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ABSTRACT

Hybrid reasoning, which enables a single Large Language Model (LLM) to al-
ternate between fast, intuitive responses (non-thinking mode) and slow, deliberate
reasoning (thinking mode), has rapidly gained adoption across the Al industry,
spanning from top-tier commercial models to the latest open-source releases. De-
spite their widespread deployment, the community still lacks a mechanistic un-
derstanding of how these two modes coexist and interact within a single model.
Without such clarity, we lack a principled understanding of how these modes op-
erate, making it harder to reason about their behavior or guide future develop-
ment. In this work, we conduct a detailed mechanistic analysis of a hybrid reason-
ing model’s internal dynamics. We identify why the thinking and non-thinking
modes can be compatible rather than distinct subsystems. Building on this, we
propose a metacognitive taxonomy showing that the thinking mode corresponds
to a structured, self-corrective protocol whose intensity can be modulated along a
continuous spectrum. Furthermore, we causally uncover a surprisingly localized,
single-token switch that deterministically governs mode activation. These find-
ings illuminate the control mechanisms underlying hybrid reasoning, providing a
foundation for the design of robust, interpretable, and adaptive cognitive systems.

1 INTRODUCTION

The pursuit of artificial general intelligence has driven Large
Language Models (LLMs) to achieve impressive capabilities
in complex reasoning. The technique of Chain-of-Thought
(CoT) prompting (Wei et al., 2022), which encourages mod-
els to “think step by step”, has shown that performance on
challenging tasks can be significantly improved through ex-
plicit and deliberate reasoning. While this thinking mode is
powerful, its lengthy process introduces substantial latency,
proving unnecessary for simpler queries where users expect
fast and intuitive responses. Initially, this dilemma was ad-
dressed by deploying two distinct models: a powerful think-
ing model optimized for long-form reasoning (e.g., OpenAl
ol (Jaech et al., 2024), DeepSeek-R1 (Guo et al., 2025)) and
a swift non-thinking model for instant answers (e.g., OpenAl
GPT-40 (Hurst et al., 2024), DeepSeek-V3 (Liu et al., 2024)).

More recently, as shown in Figure 1, the concept of hybrid
reasoning has emerged as an elegant solution, aiming to in-
tegrate these two distinct modes into a single, unified archi-
tecture (Anthropic, 2025a). This approach has been rapidly
adopted, with major organizations releasing their own hy-
brid reasoning models, from the closed-source Claude 4 (An-
thropic, 2025b) to open-source alternatives like Qwen3 (Yang
et al., 2025) and Llama-Nemotron (Bercovich et al., 2025).

Despite its wide adoption, we still lack a clear understanding of
how hybrid reasoning actually works. This gap in our knowl-

( Easy Problem | " Hard Problem |
Intumve LLM Reasonlng LLM

Thlnklng Process
Instant Answer p .
Final Answer

( Easy Problem ) (" Hard Problem |
Non-thinking Thinking
Mode Mode

l Hybrid Reasonlng Model

Th|nk|ng Process

Flnal Answer

Instant Answer

Figure 1: A hybrid reasoning
model integrates the thinking and
non-thinking modes into a single,
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edge raises several fundamental questions. Q1: Why are the two modes compatible within a single
model rather than functioning as conflicting subsystems? Q2: When one mode is selected, what
exactly is being activated that leads to such striking differences in behavior? Q3: How is this activa-
tion controlled? Is it a complex and distributed process, or a simple and localized switch? Without
answers, the community risks building on unstable foundations: hybrid reasoning may remain a
powerful but opaque trick, rather than a principled paradigm for LLM reasoning.

In this paper, we take the first step towards closing this gap through a detailed mechanistic study
of hybrid reasoning models. Specifically, we focus on models where the reasoning mode is man-
ually controlled, typically toggling between thinking and non-thinking (though some variants offer
multiple levels, such as low, medium, and high). This setting provides a controlled environment to
investigate the nature of these modes and the mechanisms governing them. Based on this setting,
we investigate the questions we mentioned in the last paragraph and present a deep anatomical study
into the internal workings of hybrid reasoning. By treating a state-of-the-art model as a case study,
we employ a series of targeted experiments, from probabilistic analysis to causal interventions, to
dissect the relationship, control, and nature of its reasoning modes. Our contributions are as follows:

¢ We explain why the two modes are compatible (Q1). Our cross-evaluation reveals that the
thinking and non-thinking modes mirror the relationship between reasoning and base models: in
both cases, divergence occurs only on a small subset of tokens. This minor difference explains
the good compatibility of the two modes.

