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ABSTRACT

Confidence calibration is critical for the safe deployment of machine learning
models in the real world. However, such issue in vision-language models like
CLIP, particularly after fine-tuning, has not been fully addressed. In this work,
we demonstrate that existing prompt tuning methods usually lead to a trade-off of
calibration between base and new classes: the cross-entropy loss in CoOp causes
overconfidence in new classes by increasing textual label divergence, whereas the
regularization of KgCoOp maintains the confidence level but results in underconfi-
dence in base classes due to the improved accuracy. Inspired by the observations,
we introduce Dynamic Outlier Regularization (DOR) to ensure the confidence
calibration on both base and new classes after fine-tuning. In particular, we propose
to minimize the feature deviation of novel textual labels (instead of base classes)
sampled from a large vocabulary. In effect, DOR prevents the increase in textual
divergence for new labels while easing restrictions on base classes. Extensive
experiments demonstrate that DOR can enhance the calibration performance of
current fine-tuning methods on base and new classes.

1 INTRODUCTION

Large pre-trained vision-language models (VLMs) like CLIP (Radford et al., 2021) have become
the de facto standard in today’s zero-shot tasks including image recognition (Wortsman et al., 2022),
open-vocabulary segmentation (Liang et al., 2023) and knowledge-augmented retrieval (Ming &
Li, 2024). To transfer pre-trained CLIP knowledge to domain-specific downstream tasks efficiently,
various parameter-efficient fine-tuning (PEFT) techniques including prompt tuning (Zhou et al.,
2022b) and adapter (Gao et al., 2024) have been proposed. Despite the promising improvement in
accuracy, the reliability issue such as confidence calibration in fine-tuned VLMs has been largely
overlooked. Without fully understanding the miscalibration in fine-tuned VLMs, it can exacerbate
safety concerns in high-stakes applications like medical diagnosis and autonomous driving.

In confidence calibration, we generally expect the model’s confidence level to be consistent with its
empirical accuracy. In the literature, zero-shot CLIP is often recognized for its excellent performance
in confidence calibration (Minderer et al., 2021). Prior work (Wang et al., 2024) finds that CLIP
fined-tuned on base classes generally suffers from miscalibration on novel classes within the same
task, where the model is expected to generalize (Zhou et al., 2022b; Yao et al., 2023). However, they
concentrate on novel classes that are not present in the fine-tuning, without adequately explaining the
miscalibration issue on base classes. The community still lacks a comprehensive understanding of
the fundamental cause and mitigation strategies of the miscalibration issue during fine-tuning.

In this work, we first investigate how current prompt tuning methods (e.g., CoOp (Zhou et al.,
2022b), KgCoOp (Yao et al., 2023)) interfere with the calibration of CLIP. We empirically find
that existing prompt tuning methods fail to maintain the calibration performance on both base and
new classes simultaneously, compromising one of them: CoOp exhibits overconfidence on new
classes and KgCoOp provides underconfident predictions on base classes. We provide a thorough
explanation from the perspective of textual label divergence. In particular, CoOp increases the
divergence of textual label distribution through cross-entropy loss, resulting in excessively high
confidence misaligned with actual accuracy on new classes. Instead, KgCoOp hinders the increase of
textual distribution divergence, maintaining the confidence level on base and new classes. However,
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this leads to the underconfidence issue due to the improved accuracy on base classes. There arises a
question: Is it possible to ensure the calibration on both base and new classes after fine-tuning?

To tackle the above challenges, we introduce Dynamic Outlier Regularization (DOR). The high-level
idea behind DOR is to control the divergence of unseen textual distribution under the supervision of
zero-shot CLIP without affecting the vanilla fine-tuning objectives. First, we construct a set of textual
outliers from a large lexical database – WordNet (Miller, 1995), and ensure that the selected classes
are relevant but non-overlapped with the base classes in the fine-tuning task. In fine-tuning, we reduce
the feature discrepancy of novel textual labels between the fine-tuned model and the zero-shot CLIP.
In each epoch, the novel textual labels are dynamically sampled from the constructed set of textual
outliers. Leveraging dynamic textual outliers, DOR prevents the increase in textual divergence for
new labels while easing restrictions on base classes.

We verify the effectiveness of DOR over 11 image classification datasets and four types of ImageNets
with covariant shifts, under the evaluation protocol of base-to-new generalization and domain gen-
eralization, respectively. Empirical results show that DOR can enhance the overall calibration of
existing prompt-tuning methods (see Table 1), on both base and new classes. Moreover, our method
can maintain and even improve the generalization performance of those tuning methods (See Table 1
& 2 ). DOR also achieves significant improvements in the presence of covariate shifts. In addition to
prompt-based tuning methods, we demonstrate that such a regularization criterion can be extended to
visual fine-tuning methods with image outliers.

