NLDL

#33

001

002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023

024

025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047

NLDL 2026 Full Paper Submission #33.

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Unreliable Monte Carlo Dropout Uncertainty Estimation

Anonymous Full Paper
Submission 33

Abstract

Reliable uncertainty estimation is crucial for ma-
chine learning models, especially in safety-critical
domains. While exact Bayesian inference offers a
principled approach, it is often computationally in-
feasible for deep neural networks. Monte Carlo
dropout (MCD) was proposed as an efficient ap-
proximation to Bayesian inference in deep learning
by applying dropout at inference time [1]. Hence, the
method generates multiple sub-models yielding a dis-
tribution of predictions to estimate uncertainty. We
investigate its ability to capture true uncertainty and
compare to Gaussian Processes (GP) and Bayesian
Neural Networks (BNN). We find that MCD strug-
gles to accurately reflect the underlying true un-
certainty, particularly failing to capture increased
uncertainty in extrapolation and interpolation re-
gions observed in Bayesian models. The findings
suggest that uncertainty estimates from MCD, as
implemented and evaluated in these experiments,
may not be as reliable as those from traditional
Bayesian approaches for capturing epistemic and
aleatoric uncertainty.

1 Introduction

In numerous practical applications, particularly
those where decisions have significant consequences,
machine learning models need to provide not only
accurate point predictions, but also reliable esti-
mates of their uncertainty [2]. Understanding when
a model is uncertain about its prediction is vital for
safe and robust deployment.

Bayesian machine learning offers a principled ap-
proach to quantifying uncertainty by modelling prob-
ability distributions over model parameters or func-
tions [3]. This framework allows for the capture of
both epistemic uncertainty (due to lack of knowl-
edge, potentially reducible with more data) and
aleatoric uncertainty (inherent noise in the data).
However, performing exact Bayesian inference in
complex models like deep neural networks is compu-
tationally intensive and often impractical [4] even
with modern improvements such as full batch Hamil-
tonian Monte Carlo [5].

To address the computational challenges of
Bayesian deep learning, Monte Carlo dropout
(MCD) has been proposed as a more efficient ap-
proximation [1, 6]. The method involves applying

dropout not just during training, but also at in-
ference (prediction) time. By performing multiple
forward passes in parallel with different dropout
masks, one effectively samples from an ensemble of
thinned networks, and the variance of these predic-
tions is used as an estimate of model uncertainty.
It is claimed that this method is mathematically
equivalent to an approximation to a probabilistic
deep Gaussian process. The main goal of this work
is to understand the MCD method, by applying it
to a simple toy problem.

Here we summarize findings from a series of
controlled experiments applying MCD to a sim-
ple regression task and comparing to two Bayesian
benchmark models: Gaussian Processes (GP) and
Bayesian Neural Networks (BNN) which converge to
identical posteriors in the large-layer regime [7]. The
focus is on the ability to capture uncertainty during
interpolation (small gaps in data within the training
range) and extrapolation (outside the training data
range).

2 Related Work

Quantifying uncertainty in machine learning is a
significant area of research, particularly for deep
learning models which are often used in complex
tasks without providing confidence measures. Tradi-
tional methods often provide only point estimates,
making it difficult to assess their reliability.

Bayesian methods offer a framework for modelling
uncertainty [3]. Instead of learning fixed parame-
ters, Bayesian models infer probability distributions
over parameters. Gaussian Processes (GP) are non-
parametric Bayesian models that define a distribu-
tion directly over functions [8, 9]. For any finite
set of input points, the corresponding function val-
ues have a joint Gaussian distribution, defined by
a mean function and a covariance function (kernel).
GPs naturally provide predictive distributions, cap-
turing uncertainty based on the training data and
kernel choice. The process involves computing a
posterior distribution given training data and opti-
mizing kernel hyperparameters, often by maximizing
the marginal likelihood.

Bayesian Neural Networks (BNN) extend stan-
dard neural networks by placing probability distri-
butions over their weights and biases, rather than
learning single point values [10, 11]. Computing the
exact posterior distribution over weights in BNNs

048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068

069

070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095

NLDL
#33

NLDL

#33

096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

115

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

141

142

143
144
145
146
147
148

NLDL 2026 Full Paper Submission #33.

is generally intractable, necessitating approxima-
tion methods. Common approaches include sam-
pling methods like Markov Chain Monte Carlo
(MCMC) or Hamiltonian Monte Carlo (HMC), and
variational inference (VI). MCMC methods ap-
proximate the posterior by generating samples that
converge to the target distribution.