* We define the essence of “thinking” as a structured metacognitive protocol (Q2). We pro-
pose a novel taxonomy of metacognitive keywords and show quantitatively that the thinking
mode is characterized by the activation of a protocol involving planning, self-correction, reason-
ing articulation, and deliberation.

* We show that reasoning intensity is a controllable spectrum (Q2). By extending our analysis
to a model with multiple reasoning levels, we reveal that this metacognitive activation is not only
a binary switch but a modulatable spectrum, allowing for fine-grained control over the intensity
of the reasoning process.

¢ We identify a localized, single-token control mechanism (Q3). We use probabilistic analysis
to locate a single token as the likely control switch and provide causal evidence through forced
decoding experiments, demonstrating that this token deterministically activates or deactivates
the model’s deliberative reasoning process.

By systematically answering these questions, our work moves beyond treating reasoning modes as
black-box commands and offers a clear, mechanistic account of how “thinking” is implemented and
controlled. This foundational understanding is a crucial first step towards building the robust hybrid
reasoning models of the future.

2  PRELIMINARIES AND RELATED WORK

2.1 REASONING MODES IN LLMs

Previous LLMs can broadly be divided into two categories. Reasoning LLMs leverage techniques
such as chain-of-thought prompting (Wei et al., 2022) to generate explicit, step-by-step intermediate
reasoning. These models often achieve higher accuracy on complex tasks but induce substantial
latency due to reasoning and lengthy outputs. In contrast, intuitive LLMs produce direct answers
without intermediate steps, enabling faster interaction but often with a limitation in reasoning depth.

Hybrid reasoning is proposed to unify these two paradigms within a single model. Anthropic’s
Claude 3.7 Sonnet (Anthropic, 2025a) is the first hybrid reasoning model on the market, with fast
answers for simple prompts and extended reasoning for complex ones. Such ability is also inher-
ited by the subsequent Claude 4 (Anthropic, 2025b). In the open-source community, Alibaba’s
Qwen3 (Yang et al., 2025) and NVIDIA’s Llama-Nemotron (Bercovich et al., 2025) are released
around the same time as the first open-source model series supporting hybrid reasoning, followed by
Zhipu AI's GLM-4.5 (Zeng et al., 2025a). More recently, Kuaishou’s KAT-V1 (Zhan et al., 2025)
introduces an AutoThink mechanism that adaptively decides whether to engage in step-by-step rea-
soning. The gpt-oss series (Agarwal et al., 2025) is a variant of these hybrid reasoning models,
which supports three different reasoning efforts: low, medium, and high.
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2.2 MANUAL CONTROL IN HYBRID REASONING MODELS

Current hybrid reasoning models expose these modes to users through explicit control mechanisms.
In particular, all major open-source hybrid reasoning models adopt a prompt-based control strat-
egy, utilizing the insertion of a specific token into the prompt to tell the model whether to switch
into deliberative reasoning (Yang et al., 2025; Bercovich et al., 2025; Zeng et al., 2025a; Zhan
et al., 2025; Agarwal et al., 2025). Some models further extend this paradigm by allowing mul-
tiple reasoning levels (e.g., low, medium, high), each triggered by a distinct control token. For
instance, Qwen3 (Yang et al., 2025) uses </think> and </nothink> to toggle between modes;
Llama-Nemotron (Bercovich et al., 2025) sets a detailed thinking on/off flagin the sys-
tem prompt; GLM-4.5 (Zeng et al., 2025a) defaults to the thinking mode unless </nothink> is
given; and KAT-V1 (Zhan et al., 2025) employs <think_on> and <think_off>. The gpt-oss se-
ries (Agarwal et al., 2025) instead allows users to specify different reasoning efforts (low, medium,
high) directly in the system prompt. This design provides a controlled experimental setting to an-
alyze how reasoning modes are implemented internally, since the behavior of the model can be
toggled deterministically through prompt intervention.

3 ON THE COMPATIBILITY OF REASONING MODES

Before analyzing the specific mechanism underlying a hybrid reasoning model, we must first address
a more fundamental question: why are these seemingly disparate modes, one optimized for fast
and intuitive responses and the other for slow and deliberate reasoning, compatible within a single
model? From an intuitive perspective, given the significant differences in behavior between the
two modes, merging them seems highly challenging. In this section, we challenge this intuition.
We argue that the actual behavioral divergence between a base model and its specialized version is
surprisingly small, and this low divergence is the fundamental reason why they are compatible.

