2)
The second future work is to deal with new constraints. One possible solution is to firstly find out
if the constraint can be tested via python code. Then local LLMs can summarize constraints into
code requirements and send them to advanced code generators for tool generation. Generated tools
can also be saved locally for future use. (3) Ensuring the reliability and quality of tools is crucial
for real-world applications. There are techniques such as developing test cases that verify a tool’s
outputs against known values (Cai et al., 2024; Huang et al., 2023) or generating multiple versions
of a tool and selecting the most consistent output. Additional research is needed to evaluate whether
these techniques are sufficient to guarantee tool quality. Furthermore, new approaches could be
explored to enhance tool generation.

A.12 CASE STUDY

We use some examples to show how LLMs modify responses with the guidance of feedback. The
red colored content is the errors from the original response and blue colored content is the corrected
parts after refinement.

Table 18: Refinement Examples

Prompt:
Provide me with text related to the everyday experience. make sure the response has less than
80 words. Respond with at least 3 sentences. The entire reply should contain a title in double
angular brackets, i.e. «title». Your entire response should be in all lowercase letters (no capital
letters whatsoever).
Response:
«morning routines»
i love starting my day with a quiet cup of coffee and a good book. it helps me set a positive
tone for the rest of the day. morning routines can be as simple or as elaborate as you like, but
they help create a sense of structure and calm in our otherwise chaotic lives. [name]’s morning
routine involves a quick workout followed by a healthy breakfast. [another name] prefers to
meditate for a few minutes before beginning their day.
Unsatisfied Constraint: make sure the response has less than 80 words.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 18: Refinement Examples (continued)

Feedback:
The response contains 83 words, which is 4 too many.
Please remove 4 words to have fewer than 80 words.
Refined Response: «morning routines»
i love starting my day with a quiet cup of coffee and a good book. it helps me set a positive
tone. morning routines can be as simple or as elaborate as you like, but they help create a sense
of structure and calm in our chaotic lives. [name]’s morning routine involves a quick workout
followed by a healthy breakfast.

Instruction:
Excuse me, could you please provide text that focuses on the music-topic? use the keywords
artists. highlight at least 1 key point by wrapping it with *. For example: *highlighted key
point*. The number of sentences in your response should be less than 5. be sure the letter e
appears at least 4 times in your response. Make sure to include at least 3 placeholder represented
by square brackets, such as [address], [name]. the total number of words in your response
should be at least 23.

Response:
«Music Unites» From festivals to online communities, music continues to bridge cultural and
geographical gaps like never before. *Electronic music has especially seen a surge in popularity
among the younger generation*. Talented artists from all over the world have been coming
together to create beautiful melodies and harmonies. [name] is one such artist who has been
making waves in the industry with his eclectic beats. His music can be found on various
platforms, including [address] and [website]. Many emerging artists, including [another name],
are also experimenting with different genres.
Unsatisfied Constraint: The number of sentences in your response should be less than 5.
Feedback:
The response contains 6 sentences, which is 2 more than allowed.
Please remove at least 2 sentences.
Refined Response:
«Music Unites» From festivals to online communities, music continues to bridge cultural and
geographical gaps like never before. *Electronic music has especially seen a surge in popularity
among the younger generation*. Talented artists from all over the world have been coming
together to create beautiful melodies and harmonies. [name] is one such artist who has been
making waves in the industry with his eclectic beats and his music can be found on various
platforms, including [address] and [website].

Instruction:
Kindly generate a few texts on the subject of education or learning. Give a title wrapped in
double angular brackets, such as «your title». Add stress words which are capitalized. Ensure
those stress words appear less than 4 times. answer with less than 99 words. The very last
sentence of your response should be "Hope you agree with me.".
Response:
«The Power of Learning»
LEARNING IS A LIFELONG PROCESS that enables individuals to acquire new skills and
knowledge. It plays a CRUCIAL role in shaping one’s career and personal growth. Education
helps to broaden one’s perspective and fosters critical thinking. Hope you agree with me.

Unsatisfied Constraint: Add stress words which are capitalized. Ensure those stress words
appear less than 4 times.

