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Abstract001

Long-context capability is considered one of002
the most important abilities of LLMs, as a003
truly long context-capable LLM shall enable004
its users to effortlessly process many origi-005
nally exhausting tasks — e.g., digesting a long-006
form document to find answers v.s., directly007
asking an LLM about it. However, existing008
real-task-based long-context evaluation bench-009
marks have two major shortcomings: Firstly,010
benchmarks like LongBench often do not pro-011
vide proper metrics to separate long-context012
performance from the model’s baseline abil-013
ity, so when conducting a cross-model com-014
parison, such conflation makes the user un-015
able to understand how exactly one model or016
method excels at the long-context task in re-017
lation to its baseline ability. Secondly, such018
benchmarks are often formed in a way where019
each data sample has a fixed sequence length,020
which not only makes them solely suitable to021
models with a certain range of context win-022
dows, but also lacks a proxy to know at what023
length the model/method-of-interests would024
fail. To address these issues, we introduce025
a length-controllable long-context benchmark026
and a novel metric that disentangles base-027
line knowledge from long-context capabilities.028
Experiments demonstrate the superiority of029
our approach in effectively evaluating LLMs.030
The code is available at https://anonymous.031
4open.science/r/100-LongBench-568D.032

1 Introduction033

The long-context capability has become one of034

the fundamental competencies (Gao et al., 2024;035

Liu et al., 2024b; Li et al., 2024; Agarwal et al.,036

2024) of contemporary large language models037

(LLMs) because it takes the average human critical038

time and effort to digest long-form context, mak-039

ing a long-context-capable LLM beyond desirable.040

To assess the long-context capabilities of LLMs,041

various evaluation benchmarks and metrics have042

Table 1: Models’ ranking on Ruler (Hsieh et al., 2024)
with different metrics. Base Ability represents model’s
score within 4k context. Old/Proposed Metric rep-
resents the average score across various lengths using
traditional metric/our proposed metric. 96.5(1) indicates
a score of 96.5 with a rank of 1. More details are in
Table 5. Comparing the ranking of Old Metric and Pro-
posed Metric reveals that the rankings of the old metrics
are heavily influenced by the model’s inherent abilities,
which might not really reflect long-context ability.

Model (size,length)
Base

Ability
Old

Metric
Proposed

Metric

Llama3.1 (70B, 128K) 96.5(1) 88.2(1) −8.6(2)
Yi (34B, 200K) (Young et al., 2024) 93.3(2) 86.3(2) −7.5(1)
Phi3-medium (14B, 128K) 93.3(3) 79.1(3) −15.1(4)
LWM (7B, 1M) (Liu et al., 2024a) 82.3(4) 70.8(4) −13.9(3)

been proposed, including LongBench (Bai et al., 043

2023), L-Eval (An et al., 2023), NIAH (Needle in 044

the Haystack), RULER (Hsieh et al., 2024), Ada- 045

LEval (Wang et al., 2024), Loogle (Li et al., 2023a), 046

and many more. 047

However, these benchmarks often exhibit at least 048

one of the following three shortcomings: 049

(1) They rely on purely synthetic contents (like 050

NIAH), which do not reflect how LLMs are used 051

in real-life scenarios, potentially limiting the appli- 052

cability of their results. 053

(2) They adopt a fixed input length per data sam- 054

ple, making them suitable only for certain LLMs 055

with compatible context windows. This is a ma- 056

jor problem because context windows have grown 057

significantly, thanks to the development of con- 058

text extension techniques and post-training recipes. 059

With Llama 3.1 (Dubey et al., 2024) claiming a con- 060

text window of 128k (in contrast to the 4k context 061

of Llama 2), many once “long-context” datasets 062

have already become outdated. It is therefore fore- 063

seeable that many evaluations we see today will 064

no longer be reflective as time passes. Moreover, 065

having different lengths per individual data sample 066

makes the evaluation unintuitive for many constant- 067

budget methods (like StreamingLLM (Xiao et al., 068
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Figure 1: Illustration of LM-Infinite (Han et al., 2024), a long-context enhancement method’s performances on three
LongBench tasks. The colored dashed lines represent the average score of each model on the corresponding task.
The size of the markers corresponds to the proportion of each text length within the entire dataset. The larger the
marker, the higher the proportion. The results exhibit significant variation across tasks of different lengths within
the same dataset. More results of other methods are in Appendix A.1.