Monte Carlo Dropout (MCD) was suggested
to as a computationally efficient alternative for ob-
taining uncertainty estimates in deep learning [1].
The core idea is to keep dropout layers active dur-
ing inference and perform multiple stochastic for-
ward passes. Each pass uses a different dropout
mask, effectively sampling from a distribution of
sub-networks. The mean of these samples provides
the prediction, and their variance quantifies the
model’s uncertainty. The original paper suggests
that this is equivalent to a Bayesian approximation
for deep Gaussian processes [9].

3 Methodology

The evaluation of MCD was conducted using a con-
trolled regression task with synthetic data described
in Section 3.1. The data was generated with a
known noise distribution allowing for direct com-
parison against the model predictions and the true
underlying function and known noise characteristics.

We performed the following experiments: Com-
paring methods: Compares MCD with GP and
BNN on datasets with varying amounts of training
data (15, 50, 150 points) and noise levels (N (0, 0.05)
and N(0,0.2)). A gap in training data [—0.5,0.5]
was included to test interpolation and extrapolation.
For each method, the mean and 95% confidence in-
terval of the predictions are compared to the true
underlying function.

Reconstructing uncertainty: Providing the
model with (practically) infinite data and informa-
tion of the uncertainty during the fitting. It was
expected that this would lead to reproduction of the
underlying uncertainty. To provide practically infi-
nite data, new data samples were drawn each epoch.
The noise was modelled as var = N (0, o) sin(z)/x.

To inform the model of the properties of the noise,
the noise variance was added to the loss function
such that:

L= ﬁmcan + Enoisc +)\2£ng (1)
= Z |ymean(xi) - yi‘Q + Z |O’(£L‘1) - Ui|2 + Ereg~

Where y; and Ymean (i) are the true value and
the mean of the predictions at x;, respectively, and
similarly for o(x;) and o; being the variance. AoLyeq
represents any regularization with coefficient \o. Af-
ter each training step, Monte Carlo dropout infer-
ence is performed to estimate the predictive mean

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

and standard deviation of the model. The objective
is to minimize the Mean Squared Error (MSE) of
both the prediction error and the difference in uncer-
tainty between the predictions of the model and the
true data-generating process. Hence, to estimate
the posterior distribution, we need to run inference
after each epoch.

Since the variance of the predictions depends on
the dropout rate, we performed hyper parameter
optimization to find the optimal combination of Lo
regularization coeflicient and inference dropout rate
by minimizing Equation 1.

3.1 Toy problem data

Synthetic data was generated from a known one-
dimensional function:

f(z) =sin(4x) +ro + iz + (ro + Y2)2?, (2)
where rg, 71,72 are sampled from N(0,1) and the
input data was sampled from the range -1.3 and
1.3. Experiments included both noise-free and noisy
observations to study the model’s ability to capture
aleatoric uncertainty. The noise was either sampled
from a normal distribution A'(0, ¢2,,), with constant
Oobs across the range or scaled with sin(x)/z. Some
experiments introduced a gap in the training data
in the interval [—0.5,0.5] to specifically evaluate
interpolation performance. Lastly, the data set was
standardized.

3.2 Implementations

The Monte Carlo Dropout (MCD) was imple-
mented in PyTorch using a custom MCDLayer class.
The network architecture consisted of an input layer,
three hidden layers with ReLU activation, and an
output layer. The dropout was applied during the
forward pass at inference time to obtain multiple pre-
dictions. The mean and variance of these predictions
provided the estimate of the predictive distribution.
In our experiments, we used a dropout inference
rate of 0.15, 32 nodes in the hidden layers, 10~* in
Lo regularization and 1072 in learning rate.

In both experiments, dropout was applied only
to the hidden layers. With small number of input
features (three), the dropout removal of units risks
disrupting the input structure, and adding noise too
early may cause instability. Dropout in the output
layer introduces randomness into the final prediction,
making uncertainty estimates harder to interpret.
In contrast, dropout in hidden layers effectively ex-
plores different sub-models of the decoded input,
before encoding it back to the predicted output.

The Gaussian Process (GP) was implemented
with GPJax [12] using a zero-mean prior and Radial
Basis Function (RBF) kernel, with a Gaussian likeli-
hood assuming independent noise. Hyperparameters

149

151
152
153
154

156
157
158
159
160

161

162

164

165
166
167
168
169
170
171
172
173
174
175

NLDL
#33

NLDL

#33

202
203
204
205
206
207
208
209
210
211
212
213
214
215

216

217

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

NLDL 2026 Full Paper Submission #33.

were optimized by minimizing the negative marginal
log-likelihood using the Adam optimizer.

