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Abstract001

Reliable uncertainty estimation is crucial for ma-002

chine learning models, especially in safety-critical003

domains. While exact Bayesian inference offers a004

principled approach, it is often computationally in-005

feasible for deep neural networks. Monte Carlo006

dropout (MCD) was proposed as an efficient ap-007

proximation to Bayesian inference in deep learning008

by applying dropout at inference time [1]. Hence, the009

method generates multiple sub-models yielding a dis-010

tribution of predictions to estimate uncertainty. We011

investigate its ability to capture true uncertainty and012

compare to Gaussian Processes (GP) and Bayesian013

Neural Networks (BNN). We find that MCD strug-014

gles to accurately reflect the underlying true un-015

certainty, particularly failing to capture increased016

uncertainty in extrapolation and interpolation re-017

gions observed in Bayesian models. The findings018

suggest that uncertainty estimates from MCD, as019

implemented and evaluated in these experiments,020

may not be as reliable as those from traditional021

Bayesian approaches for capturing epistemic and022

aleatoric uncertainty.023

1 Introduction024

In numerous practical applications, particularly025

those where decisions have significant consequences,026

machine learning models need to provide not only027

accurate point predictions, but also reliable esti-028

mates of their uncertainty [2]. Understanding when029

a model is uncertain about its prediction is vital for030

safe and robust deployment.031

Bayesian machine learning offers a principled ap-032

proach to quantifying uncertainty by modelling prob-033

ability distributions over model parameters or func-034

tions [3]. This framework allows for the capture of035

both epistemic uncertainty (due to lack of knowl-036

edge, potentially reducible with more data) and037

aleatoric uncertainty (inherent noise in the data).038

However, performing exact Bayesian inference in039

complex models like deep neural networks is compu-040

tationally intensive and often impractical [4] even041

with modern improvements such as full batch Hamil-042

tonian Monte Carlo [5].043

To address the computational challenges of044

Bayesian deep learning, Monte Carlo dropout045

(MCD) has been proposed as a more efficient ap-046

proximation [1, 6]. The method involves applying047

dropout not just during training, but also at in- 048

ference (prediction) time. By performing multiple 049

forward passes in parallel with different dropout 050

masks, one effectively samples from an ensemble of 051

thinned networks, and the variance of these predic- 052

tions is used as an estimate of model uncertainty. 053

It is claimed that this method is mathematically 054

equivalent to an approximation to a probabilistic 055

deep Gaussian process. The main goal of this work 056

is to understand the MCD method, by applying it 057

to a simple toy problem. 058

Here we summarize findings from a series of 059

controlled experiments applying MCD to a sim- 060

ple regression task and comparing to two Bayesian 061

benchmark models: Gaussian Processes (GP) and 062

Bayesian Neural Networks (BNN) which converge to 063

identical posteriors in the large-layer regime [7]. The 064

focus is on the ability to capture uncertainty during 065

interpolation (small gaps in data within the training 066

range) and extrapolation (outside the training data 067

range). 068

2 Related Work 069

Quantifying uncertainty in machine learning is a 070

significant area of research, particularly for deep 071

learning models which are often used in complex 072

tasks without providing confidence measures. Tradi- 073

tional methods often provide only point estimates, 074

making it difficult to assess their reliability. 075

Bayesian methods offer a framework for modelling 076

uncertainty [3]. Instead of learning fixed parame- 077

ters, Bayesian models infer probability distributions 078

over parameters. Gaussian Processes (GP) are non- 079

parametric Bayesian models that define a distribu- 080

tion directly over functions [8, 9]. For any finite 081

set of input points, the corresponding function val- 082

ues have a joint Gaussian distribution, defined by 083

a mean function and a covariance function (kernel). 084

GPs naturally provide predictive distributions, cap- 085

turing uncertainty based on the training data and 086

kernel choice. The process involves computing a 087

posterior distribution given training data and opti- 088

mizing kernel hyperparameters, often by maximizing 089

the marginal likelihood. 090

Bayesian Neural Networks (BNN) extend stan- 091

dard neural networks by placing probability distri- 092

butions over their weights and biases, rather than 093

learning single point values [10, 11]. Computing the 094

exact posterior distribution over weights in BNNs 095
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is generally intractable, necessitating approxima-096