2023a) and InfLLM (Xiao et al., 2024)), where069

an arbitrarily set constant budget is applied to all070

inputs, ignoring the fact that this budget may ex-071

ceed certain data samples. As a result, the reported072

“compressed performance” often turns into an un-073

known mixture of both compressed and uncom-074

pressed practices, complicating fair assessments.075

(3) They do not address the conflation be-076

tween base ability and long-context capability, as077

these benchmarks evaluate long-context capabili-078

ties solely based on task scores without isolating079

the influence of a model’s baseline abilities. Such080

conflation can lead to inaccurate assessments of a081

model’s inherent capacity to handle extended con-082

texts, ultimately hindering the accurate measure-083

ment of true long-context potential.084

We address such problems by providing a085

new benchmark involving a rich set of length-086

controllable real and synthetic tasks — -087

LongBench — and a new evaluation metric088

— LongScore — which leads to significant089

shifts in model rankings compared to traditional090

performance-based evaluations, as shown in Ta-091

ble 1. We first validate the reliability of the092

proposed -LongBench and the effectiveness of093

LongScore. We then comprehensively bench-094

mark the long-context capabilities of various open-095

source models using the newly constructed bench-096

mark and proposed metric, providing fresh in-097

sights into long-context evaluation and offering a098

more accurate assessment that better reflects mod-099

els’ true abilities to handle extended contexts.100

2 Motivation: why do we need to refine101

long-context benchmarks?102

This section introduces motivations behind this103

work, focusing on the existing challenges in evalu-104

ating long-context capabilities of models. Specifi-105

cally, we identify the following issues.106

Performance variance across task lengths, ev-107

idenced by Figure 1. The performance of LM- 108

Infinite exhibits significant variation across tasks 109

of different lengths within the same dataset. Many 110

long-context datasets have uneven length distribu- 111

tions, introducing biases in evaluating a model’s 112

long-context capability. To validate this hypothesis, 113

we train models using five different long-context 114

enhancement methods and evaluate their perfor- 115

mances across varying lengths on the LongBench 116

dataset. From Figure 1, we observe the following: 117

(1) Performance Variation: All five models demon- 118

strate performance differences across different text 119

lengths within the same dataset. (2) Alignment 120

with Dominant Lengths: A model’s average perfor- 121

mance aligns closely with its performance on the 122

length range with the highest proportion of samples. 123

For instance, on Multi-News dataset, each model’s 124

average performance is close to its performance on 125

samples within the 0–4k length range, which repre- 126

sents the largest share of the dataset. These findings 127

highlight the need for length-aware evaluations of 128

long-context capabilities. A more robust approach 129

involves testing model performance on N samples 130

across diverse lengths to obtain a comprehensive 131

assessment of its long-context capability. More 132

results of other methods are in Appendix A.1. 133

Ineffectiveness of current metrics for evalu- 134

ating long-context capability, evidenced by Fig- 135

ure 2. Existing long-context metrics primarily rely 136

on the average performance across the benchmark. 137

However, this approach can be misleading as it con- 138

flates the model’s inherent task-specific ability with 139

its pure long-context capability. As illustrated in 140

Figure 2, LLaMA 3.1-8B-Instruct performs worse 141

than Qwen 2.5-7B-Instruct on short texts but ex- 142

cels on extremely long texts, such as 128k and 143

255k, indicating its superior long-context exten- 144

sion capability. In this task, the average perfor- 145

mance suggests that Qwen 2.5-7B-Instruct is the 146

better model. But a closer inspection reveals that 147

LLaMA 3.1-8B-Instruct has a distinct advantage in 148
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Figure 2: Comparison between LLaMA 3.1-8B-Instruct
and Qwen 2.5-7B-Instruct on the Counting Star task
across varying text lengths. The dashed line represents
the average score across all context lengths. LLaMA 3.1-
8B-Instruct performs worse than Qwen 2.5-7B-Instruct
on short texts but excels on extremely long texts, indi-
cating its superior long-context extension capability.

handling extremely long texts, despite its weaker149

performance on shorter inputs. This discrepancy150

underscores the need to separate a model’s base151

ability (on short texts) from its long-context capa-152

bility. To address this, we propose a novel metric153

that accurately captures a model’s true capability154

to handle long contexts from Base Ability.155

3 How to truly evaluate Language156

Models’ long-context capability?157

To address the two identified problems, we 1)158

construct a length-controllable long-context bench-159

mark to reduce performance variance across task160

lengths, and 2) introduce LongScore, a new met-161

ric designed to accurately evaluate long-context162

capabilities by disentangling the model’s baseline163

abilities. In detail, we restructure the long-context164

datasets, based on LongBench, L-EVAL, and other165

benchmarks. We then design a new pipeline to166

generate controllable-length long contexts by com-167

bining different articles. Additionally, we introduce168

a filtering mechanism in QA-related tasks to miti-169

gate prior knowledge. Subsequently, We propose a170

new metric to isolate a model’s long-text capability171

from Base Ability (performance on short texts).172

3.1 Construct a new long-context benchmark173

We categorize tasks into four types, each con-174

sisting of two tasks with different levels of diffi-175

culty, resulting in a total of eight tasks. The types176

and their corresponding tasks are: Key Retrieval177

(including KV Retrieval and Counting Stars), In-178

formation Retrieval (including Passage Retrieval179

and Passage Count ) , Information Comprehen-180

sion (including Single-doc QA and Multi-doc181

Context: 
Passage : INTRODUCTION\nThe 

idea of language identification is to ...
Question: 

What is the GhostVLAD approach?

Context: 
Passage 1: 

Introduction\nCancer is one of the leading 
causes of death in the world,...
Passage 2: 

INTRODUCTION\nThe idea of language 
identification is to ...
Passage 3: 

... 
Question: What is the GhostVLAD approach?

Noisy Context:
Passage : Introduction\nCancer is 

one of the leading causes of death in 
the world,...