The Bayesian Neural Network (BNN) was
implemented in NumPyro [13, 14] with a two-hidden-
layer architecture with tanh activation. Weights
were assigned normal priors, and observation noise
had a Gamma prior. The No-U-Turn Sampler
(NUTS) was used to sample weights [15] during infer-
ence. Predictions were made by averaging outputs
from posterior weight samples, typically without
adding observation noise during inference to focus
on model uncertainty.

Hyper parameter optimization was performed
using Optuna.

4 Results

4.1 Comparing methods

Figure 1 compares the means and 95% confidence
intervals of the predictions provided by GP, BNN,
and MCD on data with shot noise sampled from
N(0,0.05). The training data included a gap in
the range [—0.5,0.5] to evaluate interpolation. The
results are shown for increasing numbers of training
data points (15, 50, 150). For all three frameworks,
the increase in data points leads to an improved
approximation (lower MSE) of the true function,
particularly in the range of the training data, but
also in the interpolation range.

The GP and BNN models show a characteristic
increase in the confidence interval 95% in regions
without training data, i.e. in the interpolation gap
[—0.5,0.5] and in extrapolation regions outside the
training data range [—1,—0.5] and [0.5,1]. This re-
flects increasing uncertainty when the model is asked
to predict values far from observed data. In contrast,
the MCD dropout model exhibits a more constant
variance across the entire input range without pro-
nounced increase in interpolation or extrapolation
intervals.

When increasing the shot noise to N(0,0.2) (Fig-
ure 2), the variance increase significantly in the data
region for both GP and MCD, while the BNN re-
mains variance remains similar to the N(0,0.05)
scenario. In the interpolation region, the variance
increases for all frameworks, but for the MCD, the
variance is still similar across all regions, without
increasing in the data gap.

These results suggest that, in this comparative set-
ting, MCD’s inherent mechanism does not automati-
cally yield an uncertainty estimate that captures the
varying levels of confidence (epistemic uncertainty)
in regions further from training data as effectively as
the benchmark Bayesian models. This motivates the
second experiment with varying noise level across
the training data (Section ?7).

It is known that random initialisations of neural

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

networks may lead to different outcomes, especially
with weak regularization [16]. Figure 1 and 2 only
show one such realisation. Performing each exper-
iment four times with different seeds showed that
while initialisation lead to different mean solutions,
the behaviour of the variance is consistent across
individual initialisations (Figure A.1). In addition,
the model was trained using 100 different seeds re-
sulting in a mean MSE of 0.384 and with a MSE
standard deviation of 0.156.

Table 1, we quantify the difference in posterior
across different seeds.

Seed | MSE | Mean STD Error
5 0.1436 0.0113
6 0.3230 0.0172
7 0.3325 0.0106
8 0.1564 0.0157

Table 1. MSE and Mean STD errors for different seeds

Figure 3 shows that combining the posterior pre-
dictions from different random seeds for MCD can
result in an uncertainty profile that more closely
resembles that of the GP and BNN models, with
increased uncertainty in extrapolation and interpo-
lation areas. This is because the variations across
different seeds are more pronounced in data-scarce
regions, but this requires training an ensemble of
MCD models thereby significantly increasing the
computational load.

5 Discussion

Our experimental results, provide insight into the be-
havior of MCD as an uncertainty estimation method
and allow us to address the research question regard-
ing its ability to approximate true uncertainty.

Comparing MCD with the benchmark Bayesian
models (GP and BNN) reveals a fundamental dif-
ference in how uncertainty is captured. GP and
BNN models naturally show increasing uncertainty
as predictions move away from training data points
(extrapolation and interpolation regions), reflecting
a decrease in epistemic certainty due to lack of in-
formation. This behavior is a desirable property for
reliable uncertainty estimation.

In contrast, the MCD tends to produce a more
uniform uncertainty across the input space. This
suggests that MCD’s uncertainty estimate, primarily
derived from the variance of predictions across differ-
ent dropout masks, may not be effectively capturing
epistemic uncertainty in the same way that GP or
BNN models do. Predicting with high confidence in
areas far from training data or regions with large
noise, where the model has limited evidence, is a
significant drawback for safety-critical applications.

