Exploring the Recall of Language Models: Case Study on Molecules

Anonymous ACL submission

⁰⁰¹ 1 Introduction

 Evaluating the performance of generative mod- els, particularly large language models (LLMs), is an important challenge in modern deep learning [\(Chang et al.,](#page-2-0) [2024\)](#page-2-0). One overlooked aspect of evaluation is models' ability to generate *all* correct outputs for a given input. In scientific discovery, generation of new molecules with given character- istics is a cornerstone problem. For example, in drug discovery, most of the generated molecules may prove to be useless in the subsequent stages of drug development, so generating a diverse and ideally complete set of initial molecules is useful. To the best of our knowledge, the ability of LLMs to cover all correct outputs has not been systemati- cally evaluated. There are two significant obstacles. First, it is hard to come up with a benchmark that lists all correct outputs. Second, the representations of the objects we are trying to generate are not of- ten unique. In this paper we propose a benchmark that overcomes both obstacles and enables research on optimizing recall of LLMs.

⁰²³ 2 Problem Definition

 Let S be the set of all correct generations, i.e. strings. Assume there is an equivalence relation among the strings in S which divides S into M equivalence classes. We denote the set of unique 028 equivalence classes by S^u . Each equivalence class **corresponds to an object. For any object** $m \in S^u$, the number of distinct strings corresponding to that **object, is denoted by** $||m||$.

032 The goal is to train a model that is able to gen-**033** erate from a maximum number of equivalence **034** classes, i.e. unique objects. To achieve that, we 035 train an LLM on a subset of M objects and evalute 036 **on subset of V objects (V < M) distinct from M.** 037 After training we generate G number of strings by **038** sampling from the model. True positives, denoted 039 by TP, are the generated strings that belong to S. **040** Note, G can contain both duplicate strings and distinct strings that belong to the same equivalence **041** class. Hence we also define *unique true positives*, **042** $TP^u = |G^u|$, as the number of equivalent classes 043 represented in G. We track two metrics: **044**

$$
Precision(G) = \frac{TP}{G}, \text{ Recall}(G) = \frac{TP^u}{M} \tag{1}
$$

(1) **045**

If G is sampled in an i.i.d. fashion, TP scales lin- 046 early with G , and precision will not depend on G 047 (after sufficiently large number of generations). On **048** the contrary, TP^u does not scale indefinitely with 049 G as it is upper bounded by $M = |S^u|$. Hence, 050 the recall increases with G , can reach M and re- 051 main constant. The ideal model can learn to put **052** uniform $p = \frac{1}{M}$ probability on all objects of the **053** set S^u . Note that in this ideal scenario, the probability of each object can be distributed over its **055** string representations in an arbitrary way. The re- **056** call of the ideal model after G generations will be **057** $1 - (1 - p)^G$. This serves as an upper bound for 058 i.i.d. sampling methods. **059**

2.1 Molecular Datasets **060**

GDB-13 [\(Blum and Reymond,](#page-2-1) [2009\)](#page-2-1) is an ex- **061** haustive set of molecules with at most 13 heavy 062 atoms that satisfy certain conditions. We define the **063** similarity $sim(m_1, m_2)$, between molecules, as 064 the Tanimoto similarity [\(Tanimoto,](#page-2-2) [1958\)](#page-2-2) between **065** their MACCS fingerprints [\(Durant et al.,](#page-2-3) [2002\)](#page-2-3). **066** Next, we define three subsets of GDB-13. 067

 S_{asn} is the set of (all strings of) molecules from 068 GDB-13 that have at least 0.4 similarity with *as-* **069** *pirin.* $S_{d>p}$ is the set of molecules that have at least 070 0.4 similarity to paracetamol (a famous drug), and **071** have less than 0.4 similarity to 4-nitroanisole (a fa- **072** mous toxic molecule). $S_{d=p}$ is the set of molecules 073 m that are at a similar distance from paracetamol 074 (d) and 4-nitroanisole (p): $0.2 \leq sim(m, d) \leq 0.75$ 0.2165 and $0.2 \leq \sin(m, p) \leq 0.2165$.

Note that similarity in terms of MACCS fin- 077 gerprints implies shared substructures between **078** molecules. Hence, S_{asp} contains molecules that **079**

		Precision $(\%)$			Recall $(\%)$		
Pretraining	Fine-tuning	S_{asp}	$S_{d>p}$	$S_{d=p}$	S_{asp}	$S_{d>p}$	$S_{d=p}$
Canonical	Canonical	75.69	68.27	14.07	55.02	46.83	15.19
Canonical	Randomized	70.59	61.63	10.86	53.74	44.90	12.39
Randomized	Canonical	76.16	68.93	14.58	54.80	46.76	15.67
Randomized	Randomized	75.15	65.66	13.67	56.40	47.48	15.33
Upper bound $(i.i.d.)$		100	100	100	70.09	65.76	71.12

Table 1: Precision and Recall of OPT-1.3B models fine-tuned on three sets of molecules, evaluated on 10 million strings generated with random sampling.

080 share some substructures with aspirin. $S_{d>p}$ is a more complex set as it contains molecules that share some substructures with paracetamol, but also do not share many structures with a toxic sub- stance. We represent molecules with canonical and randomized SELFIES [\(Krenn et al.,](#page-2-4) [2020\)](#page-2-4) which are defined as the SELFIES of canonical and ran-domized SMILES produced by the RDKit library.