Feedback: The response contains 6 capitalized words, which is more than the allowed 3.
Please remove at least 3 capitalized word(s).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 18: Refinement Examples (continued)

Refined Response:
«The Power of Learning»
Learning is a lifelong process that enables individuals to acquire new skills and knowledge. It
plays a crucial role in shaping one’s career and personal growth. Education is VERY important
and helps to broaden one’s perspective. Hope you agree with me.

Instruction: Produce a text about TV. Your entire response should be in all capital letters. Your
response should contain at least 3 sentences. Your answer must have a title contained in double
angular brackets, such as «title». Make sure to include at least 3 placeholder represented by
square brackets, such as [address], [name]. Highlight at least 2 sections of your response in
markdown such as *highlighted section*.

Response:
«TV SHOWS FOR THE AGES»

TV SHOWS HAVE BEEN A STAPLE OF ENTERTAINMENT FOR DECADES. FROM
CLASSICS LIKE Ï LOVE LUCYT̈O MODERN HITS LIKE G̈AME OF THRONEST̈HERE
IS SOMETHING FOR EVERYONE. *TV PROVIDES A WAY FOR US TO ESCAPE INTO
DIFFERENT WORLDS AND EXPERIENCE STORIES THAT WE MIGHT NOT OTHER-
WISE ENCOUNTER*. WITH THE RISE OF STREAMING SERVICES LIKE NETFLIX
AND HULU IT IS EASIER THAN EVER TO ACCESS YOUR FAVORITE SHOWS FROM
THE COMFORT OF YOUR OWN HOME AT [address]. *WHETHER YOU ARE A FAN
OF DRAMA COMEDY OR REALITY TV THERE IS NO SHORTAGE OF OPTIONS TO
CHOOSE FROM*. FANS OF [name] CAN LOOK FORWARD TO NEW CONTENT FROM
THEIR FAVORITE CREATORS AND DISCOVER NEW SHOWS FROM TALENTED UP-
AND-COMING WRITERS AND PRODUCERS. WITH SO MANY GREAT SHOWS TO
CHOOSE FROM IT IS NO WONDER THAT TV REMAINS A POPULAR FORM OF EN-
TERTAINMENT FOR PEOPLE ALL OVER THE WORLD. [channel] OFFERS A WIDE
VARIETY OF PROGRAMMING THAT CATERS TO DIFFERENT TASTES AND PREF-
ERENCES.

Unsatisfied Constraint: Your entire response should be in all capital letters.
Feedback: The response contains words not in all capital letters: [address], [name], [channel].
Please capitalize all of them.
Refined Response:
«TV SHOWS FOR THE AGES»

TV SHOWS HAVE BEEN A STAPLE OF ENTERTAINMENT FOR DECADES. FROM
CLASSICS LIKE Ï LOVE LUCYT̈O MODERN HITS LIKE G̈AME OF THRONEST̈HERE
IS SOMETHING FOR EVERYONE. *TV PROVIDES A WAY FOR US TO ESCAPE INTO
DIFFERENT WORLDS AND EXPERIENCE STORIES THAT WE MIGHT NOT OTH-
ERWISE ENCOUNTER*. WITH THE RISE OF STREAMING SERVICES LIKE NET-
FLIX AND HULU IT IS EASIER THAN EVER TO ACCESS YOUR FAVORITE SHOWS
FROM THE COMFORT OF YOUR OWN HOME AT [ADDRESS]. *WHETHER YOU ARE
A FAN OF DRAMA COMEDY OR REALITY TV THERE IS NO SHORTAGE OF OP-
TIONS TO CHOOSE FROM*. FANS OF [NAME] CAN LOOK FORWARD TO NEW
CONTENT FROM THEIR FAVORITE CREATORS AND DISCOVER NEW SHOWS FROM
TALENTED UP-AND-COMING WRITERS AND PRODUCERS. WITH SO MANY GREAT
SHOWS TO CHOOSE FROM IT IS NO WONDER THAT TV REMAINS A POPULAR
FORM OF ENTERTAINMENT FOR PEOPLE ALL OVER THE WORLD. [CHANNEL] OF-
FERS A WIDE VARIETY OF PROGRAMMING THAT CATERS TO DIFFERENT TASTES
AND PREFERENCES.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 18: Refinement Examples (continued)