To empirically test this claim, we first quantify the divergence between base LLMs and their special-
ized, fine-tuned versions. These model pairs represent a real-world scenario where a new, special-
ized capability (e.g., long-form mathematical reasoning) is successfully integrated into an existing
model. By measuring their difference, we can directly assess the true extent of behavioral change
that specialization entails. We analyze two distinct pairs to ensure the breadth of our findings across
different fine-tuning paradigms:

* Supervised Fine-Tuning (SFT): We compare a base model, Qwen2.5-Math-7B (Yang et al.,
2024), with its SFT derivative, DeepSeek-R1-Distill-Qwen-7B (Guo et al., 2025), which is dis-
tilled from reasoning data generated by DeepSeek-R1 and is specialized for reasoning.

¢ Reinforcement Learning (RL): We compare the base Qwen2.5-Math-7B model with its deriva-
tive, Qwen-2.5-Math-7B-SimpleRL-Zoo (Zeng et al., 2025b), which has been fine-tuned for
higher reasoning abilities using RL.

To measure the mutual divergence between two  Algorithm 1 Cross-evaluation
models in a pair (i.e., a base model and its fine-tuned
version), we conduct a symmetric cross-evaluation
as shown in Algorithm 1. For a given set of prompts,
we generate responses with each model and let the
other model in the pair evaluate them. We call them
the generating model and the evaluating model re-
spectively. We quantify the divergence from these
evaluations using two key metrics:

1. Inputs: Prompt q; generating model
(mode) A; evaluating model (mode) B.
2: Outputs: B’s predicted probabilities of
each token in A’s output.
: aa < Generate(A, q)
: ppea < Evaluate(B,q+ aa)
5: return PB«A

AW

» Average Negative Log-Likelihood (NLL): This metric quantifies how “surprised” an evaluat-
ing model is by the output sequence from a generating model. For aresponse Y = (y1,...,yr),
we calculate the average NLL of each token according to the evaluating model’s predicted prob-
ability: NLL = — £ ZZ;I log Par..., (yt|y<t). Alower NLL signifies higher plausibility and thus
lower divergence.

* Top-1 Prediction Agreement: This is an intuitive measure of behavioral alignment. It calcu-

lates the percentage of tokens where the evaluating model’s top-predicted next token exactly
matches the token actually produced by the generating model. The agreement is calculated as
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Table 1: Divergence metrics for specialized models versus their base models. Despite extensive
fine-tuning, the token-level top-1 disagreement remains below 10%, challenging the notion of a
large behavioral gap and revealing the basis for compatibility.

Generating Model Evaluating Model \ Avg. NLL \ Top-1 Agreement (%)

DeepSeek-R1-Distill Qwen2.5-Math 1.2652 91.95%
Qwen2.5-Math DeepSeek-R1-Distill 1.4173 97.76%
SimpleRL-Zoo Qwen2.5-Math 1.1538 95.54%
Qwen2.5-Math SimpleRL-Zoo 1.2685 97.97%

Table 2: Divergence metrics between the thinking and non-thinking modes of Qwen3-8B and Llama-
3.1-Nemotron-Nano-8B-v1.

Model | Generating Mode Evaluating Mode | Avg. NLL | Top-1 Agreement (%)
thinking non-thinking 1.1631 95.33%
Qwen3-88 ‘ non-thinking thinking ‘ 1.1828 ‘ 95.25%
thinking non-thinking 1.3283 91.59%
Llama-Nemotron-8B ‘ non-thinking thinking ‘ 1.2219 ‘ 94.53%

% Zle ]I(yt = ), where ¢ is the most probable token predicted by the evaluating model at
step t. A high agreement rate signals a strong alignment in their predictive patterns.

The results, presented in Table 1, offer a striking rebuttal to the common intuition of a large be-
havioral gap. Despite extensive specialization through both SFT and RL, the token-level agreement
between the base and fine-tuned models remains consistently above 90%. This core finding demon-
strates that significant functional specialization can be achieved with less than 10% token-level be-
havioral divergence. This underlying similarity is the primary reason why integrating these distinct
modes is feasible: they are not as different as they seem, making their coexistence within a unified
model practical.

Having established this principle of low divergence, we now conduct a corroborating analysis on the
thinking and non-thinking modes of the hybrid reasoning models Qwen3-8B (Yang et al., 2025) and
Llama-3.1-Nemotron-Nano-8B-v1 (Bercovich et al., 2025). This verifies that the internal modes of
hybrid reasoning models share the same pattern of high behavioral similarity. As shown in Table 2,
the divergence between modes is indeed small and comparable to specialized models. This confirms
that current hybrid reasoning models are successful instances of the low-divergence compatibility
principle, with their two modes coexisting harmoniously within a single model.