Real 
Context 
Sources

Noisy 
Context 
Sources

Figure 3: Illustration of the Data Generation Process for
the Single-Doc QA Task

QA) and Information Summarization (including 182

Single-doc Sum and Multi-doc Sum) . Table 2 pro- 183

vides details for each task, including: Real Context 184

Sources(the original context of the question used 185

in the task), Noisy Context Sources(the source of 186

additional context that may contain irrelevant or 187

distracting information) and Evaluation Metric(the 188

metric used to assess model performance for each 189

task). All of these datasets are from other bench- 190

marks like LongBench, etc. Detailed information 191

on context construction, question setup, and evalu- 192

ation metrics, are in Appendix A.2. 193

How to generate a controllable-length con- 194

text? In -LongBench, the context for each task 195

is controllable, such as generating a context of 196

approximately 128k tokens. To achieve this, we 197

first randomly select one article from Real Con- 198

text Sources as the ground truth article. Then, we 199

randomly sample a number of articles from Noisy 200

Context Sources as distractor articles. These dis- 201

tractor articles are combined with the ground truth 202

article to construct the whole context, ensuring that 203

the total context length is close to but less than 204

128k. Finally, the order of all articles is shuffled to 205

create the context. Figure 3 illustrates the data gen- 206

eration process for Single-Doc QA task, showing 207

how questions, answers, and contexts are prepared. 208

QA Filtering Mechanism. For Multi-Doc QA 209

and Single-Doc QA tasks, we introduce a filter- 210

ing mechanism to eliminate the influence of the 211

model’s inherent prior knowledge. When eval- 212

uating a model’s long-context capabilities, prior 213

knowledge is often overlooked. For instance, in 214

question-answering (QA) tasks, the model might 215

memorize the answers to certain questions during 216

pretraining. As shown in Figure 4, the model accu- 217

rately answer questions based on its prior knowl- 218

edge even without any contexts. In such cases, the 219

model’s response is not derived from the provided 220

context but from its memorized knowledge. This 221

oversight can lead to inflated performance metrics, 222

misrepresenting the model’s actual ability to pro- 223
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Table 2: Details of dataset construction for each task. To generate a context of a specified length like 128k, we
randomly select multiple articles from the Noisy Context Source datasets as distractor articles. A single article is
randomly chosen from Real Context Source datasets as the ground truth article. Distractor articles and the ground
truth article are combined to form the whole context, ensuring that the whole context length is less than 128k and
the order of all articles is shuffled. The bottom of the table contains different datasets from other benchmarks. N/A
indicates that the task does not require Context Sources because the questions are synthetic rather than derived from
a dataset. More details about how to construct each task are in Appendix A.2.

Task Name Real Context Sources Noisy Context Sources Evaluation Metric
KV Retrieval N/A 1 2 3 4 5 6 7 8 9 Accuracy
Counting Stars N/A 1 2 3 4 5 6 7 8 9 Accuracy
Passage Retrieval 9 10 11 12 13 14 15 9 10 11 12 13 14 15 Accuracy
Passage Count 1 2 3 4 5 6 7 8 9 N/A Accuracy
Single-doc QA 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 LLM-based Metric
Multi-doc QA 16 17 18 19 1 2 3 4 5 6 7 8 LLM-based Metric
Single-doc Sum 1 11 12 13 14 15 1 11 12 13 14 15 LLM-based Metric
Multi-doc Sum 20 1 11 12 13 14 15 LLM-based Metric

1 qasper 2 multifieldqa_en 3 narrativeqa 4 multidoc_qa 5 legal_contract_qa
6 financial_qa 7 natural_question 8 scientific_qa 9 cnn_dailymail 10 gov_report
11 qmsum 12 patent_summ 13 tv_show_summ 14 review_summ 15 meeting_summ

16 hotpotqa 17 2wikimqa 18 musique 19 rag-mini-bioasq 20 multi_news_e

Question: 
In 135 BC, a second campaign was sent to 

intervene in a war between Minyue and another 
ancient kingdom established at the collapse of 
whom?

Context: 
Passage 1: Han campaigns against Minyue...
Passage 2: .... 

Question: 
In 135 BC, a second campaign was sent to 

intervene in a war between Minyue and another 
ancient kingdom established at the collapse of 
whom?

Answer:
The Qin dynasty.

Answer:
Qin dynasty.

Figure 4: One sample in Question Answering where
models provide accurate answers regardless of context

cess and comprehend long contexts. To filter out224

the model’s prior knowledge, we introduce a QA225

filtering mechanism. In a no-context scenario, if226

the model’s response score exceeds a certain thresh-227

old, it indicates that the model is relying on prior228

knowledge, showing the data should be excluded.229

3.2 LongScore: a new long-context metric230

As illustrated in Figure 2, directly using a231

model’s scores across various text lengths to as-232

sess its long-context capability introduces inherent233

biases. To address this limitation, we propose a234

new metric that disentangles the model’s base abil-235

ity from its long-context capability, allowing for a236

more accurate and comprehensive evaluation.237

Base Ability. It refers to the model’s score when238

conducting short-context tasks. To estimate Base239

Ability, we sample N instances from short text240

lengths (like 2k, 4k, 6k). For each length, N/3241

samples are selected, and the model’s average score 242

across these lengths is computed: 243

Base Ability =
S2k + S4k + S6k

3
(1) 244

where S∗k represents the performance of model 245

with the ∗ − k length. 246

LongScore (LCl) is our proposed metric. For 247

longer lengths (e.g., 8k, 16k, 32k), we calculate 248

the score on N instances for each length. LCl at a 249

given length l is then defined as: 250

LCl =
Sl − Base Ability

Base Ability
(2) 251

LongScore separates the model’s Base Ability 252

from Long-context Capability. Our metric focuses 253

on the relative improvement or decline at longer 254

lengths and provides a more precise assessment of 255

long-context capabilities without being influenced 256

by the model’s Base Ability. It enables consistent 257

and unbiased comparisons of long-context capabil- 258

ities across different models and datasets. 259

3.3 Compare to other benchmarks 260

This section compares other long-context bench- 261

marks with -LongBench, highlighting their sim- 262

ilarities and differences. The overall distinctions 263

between benchmarks are presented in Table 3. 264

• LongBench (Bai et al., 2023) is an early bench- 265

mark used to evaluate the long-context capabili- 266

ties. It was the first to use a variety of tasks for 267
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Table 3: Comparison of long-context benchmarks: Longbench (Bai et al., 2023), L-Eval (An et al., 2023), ∞-
Bench (Zhang et al., 2024), NIAH (Needle In A Haystack), RULER (Hsieh et al., 2024), Helmet (Yen et al., 2024),
and our -LongBench. L: input tokens. Controllable: The benchmark can generate contexts of specified lengths.
Diverse Tasks: The tasks are varied and not limited to a single type. LLM-based Metric: Metrics in some tasks
are designed based on large language models for more accurate evaluation. LC Distinction: Effectively separates
the model’s base ability from its long-text capability. QA Filter: Implements measures to remove the influence of
the model’s prior knowledge in QA tasks. The tasks in NIAH and RULER are synthetic, so they do not require
LLM-based metrics or QA filtering.