We summarize our main contributions as follows:

1. We provide an in-depth analysis of textual distribution divergence to understand the miscali-
bration in fine-tuned CLIP. We also show that current prompt-tuning methods typically lead
to a trade-off between base and new classes, compromising one of them.

2. We propose DOR, a simple yet effective regularization that ensures the calibration perfor-
mance on both base and new classes. Our method is compatible with existing prompt-tuning
methods and can be extended to visual fine-tuning methods with image outliers.

3. We conduct extensive experiments and show that DOR achieves superior performance on a
wide range of real-world tasks. For instance, DOR achieves an average of 8.09% reduction
in Expected Calibration Error (ECE) for CoOp over the 11 downstream datasets. The superi-
ority of DOR is also verified on medical image datasets like PathMNIST, demonstrating its
potential for practical applications.

2 PRELIMINARIES

Contrastive Language-Image Pretraining (CLIP) CLIP is a visual-language model that enables
to measure the alignment between images and texts (Radford et al., 2021). Recently, CLIP has shown
great potential in zero-shot inference for arbitrary classes. Let ϕ : x→ Rd and ψ : t→ Rd denote
CLIP’s image and text encoders, respectively. Given an image instance x and a text label c, the logit
function of CLIP can be formulated as:

Lclip
c (xi) = τ · sim (ϕ(x), ψ(tc)) . (1)

Here tc is derived from a hand-crafted prompt like “a photo of a {class}”, where the “{class}” is
filled with the text label c. τ is generally set as a pre-trained constant of 100.

For multi-class classification, we predict by selecting the label with the highest probabilities among
the label candidate set C = {ci}Ci=1, as shown below:

c∗ = argmax
c∈C

p(c|x) = argmax
c∈C

eL
clip
c (x)∑C

i=1 e
Lclip

i (x)
(2)

where p(c|x) is the predicted probability of class c for the instance x.

Prompt tuning To strengthen the performance of CLIP in downstream applications, prompt tuning
methods have been proposed to efficiently fine-tune CLIP on datasets of interest (Zhou et al., 2022a;b;
Yao et al., 2023). In particular, prompt tuning optimizes the context prompt only, without retraining
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(a) Base (b) New

Figure 1: Reliability diagram of fine-tuned CLIP (ViT-B/16) on StanfordCars, using prompt tuning
methods, CoOp and KgCoOp. ECE: Expected Calibration Error (lower is better). Miscalibration is
depicted in pink for overconfidence and purple for underconfidence.

the model and updating its weights. For example, CoOp (Zhou et al., 2022b) replaces the hand-
crafted textual tokens with a set of learnable textual token T = {v1,v2, . . . ,vM}, where M is the
length of tokens. Thus, the output of fine-tuned CLIP is: Lcoop

c (x) = τ · sim (ϕ(x), ψ(t′c)) , where
t′c = [v1,v2,v3, ...vM , c] and c denotes the textual embedding of class c. Using a few labeled
samples Dft = {(xi, ci)}Ni=1, the learnable textual tokens T are optimized to minimize the cross-
entropy (CE) loss ℓce. We refer to the classes used in fine-tuning as base classes, and the remaining
labels within the same task as new or novel classes.

In addition to base classes, we generally expect the fine-tuned CLIP to generalize to those new
classes within the task. To enhance the generalization ability of the learnable prompt for unseen
classes, KgCoOp (Yao et al., 2023) introduces a regularization term to align the learned prompt to the
hand-crafted prompt. The optimization of KgCoOp is:

T ⋆ = argmin
T

{
1

N

N∑
i=1

ℓce (p (ci | xi)) + λ · 1
C

C∑
c=1

sim (ψ (t′c) , ψ (tc))

}
. (3)

Here, the first term is the cross-entropy loss used in CoOp and the hyperparameter λ is used to control
the weight of regularization. With λ = 0, KgCoOp is degraded to the original CoOp.