Takeaway 1: Contrary to intuition, specialization via fine-tuning (SFT/RL) induces only a
small (<10%) token-level behavioral divergence from a base model. This low divergence is
the key reason why a hybrid model’s distinct reasoning modes can be compatibly integrated
within a single architecture.

4 THE ESSENCE OF “THINKING”: A MODULATABLE METACOGNITIVE
ProOTOCOL

In the previous section, we established that the token-level behavioral divergence between the think-
ing and non-thinking modes is quite small. This presents a crucial puzzle: if the divergence between
the modes is so subtle, where precisely do these two modes differ in the generative process? And
more importantly, how can such a seemingly insignificant difference account for the profound, qual-
itatively distinct outcomes we intuitively associate with “thinking”? To resolve this, we now shift
our focus to dissecting the nature of the behaviors in the two modes.

! Although Wang et al. (2025) find that a small part of tokens are special to the reasoning model, our findings
are fundamentally different. Specifically, Wang et al. (2025) examine only the entropy of tokens within a single
reasoning mode, whereas we compare the logits of tokens across two modes. Our conclusion clarifies the
distinction between two modes, rather than describing the behavior of a single mode as in Wang et al. (2025).
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4.1 FROM PROBABILISTIC DIVERGENCE TO THEMATIC PATTERNS

Our initial clue comes from the NLL analysis in Section 3, which reveals systematic probabilistic
divergences between the modes. To understand the qualitative nature of these differences, we seek
to identify the specific tokens and contexts that consistently cause one mode to be “surprised” by
the other (i.e., tokens with high NLL). To facilitate this investigation, we develop an interactive
visualization tool that renders the token-level NLL in an explorable HTML format, which we include
in our supplementary materials. An example of such visualization is shown in Figure 2.
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(a) Generating mode: thinking; evaluation mode: (b) Generating mode: non-thinking; evaluation
non-thinking. mode: thinking.

Figure 2: Two examples of rendering the token-level NLL. Redder tokens indicate higher NLL,
while whiter tokens indicate lower NLL. Dark magenta tokens have NLL larger than 3. Blue borders
show where the generated token matches the top-1 prediction of the evaluating mode, and orange
borders show mismatches. More examples can be found in our supplementary HTML file.

By systematically examining a large and diverse set of samples through this tool, we move beyond
aggregate statistics to a qualitative, data-driven analysis. We observe that the points of highest diver-
gence are not random but consistently fall into several recurring thematic categories. For instance,
the non-thinking mode assigns low probability to tokens like Wait, Let’s double-check, or
Hold on that frequently appear in the thinking mode’s output. Conversely, the thinking mode is
surprised by the non-thinking mode’s tendency to jump directly into calculations or final answers.
These observations strongly suggest that the core difference is not in the model’s knowledge but in its
application of strategic, metacognitive behaviors. We inductively grouped these observed behaviors
into four primary functions, forming the basis of our taxonomy.

4.2 QUANTITATIVE DISSECTION BASED ON A TAXONOMY OF METACOGNITIVE KEYWORDS

Based on these bottom-up observations, we formalize our findings into a taxonomy of metacognitive
keywords designed to quantify the reasoning style of an LLM. This taxonomy categorizes words and
phrases into four distinct functions (the full list can be found in Appendix A):

A. Planning & Structuring: Words that signal the organization of the problem-solving process.
These keywords establish a high-level plan or break the problem down into sequential steps.
Examples: Let’s plan, First, Step 1, The overall approach is, Let’s break it down.

B. Self-Correction & Verification: Words that indicate reflective behavior, where the model
pauses to check, validate, or correct its own reasoning or calculations. This is a hallmark of
deliberate cognition. Examples: Wait, Hold on, Let’s check, Re-evaluate, Correction.

C. Reasoning Articulation: Words that explicitly link steps in a logical chain, conveying the “why”
behind a conclusion rather than just stating the “what”. Examples: Because, Therefore, This
implies, The reason is, It follows that.

D. Deliberation & Uncertainty: Words that express consideration of alternatives, assumptions,
or confidence levels. This reflects a more cautious and nuanced approach to problem-solving.
Examples: Let’s consider, Perhaps, Maybe, It seems that, Let’s assume.

