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1 Introduction

Evaluating the performance of generative mod-
els, particularly large language models (LLMs),
is an important challenge in modern deep learning
(Chang et al., 2024). One overlooked aspect of
evaluation is models’ ability to generate all correct
outputs for a given input. In scientific discovery,
generation of new molecules with given character-
istics is a cornerstone problem. For example, in
drug discovery, most of the generated molecules
may prove to be useless in the subsequent stages
of drug development, so generating a diverse and
ideally complete set of initial molecules is useful.
To the best of our knowledge, the ability of LLMs
to cover all correct outputs has not been systemati-
cally evaluated. There are two significant obstacles.
First, it is hard to come up with a benchmark that
lists all correct outputs. Second, the representations
of the objects we are trying to generate are not of-
ten unique. In this paper we propose a benchmark
that overcomes both obstacles and enables research
on optimizing recall of LLMs.

2 Problem Definition

Let S be the set of all correct generations, i.e.
strings. Assume there is an equivalence relation
among the strings in S which divides S into M
equivalence classes. We denote the set of unique
equivalence classes by S“. Each equivalence class
corresponds to an object. For any object m € SY,
the number of distinct strings corresponding to that
object, is denoted by ||m||.

The goal is to train a model that is able to gen-
erate from a maximum number of equivalence
classes, i.e. unique objects. To achieve that, we
train an LLM on a subset of M objects and evalute
on subset of V objects (V < M ) distinct from M.
After training we generate G number of strings by
sampling from the model. True positives, denoted
by T'P, are the generated strings that belong to S.
Note, G can contain both duplicate strings and dis-

tinct strings that belong to the same equivalence
class. Hence we also define unique true positives,
TP" = |G"|, as the number of equivalent classes
represented in G. We track two metrics:
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Precision(G) = % , Recall(G) = i (1)

If GG is sampled in an i.i.d. fashion, T'P scales lin-
early with (G, and precision will not depend on G
(after sufficiently large number of generations). On
the contrary, T'P* does not scale indefinitely with
G as it is upper bounded by M = |S"|. Hence,
the recall increases with G, can reach M and re-
main constant. The ideal model can learn to put
uniform p = ﬁ probability on all objects of the
set S“. Note that in this ideal scenario, the prob-
ability of each object can be distributed over its
string representations in an arbitrary way. The re-
call of the ideal model after G generations will be
1 — (1 —p)C. This serves as an upper bound for
i.i.d. sampling methods.

2.1 Molecular Datasets

GDB-13 (Blum and Reymond, 2009) is an ex-
haustive set of molecules with at most 13 heavy
atoms that satisfy certain conditions. We define the
similarity sim(mq,m2), between molecules, as
the Tanimoto similarity (Tanimoto, 1958) between
their MACCS fingerprints (Durant et al., 2002).
Next, we define three subsets of GDB-13.

Sasp 18 the set of (all strings of) molecules from
GDB-13 that have at least 0.4 similarity with as-
pirin. Sg~, is the set of molecules that have at least
0.4 similarity to paracetamol (a famous drug), and
have less than 0.4 similarity to 4-nitroanisole (a fa-
mous toxic molecule). Sy—), is the set of molecules
m that are at a similar distance from paracetamol
(d) and 4-nitroanisole (p): 0.2 < sim(m,d) <
0.2165 and 0.2 < sim(m, p) < 0.2165.

Note that similarity in terms of MACCS fin-
gerprints implies shared substructures between
molecules. Hence, S, contains molecules that




Precision (%) Recall (%)
Pretraining | Fine-tuning | S.5, Si>p Si=p | Sasp  Sasp  Sd=p
Canonical Canonical 75.69 68.27 14.07 | 55.02 46.83 15.19
Canonical Randomized | 70.59 61.63 10.86 | 53.74 4490 12.39
Randomized | Canonical 76.16 68.93 14.58 | 54.80 46.76 15.67
Randomized | Randomized | 75.15 65.66 13.67 | 56.40 47.48 15.33
Upper bound (i.i.d.) 100 100 100 | 70.09 65.76 71.12

Table 1: Precision and Recall of OPT-1.3B models fine-tuned on three sets of molecules, evaluated on 10 million

strings generated with random sampling.

share some substructures with aspirin. Sy~ is
a more complex set as it contains molecules that
share some substructures with paracetamol, but
also do not share many structures with a toxic sub-
stance. We represent molecules with canonical and
randomized SELFIES (Krenn et al., 2020) which
are defined as the SELFIES of canonical and ran-
domized SMILES produced by the RDKit library.

3 Experiments

We pretrain on a large subset of GDB-13, that ex-
cludes the three sets defined above. This data is
split into a training set and a 10,000-instance val-
idation set. We then finetune the LLMs on the
three sets, using canonical and randomized SELF-
IES. From each set, we randomly select 1 million
instances for training and 500 instances for eval-
uation. We adopt the majority of the pretraining
settings and model architecture from OPT 1.3B
(Zhang et al., 2022). We train from scratch for one
epoch. For tokenization, we use an off-the-shelf
tokenizer from (ZJUNLP, 2024).

4 Results

We used random sampling with temperature 1.0
to generate 10 million molecules from each of the
models with results displayed in Table 1. As ex-
pected, Sy is the easiest set, followed by Sy~
and then by S;—,. In contrast with the findings
of (Aruas-Pous et al., 2019), there is a little differ-
ence between the models trained on randomized
and canonical SELFIES. For precision, fine-tuning
on canonical is better, and for recall, fine-tuning on
randomized is preferable.

Figure 1 shows how T'P and T'P" grow as the
number of generated strings grows. The plot indi-
cates that the recall is close to saturation at 10 mil-
lion generations, which motivates other approaches
to improve LLM recall.

4.1 Predicting recall without generating

Here, we show that it is possible to predict the
recall after G generated samples without actually
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Figure 1: Number of T'P and T'P* molecules generated
by LLM fine-tuned on Sgp.

generating them. We compute the probability that a
molecule from the validation set will be generated
in G attempts. Using a model, we can compute the
expected probability of an entire string to be gener-
ated. Let p; ; denote the probability of generating
the j-th string of the i-th molecule m;. The aver-
age probability of a correct molecule generation
in one attempt becomes: 22, EL@{H
the expected precision of the model.
To estimate recall for G sampling iterations, we
take the probability that the ¢-th given molecule will
not be sampled in G iterations, and subtract it from

one: 1 — (1 — Zy;"{” pm-)G. The expected value
of this quantity over all molecules is the expected
recall at G generations. Assuming access to a small
validation set of V' molecules, one can estimate the
precision and recall using:

Dij- This is

vV mll
Precision = — Z Z Dij 2)
V= j=1
LY mall -\ ¢
Recall = — Z 1—11- Z Di.j (3
Vi j=1

We estimate precision and recall for various com-
binations of pretraining and finetuning, and molec-
ular sets. The Pearson correlation between pre-
dicted and actual values for precision and recall are
0.99975 and 0.99982, respectively.
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