tion methods. Common approaches include sam-097

pling methods like Markov Chain Monte Carlo098

(MCMC) or Hamiltonian Monte Carlo (HMC), and099

variational inference (VI). MCMC methods ap-100

proximate the posterior by generating samples that101

converge to the target distribution.102

Monte Carlo Dropout (MCD) was suggested103

to as a computationally efficient alternative for ob-104

taining uncertainty estimates in deep learning [1].105

The core idea is to keep dropout layers active dur-106

ing inference and perform multiple stochastic for-107

ward passes. Each pass uses a different dropout108

mask, effectively sampling from a distribution of109

sub-networks. The mean of these samples provides110

the prediction, and their variance quantifies the111

model’s uncertainty. The original paper suggests112

that this is equivalent to a Bayesian approximation113

for deep Gaussian processes [9].114

3 Methodology115

The evaluation of MCD was conducted using a con-116

trolled regression task with synthetic data described117

in Section 3.1. The data was generated with a118

known noise distribution allowing for direct com-119

parison against the model predictions and the true120

underlying function and known noise characteristics.121

We performed the following experiments: Com-122

paring methods: Compares MCD with GP and123

BNN on datasets with varying amounts of training124

data (15, 50, 150 points) and noise levels (N(0, 0.05)125

and N(0, 0.2)). A gap in training data [−0.5, 0.5]126

was included to test interpolation and extrapolation.127

For each method, the mean and 95% confidence in-128

terval of the predictions are compared to the true129

underlying function.130

Reconstructing uncertainty: Providing the131

model with (practically) infinite data and informa-132

tion of the uncertainty during the fitting. It was133

expected that this would lead to reproduction of the134

underlying uncertainty. To provide practically infi-135

nite data, new data samples were drawn each epoch.136

The noise was modelled as var = N(0, σ) sin(x)/x.137

To inform the model of the properties of the noise,138

the noise variance was added to the loss function139

such that:140

L = Lmean + Lnoise + λ2Lreg (1)141

=
∑
i

|ymean(xi)− yi|2 +
∑
i

|σ(xi)− σi|2 + Lreg.142

Where yi and ymean(xi) are the true value and143

the mean of the predictions at xi, respectively, and144

similarly for σ(xi) and σi being the variance. λ2Lreg145

represents any regularization with coefficient λ2. Af-146

ter each training step, Monte Carlo dropout infer-147

ence is performed to estimate the predictive mean148

and standard deviation of the model. The objective 149

is to minimize the Mean Squared Error (MSE) of 150

both the prediction error and the difference in uncer- 151

tainty between the predictions of the model and the 152

true data-generating process. Hence, to estimate 153

the posterior distribution, we need to run inference 154

after each epoch. 155

Since the variance of the predictions depends on 156

the dropout rate, we performed hyper parameter 157

optimization to find the optimal combination of L2 158

regularization coefficient and inference dropout rate 159

by minimizing Equation 1. 160

3.1 Toy problem data 161

Synthetic data was generated from a known one- 162

dimensional function: 163

f(x) = sin(4x) + r0 + r1x+ (r2 + 1/2)x2, (2) 164

where r0, r1, r2 are sampled from N (0, 1) and the 165

input data was sampled from the range -1.3 and 166

1.3. Experiments included both noise-free and noisy 167

observations to study the model’s ability to capture 168

aleatoric uncertainty. The noise was either sampled 169

from a normal distribution N (0, σ2
obs), with constant 170

σobs across the range or scaled with sin(x)/x. Some 171

experiments introduced a gap in the training data 172

in the interval [−0.5, 0.5] to specifically evaluate 173

interpolation performance. Lastly, the data set was 174

standardized. 175

3.2 Implementations 176

The Monte Carlo Dropout (MCD) was imple- 177

mented in PyTorch using a custom MCDLayer class. 178

The network architecture consisted of an input layer, 179

three hidden layers with ReLU activation, and an 180

output layer. The dropout was applied during the 181

forward pass at inference time to obtain multiple pre- 182

dictions. The mean and variance of these predictions 183

provided the estimate of the predictive distribution. 184

In our experiments, we used a dropout inference 185

rate of 0.15, 32 nodes in the hidden layers, 10−4 in 186

L2 regularization and 10−3 in learning rate. 187

In both experiments, dropout was applied only 188

to the hidden layers. With small number of input 189

features (three), the dropout removal of units risks 190

disrupting the input structure, and adding noise too 191

early may cause instability. Dropout in the output 192

layer introduces randomness into the final prediction, 193

making uncertainty estimates harder to interpret. 194

In contrast, dropout in hidden layers effectively ex- 195

plores different sub-models of the decoded input, 196

before encoding it back to the predicted output. 197

The Gaussian Process (GP) was implemented 198

with GPJax [12] using a zero-mean prior and Radial 199

Basis Function (RBF) kernel, with a Gaussian likeli- 200

hood assuming independent noise. Hyperparameters 201
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were optimized by minimizing the negative marginal202