Equipped with this taxonomy, we perform a large-scale analysis on the outputs of Qwen3-8B in
both its thinking and non-thinking modes across our evaluation benchmarks. Figure 3 presents the
frequency and absolute counts of keywords from each category on the AIME24 dataset (Li et al.,
2024). For Self-Correction (B), Reasoning Articulation (C), and Deliberation (D), the thinking
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Figure 3: The statistics about the metacognitive keywords of Qwen3-8B on the AIME24 dataset.
In Subfigure (a), box plots show the median (line), 25th—75th percentiles (box), and 1.5x IQR
(whiskers). On the right side of each box plot, points show the distributions and lines indicate the
kernel density. The other two subfigures show the mean keyword counts and densities between the
two modes. Although the thinking mode has more metacognitive keywords among all four types, its
density of planning keywords is less than that of the non-thinking mode.

mode demonstrates a dramatically higher frequency and count of metacognitive keywords. This
confirms that the “thinking” process is characterized by an active protocol of self-monitoring, logical
explanation, and careful consideration. More nuanced is the finding for Planning & Structuring (A).
While the thinking mode uses more planning keywords in absolute terms (due to longer, multi-step
solutions), their frequency is lower than in the non-thinking mode. This reveals a key insight: the
non-thinking mode is a “plan-executor” that concisely lists steps (“Step I... Step 2...”), while the
thinking mode is a “plan-debator” that spends significant generative budget between each planning
step on verification and articulation, thereby lowering the density of planning words. More results
on other datasets can be found in Appendix C.

4.3 METACOGNITIVE KEYWORDS AS CATALYSTS FOR DIVERGENCE

The identification of metacognitive keywords raises a central question: what is their relationship
with the model’s internal generative uncertainty? Our initial visual analysis in Section 4.1 suggests
that high NLL tokens tend to appear immediately after these keywords. To test this, we conduct a
reverse analysis: we first isolate the moments of greatest model surprise by selecting the top 5% of
all tokens based on their NLL scores (NLL > 0.8867). For each of these high-NLL tokens, we then
measure its positional relationship to the nearest metacognitive keyword.

The results are clear: 79.22% of all high-NLL tokens occur within 3 tokens of a metacognitive
keyword. As illustrated in Figure 4, this tight coupling is not coincidental. It reveals the critical role
of these keywords as “triggers” that are immediately followed by high divergence in the model’s
generative path. For instance, words like Perhaps or Let’ s check precede a spike in the NLL
of subsequent tokens because they open up multiple possibilities for the next reasoning step. This
experiment not only quantifies our initial visual findings but, more importantly, directly links the
linguistic-level concept of metacognitive keywords to the probabilistic-level uncertainty within the
model, thus forging a complete explanatory chain.
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Figure 4: Average NLL of tokens around metacognitive keywords and their counts, categorized
by the position to the pivot metacognitive keywords. Although the keywords themselves are the
majority of the high NLL tokens, the ones right after them have higher average NLL scores.
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4.4 GENERALIZATION TO A SPECTRUM OF COGNITION

Our finding that a metacognitive protocol can be toggled on or off is not limited to a binary switch.
The same principle extends to models that exhibit a more granular spectrum of cognitive control.
To demonstrate this, we analyze OpenAl’s gpt-oss-20B (Agarwal et al., 2025), which supports three
distinct reasoning efforts: low, medium, and high.

Applying our metacognitive taxonomy to the outputs of gpt-oss-20B reveals a clear, monotonic
trend. The frequency of keywords related to Self-Correction (B), Reasoning Articulation (C), and
Deliberation (D) systematically decreases from the high to the low setting, and the frequency of
keywords related to Planning & Structuring (A) increases, similar to the observations on Qwen3-
8B. This suggests that the underlying mechanism is not a simple on/off switch but rather a dimmer
that modulates the degree of metacognitive engagement. The low mode closely resembles the con-
cise, plan-executing behavior of Qwen3’s non-thinking mode, whereas the high mode engages in a
significantly more intensive and explicit reflective protocol.

IRITR

High Medium Low  High Medium Low Planning Correction Reasoning Deliberation " Planning Correction ~ Reasoning Deliberation

Keyword Count
Word Count
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Density (Keywords/Words)

(a) The keyword count and the total (b) Comparison of mean keyword (c) Comparison of the keyword
word count of three modes. count among the modes. density among the modes.

Figure 5: The statistics about the metacognitive keywords on gpt-oss-20B. Although the metacog-
nitive keyword counts decrease from the high to the low setting among all four types, the density
of planning keywords increases from the high to the low setting, which is similar to the phenomena
observed on Qwen3-8B.