Instruction:
Generate a writing piece related to health. organize your entire response in at least 3 sentences.
Answer should be written with all letters lowercased. In your entire response, the letter n should
appear less than 6 times.
Response:
maintaining a healthy lifestyle involves making conscious choices about the food we eat and
the activities we engage in. eating a balanced diet that includes plenty of fruits and vegetables
can help to boost our energy levels and support overall well-being. regular exercise, such as
walking or yoga, can also have a positive impact on both our physical and mental health.
Unsatisfied Constraint: In your entire response, the letter n should appear less than 6 times.
Feedback: The response contains the letter ’n’ 23 times, which is 18 too many.
Please remove 18 occurrences to have less than 6.
Refined Response:
eating a healthy diet is good for us. it helps to keep us strong. we should try to do it.

Instruction: Oh, dear one, would you be so kind as to grace me with a magnificent text delving
into the ever-so-mysterious world of science? The very end of your entire response should read
exactly like: Let me know if you have additional questions. All letters in your response must be
lower case letters. Separate your response into 4 parts, where each part is separated with ***.
use the keywords physics. Highlight at least 3 text sections, i.e. *highlighted section*. there
should be at least 4 occurrences of the word ïnnovationsïn your response.
Response:
«exploring the mysteries of science»

*** *the wonders of physics* have long been a source of fascination for scientists and the
general public alike. from the behavior of subatomic particles to the vast expanses of space,
physics governs the fundamental laws of our universe.

*** *innovations in physics* have led to numerous breakthroughs in fields such as medicine,
technology, and engineering. for instance, advances in medical imaging have allowed for more
accurate diagnoses and targeted treatments.

*** *the intersection of physics and technology* has given rise to exciting innovations such as
quantum computing, nanotechnology, and renewable energy solutions. these innovations have
the potential to transform industries and improve lives worldwide.

*** as scientists continue to push the boundaries of human knowledge, we can expect to see
even more groundbreaking innovations in the field of physics. let me know if you have addi-
tional questions.
Unsatisfied Constraint: Separate your response into 4 parts, where each part is separated with
***.
Feedback: Expected exactly 4 sections, but found 5.
Please remove 1 section by removing 1 ’***’.
Refined Response: «exploring the mysteries of science»
the wonders of physics* have long been a source of fascination for scientists and the general
public alike. from the behavior of subatomic particles to the vast expanses of space, physics
governs the fundamental laws of our universe.

innovations in physics* have led to numerous breakthroughs in fields such as medicine, tech-
nology, and engineering. for instance, advances in medical imaging have allowed for more
accurate diagnoses and targeted treatments.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Table 18: Refinement Examples (continued)

the intersection of physics and technology* has given rise to exciting *innovations* such as
quantum computing, nanotechnology, and renewable energy solutions. these *innovations*
have the potential to transform industries and improve lives worldwide. and these *innovations*
are just the beginning.

*** as scientists continue to push the boundaries of human knowledge, we can expect to see
even more groundbreaking *innovations* in the field of physics. let me know if you have
additional questions.

Instruction: Provide me with a text that revolves around the theme of family. do not say the
word "relationships" in the response. Highlight at least 2 sections of your response in mark-
down such as *highlighted section*. Make sure to include a postscript starting with P.S. Have
at least 5 sentences in your response. make sure the response has less than 56 words. Your
answer must contain exactly 2 bullet points in the markdown format (use *̈ ẗo indicate each
bullet) such as:
* This is the first point.
* This is the second point.
Response: A family is a bond that can never be broken. *Children grow up with love and
support from their family*. As they grow older they begin to appreciate the sacrifices their
family has made for them.
* A family can provide a sense of belonging.
* A family can provide a sense of security.
P.S. I love my family.

Unsatisfied Constraint: Highlight at least 2 sections of your response in markdown such as
highlighted section.
Feedback: The response contains 1 highlighted section.
Please include 1 more highlighted section in the format of *highlighted*.