257

259
260
261
262

264
265
266

268

269
270
271
272
273
274
275
276
277
278

279

280
281
282
283
284
285
286
287

289
290
291
292
293
294
295
296

298
299
300
301
302

NLDL
#33

NLDL
#33

NLDL 2026 Full Paper Submission #33.

GP Predictions (n=15) GP Predictions (n=50)

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

GP Predictions (n=150)

4 4
314 314 31+
2 2
1 1 \\
0 ol N
-1 ~1 I
s 95% CI Ao 95% CI iy 95% CI
—— Mean Prediction —— Mean Prediction —— Mean Prediction
3] == True Function 3] === True Function 34 == True Function
* Training Data i ¢ Training Data ¢ Training Data
_ T T 4 T T T T
-1.0 -05 0.0 0.5 1.0 -1.0 =05 0.0 0.5 1.0 -1.0 =05 0.0 0.5 1.0
X X X
4 BNN Predictions (n=15) BNN Predictions (n=50) BNN Predictions (n=150)
3 3 3
2

\,

-1
5 95% CI ‘ | 95% CI
- —— Mean Prediction S —— Mean Prediction —— Mean Prediction
3] == True Function N 3 ===-True Function | ==-- True Function
* Training Data * Training Data ¢ Training Data
4 I I 4 I I I 4 I I
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X X X
4 MCD Predictions (n=15) 4 MCD Predictions (n=50) 4 MCD Predictions (n=150)
3 3 3
21+ 27+

-1
|

)l 95% CI N 95% CI \ 3 95% CI

- —— Mean Prediction B —— Mean Prediction —— Mean Prediction
R True Function 34 """ True Function 34 """ True Function

* Training Data * Training Data ° Training Data

T T 4 T T T T
-1.0 =05 0.0 0.5 1.0 -1.0 =05 0.0 0.5 1.0 -1.0 =05 0.0 0.5 1.0
X X X
Figure 1. Comparing the Gaussian Process (GP, top row), Bayesian Neural Network (BNN, middle row)

and Monte Carlo Dropout (MDC, bottom row) when fitted to 15, 50 and 150 data points (left, middle, right,

respectively) with a shot noise of o = 0.05. Notice how the GP and BNN has narrow variance in the regions
where the data are sampled and higher variance in the interpolation and extrapolation regions, while the MCD

has constant variance across the range.

NLDL
#33

NLDL
#33

303
304
305
306
307
308
309
310
311
312
313

314

NLDL 2026 Full Paper Submission #33.

GP Predictions (n=50)

95% CI
—— Mean Prediction

True Function

-3 =t=
Training Data
—4 ; T . . .
-1.0 =05 0.0 0.5 1.0
X
4 BNN Predictions (n=50)
3 4
24 =

-

2] 95% CI
—— Mean Prediction
-3 ---- True Function
Training Data
-4 1 I I ! !
-1.0 -05 0.0 0.5 1.0
X

. MCD Predictions (n=50)

34

2 4

95% CI |

-2 —— Mean Prediction ”
34 """ True Function
Training Data
—4 ! . . r .
-1.0 =05 0.0 0.5 1.0

X

Figure 2. Comparing the Gaussian Process (GP, top
row), Bayesian Neural Network (BNN, second row) and
Monte Carlo Dropout (MDC, third row), when fitted to
50 data points with a shot noise of o = 0.2.

The dependency of MCD'’s posterior on the ran-
dom seed further questions its reliability as an ob-
jective uncertainty estimator. An ideal uncertainty
model should not have its uncertainty profile heavily
influenced by the specific initialization or random-
ness during training or inference. While combining
predictions from different seeds can create a more
Bayesian-like uncertainty profile, this suggests that
a single MCD model might not be sufficient, po-
tentially requiring ensemble modelling, which adds
computational cost.