log-likelihood using the Adam optimizer.203

The Bayesian Neural Network (BNN) was204

implemented in NumPyro [13, 14] with a two-hidden-205

layer architecture with tanh activation. Weights206

were assigned normal priors, and observation noise207

had a Gamma prior. The No-U-Turn Sampler208

(NUTS) was used to sample weights [15] during infer-209

ence. Predictions were made by averaging outputs210

from posterior weight samples, typically without211

adding observation noise during inference to focus212

on model uncertainty.213

Hyper parameter optimization was performed214

using Optuna.215

4 Results216

4.1 Comparing methods217

Figure 1 compares the means and 95% confidence218

intervals of the predictions provided by GP, BNN,219

and MCD on data with shot noise sampled from220

N(0, 0.05). The training data included a gap in221

the range [−0.5, 0.5] to evaluate interpolation. The222

results are shown for increasing numbers of training223

data points (15, 50, 150). For all three frameworks,224

the increase in data points leads to an improved225

approximation (lower MSE) of the true function,226

particularly in the range of the training data, but227

also in the interpolation range.228

The GP and BNN models show a characteristic229

increase in the confidence interval 95% in regions230

without training data, i.e. in the interpolation gap231

[−0.5, 0.5] and in extrapolation regions outside the232

training data range [−1,−0.5] and [0.5, 1]. This re-233

flects increasing uncertainty when the model is asked234

to predict values far from observed data. In contrast,235

the MCD dropout model exhibits a more constant236

variance across the entire input range without pro-237

nounced increase in interpolation or extrapolation238

intervals.239

When increasing the shot noise to N(0, 0.2) (Fig-240

ure 2), the variance increase significantly in the data241

region for both GP and MCD, while the BNN re-242

mains variance remains similar to the N(0, 0.05)243

scenario. In the interpolation region, the variance244

increases for all frameworks, but for the MCD, the245

variance is still similar across all regions, without246

increasing in the data gap.247

These results suggest that, in this comparative set-248

ting, MCD’s inherent mechanism does not automati-249

cally yield an uncertainty estimate that captures the250

varying levels of confidence (epistemic uncertainty)251

in regions further from training data as effectively as252

the benchmark Bayesian models. This motivates the253

second experiment with varying noise level across254

the training data (Section ??).255

It is known that random initialisations of neural256

networks may lead to different outcomes, especially 257

with weak regularization [16]. Figure 1 and 2 only 258

show one such realisation. Performing each exper- 259

iment four times with different seeds showed that 260

while initialisation lead to different mean solutions, 261

the behaviour of the variance is consistent across 262

individual initialisations (Figure A.1). In addition, 263

the model was trained using 100 different seeds re- 264

sulting in a mean MSE of 0.384 and with a MSE 265

standard deviation of 0.156. 266

Table 1, we quantify the difference in posterior 267

across different seeds. 268

Seed MSE Mean STD Error
5 0.1436 0.0113
6 0.3230 0.0172
7 0.3325 0.0106
8 0.1564 0.0157

Table 1. MSE and Mean STD errors for different seeds

Figure 3 shows that combining the posterior pre- 269

dictions from different random seeds for MCD can 270

result in an uncertainty profile that more closely 271

resembles that of the GP and BNN models, with 272

increased uncertainty in extrapolation and interpo- 273

lation areas. This is because the variations across 274

different seeds are more pronounced in data-scarce 275

regions, but this requires training an ensemble of 276

MCD models thereby significantly increasing the 277

computational load. 278

5 Discussion 279

Our experimental results, provide insight into the be- 280

havior of MCD as an uncertainty estimation method 281

and allow us to address the research question regard- 282

ing its ability to approximate true uncertainty. 283

Comparing MCD with the benchmark Bayesian 284

models (GP and BNN) reveals a fundamental dif- 285

ference in how uncertainty is captured. GP and 286

BNN models naturally show increasing uncertainty 287

as predictions move away from training data points 288

(extrapolation and interpolation regions), reflecting 289

a decrease in epistemic certainty due to lack of in- 290

formation. This behavior is a desirable property for 291

reliable uncertainty estimation. 292

In contrast, the MCD tends to produce a more 293

uniform uncertainty across the input space. This 294

suggests that MCD’s uncertainty estimate, primarily 295

derived from the variance of predictions across differ- 296

ent dropout masks, may not be effectively capturing 297

epistemic uncertainty in the same way that GP or 298

BNN models do. Predicting with high confidence in 299

areas far from training data or regions with large 300

noise, where the model has limited evidence, is a 301

significant drawback for safety-critical applications. 302
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Figure 1. Comparing the Gaussian Process (GP, top row), Bayesian Neural Network (BNN, middle row)
and Monte Carlo Dropout (MDC, bottom row) when fitted to 15, 50 and 150 data points (left, middle, right,
respectively) with a shot noise of σ = 0.05. Notice how the GP and BNN has narrow variance in the regions
where the data are sampled and higher variance in the interpolation and extrapolation regions, while the MCD
has constant variance across the range.