Dataset L > 128k Controllable Diverse Tasks LLM-based
Metric LC distinction QA Filter

Longbench ✗ ✗ ✓ ✗ ✗ ✗
L-EVal ✗ ✗ ✓ ✓ ✗ ✗

∞-Bench ✓ ✗ ✓ ✗ ✗ ✗
NIAH ✓ ✓ ✗ ✗

RULER ✓ ✓ ✓ ✗
Helmet ✓ ✓ ✓ ✓ ✗ ✗

-LongBench ✓ ✓ ✓ ✓ ✓ ✓
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Figure 5: Verification of the reliability of -LongBench: results of two models of different sizes from the same
LM family tree, showcasing their average scores in different tasks. These findings confirm a well-established trend:
within the same series, larger models generally outperform smaller ones, reinforcing the reliability of -LongBench.

evaluation, but the context length is generally268

limited to around 8k, and the length distribu-269

tion is uneven. As many current LLMs sup-270

port context lengths of 128k and beyond, these271

benchmarks are no longer suitable.272

• ∞-Bench (Zhang et al., 2024) and L-Eval (An273

et al., 2023) are an improvement over bench-274

marks like LongBench, increasing the data275

length to over 128k. However, the context276

length is not controllable, which limits its ability277

to comprehensively evaluate LLMs.278

• NIAH and RULER (Hsieh et al., 2024) are de-279

signed with controllable context lengths and can280

control the position of the answer, specifically281

for evaluating long-context capabilities. These282

benchmarks are currently the leading tools to283

assess the long-context capabilities of LLMs.284

• Helmet (Yen et al., 2024) is a newly proposed285

benchmark that not only allows for controllable286

context lengths but also designs a wide variety287

of tasks. It introduces the use of LLM-based288

metrics, providing a more refined way to evalu- 289

ate long-context capabilities. 290

• -LongBench generates controllable context- 291

length tasks. Additionally, it introduces a new 292

metric to distinguish between a model’s base 293

ability and long-context capability, offering a 294

more comprehensive and novel approach to 295

evaluating long-context capabilities. 296

4 Experimental Analysis 297

In this section, we conduct comprehensive ex- 298

periments to first validate the reliability of - 299

LongBench and the effectiveness of the proposed 300

metric. They are then used to evaluate the long- 301

context capabilities of several open-source models. 302

4.1 Verification of the reliability of the 303

proposed benchmark 304

To verify the reliability of -LongBench, we 305

evaluate three model families (Llama 3.2, Llama 306

3.1, and Phi 3), selecting two different model sizes 307
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Table 4: Results of the average performance of five
models across all tasks on -LongBench. Base Ability
represents the model’s score within lengths of 2k, 4k
and 6k Avg score represents the average of score across
lengths including 8k, 16k, 32k, 64k, 128k and 256k.
Avg LC represents the average of score by using our
proposed metric, LongScore. 59.1(1) indicates that the
current model has a score of 59.1 at the given context
length, with a ranking of 1. Claimed Length refers to
the maximum context length that the model claims to
support. Qwen 2.5-14B and Qwen 2.5-7B use YaRN to
extend their context length to 128k. The original context
length is specified in Claimed Length.

Model Claimed
Length

Base
Ability

Avg
socre

Avg
LC

Qwen2.5-14B-Instruct 32K 59.1(1) 40.7(1) −31.1(4)
Qwen2.5-7B-Instruct 32K 57.4(2) 39.8(2) −30.6(3)
Llama3.1-8B-Instruct 128K 44.0(3) 36.3(3) −17.4(1)
Llama3.2-1B-Instruct 128K 28.7(4) 20.4(4) −28.8(2)
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Figure 6: Results of four open-source models on all
tasks in -LongBench, showing their average scores of
all eight tasks at different context lengths.

from each family. Since these are models of dif-308

ferent sizes within the same series, the expected309

trend in the dataset would be: for the same series,310

larger models generally perform better in all tasks311

across different context lengths. As shown in Fig-312

ure 5, this overall trend is observed, indicating that313

the dataset generation itself is reliable and can be314

used for evaluating long-context capabilities. For315

instance, compare to Llama 3.2-1B-Instruct, Llama316

3.2-3B-Instruct gets higher average scores in each317

task. For more detailed results of models across318

various context lengths, refer to Appendix A.4.319

4.2 Verification of the effectiveness of the320

proposed metric321

Following the setting of Lu et al. (2024), we322

compare two long-context enhancement methods,323

NTK and PI, using LongBench and -LongBench.324

On -LongBench, we evaluate performances with325

two metrics: score and LongScore (LC). NTK and 326

PI are chosen for comparison because it is well- 327

established that NTK provides a more fine-grained 328

extension of PI. On the LongBench tasks, both 329

NTK and PI methods perform similarly, failing to 330

provide a clear distinction. However, as shown in 331

Table 6, on -LongBench, the differences between 332

NTK and PI became much more apparent across 333

the selected tasks, effectively differentiating the 334

two methods. Moreover, it is obvious that the dif- 335

ferences of NTK and PI measured by LongScore 336

are greater than those measured by the traditional 337

metric, showing that LongScore demonstrates a 338

greater ability to highlight these differences com- 339

pared to the traditional metric and a more effective 340

tool for distinguishing long-context capabilities. 341

4.3 Experiments on frontier open-source 342

LLMs 343

This section introduces the experiments con- 344

ducted using -LongBench and the proposed met- 345

ric, aimed at evaluating the long-context capabili- 346

ties of various popular open-source large models. 347

We select four models, due to GPU resource 348

limitations, as they can be used to generate outputs 349

with a 256k context length. For each of the eight 350

tasks, we generated 100 samples at each context 351

length (8k, 16k, 32k, 64k, 128k, 256k) to obtain 352

the scores, using the performance at 2k, 4k, and 6k 353

as Base Ability. Finally, the average scores across 354

all tasks are computed. Table 4 presents average 355

results and the corresponding rankings. Figure 6 356

displays average scores at each context length. 357

Interestingly, as shown in Table 4, the rank- 358

ings obtained by the traditional metric are almost 359

identical to the rankings based on Base Ability. 360

However, rankings using LongScore metric show 361

a significant difference from Base Ability rankings, 362

as demonstrated by models like Qwen 2.5-14B- 363

Instruct and Qwen 2.5-7B-Instruct. From Figure 6, 364

it can be observed that while these two models 365

have higher scores at shorter context lengths (e.g. 366

8k, 16k), their scores drop significantly at longer 367

context lengths (127k, 255k). This indicates that 368

current long-text evaluation metrics are heavily in- 369

fluenced by Base Ability, while LongScore (the 370

metric proposed in this paper) separates base abil- 371

ity from long-context capability, providing a more 372

accurate reflection of the model’s long-context per- 373

formance. For comparisons of more open-source 374

models on -LongBench and their long-context ca- 375

pability evaluation, please refer to Appendix A.5. 376
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Table 5: Results of 4 models’ ranking in Ruler(Hsieh et al., 2024) on different metrics. Base Ability represents
the model’s score with a 4k-length context. Avg represents the average of scores excluding the base score. 95.8(1)
indicates that the current model has a score of 95.8 at the given context length, with a ranking of 1. LC represents
the score by our proposed metric, LongScore.