Modified Response: A family is a *bond that can never be broken*. *Children grow up with
love and support from their family*. As they grow older they begin to appreciate the sacrifices
their family has made for them.
* A family can provide a sense of belonging.
* A family can provide a sense of security.
P.S. I love my family.

Instruction: Produce a comprehensive written discourse analyzing the multiple facets of film.
Answer in lowercase letters only, throughout your entire answer. There should be exactly 4
paragraphs in your response, separated by the markdown divider: ***. Response must also
contain exactly 3 bullet points in markdown format. Use * to indicate bullets, like:
* xyz
* abc
* opq

Response:

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 18: Refinement Examples (continued)

«the art of storytelling in film»
storytelling is a fundamental aspect of filmmaking. it is the art of conveying emotions and
ideas through visual narratives. films have the power to transport us to different worlds, evoke
emotions, and make us think. whether it’s a romantic comedy or a sci-fi epic, storytelling is the
core of what makes a film engaging.

film is a collaborative medium that requires the involvement of numerous individuals, from
screenwriters to cinematographers. the director plays a crucial role in bringing the story to life,
guiding the actors and crew to create a cohesive vision. the cinematographer’s job is to capture
the visuals that will transport the audience to the world of the story.

* some notable film movements include:
* german expressionism
* french new wave
* italian neorealism
each of these movements brought a unique perspective to filmmaking, experimenting with style
and narrative structure. they paved the way for future generations of filmmakers, allowing them
to push the boundaries of what is possible on screen.

ultimately, film is a powerful medium that can inspire, educate, and entertain. it has the abil-
ity to transcend cultural boundaries, allowing us to connect with people from different back-
grounds and experiences. whether you’re a filmmaker or a film enthusiast, the world of cinema
has something to offer everyone.

Unsatisfied Constraint: Response must also contain exactly 3 bullet points in markdown format.
Use * to indicate bullets, like:
* xyz
* abc
* opq

Feedback:
In the response, there are 4 bullet points.
Here are the bullet points detected:
* some notable film movements include:...
* german expressionism
* french new wave
* italian neorealism
Please remove exactly 1 bullet points to meet the requirement of 3.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Table 18: Refinement Examples (continued)

Refined Response:
«the art of storytelling in film»
storytelling is a fundamental aspect of filmmaking. it is the art of conveying emotions and
ideas through visual narratives. films have the power to transport us to different worlds, evoke
emotions, and make us think. whether it’s a romantic comedy or a sci-fi epic, storytelling is the
core of what makes a film engaging.

film is a collaborative medium that requires the involvement of numerous individuals, from
screenwriters to cinematographers. the director plays a crucial role in bringing the story to life,
guiding the actors and crew to create a cohesive vision. the cinematographer’s job is to capture
the visuals that will transport the audience to the world of the story.

* some notable film movements include:
* french new wave
* italian neorealism
each of these movements brought a unique perspective to filmmaking, experimenting with style
and narrative structure. they paved the way for future generations of filmmakers, allowing them
to push the boundaries of what is possible on screen.

ultimately, film is a powerful medium that can inspire, educate, and entertain. it has the abil-
ity to transcend cultural boundaries, allowing us to connect with people from different back-
grounds and experiences. whether you’re a filmmaker or a film enthusiast, the world of cinema
has something to offer everyone.

Table 19: Refinement Examples on CoDI dataset

Instruction: Generate a text that involves anger and is related to films:

Response: The director’s blatant disregard for the script and the talent on set is nothing short of
astounding. They have the audacity to claim artistic vision while disregarding the very actors they
hired to bring their mediocre ideas to life. It’s a travesty that someone so clearly out of touch can
call themselves a filmmaker. The industry should be ashamed for allowing such incompetence to
flourish.