4



NLDL
#33

NLDL
#33

NLDL 2026 Full Paper Submission #33. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

1.0 0.5 0.0 0.5 1.0
X

4

3

2

1

0

1

2

3

4

Y

GP Predictions (n=15)

95% CI
Mean Prediction
True Function
Training Data

1.0 0.5 0.0 0.5 1.0
X

4

3

2

1

0

1

2

3

4

Y

GP Predictions (n=50)

95% CI
Mean Prediction
True Function
Training Data

1.0 0.5 0.0 0.5 1.0
X

4

3

2

1

0

1

2

3

4

Y

GP Predictions (n=150)

95% CI
Mean Prediction
True Function
Training Data

1.0 0.5 0.0 0.5 1.0
X

4

3

2

1

0

1

2

3

4

Y

BNN Predictions (n=15)

95% CI
Mean Prediction
True Function
Training Data

1.0 0.5 0.0 0.5 1.0
X

4

3

2

1

0

1

2

3

4

Y

BNN Predictions (n=50)

95% CI
Mean Prediction
True Function
Training Data

1.0 0.5 0.0 0.5 1.0
X

4

3

2

1

0

1

2

3

4

Y

BNN Predictions (n=150)

95% CI
Mean Prediction
True Function
Training Data

1.0 0.5 0.0 0.5 1.0
X

4

3

2

1

0

1

2

3

4

Y

MCD Predictions (n=15)

95% CI
Mean Prediction
True Function
Training Data

1.0 0.5 0.0 0.5 1.0
X

4

3

2

1

0

1

2

3

4

Y

MCD Predictions (n=50)

95% CI
Mean Prediction
True Function
Training Data

1.0 0.5 0.0 0.5 1.0
X

4

3

2

1

0

1

2

3

4

Y

MCD Predictions (n=150)

95% CI
Mean Prediction
True Function
Training Data

Figure 2. Comparing the Gaussian Process (GP, top
row), Bayesian Neural Network (BNN, second row) and
Monte Carlo Dropout (MDC, third row), when fitted to
50 data points with a shot noise of σ = 0.2.

The dependency of MCD’s posterior on the ran-303

dom seed further questions its reliability as an ob-304

jective uncertainty estimator. An ideal uncertainty305

model should not have its uncertainty profile heavily306

influenced by the specific initialization or random-307

ness during training or inference. While combining308

predictions from different seeds can create a more309

Bayesian-like uncertainty profile, this suggests that310

a single MCD model might not be sufficient, po-311

tentially requiring ensemble modelling, which adds312

computational cost.313

Based on the claim that MCD is mathematically314
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Figure 3. Random initialisations of the network also
creates variation. In the example, a MCD model is fitted
to 50 data points with a shot noise of σ = 0.05. Com-
bining predictions trained with different initializations,
leads to a profile that more closely resembles that of the
GP and BNN models (upper panel, compared to second
column of Figure 1). In the top plot, the dropout is
applied in training, while in the bottom plot dropout
is not applied, and gives a more smilar shape as the
bayesian methods.

equivalent to an approximation to a deep Gaussian 315

process [1] we expected similar uncertainty char- 316

acteristics, particularly increased uncertainty away 317

from data. Our results, showing a generally constant 318

uncertainty profile for MCD contrasting with the 319

spatially varying uncertainty of GP and BNN do not 320

support this equivalence in practice for the problems 321

studied. 322

Regularization techniques (L2, L1, dropout during 323

training) will impact MCD’s predictions and uncer- 324

tainty. However, even when treating these as hyper 325

parameters and informing the loss with the shot 326

noise, the MDC provided variance did not resemble 327

the shot noise. 328

Although our experiments showed that the MCD 329

method struggles to reproduce the uncertainty, fur- 330

ther experiments are needed before the method can 331

be fully rejected. Nevertheless, caution is strongly 332

advised when interpreting its predicted uncertainty. 333

6 Conclusion 334

We have investigated the Monte Carlo dropout 335

method’s ability to approximate the true uncertainty 336

in a regression task, comparing it against Gaussian 337

Processes and Bayesian Neural Networks. While the 338

original paper reported strong performance [1], we 339
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find that MDC failed to accurately represent the340

uncertainty in its posterior predictions. It strug-341

gled to capture uncertainty during extrapolation342

and interpolation, sometimes predicting lower uncer-343

tainty than in regions with training data, which was344

opposite behavior of the BNN and GP benchmarks.345
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Figure A.1. MCD results for different random initialisations of the neural network.
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