Models Claimed
Length

Base
Ability

8k 16k 32k 64k 128k Avg
score LC score LC score LC score LC score LC score LC

Llama3.1 (70B) 128K 96.5(1) 95.8(1) −0.7(2) 95.4(1) −1.1(1) 94.8(1) −1.7(1) 88.4(1) −8.3(1) 66.6(2) −30.9(3) 88.2(1) −8.6(2)
Yi (34B (Young et al., 2024)) 200K 93.3(2) 92.2(3) −1.1(3) 91.3(2) −2.1(2) 87.5(2) −6.2(2) 83.2(2) −10.8(2) 77.3(1) −17.1(1) 86.3(2) −7.5(1)

Phi3-medium (14B) 128K 93.3(3) 93.2(2) −0.1(1) 91.1(2) −2.3(3) 86.8(3) −6.9(3) 78.6(3) −15.7(3) 46.1(4) −50.5(4) 79.1(3) −15.1(4)
LWM (7B) (Liu et al., 2024a) 1M 82.3(4) 78.4(4) −4.70(4) 73.7(4) −10.4(4) 69.1(4) −16.0(4) 68.1(4) −17.2(4) 65.0(3) −21.0(2) 70.8(4) −13.9(3)

Table 6: Comparison of old long-context metric and our proposed metric. We select LongBench and four tasks
(lengths including 8k, 16k, 24k, 32k, 48k and 64k) to evaluate the capabilities of NTK and PI (Position inter-
polation). Average represents the average scores on the whole eight tasks in -LongBench. LC represents the
score by our proposed metric, LongScore. LongScore assigns a higher score to NTK than PI, as NTK provides a
more fine-grained extension of PI. The results highlight the discriminative ability and effectiveness of our proposed
benchmark and metric.

Method LongBench KV Retrieval Passage Retrieval Multi-Doc QA Single-Doc QA Average
score score LC score LC score LC score LC score LC

NTK 34.98 50.16 −1.6 12.0 −70.0 8.2 −3.65 9.7 −25.4 15.8 −18.5
PI 33.31 40.33 −25.30 9.83 −74.1 6.7 −59.49 6.4 −27.8 13.8 −27.6

We also present the results of eight models from377

four LLM family trees (Llama 3.1, Llama 3.2,378

Qwen 2.5 and Phi 3) on -LongBench. The evalua-379

tion uses LongScore metric and the detailed results380

about each task are shown in Figure 7 and Figure 8.381

4.4 Experiments on Ruler with different382

metrics383

We utilize data from Ruler (Hsieh et al., 2024),384

using a 4k-length context to represent the model’s385

base ability. The results are shown in Table 5,386

where we evaluate four models’ performance at dif-387

ferent context lengths using both LongScore and388

the traditional metric. Compared to LLaMA 3.1389

(70B), Yi (34B) (Young et al., 2024) has a slightly390

lower overall score before reaching 128k context391

length, but at 128k, Yi (34B) performs significantly392

better. Similarly, compared to Phi3-medium (14B),393

LWM (7B) shows lower base ability and shorter394

text handling but clearly outperforms Phi3-medium395

at 128k. If ranking is based solely on scores,396

LLaMA 3.1 (70B) and Phi3-medium (14B) would397

be ranked higher than their counterparts, but this398

does not show their true long-context capabilities.399

By using LongScore, we correct this discrepancy.400

5 Related Works401

In this section, we review relevant prior research402

connected to our study. We summarize cutting-403

edge models known for their strong long-text pro-404

cessing capabilities, explore methods designed to405

enhance these abilities, and examine the bench-406

marks commonly used to assess long-text profi- 407

ciency. Additionally, e discuss the limitations of 408

existing benchmarks, not disentangling Base Abil- 409

ity from true long-context capabilities. 410

Long-context language models. Both open- 411

source and closed-source state-of-the-art models 412

support context lengths of 128k or even longer, 413

including GPT-4 (Achiam et al., 2023), Gem- 414

ini (Team et al., 2024), Claude (Caruccio et al., 415

2024), LLaMA-3 (Dubey et al., 2024), and Phi- 416

3 (Abdin et al., 2024), which primarily rely on the 417

advancements of pre-training (Radford et al., 2019) 418

and post-training stages (Dao et al., 2022; Xiong 419

et al., 2023; Hsu et al., 2024; Li et al., 2021) to ex- 420

tend their long-context capabilities. This point has 421

elaborated in many LLM technical reports (Yang 422

et al., 2024; Abdin et al., 2024; Dubey et al., 2024). 423

Long context methods. Many studies have 424

explored methods to extend the context win- 425

dow length of models during fine-tuning, with 426

some approaches even achieving this without fine- 427

tuning. Techniques such as Position interpolation 428

(PI) (Chen et al., 2023a), NTK (Peng and Ques- 429

nelle, 2023), YaRN (Peng et al., 2023) and SelfEx- 430

tend (Jin et al., 2024) manipulate RoPE (Rotary Po- 431

sition Embedding) (Su et al., 2024) to do length ex- 432

tension. Other methods, including Retrievers (Xu 433

et al., 2023), StreamingLLM (Xiao et al., 2023b), 434

LM-Infinite (Han et al., 2024), Longlora (Chen 435

et al., 2023b), Inf-LLM (Xiao et al., 2024) and 436

Landmark (Mohtashami and Jaggi, 2023), focus 437

on designing new attention architectures or ex- 438
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Figure 7: Results of eight open-source models on eight tasks are presented, with their scores calculated using
LongScore metric. Each markrer represents a single model. The darker the color of the line, the stronger the base
ability of the model.
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Figure 8: Results of eight models on -LongBench by using LongScore metric. The gray shading indicates either
anomalous models’ scores or cases where the model is unable to generate outputs for 256k-long contexts.