Feedback: The sentiment of the text is ’disgust’, which does not match the required sentiment
’anger’.
Please adjust the sentiment of the text to be more ’anger’.
Refined Response:
The director’s flagrant disregard for the script and the talent on set is infuriating. They have the nerve
to claim artistic vision while callously disregarding the very actors they hired to bring their subpar
ideas to life. It’s outrageous that someone so clearly out of touch can call themselves a filmmaker.
The industry should be held accountable for allowing such incompetence to perpetuate. It’s not just
a minor mistake; it’s a systemic issue that demands attention. The fact that this director continues
to receive opportunities is a slap in the face to every talented artist who has been overlooked and
underappreciated. The situation is unacceptable, and it’s time for change.
The final answer is: There is no one final answer to this problem as it involves modifying the senti-
ment of multiple pieces of writing to fit the constraints provided. The provided code and response
modifications demonstrate how to adjust the sentiment to match the required tone for each instruc-
tion.

Instruction: Generate text on science with disgust, using general words:

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 19: Refinement Examples on CoDI (continued)

Response: The discoveries in the realm of biology have been grotesque, with the revelation of
creatures that defy natural explanation. Their twisted forms and behaviors evoke a sense of revulsion,
as if the very fabric of life has been warped in ways that are both fascinating and repulsive. It’s a
field that challenges our understanding of what it means to be alive.
Feedback: The detected topic of the response is learning and education, which does not match the
expected topic science and technology.
Please adjust the content to align more closely with the topic science and technology.

Refined Response:
The latest breakthroughs in genetic engineering have been abhorrent, with the development of or-
ganisms that are unnatural and unsettling. Their abnormal structures and functions elicit a strong
sense of disgust, as if the boundaries of science have been overstepped. It’s a field that tests our
understanding of the fundamental principles of life and the ethics of scientific inquiry.

A.13 PROMPTS

Table 20: Prompts

Prompt for Response Generation
Generation prompt:
You are an AI assistant that generates responses based on given prompts.
For each prompt, provide a response that adheres to the specified constraints.
#Prompt: Generate a text that touch on arts. make sure the response has less than 40 words.
make sure it contains at least 2 placeholders represented by square brackets, such as [name].
Include a title wrapped in double angular brackets, i.e. «title».
Response: «The Beauty of Expression»
Art, from [name]’s perspective, transforms emotions into visual narratives. [another name]’s
masterpieces illustrate this beautifully.
#Prompt: Generate sth. about celebrity or pop culture. the response must contain a title
wrapped in double angular brackets, i.e. «title». The answer should be in all lowercase let-
ters, with no capitalizations. The word ëntertainments̈hould not appear in your response. In
your entire response, the letter m should appear at least 3 times. Your answer must have at least
2 placeholders, wrapped in square brackets, such as [author].
...(more examples)
#Prompt: {current instruction}
Response:

Prompt for Instruction Decomposition

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 20: Prompts (continued)

You are an advanced assistant specializing in identifying and listing output constraints from
provided instructions. The instructions typically include a task related to generating content
on a specific topic and one (or multiple) format constraint(s). Your goal is to focus only on
extracting and listing all the format constraints required for the output, ignoring the content-
related task.
Instruction:
Please generate a few lines of text that touch on the topic of tv. Put your entire answer in
JSON format. The word ’show’ should not appear in your response. Use square brackets
for placeholders, like [username1], [username2]. Please include at least 2 placeholders in the
thread.You are not allowed to use any commas in your response.
Format Constraints:
#1. Put your entire answer in JSON format.
#2. The word ’show’ should not appear in your response.
#3. Use square brackets for placeholders, like [username1], [username2]. Please include at
least 2 placeholders in the thread.
#4. You are not allowed to use any commas in your response.
... (more examples)
Instruction:
{current instruction}
Format Constraints:

Prompt for Tool Selection
You will be given a list of constraints. Each constraint belongs to a specific category. Your task
is to recognize and categorize each constraint. Only output the category from the following
options:
postscript, placeholder, include keyword, exclude keyword, letter frequency, keyword fre-
quency, sentence count constraint, word count constraint, *** separator, bullet points, fixed
responses, highlighted, JSON format, title format, quoted response, end phrase, no commas, all
capital letters, all lowercase, capital word frequency, language restriction
Please ensure to categorize each constraint accurately according to its description. There is
definitely a valid category option for each constraint. You can Here are examples for each type
of constraint:
Prompt: Make sure to include the word ’mutations’.
Category: include keyword
Prompt: Limit the number of words you use to fewer than 65 words.
Category: word count constraint
...(more examples)
Prompt: {Current Prompt}
Category:

Prompt for Refinement

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 20: Prompts (continued)

You are an AI assistant responsible for refining a given response. Given a prompt, its original
response, and the analysis of the response, your task is to modify the response according to the
analysis.
#Prompt: I’m looking for text that explores arts or culture, can you assist? please explicitly
add a note starting with P.S. There should be exactly 2 paragraphs in your response, separated
by the markdown divider: ***. Make sure to include at least 2 placeholder represented by
square brackets, such as [address], [name]. Highlight at least 2 text sections, i.e. *highlighted
section*. There should be no commas in your reply.
#Original Response: Art has the power to bring people together and transcend cultural bound-
aries. It can evoke emotions and spark conversations that might not be possible through other
means. *At the [address] museum, visitors can experience this firsthand by exploring the di-
verse collection of art from around the world.*
*** From paintings to sculptures to installations, each piece tells a unique story that can be
interpreted in many ways. *The work of [name] is a great example of this, as it challenges
viewers to think critically about the world around them.* Whether you’re an art enthusiast or
just looking for a new perspective, the [address] museum is a must-visit destination. P.S. Don’t
forget to check out the museum’s events calendar for upcoming exhibitions and performances!
#It does not satisfy the constraint: There should be no commas in your reply.
#Analysis: The response contains 4 comma(s). Here are the detected commas: (museum,
visitors) (tallations, each) (of this, as it) (perspective, the [address).
Please remove all commas.
#Modified Response: Art has the power to bring people together and transcend cultural bound-
aries. It can evoke emotions and spark conversations that might not be possible through other
means. *At the [address] museum visitors can experience this firsthand by exploring the diverse
collection of art from around the world.*
*** From paintings to sculptures to installations each piece tells a unique story that can be
interpreted in many ways. *The work of [name] is a great example of this as it challenges
viewers to think critically about the world around them.* Whether you’re an art enthusiast or
just looking for a new perspective the [address] museum is a must-visit destination. P.S. Don’t
forget to check out the museum’s events calendar for upcoming exhibitions and performances!
....(more examples)
#Prompt: current prompt
#Original Response: current response
#It does not satisfy the constraint: current unsatisfied constraint
#Analysis: current feedback
#Modified Response:

A.14 FAILURE CASES

We analyze these failure cases and find out two typical situations that our framework would fail:

(1) Combined Effect: In certain scenarios, multiple constraints can create a challenge for the LLMs
to balance. As shown in the first example in the Table 21, in the case of limiting the frequency
of the letter ’t’ while generating content about sports, the natural occurrence of the letter ’t’ in
’sports’, combined with 2 sections requirements, makes it difficult to satisfy ’t’ letter frequency
limit. Although these constraints are not inherently contradictory, their combined effect puts the
model under pressure, resulting in failure to meet some requirements. (2) Incorrect decomposition
and wrong tool selection: Incorrect decmoposition would lead to wrong tool selection. As shown
in the second example in the Table 21, the constraint to add capitalized stress words fewer than
four times was mistakenly decomposed into two separate tasks. This leads to the incorrect selection
of tools, taking the "stress words" as keywords instead of capitalized words. This type of failure
degrades the overall performance in following complex instructions.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 21: Failure Cases

Instruction: Generate text on the subject of sports. Make sure to highlight at least 2 sections in
your answer with markdown, i.e. use *highlighted section*. Please also include the keywords
"games" in the response. You are not allowed to use any commas in your response. Put the
response into 2 sections, separated using 3 asterisks ***. Please make sure each point have a
title wrapped in double angular brackets, i.e. «title». In your entire response, the letter t should
appear less than 10 times.

«Sports Overview»
Participating in sports is an excellent way to improve physical and mental health *Sports like
basketball and soccer require quick reflexes and agility* Playing sports also fosters teamwork
and communication among players.

«The Thrill of Games»
Competitive games bring out the best in athletes *The rush of adrenaline during a crucial match
is exhilarating* Fans enjoy the suspense and excitement of watching their favorite teams battle
it out.