⁰⁸⁸ 3 Experiments

 We pretrain on a large subset of GDB-13, that ex- cludes the three sets defined above. This data is split into a training set and a 10,000-instance val- idation set. We then finetune the LLMs on the three sets, using canonical and randomized SELF- IES. From each set, we randomly select 1 million instances for training and 500 instances for eval- uation. We adopt the majority of the pretraining settings and model architecture from OPT 1.3B [\(Zhang et al.,](#page-2-5) [2022\)](#page-2-5). We train from scratch for one epoch. For tokenization, we use an off-the-shelf tokenizer from [\(ZJUNLP,](#page-2-6) [2024\)](#page-2-6).

¹⁰¹ 4 Results

 We used random sampling with temperature 1.0 to generate 10 million molecules from each of the models with results displayed in Table [1.](#page-1-0) As ex-**pected,** S_{asp} is the easiest set, followed by $S_{d>p}$ **and then by** $S_{d=p}$ **. In contrast with the findings** of [\(Arús-Pous et al.,](#page-2-7) [2019\)](#page-2-7), there is a little differ- ence between the models trained on randomized and canonical SELFIES. For precision, fine-tuning on canonical is better, and for recall, fine-tuning on randomized is preferable.

Figure [1](#page-1-1) shows how TP and TP^u grow as the number of generated strings grows. The plot indi- cates that the recall is close to saturation at 10 mil- lion generations, which motivates other approaches to improve LLM recall.

117 4.1 Predicting recall without generating

118 Here, we show that it is possible to predict the **119** recall after G generated samples without actually

Figure 1: Number of TP and TP^u molecules generated by LLM fine-tuned on S_{asp} .

generating them. We compute the probability that a **120** molecule from the validation set will be generated **121** in G attempts. Using a model, we can compute the **122** expected probability of an entire string to be gener- **123** ated. Let $p_{i,j}$ denote the probability of generating 124 the *j*-th string of the *i*-th molecule m_i . The average probability of a correct molecule generation **126** in one attempt becomes: $\sum_{i=1}^{M} \sum_{j=1}^{||m_i||} p_{i,j}$. This is 127 the expected precision of the model. **128**

To estimate recall for G sampling iterations, we **129** take the probability that the i -th given molecule will 130 *not* be sampled in G iterations, and subtract it from **131** one: $1 - \left(1 - \sum_{j=1}^{\|m_i\|} p_{i,j}\right)^G$. The expected value 132 of this quantity over all molecules is the expected **133** recall at G generations. Assuming access to a small **134** validation set of V molecules, one can estimate the **135** precision and recall using: **136**

$$
Precision = \frac{M}{V} \sum_{i=1}^{V} \sum_{j=1}^{||m_i||} p_{i,j},
$$
\n(2)

138

$$
Recall = \frac{1}{V} \sum_{i=1}^{V} \left(1 - \left(1 - \sum_{j=1}^{||m_i||} p_{i,j} \right)^{G} \right) (3)
$$

We estimate precision and recall for various combinations of pretraining and finetuning, and molec- **141** ular sets. The Pearson correlation between pre- **142** dicted and actual values for precision and recall are **143** 0.99975 and 0.99982, respectively. **144**

References

- Josep Arús-Pous, Simon Johansson, Oleksii Prykhodko, Esben Jannik Bjerrum, Christian Tyrchan, Jean-Louis Reymond, Hongming Chen, and Ola Engkvist. 2019. [Randomized smiles strings improve the quality of](https://api.semanticscholar.org/CorpusID:208206203) [molecular generative models.](https://api.semanticscholar.org/CorpusID:208206203) *Journal of Cheminfor-matics*, 11.
- Lorenz C Blum and Jean-Louis Reymond. 2009. 970 million druglike small molecules for virtual screening in the chemical universe database gdb-13. *Journal of the American Chemical Society*, 131(25):8732–8733.
- Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. 2024. A sur- vey on evaluation of large language models. *ACM Transactions on Intelligent Systems and Technology*, 15(3):1–45.
- Joseph L Durant, Burton A Leland, Douglas R Henry, and James G Nourse. 2002. Reoptimization of mdl keys for use in drug discovery. *Journal of chemi- cal information and computer sciences*, 42(6):1273– 1280.
- Mario Krenn, Florian Häse, AkshatKumar Nigam, Pas-cal Friederich, and Alan Aspuru-Guzik. 2020.
- Taffee T Tanimoto. 1958. Elementary mathematical theory of classification and prediction.
- Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus- ter, Daniel Simig, Punit Singh Koura, Anjali Srid- har, Tianlu Wang, and Luke Zettlemoyer. 2022. [Opt: Open pre-trained transformer language mod-](https://api.semanticscholar.org/CorpusID:248496292)[els.](https://api.semanticscholar.org/CorpusID:248496292) *ArXiv*, abs/2205.01068.
- [Z](https://huggingface.co/zjunlp/MolGen-large)JUNLP. 2024. Molgen-large. [https:](https://huggingface.co/zjunlp/MolGen-large) [//huggingface.co/zjunlp/MolGen-large](https://huggingface.co/zjunlp/MolGen-large). Accessed: 2024-05-22.