Confidence calibration In addition to predictive performance, it is generally expected for deep
models to be well calibrated, i.e., the predicted class probabilities can faithfully estimate the true
probabilities of correctness (Guo et al., 2017). To quantify miscalibration, the Expected Calibration
Error (ECE) (Guo et al., 2017) is defined as the difference between accuracy and confidence. With
N samples grouped into G bins {b1, b2, . . . , bG}, the ECE is formulated as:

ECE =

G∑
g=1

|bg|
N
|acc (bg)− conf (bg)| , (4)

where acc (·) and conf (·) denotes the average accuracy and confidence in bin bm. In the literature,
it has been shown that pre-trained CLIP archives excellent performance of confidence calibration
in zero-shot inference (Minderer et al., 2021). However, prior work (Wang et al., 2024) finds that
fined-tuned CLIP generally suffers from miscalibration on novel classes within the same task, where
the model is expected to generalize (Zhou et al., 2022b; Yao et al., 2023). Yet to date, the community
still has a limited understanding of the fundamental cause and mitigation strategies of miscalibration
during fine-tuning. We proceed by analyzing how the fine-tuning of CLIP affects the calibration.

3 MOTIVATION

3.1 EMPIRICAL STUDY ON CLIP CALIBRATION

Setup. To analyze the effects of fine-tuning on CLIP calibration, we first empirically study the
calibration performance of fine-tuned VLMs. We use ViT-B-16 pre-trained by OpenAI (Radford
et al., 2021) as the zero-shot classification model. In particular, we compare the zero-shot CLIP
with two prompt-based tuning methods including CoOp (Zhou et al., 2022b) and KgCoOp (Yao
et al., 2023) on StanfordCars dataset (Krause et al., 2013). We evaluate the fine-tuned CLIP under
base-to-new protocol: the dataset is split into base and new classes. The model is trained only on a
few examples from the base classes and evaluated on examples from both base and new classes.
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Figure 2: Results of zero-shot and fined-tuned
CLIPs using different prompt tuning methods (Kg-
CoOp and CoOp) on UCF101 dataset.

ZSCLIP CoOp
KgCoOp

0.15

0.17

0.20

0.23

0.25

0.28

0.30

0.33

0.35

Lo
gi

t

Max Others

(a) Base

ZSCLIP CoOp
KgCoOp

0.15

0.17

0.20

0.23

0.25

0.28

0.30

0.33

0.35

Lo
gi

t

(b) New

Figure 3: Comparison between the maximum
logit and the average of other logits, using differ-
ent prompt tuning methods on DTD.

Prompt tuning leads to a tradeoff between base and new classes Figure 1 illustrates the calibra-
tion performance of zero-shot CLIP, CoOp and KgCoOp on base and new classes. The results show
that zero-shot CLIP achieves almost perfect calibration on all classes, while the fine-tuned models
cannot maintain the calibration on base and new classes simultaneously, compromising one of them.
In particular, CoOp maintains the excellent calibration on base classes but exhibits overconfidence on
new classes. Instead, KgCoOp provides underconfident predictions on base classes while preserving
the calibration on new classes. This motivates us to further investigate the fundamental cause of
miscalibration occurring after fine-tuning.

3.2 UNDERSTANDING THE MISCALIBRATION IN FINE-TUNED CLIP

Given the above observation, we investigate how prompt tuning leads to the miscalibration issue.
Since the visual features remain unchanged in the prompt tuning, the textual features thus play a key
role in confidence calibration. We first introduce a feature divergence score to quantify the textual
feature variation, inspired by the KNN-based metrics commonly used for distribution estimation in
calibration (Xiong et al., 2023; Yuksekgonul et al., 2023).

Definition 1 (Feature Divergence). Consider a feature set Z = {zi}Ni=1, each feature zi ∈ Rd

is embedded by the modality encoder in CLIP. Feature divergence (FD) score of zi measures the
average distances from each feature to its M nearest neighbors in the set.

si =
1

M

∑
zj∈NM (z)

dist(zi, zj), (5)

where NM (zi) denotes the set of M nearest neighbors of zi and dist (·, ·) is a distance metric like
cosine similarity. By averaging these similarity scores across all features, we obtain the overall
FD score of a given feature set FD(Z) = 1

N

∑N
i=1 si, which can represent the divergence of the

textual distribution. To investigate the miscalibration caused by CoOp and KgCoOp, we vary the
hyperparameter λ in Eq. (3). In KgCoOp, λ is set to 8.0, and it degenerates to CoOp when λ = 0.
We conduct the experiments on UCF101 (Soomro et al., 2012). We present the results in Figure 2.