Takeaway 2: The essence of the “thinking” mode lies not in enhanced core intelligence
but in the activation of a structured metacognitive protocol characterized by planning,
self-correction, reasoning articulation, and deliberation. Within this process, metacognitive
keywords act as catalysts that trigger significant probabilistic divergence in the model’s
generative path, and models with more modes thereby reveal a more granular spectrum of
cognitive control.

5 UNVEILING THE CONTROL MECHANISM: A LOCALIZED SWITCH

Having established that the thinking and non-thinking modes share similar behaviors (Section 3)
and activate distinct metacognitive protocols (Section 4), a crucial question emerges: how does
the model toggle between these behaviors? Our investigation begins with a striking observation
in Figure 2: the token generated immediately after the <think> start tag consistently exhibits an
abnormally high NLL during cross-evaluation. This suggests that this specific token position is a
point of extreme disagreement between the two modes. In this section, we build on this initial clue,
using probabilistic and causal analyses to demonstrate that the control mechanism is not a complex,
distributed process but a remarkably simple, localized switch.

5.1 AN ANOMALOUS SPIKE IN PROBABILISTIC DIVERGENCE

To systematically quantify our initial observation, we plot the histogram of the token-level Kullback-
Leibler (KL) divergence between the two modes’ predicted probability distributions and NLL at
each token position. These two metrics allow us to measure the “surprise” or disagreement between
the modes’ predictions across the entire generation process. As shown in Figure 6, the resulting
histogram displays a typical long-tail distribution, confirming that for the vast majority of tokens,
the two modes are in close agreement (KL/NLL values near zero). However, the plot also reveals
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Figure 6: Distribution of token-level KL divergence and NLL between the thinking and non-thinking
modes. In all four subfigures, anomalous spikes at high values can be found and are almost entirely
attributed to the first few tokens following the <t hink> tag. For the thinking mode, the first three
tokens generated are always <think>\n Okay and then followed by the thinking process. For the
non-thinking mode, the first three tokens generated are always <think>\n\n</think>.

an isolated spike at the high-divergence end of the spectrum. This spike is too pronounced and
localized to be explained by the long-tail phenomenon and points towards a systematic point of
extreme disagreement.

By isolating the tokens that constitute this spike, we confirmed our initial finding. The spike is almost
exclusively composed of the first few tokens generated immediately after the prompt. Specifically,
for the thinking mode, the model overwhelmingly predicts \n Okay after the token <think>, while
for the non-thinking mode, it predicts \n\n</think> (the closing tag of the thinking process). The
extreme divergence at this specific position provides a powerful hypothesis: the choice of this token
is not merely a stylistic artifact but could function as a localized switch that determines the model’s
entire subsequent reasoning trajectory.

5.2 CAUSAL VERIFICATION VIA FORCED DECODING

The probabilistic clue from the KL divergence analysis is a strong correlation, but it does not estab-
lish causality. To test the hypothesis that this single token acts as a causal switch, we designed a
forced decoding experiment. In this intervention, we manually override the model’s predicted first
token after the <think> tag and observe whether its subsequent behavior is altered. We created
two counterfactual scenarios:

1. Deactivating the Think Mode: We run the model with the /think command but force the
first few tokens after <think> to be \n\n</think>, effectively mimicking the non-thinking
mode’s initial token.

2. Activating the Think Mode: Conversely, we run the model with the /nothink command
(which internally expands to <think>\n\n</think>) but force the first two tokens after
<think> to be \n Okay, the usual starter for the thinking mode.

The results, summarized in Table 3, provide decisive causal evidence. When the thinking mode is
forced to generate </think>, its behavior flips entirely: the average output length and task perfor-
mance become nearly identical to that of the genuine non-thinking mode. Conversely, forcing the
non-thinking mode to start with Okay compels it to engage in a full-fledged, step-by-step reasoning
process, with its output characteristics and performance aligning closely with the genuine thinking
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Table 3: Results of the forced decoding experiments. Forcing the initial token causally flips the
model’s reasoning mode, aligning its performance and output length with the mode it is forced to
imitate.

Prompt AIME24 AMC Math500 Minerva Olympic Bench

Acc Len Acc Len Acc Len Acc Len Acc Len
Genuine /think 78.00 14000.03 88.67 10496.04 96.00 5257.47 46.32 6920.73 68.41 11292.19
Genuine /nothink 25.33  9056.89 60.24 3493.67 84.84 151841 32.06 68594 53.04 3366.26

/think +Forced </think> 29.33 8829.36 6433 363575 86.80 1586.66 32.87 701.87 54.22 3737.83
/nothink + Forced Okay  76.00 1526797 90.12 10413.30 96.12 5267.83 46.25 625637 68.80 10994.38

mode. This intervention causally demonstrates that the choice of the first token after the <think>
tag is not only a stylistic artifact but serves as a deterministic switch that activates or deactivates the
entire deliberative reasoning protocol.