Unsatisfied Constraint: In your entire response, the letter t should appear less than 10 times.

Discussion:
There are other constraints against this one. The topic is about sports which contains the letter
t. Additionally, "Put the response into 2 sections" tends to make the response long, wich makes
satisfying letter frequency limit challenging.

Instruction: Can you provide me with some information about dining? Add stress words which
are capitalized. Ensure those stress words appear less than 4 times.

Response:
«The Dining Experience»

A DELICIOUS meal is not just about the food, but also about the atmosphere and service.
When dining out, it’s essential to consider the AMBIANCE of the restaurant, as it can greatly
impact your overall experience. A restaurant with a cozy and intimate setting can make for a
ROMANTIC evening, while a lively and bustling atmosphere can be PERFECT for a night out
with friends.

Furthermore, the service can make or break your dining experience. A friendly and attentive
wait staff can make you feel welcome and valued, while poor service can leave a sour taste in
your mouth.

Ultimately, a great dining experience is one that combines DELICIOUS food with exceptional
service and a pleasant atmosphere.

Unsatisfied Constraint: Add stress words which are capitalized. Ensure those stress words
appear less than 4 times.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Table 21: Failure Cases (continued)

Discussion:
In this example, the constraint "Add stress words which are capitalized. Ensure those stress
words appear less than 4 times" is mistakenly decomposed into two separate constraints by
the LLMs: (1) Add stress words which are capitalized. (2) Ensure those stress words appear
less than 4 times. For the first constraint, the LLMs can not find a tool for it. For the second
constraint, the LLM incorrectly selects the keyword tool: Keywords("stress words", "less than",
4). In this case, the correct tool should be Capitalwords("less than",4). Usually, incorrect
decomposition prevents LLMs from identifying any tools, rather than causing them to select an
incorrect one. This example is unique because the constraint is phrased in two sentences, and
the second sentence can be misinterpreted to suggest a limit on keywords (i.e., "stress words")
instead of focusing on capitalized stress words.

A.15 TOOL EXAMPLES

1. Word Counting: This example is obtained through GPT4-o with zero-shot. It demonstrates that
reliable tools can be easily created. The details are as follows:

def feedback(response, max_words=None, min_words=None):
Count the number of words in the response
word_count = len(response.split())

Check for maximum word constraint
if max_words is not None and word_count > max_words:
return f"Response failed because it has {word_count} words,
exceeding the maximum allowed limit of {max_words} words."

Check for minimum word constraint
if min_words is not None and word_count < min_words:
return f"Response failed because it has only {word_count}
words, fewer than the minimum required {min_words} words."

If all constraints are satisfied
return True

Lowercase Letter Validation: This example validates whether a given text is entirely in lowercase.
If any word contains uppercase letters, it provides feedback on which words need correction. The
implementation is as follows:

class LowercaseLetter:
def __init__(self):

pass

def feed_back(self, value):
Split the input string into words
words = value.split()

Find words that are not fully in lowercase
upper_case_words = [word for word in words if
any(char.isupper() for char in word)]

if value.islower():
return True

else:
return f"The response contains words that are not in
all lowercase letters: {’, ’.join(upper_case_words)}.
Please lowercase all of them."

31

	Introduction
	Related Work
	The Proposed Framework: DVR
	Divide: Tool preparation
	Verify: verification and feedback
	Refine: Self-Refine with Feedback and Few-Shot Demonstration

	Empirical Validation
	Experimental Setup
	RQ1: Assessing the Constraint-Following Ability
	RQ2: Comparison across different constraint types
	RQ3: Contribution of Individual Modules
	Hyper-Parameter Sensitivity Analysis
	Tool Selection Accuracy
	Would DVR Affect Comprehensibility and Fluency of Responses

	Conclusion
	Appendix
	Algorithm
	Baseline Details
	ComplexInstruct
	Detailed experiments
	LLM Self-verify ability
	Fluency and Readability
	Experiments on IFEval
	Experiments on GPT4-turbo
	Robustness of DVR
	Computation Time
	Limitations and Future Works
	Case study
	Prompts
	Failure Cases
	Tool Examples