ploiting specific phenomena in attention mecha-439

nisms (Sun et al., 2024) to achieve length exten-440

sion. Additionally, some works (Jiang et al., 2023;441

Li et al., 2023b) focus on reducing length exten-442

sion to length compression via a summarization443

step, where long contexts are compressed or sum-444

marized before being processed by the model.445

Long-context benchmarks. LongBench (Bai446

et al., 2023) and L-Eval (An et al., 2023) are early447

benchmarks for evaluating long-context capabili-448

ties. Later benchmarks, such as ∞-Bench (Zhang449

et al., 2024), extended the context length of datasets450

further. Subsequently, synthetic task-related bench-451

marks like NIAH(Needle In A Haystack), and452

Ruler (Hsieh et al., 2024) emerged, focusing not453

only on evaluating contextual capabilities but also454

on examining models’ sensitivity to the positional455

appearance of text. More recently, benchmarks456

such as HELMET (Yen et al., 2024) and LV-457

Eval (Yuan et al., 2024) introduced controllable458

context lengths and LLM-based metrics. Building459

on them, this work further considers prior model460

knowledge, and introduces a novel metric.461

6 Conclusion 462

Our benchmark and metric address key short- 463

comings in current evaluation methodologies, such 464

as the inability to isolate long-context reasoning 465

from baseline performance and reliance on insuffi- 466

ciently representative tasks. By incorporating real- 467

world data, diverse task types and difficulties, and a 468

novel metric (LongScore), -LongBench provides 469

a robust platform to evaluate and compare LLMs 470

across varying context lengths. This allows for a 471

deeper understanding of how models handle ex- 472

tended contexts while minimizing the influence of 473

prior knowledge or base abilities. As LLMs con- 474

tinue to evolve, the ability to rigorously assess their 475

long-context reasoning will play a critical role in 476

identifying bottlenecks and guiding the design of 477

next-generation models. Our approach sets a new 478

standard for assessing LLMs, paving the way for 479

more robust innovations in long-context evaluation. 480

Furthermore, it will provide an actionable insight 481

for optimizing model architectures and training 482

strategies to enhance long-context capabilities. 483
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Limitations484

The proposed metric requires models to demon-485

strate relatively strong base ability on the task. If486

a model’s base ability is insufficient, subsequent487

evaluations of long-context capabilities may exhibit488

significant fluctuations, making it less effective for489

comparing models’ long-context performance. Be-490

sides, when constructing the benchmark, it is neces-491

sary to select articles of varying lengths to assemble492

into noisy contexts. For shorter target lengths, such493

as 2k tokens, the selected articles should also have494

shorter lengths—preferably less than 1k tokens—to495

ensure the context can be formed with two or more496

documents. Therefore, it is essential to collect texts497

of diverse lengths, particularly shorter ones, to en-498

able effective assembly of the desired contexts.499
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A Appendix699