Takeaway 3: The control mechanism for switching between reasoning modes is not
distributed but is highly localized to a single token position. Specifically, these single
tokens following the control tag act as a causal, deterministic switch, capable of flipping the
model’s entire subsequent reasoning behavior.

6 DISCUSSION AND CONCLUSION

In this work, we deconstruct the mechanics of hybrid reasoning by systematically addressing three
fundamental questions. First, we explain why the thinking and non-thinking modes are compatible
within a single model rather than functioning as conflicting subsystems. We then uncover the nature
of what is activated when the thinking mode is engaged, showing that it corresponds to a structured
metacognitive protocol whose intensity can be modulated along a continuous spectrum. Finally, we
identify how this activation is controlled, revealing a surprisingly localized, single-token switch that
deterministically toggles the reasoning process. Together, these findings reframe hybrid reasoning
as the controlled activation of a specific cognitive module, offering both a mechanistic explanation
and a blueprint for building more efficient and controllable reasoning systems. Beyond a theoretical
contribution, our findings illuminate several potential pathways for advancing the efficient training
and deployment of reasoning models.

Accelerating Reinforcement Learning for Reasoning. A major bottleneck in improving the
LLM’s reasoning ability via RL is the high cost of sampling from the model during the policy roll-
out. Our discovery shows that non-metacognitive reasoning steps are highly stable and exhibit low
probabilistic variance, which creates favorable conditions for accelerating sampling with retrieval-
based speculative decoding (He et al., 2024b; Hu et al., 2025). In this paradigm, long sequences of
predictable tokens (e.g., standard calculations or boilerplate phrases) can be cached from previous
generations. During RL rollouts, these cached sequences can be retrieved and verified in parallel,
while the main model is only invoked for high-variance, decisive tokens, which we identify as being
concentrated around metacognitive keywords. This approach is particularly attractive as it obviates
the need for training and maintaining a separate draft model, potentially streamlining the RL rollout
process and reducing inference latency during serving.

Efficient and Targeted Gradient-Based Learning. The observation that token-level divergence
between reasoning modes clusters around metacognitive keywords suggests a potential for more
resource-efficient training strategies. One could explore a targeted gradient update scheme where
backpropagation is focused primarily on the high-variance metacognitive tokens and their immediate
context. The hypothesis is that the most critical learning signals for refining complex reasoning are
concentrated in these strategic decision points. By applying gradients selectively, one might preserve
a significant portion of the performance gains while substantially reducing the computational cost
per training step. Such an efficiency gain would allow for greater training throughput, enabling
the model to learn from a larger number of samples within the same time or computational budget,
offering a compelling trade-off for developing sophisticated reasoning abilities at scale.
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REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our results. All experimental settings,
including model configurations, prompting strategies, and evaluation protocols, are described in
detail in Appendix B. The datasets used (primarily AIME) are publicly available, and we describe
the sampling and evaluation methodology to allow consistent replication. Implementation details
such as generation backends, hyperparameter settings, and evaluation libraries are documented in
Appendix B.
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A METACOGNITIVE KEYWORDS LIST

To support the taxonomy introduced in the main text, we provide the complete list of metacognitive
keywords and phrases used in our analysis. These keywords are manually curated and grouped into
four functional categories. The list is not intended to be exhaustive; rather, it captures the most
frequently observed signals of metacognitive reasoning in LLM outputs. Researchers may use this
list as a reference for annotation, quantitative analysis, or further refinement of the taxonomy.

Table 4: Comprehensive list of metacognitive keywords and phrases categorized into four functional
groups. This list serves as the basis for our quantitative analysis in the main text (Section 4).

Category Keywords / Phrases

plan, first, second, third, next, step, approach, solve, break, breakdown,

structure, organize, method, strategy, procedure, process, sequence, order,
Planning & Structuring phase, stage, begin, start, initial, finally, last, end;

Phrases: let’s plan, the plan is, overall approach, to solve this, let’s break it

down, step by step, first step, next step, final step, in order to, the goal is

wait, hold, check, double-check, verify, confirm, evaluate, reevaluate,
reconsider, rethink, review, correction, correct, mistake, error, wrong,
incorrect, actually, realize, notice, see, oops, sorry, revise, adjust, fix,
amend, modify, update;