Based on the claim that MCD is mathematically

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

-~ True mean \
] ¢ Trinbaa

—— MC Mean Prediction

95% CI

-1.0 =05 0.0 0.5 1.0

~~~~~~

=== True mean
Train Data \

—— MC Mean Prediction N
95% CI

-1.0 -0.5 0.0 0.5 1.0

X

Figure 3. Random initialisations of the network also
creates variation. In the example, a MCD model is fitted
to 50 data points with a shot noise of o = 0.05. Com-
bining predictions trained with different initializations,
leads to a profile that more closely resembles that of the
GP and BNN models (upper panel, compared to second
column of Figure 1). In the top plot, the dropout is
applied in training, while in the bottom plot dropout
is not applied, and gives a more smilar shape as the
bayesian methods.

equivalent to an approximation to a deep Gaussian
process [1] we expected similar uncertainty char-
acteristics, particularly increased uncertainty away
from data. Our results, showing a generally constant
uncertainty profile for MCD contrasting with the
spatially varying uncertainty of GP and BNN do not
support this equivalence in practice for the problems
studied.

Regularization techniques (L2, L1, dropout during
training) will impact MCD’s predictions and uncer-
tainty. However, even when treating these as hyper
parameters and informing the loss with the shot
noise, the MDC provided variance did not resemble
the shot noise.

Although our experiments showed that the MCD
method struggles to reproduce the uncertainty, fur-
ther experiments are needed before the method can
be fully rejected. Nevertheless, caution is strongly
advised when interpreting its predicted uncertainty.

6 Conclusion

We have investigated the Monte Carlo dropout
method’s ability to approximate the true uncertainty
in a regression task, comparing it against Gaussian
Processes and Bayesian Neural Networks. While the
original paper reported strong performance [1], we

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

334

335
336
337
338
339

NLDL
#33



NLDL

#33

340
341
342
343
344
345

346

347
348
349
350

351

352

353
354
355
356
357

358
359
360
361

363
364
365

366
367
368
369
370

371
372
373
374
375
376
377
378
379

380
381
382
383
384
385
386

NLDL 2026 Full Paper Submission #33.

find that MDC failed to accurately represent the
uncertainty in its posterior predictions. It strug-
gled to capture uncertainty during extrapolation
and interpolation, sometimes predicting lower uncer-
tainty than in regions with training data, which was
opposite behavior of the BNN and GP benchmarks.

Acknowledgments

This paper has taken advantage of NotebookLLM to
condense sections of a master thesis into the appro-
priate NLDL format. All text and cited references
have been manually checked by the authors.

Author contributions

References
[1] Y. Gal and Z. Ghahramani. “Dropout as a
Bayesian Approximation: Representing Model
Uncertainty in Deep Learning”. In: Inter-
national Conference on Machine Learning

(ICML). 2016, pp. 1050-1059.

“The foundations of statistics. By Leonard J.
Savage, John Wiley & Sons, Inc., 1954, 294
pp”. In: Naval Research Logistics Quarterly
1.3 (1954), pp. 236-236. DOIL: https://doi.
org/10.1002/nav.3800010316.

A. Gelman, J. B. Carlin, H. S. Stern, and D. B.
Rubin. Bayesian Data Analysis. Chapman and
Hall/CRC, 1995.

C. Blundell, J. Cornebise, K. Kavukcuoglu,
and D. Wierstra. Weight Uncertainty in
Neural Networks. 2015. arXiv: 1505 . 05424
[stat.ML]. URL: https://arxiv.org/abs/
1505.05424.

P. Izmailov, S. Vikram, M. D. Hoffman, and
A. G. G. Wilson. “What Are Bayesian Neu-
ral Network Posteriors Really Like?” In: Pro-
ceedings of the 38th International Conference
on Machine Learning. Ed. by M. Meila and
T. Zhang. Vol. 139. Proceedings of Machine
Learning Research. PMLR, 18-24 Jul 2021,
pp. 4629-4640. URL: https://proceedings.
mlr.press/v139/izmailov2ia.html.

N. Srivastava, G. Hinton, A. Krizhevsky, I.
Sutskever, and R. Salakhutdinov. “Dropout:
A Simple Way to Prevent Neural Networks
from Overfitting”. In: Journal of Machine
Learning Research 15.56 (2014), pp. 1929-
1958. URL: http://jmlr.org/papers/vi5/
srivastaval4a.html.

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