A.1 Results of models’ long-text enhancement700

methods on Longbench701

These section introduces four long-context en-702

hancement method’s performances on three Long-703

Bench tasks. The colored dashed lines represent704

the average score of each model on the correspond-705

ing task. The size of the markers corresponds to706

the proportion of each text length within the entire707

dataset. The larger the marker, the higher the pro-708

portion. The results exhibit significant variation709

across tasks of different lengths within the same710

dataset. All results are in Appendix A.1.711

A.2 Details about how to construct each task712

KV Retrieval. This task primarily evaluates the713

model’s ability to extract critical information while714

ignoring irrelevant content and noisy information.715

(1) Context Construction: Three pairs of key-value716

(k1, v1; k2, v2; k3, v3) are generated using UUIDs.717

The value of the previous pair serves as the key718

for the subsequent pair (v1 = k2; v2 = k3). These719

key-value pairs are randomly inserted into different720

noisy contexts. The noise introduces irrelevant721

or distracting information, simulating real-world722

challenges. (2) Question Setup: The question asks723

the model to identify the value corresponding to724

a specific key. (3) Evaluation Metric: The task725

is evaluated using accuracy (Acc). If the model726

correctly identifies the value associated with the727

queried key, its accuracy score is incremented by728

one.729

Counting Stars. Following (Song et al., 2024) ,730

this task assesses the model’s ability to extract crit-731

ical information across multiple documents, main-732

tain the correct sequence when aggregating infor-733

mation and resist distractions from misleading or al-734

tered options. (1) Context Construction: Four noisy735

context passages are selected from all noisy context736

passages and each passage is appended with a sen-737

tence in the format: The little penguin counted N738

★, where N represents a specific number of stars739

counted in that passage. (2) Question Setup: The740

model is tasked with identifying the sequence of741

star counts in the order of sentence appearance, like742

[38, 10, 90, 42]. The task provides multiple-choice743

options, including the correct sequence and several744

distractors. Distractors are generated by swapping745

numbers, modifying values, or changing the order746

to increase difficulty. (3) Evaluation Metric: The747

task is evaluated using accuracy (Acc). If the model748

selects the correct sequence, its accuracy score is 749

incremented by one. 750

Passage Retrieval. By focusing on compre- 751

hension and recognition, this task challenges the 752

model’s ability to extract and correlate key infor- 753

mation in a multi-document setting. (1) Context 754

Construction: A single data sample comprises mul- 755

tiple articles, each sourced from a distinct domain. 756

These articles are concatenated to form the con- 757

text. (2) Question Setup: The model is provided 758

with the summary of one specific article from the 759

context. The task is to identify which article in 760

the context corresponds to the given summary. (3) 761

Evaluation Metric: The task is evaluated using ac- 762

curacy (Acc). If the model correctly identifies the 763

article corresponding to the summary, its accuracy 764

score is incremented by one. 765

Passage Count. The task assesses a model’s 766

ability to understand and integrate global key in- 767

formation by determining the number of unique 768

articles within a multi-article context. (1) Context 769

Construction: Each data sample comprises multiple 770

articles sourced from different domains. Some arti- 771

cles are repeated multiple times within the context 772

to add redundancy and complexity. (2) Question 773

Setup: The model is tasked with identifying the 774

total number of unique (non-repeated) articles in 775

the context. (3) Evaluation Metric: The task is eval- 776

uated using accuracy (Acc). If the model correctly 777

identifies the count of unique articles, its accuracy 778

score is incremented by one. 779

Single-Doc QA. The task evaluates a model’s 780

ability to answer questions specific to a single 781

article within a multi-article context. (1) Con- 782

text Construction: Each data sample consists of 783

multiple articles from different domains. A spe- 784

cific question is posed about one particular article 785

within the context. (2) Evaluation Metric: The 786

model’s answers are assessed using another large 787

language model (like GPT-4o-mini). Evaluation 788

is based on two dimensions: Fluency is scored 789

on a 3-point scale (0, 1, 2), evaluating the coher- 790

ence and readability of the answer. Correctness 791

is scored on a 4-point scale (0, 1, 2, 3), assess- 792

ing the factual accuracy of the response in relation 793

to the context. The final score is calculated as 794

the product of the Fluency and Correctness scores: 795

Final Score = Fluency × Correctness (3) Prior 796

Knowledge Filtering: To filter out the model’s prior 797

knowledge, we introduce a filtering process. In a 798

no-context scenario, if the model’s response score 799

exceeds a certain threshold, it indicates that the 800
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Figure 9: Illustration of NTK’s performances on three LongBench tasks.
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Figure 10: Illustration of PI’s performances on three LongBench tasks.
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Figure 11: Illustration of YaRN’s performances on three LongBench tasks.
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Figure 12: Illustration of Longlora’s performances on three LongBench tasks.
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Figure 13: Verification the reliability of -LongBench: results of two models of different sizes from the same LM
family tree, showcasing their scores in different tasks across various context lengths. One color represents a specific
task, with solid lines indicating larger models and dashed lines representing smaller models. The results of different
LMs from the same LM family tree basically validate the general trend: the larger model tend to get a higher score
while the score decreases as the context length increases.
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model is relying on prior knowledge. In such cases,801

the data is excluded from the statistical analysis.802

Multi-Doc QA. The task evaluates a model’s803

ability to integrate information from multiple ar-804

ticles and provide coherent, accurate answers to805

questions that require a global understanding of806

the context. (1) Context Construction: Each data807

sample contains multiple articles from different do-808

mains. The question posed requires the model to809

synthesize information across multiple articles to810

generate the correct answer. (2) Evaluation Metric:811

Similar to the Single-Doc QA task, the model’s812

answers are evaluated using another large language813

model and evaluated by the same dimensions. (3)814

Prior Knowledge Filtering is similar to the Single-815

Doc QA task.816

Single-Doc Sum. The task evaluates a model’s817

ability to generate concise and accurate summaries818

for a specific article within a multi-article context.819

(1) Context Construction: Each data sample con-820

sists of multiple articles from different domains.821

(2) Question Setup: The model is tasked with sum-822

marizing the content of one specific article from823

the context. (3) Evaluation Metric: The gener-824

ated summary is assessed by another large lan-825

guage model. Two scoring dimensions are con-826

sidered: Fluency evaluates the coherence and read-827

ability of the summary and is scored on a 2-point828

scale: 0 (poor fluency), 1 (good fluency). Preci-829

sion measures the relevance of the summary by830

comparing each sentence in the model’s output831

to the reference summary. and is calculated as832

Precision = Number of relevant sentences
Total number of sentences in the summary . The833