Phrases: hold on, let’s check, let’s double-check, let me check, let me
verify, let me reconsider, let me rethink, that’s wrong, that’s incorrect, I
made a mistake, I was wrong, actually no, wait no

Self-Correction &
Verification

because, therefore, hence, thus, so, since, consequently, accordingly,
follow, imply, mean, reason, explain, why, how, what, where, when, result,

Reasoning Articulation conclude, conclusion, deduce, infer, logic, logical, reasoning, rationale;
Phrases: this implies, it follows that, the reason is, this means, in other
words, that is to say, as a result, we can conclude, this shows

consider, think, suppose, assume, perhaps, maybe, possibly, probably,
likely, might, could, would, seem, appear, look, sound, feel, believe,
suspect, guess, wonder, question, doubt, uncertain, unsure, unclear,
confuse, puzzle, key, important, crucial, critical, essential, problem, issue,
challenge, difficulty;

Phrases: let’s consider, let’s think, let’s suppose, let’s assume, it seems
that, it appears that, the key is, the problem is, the issue is, I think, I
believe, I suspect, I wonder

Deliberation & Uncertainty

B EXPERIMENTAL DETAILS

All experiments in this paper are conducted under carefully controlled and standardized settings.
For the generation phase, we use the vLLM framework (v0.10.1). During the evaluation phase,
all experiments are performed using the t ransformers library (v4.55.4). Prompt templates are
adapted by making modifications to the default template provided with each model.

We evaluate three models from different families: Qwen3-8B (Yang et al., 2025), Llama-3.1-
Nemotron-Nano-8B-v1 (Bercovich et al., 2025), and gpt-oss-20B (Agarwal et al., 2025). Other
variants in these series, such as Llama-3.3-Nemotron-Super-49B-v1 and gpt-oss-120B, exceed the
memory budget of a single 80GB GPU and therefore fall outside the range that can be served
on our setup. Similarly, the smallest released models in some other families (e.g., GLM-4.5-Air-
110B (Zeng et al., 2025a) and KAT-V1-40B (Zhan et al., 2025)) are already larger than what fits
within this limit. For different models, we use their officially recommended sampling settings:

* Qwen3-8B: we adopt the officially recommended configuration: for the thinking mode we set
temperature to 0.6, Top P to 0.95, and Top K to 20; for the non-thinking mode we set temperature
to 0.7, Top P to 0.8, and Top K to 20.

¢ Llama-Nemotron-8B: we use its official usage recommendations: we set temperature to 0.6,
and Top P to 0.95 for the thinking mode and use greedy decoding for the non-thinking mode.

* gpt-0ss-20B: we follow its official settings, using temperature = 1.0.

12
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The forced-decoding experiments in Section 5.2 are conducted on five standard benchmarks:
AIME24 (Li et al., 2024), AMC (Li et al., 2024), MATHS500 (Hendrycks et al., 2021), Minerva
Math (Lewkowycz et al., 2022), and OlympiadBench (He et al., 2024a). In the main text, other
experiments are conducted on the AIME24 dataset (Li et al., 2024). Experiments on the other four
datasets can be found in Appendix C. For all settings, each problem is sampled five times. All
experiments are run on NVIDIA A100 GPUs with 80GB memory.

C MORE EXPERIMENTS ABOUT METACOGNITIVE KEYWORDS

We also conduct experiments on the outputs of Qwen3-8B on other datasets: AMC (Li et al.,
2024), MATHS500 (Hendrycks et al., 2021), Minerva Math (Lewkowycz et al., 2022), and Olympiad-
Bench (He et al., 2024a). The results are shown in Figure 7. It can be found that other datasets share
similar phenomena to the AIME24 dataset. For Self-Correction (B), Reasoning Articulation (C),
and Deliberation (D), the thinking mode contains more metacognitive keywords, reflecting self-
monitoring, explanation, and deliberation. For Planning & Structuring (A), it has more planning
words overall but a lower frequency, as it spends more effort debating and verifying between steps,
unlike the non-thinking mode that lists steps directly.

D USE OoF LLMS

In preparing this manuscript, we used LLMs solely as a writing assistant to polish language and im-
prove clarity of exposition. The research ideas, experimental design, implementation, analysis, and
conclusions were entirely conceived and carried out by the authors. The LLMs did not contribute to
research ideation, data analysis, or substantive scientific content. The authors take full responsibility
for the final text.
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Figure 7: The statistics about the metacognitive keywords of Qwen3-8B on other datasets. Although
the thinking mode has more metacognitive keywords among all four types, its density of planning
keywords is less than that of the non-thinking mode.
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