CoOp leads to overconfidence on new classes by increasing the textual divergence. In the analysis
of Subsection 3.1 and Figure 2b, we show that CLIP tuned by CoOp exhibits overconfidence on
new classes, but keeps excellent calibration on base classes. This is caused by the CE loss, which
maximizes the posterior p(y | x) for the ground-truth label y and minimizes the probability for other
labels. In other words, CE loss tends to enlarge the distance between the image feature and all textual
features except the ground truth. As the image feature remains unchanged during fine-tuning, it can
be translated to large distances among all textual labels, including base and new classes. This is
supported by the results presented in Figure 2a, which shows that CoOp significantly increases the
FD score of textual features compared to the zero-shot CLIP. Consequently, as is shown in Figure 3,
the gap between the maximum logit and the others widens for both base and new classes. Therefore,
the tuned CLIP with CE loss will make softmax predictions with high confidence on both base and
new classes. It aligns with the improved accuracy on base classes, but is not consistent with the
nearly unchanged accuracy on new classes. This explains why CLIP tuned by CoOp tends to be
overconfident on new classes.
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KgCoOp anchors the confidence level by hindering the increase of textual divergence. In the
previous analysis, KgCoOp leads to underconfident predictions on base classes while preserving
the calibration on new classes. In Figure 2a, we illustrate the FD scores of textual labels from the
zero-shot CLIP and the tuned CLIP by KgCoOp with various λ. The results show that a large value
of λ reduces the FD score of both base and new classes, approaching that of zero-shot CLIP. This
phenomenon indicates that the regularization in KgCoOp can prevent the model from increasing the
textual divergence caused by CE loss. Correspondingly, the fine-tuned CLIP by KgCoOp preserves
the same confidence level as the zero-shot CLIP. However, the fine-tuning substantially improves
the accuracy of CLIP on base classes, resulting in the underconfidence issue due to the anchored
confidence level. In this way, we explain why KgCoOp leads to underconfidence on base classes.

Through the perspective of textual divergence, we provide a thorough explanation for the calibration
trade-off caused by different prompt-tuning methods. We provide the comprehensive empirical
results on more prompt tuning methods to thoroughly support our observationin Appendix B.1 (See
Figure 6 and 7). In addition, we present a theoretical justification for the relationship between
textual divergence and model confidence in Appendix C. Ideally, we expect to maintain the excellent
zero-shot calibration for both base and new classes after fine-tuning. In the following, we proceed by
introducing our method, targeting this problem.

4 METHOD: DYNAMIC OUTLIER REGULARIZATION

In the previous analysis, we show that the textual divergence is the key to the calibration performance
of fine-tuned CLIP. To preserve the calibration of zero-shot CLIP, our key idea is to regularize the
textual divergence of new classes without restricting those of base classes. To this end, we propose to
utilize textual outliers to improve the reliability of fine-tuned CLIP. Such a regularization can mitigate
the overconfidence in the new classes, which are not explicitly inclusive in the fine-tuning.

Selecting textual outliers With this in mind, we construct a set of text outliers using nouns from
WordNet (Miller, 1995), a large English lexical database containing over 150,000 words. We select
nouns from WordNet that do not overlap but share higher-level concept relations with the base classes
used in the fine-tuning, and then incorporate them into our regularization term for prompt tuning. We
demonstrate the effectiveness of using relevant text outliers in Table 4.

Let Cft = {c1, c2, . . . , cn} be the n base classes used in the fine-tuning. First, we obtain a candidate
set Cword = {o1, o2, . . . , om}, by filtering out the base classes from WordNet. Then, we rank the
nouns according to the average semantic similarity among the candidate Cword and each base class
cj ∈ Cft. For candidate word oi, we use zero-shot CLIP to quantify the semantic similarity si:

si =
1

n

n∑
j=1

sim
(
ψ (toi) , ψ

(
tcj

))
, where i ∈ {1, 2, . . . ,m}, (6)

where toi represents the textual tokens of a noun oi using a fixed prompt like “a photo of a [class-
name]”, and ψ is the text encoder of zero-shot CLIP. Then we get the set of textual outliers using the
score ranking.

Oout = {oi | i ∈ TopK (s1, s2, . . . , sm)} , (7)

where TopK(·) represents selecting the indices with the top K largest scores for nouns in the
candidate set Cword.

Dynamic Outlier Regularization Given a fine-tuning datasetDft with base classes Cft, we construct
a large set of textual outliers Oout as described above. To prevent the increase of textual divergence
on new classes, we propose Dynamic Outlier Regularization (DOR), which minimizes the feature
discrepancy of textual outliers between the zero-shot CLIP and the fine-tuned CLIP.