final score is the product of these two dimensions:834

Final Score = Fluency × Precision. By requiring835

accurate and readable summaries, this task empha-836

sizes the model’s capacity for effective information837

synthesis and integration.838

Multi-Doc Sum. The task evaluates a model’s839

ability to integrate information from multiple ar-840

ticles and produce a coherent and accurate sum-841

mary of their shared content. (1) Context Con-842

struction: Each data sample consists of multiple843

articles from different domains. (2) Question Setup:844

The model is tasked with summarizing the relevant845

content from all provided articles. (3) Evaluation846

Metric: Similar to the Single-Doc Sum task, the847

model’s answers are evaluated using another large848

language model and evaluated by the same dimen-849

sions. By requiring effective summarization of850

multi-document content, this task highlights the851

model’s ability to synthesize and generalize infor-852

mation across diverse sources. 853

A.3 Prompts used in each task 854

This section presents the prompts used in each 855

task. Here, {context} represents the entire con- 856

text constructed from articles in the noisy context 857

sources and real context sources. {input} represents 858

the question for the task, and {instruction} repre- 859

sents the model-specific instructions. For example, 860

in Single-Doc QA, the instruction might be “An- 861

swer the question related to Passage 1”, indicating 862

that the question is specifically based on Passage 1. 863

KV Retrieval. There are some passages below 864

sourced from many different fields.\n\n {context} 865

\n\n Given several key-value pairs in these pas- 866

sages, you need to find the value of the key. Read 867

the question related with these key-value pairs and 868

give the correct answer. {input} 869

Counting Stars. There are some passages below 870

sourced from many different fields.\n \n {context} 871

\n\n Only output the results without any explana- 872

tion. Read the following question and give the 873

correct answer: {input} \n The final answer is: 874

Passage Retrieval. Here are some passages 875

from many different fields, along with an summa- 876

rization. Please determine which passage the sum- 877

marization is from.\n \n {context} \n \n The follow- 878

ing is a summarization.\n\n {input} \n \n Please 879

enter the number of the passage that the summa- 880

rization is from. The answer format must be like 881

"Passage 1", "Passage 2", etc. \n\n The answer is 882

Passage 883

Passage Count. There are some paragraphs 884

below sourced from many different fields. Some 885

of them may be duplicates. Please carefully read 886

these paragraphs and determine how many unique 887

paragraphs there are after removing duplicates. In 888

other words, how many non-repeating paragraphs 889

are there in total? \n\n {context} \n\n Please enter 890

the final count of unique paragraphs after removing 891

duplicates. The output format should only contain 892

the number, such as 1, 2, 3, and so on.\n\n The final 893

answer is: 894

Single-Doc QA. Answer the question based on 895

the given passages. Only give me the answer and 896

do not output any other words.\n \n The following 897

are given passages and these passages are from 898

many different fields.\n \n {context} \n \n Answer 899

the question based on the given passages following 900

the instruction: \n {instruction} \n \n Question: 901

{input} \n Only give me the answer and do not 902

output any other words. Answer: \n", 903
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Multi-Doc QA. Answer the question based on904

the given passages. Only give me the answer and905

do not output any other words.\n \n The following906

are given passages and these passages are from907

many different fields.\n \n {context} \n \n Answer908

the question based on the given passages following909

the instruction: \n {instruction} \n \n Question:910

{input} \n Only give me the answer and do not911

output any other words. Answer: \n912

Single-Doc Sum. You are given several pas-913

sages as follows, but not all of them need to be sum-914

marized. \n \n {context} \n \n Please follow these915

instructions: \n 1.{input} \n 2.Ignore and do not916

summarize any passages not listed above. \n 3.For917

the selected passages, the summary should include:918

the main arguments or conclusions of each arti-919

cle, the key evidence or supporting data presented920

and any unique or innovative points made in the921

passages. \n 4.The summary should be concise, fo-922

cusing only on the most important information from923

the passages. Now, please generate the summary924

for the specified passage, following the instructions925

carefully. \n Summary: \n926

Multi-Doc Sum. You are given several passages927

as follows, but not all of them need to be sum-928

marized.\n \n {context} \n \n Please follow these929

instructions:\n 1.{input} \n 2.Ignore and do not930

summarize any passages not listed above. \n 3.All931

the selected passages should be summarized into932

a few short sentences and do not summarize each933

selected passages separately. The summary should934

include: the main arguments or conclusions of each935

article, the key evidence or supporting data pre-936

sented and any unique or innovative points made in937

the passages. \n 4.The summary should be concise,938

focusing only on the most important information939

from the passages. Now, please combine and sum-940

marize the main ideas from the selected relevant941

passages into one cohesive summary, following the942

instructions carefully.\n \n Summary: \n943

A.4 Further verification of the reliability of944

the proposed benchmark945

To further verify the reliability of the generated946

dataset, we evaluate three model families (Llama947

3.2, Llama 3.1, and Phi 3), selecting two different948

model sizes from each family. Given that these949

models are from the same series but vary in size,950

the expected trends on the dataset are as follows:951

(1) Model Size Effect: Larger models should gen-952

erally achieve higher scores compared to smaller953

models within the same series. (2) Text Length954

Table 7: Results of the average performance of five
models across all tasks on -LongBench. Base Ability
represents the model’s score within lengths of 2k, 4k
and 6k Avg score represents the average of score across
lengths including 8k, 16k, 32k, 64k and 128k. Avg
LC represents the average of score by using our pro-
posed metric. 57.4(1) indicates that the current model
has a score of 57.4 at the given context length, with a
ranking of 1. Claimed Length refers to the maximum
context length that the model claims to support. Qwen
2.5-14B and Qwen 2.5-7B use YaRN to extend their
context length to 128k. so, the original context length is
specified in Claimed Length.

model Claimed
Length

Base
Ability

Avg
score

Avg
LC

llama-3.1-70B-Instruct 128K 67.5(1) 57.4(1) −14.9(1)
Qwen2.5-14B-Instruct 32K 59.1(2) 45.1(3) −23.7(6)
Phi-3-128k-medium 128K 57.4(3) 47.0(2) −18.0(4)
Qwen2.5-7B-Instruct 32K 57.4(4) 45.0(4) −21.6(5)
Llama3.2-3B-Instruct 128K 51.2(5) 37.1(6) −27.5(8)

Phi-3-128k-mini 128K 48.2(6) 39.7(5) −17.7(3)
Llama-3.1-8B-Instruct 128K 44.0(7) 36.7(7) −16.4(2)
Llama3.2-1B-Instruct 128K 28.7(8) 21.6(8) −24.7(7)
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Figure 14: Results of eight open-source models on all
tasks in -LongBench, showing their scores at different
context lengths.

Effect: As the text length increases, the perfor- 955

mance scores should decrease across all models. 956

As shown in Figure 13, the results basically follow 957

these expected trends: larger models tend to score 958

higher, and performance decreases as text length 959

increases. This consistent pattern indicates that the 960

dataset generation process is accurate and reliably. 961

A.5 Results of different Open-source models 962

on our proposed benchmark 963

This section first introduces the experiments con- 964

ducted using -LongBench and the proposed met- 965

ric, aimed at evaluating the long-context capabili- 966

ties of various popular open-source large models. 967

We select eight open-source models. For each 968

of the eight tasks, we generated 100 samples at 969

each context length (8k, 16k, 32k, 64k and 128k) 970

14



to obtain the scores. The model’s Long-context Ca-971

pability was then calculated, using the performance972

at 2k, 4k, and 6k as the base ability. Finally, the973

average scores across all tasks for the five models974

are computed. Table 7 presents the final average975

results and the corresponding rankings of the five976

models. Figure 14 displays the average scores for977

all tasks at each context length for the five models.978
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