[7] J. Hrom, Y. Bahri, R. Novak, J. Pennington,
and J. Sohl-Dickstein. Exact posterior distribu-
tions of wide Bayesian neural networks. 2020.
arXiv: 2006.10541 [stat.ML]. URL: https:

//arxiv.org/abs/2006.10541.

R. M. Neal. Bayesian Learning for Neural Net-
works, Vol. 118 of Lecture Notes in Statistics.
Springer-Verlag, 1996.

C. K. Williams and C. E. Rasmussen. Gaus-
sian Processes for Machine Learning. Vol. 2.
MIT press Cambridge, MA, 2006.

D. J. C. MacKay. “A Practical Bayesian
Framework for Backpropagation Networks”.
In: Neural Computation 4.3 (May 1992),
pp. 448-472. 1ssN: 0899-7667. pDOI: 10.1162/
neco.1992.4.3.448.

[10]

[11] G. E. Hinton and D. van Camp. “Keeping
the neural networks simple by minimizing the
description length of the weights”. In: Pro-
ceedings of the Sizth Annual Conference on
Computational Learning Theory. COLT ’93.
Santa Cruz, California, USA: Association for
Computing Machinery, 1993, pp. 5-13. ISBN:

0897916115. por1: 10.1145/168304.168306.

T. Pinder and D. Dodd. “GPJax: A Gaussian
Process Framework in JAX”. In: Journal of
Open Source Software 7.75 (2022), p. 4455.
DOI: 10.21105/ joss . 04455. URL: https:
//doi.org/10.21105/joss.04455.

E. Bingham, J. P. Chen, M. Jankowiak, F.
Obermeyer, N. Pradhan, T. Karaletsos, R.
Singh, P. A. Szerlip, P. Horsfall, and N. D.
Goodman. “Pyro: Deep Universal Probabilis-
tic Programming”. In: Journal of Machine
Learning Research 20 (2019), 28:1-28:6. URL:

[12]

http:// jmlr . org/papers/v20/18-403.

html.

D. Phan, N. Pradhan, and M. Jankowiak.
“Composable Effects for Flexible and Acceler-
ated Probabilistic Programming in NumPyro”.
In: arXiv preprint arXiv:1912.11554 (2019).

M. D. Hoffman and A. Gelman. “The No-
U-Turn Sampler: Adaptively Setting Path
Lengths in Hamiltonian Monte Carlo”. In:
arXiv preprint arXiv:1111.4246 (2011). URL:
https://arxiv.org/abs/1111.4246.

M. Narkhede, P. Bartakke, and M. Sutaone.
“A review on weight initialization strategies for
neural networks”. In: Artificial Intelligence Re-
view 55 (Jan. 2022), pp. 1-32. DOI: 10.1007/
510462-021-10033-z.

A Appendix

387
388
389
390
391

393
394

395
396
397

398
399
400
401
402

403
404
405
406
407
408
409
410

411
412
413
414
415

416
417
418
419
420
421
422
423

424
425
426
427

428
429
430
431
432

433
434
435
436
437

438

NLDL
#33


https://doi.org/https://doi.org/10.1002/nav.3800010316
https://doi.org/https://doi.org/10.1002/nav.3800010316
https://doi.org/https://doi.org/10.1002/nav.3800010316
https://arxiv.org/abs/1505.05424
https://arxiv.org/abs/1505.05424
https://arxiv.org/abs/1505.05424
https://arxiv.org/abs/1505.05424
https://arxiv.org/abs/1505.05424
https://arxiv.org/abs/1505.05424
https://proceedings.mlr.press/v139/izmailov21a.html
https://proceedings.mlr.press/v139/izmailov21a.html
https://proceedings.mlr.press/v139/izmailov21a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/2006.10541
https://arxiv.org/abs/2006.10541
https://arxiv.org/abs/2006.10541
https://arxiv.org/abs/2006.10541
https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.1162/neco.1992.4.3.448
https://doi.org/10.1145/168304.168306
https://doi.org/10.21105/joss.04455
https://doi.org/10.21105/joss.04455
https://doi.org/10.21105/joss.04455
https://doi.org/10.21105/joss.04455
http://jmlr.org/papers/v20/18-403.html
http://jmlr.org/papers/v20/18-403.html
http://jmlr.org/papers/v20/18-403.html
https://arxiv.org/abs/1111.4246
https://doi.org/10.1007/s10462-021-10033-z
https://doi.org/10.1007/s10462-021-10033-z
https://doi.org/10.1007/s10462-021-10033-z

NLDL
#33

-4

-4

NLDL 2026 Full Paper Submission #33.

CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

T T 4 T T
¢ Train Data ¢ Train Data
—— MC Mean Prediction —— MC Mean Prediction
95% CI B 3 95% CI B
=== True mean === True mean

-4

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X X
T T 4 T T
¢ Train Data ¢ Train Data
—— MC Mean Prediction —— MC Mean Prediction
95% CI B 3 95% CI B
=== True mean === True mean

-1.0

0.5 1.0

-4

0.5 1.0

Figure A.1. MCD results for different random initialisations of the neural network.

NLDL
#33



	Introduction
	Related Work
	Methodology
	Toy problem data
	Implementations

	Results
	Comparing methods

	Discussion
	Conclusion
	Appendix