In each iteration, we randomly sample a batch of textual outliers from the constructed set Oout . We
denote the batch of textual outliers as B = {oi}Bb=1, where B is the number of textual outliers in the
batch. By default, we set B as the same as the batch size of fine-tuning data. Then, we build the
regularization by aligning the textual features to those of zero-shot CLIP. Formally, the regularization
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is defined as:

Ldor = 1− 1

B

B∑
b=1

sim
(
ψ
(
t′ob

)
, ψ (tob)

)
, (8)

where sim(·) denotes the cosine similarity function and tob denotes the token of the textual outlier
ob. Using the regularization, the textual divergence of the fine-tuned CLIP will be regularized
to be consistent with the zero-shot CLIP. Different from KgCoOp Yao et al. (2023), the outlier
regularization does not restrict the textual feature deviation of base classes, which is explicitly shown
in Figure 5.

Equipped with dynamic outlier regularization, the final training objective for fine-tuning CLIP is:
Ltotal = Lce + λ · Ldor, (9)

where Lce and Ldor are the cross-entropy loss of fine-tuning data and the proposed regularization,
respectively. λ denotes the hyperparameter that controls the weight of the proposed regularization. Our
method will degrade to CoOp (Zhou et al., 2022b) when λ = 0. As λ increases, the optimization will
encourage the model to maintain the confidence level on new classes, alleviating the overconfidence
issue. We illustrate the effect of λ in Figure 4.

Extension to other fine-tuning algorithms It is worth noting that our regularization is a general
method and can be easily incorporated into existing prompt tuning algorithms for CLIP, including
knowledge-guided fine-tuning (Yao et al., 2023; 2024), multimodal consistency (Khattak et al.,
2023a;b; Roy & Etemad, 2023), Decoupled prompt tuning (Zhang et al., 2024a) etc. Given the
vanilla fine-tuning objective Lbase of the other methods and the hyperparameter λ, we formalize the
fine-tuning objective as:

Ltotal = Lbase + λ · Ldor. (10)
Noticeably, DOR derived from textual outliers offers several compelling advantages:

• Algorithm-agnostic: DOR can be easily incorporated into existing prompt tuning methods
and consistently mitigate the calibration error under various evaluations (See Table 1 and
2). Furthermore, our method can be extended to visual fine-tuning methods with image
outliers (See Section 5).

• Fine-tuning-nontoxic: Compared with existing regularization in prompt tuning, DOR does
not conflict with the fine-tuning objective and breaks the calibration trade-off between base
and new classes. (See Appendix B.2).

• Easy-to-use: DOR leverages text outlier as the data for regularization, which is readily
available and easy to collect. In Section 6 we will verify that DOR outperforms other
selection strategies. We provide the detailed selection result of text outliers in Appendix E.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Benchmark setting. Following recent works (Zhou et al., 2022b; Wang et al., 2024), we perform
two evaluations in two standard benchmark settings: 1) Generalization from Base-to-New Classes: A
downstream dataset will be equally split into base and new classes. The model is trained only on the
base classes in a few-shot setting and evaluated on base and new classes. In practice, we mainly focus
on the harmonic mean value from both classes. 2) Domain Generalization: The modal is trained
on ImageNet-1k in a few-shot manner and evaluated on four other ImageNet datasets that contain
various types of domain shifts.

Datasets. For the base-to-new evaluation, we use 11 image recognition datasets that cover diverse
classification tasks including ImageNet (Deng et al., 2009), Caltech101 (Fei-Fei et al., 2004), Oxford-
Pets (Parkhi et al., 2012), StanfordCars (Krause et al., 2013), Flowers102 (Nilsback & Zisserman,
2008), Food101 (Bossard et al., 2014), FGVCAircraft (Maji et al., 2013), SUN397 (Xiao et al.,
2010), UCF101 (Soomro et al., 2012), DTD (Cimpoi et al., 2014) and EuroSAT (Helber et al.,
2019). For domain generalization, we use ImageNet-1k as the source dataset and its four variants
as target datasets including ImageNetV2 (Recht et al., 2019), ImageNet-Sketch (Wang et al., 2019),
ImageNet-A (Hendrycks et al., 2021b), ImageNet-R (Hendrycks et al., 2021a).
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Table 1: Average calibration performance across 11 datasets. “+DOR(Ours)” to our method applied
to existing tuning methods. ↓ indicates smaller values are better. Calibration error is given by ×10−2.
“HM” denotes the harmonic mean. Bold numbers are significantly superior results.

ECE(↓) ACE(↓) MCE(↓) PIECE(↓)

Method Base New HM Base New HM Base New HM Base New HM

ZSCLIP 3.58 4.61 4.10 3.62 4.58 4.10 0.97 1.21 1.09 6.35 6.55 6.45

CoOp 3.07 14.58 8.82 2.97 14.50 8.73 1.07 3.72 2.40 4.68 15.27 9.98
+DOR(Ours) 2.67 6.49 4.58 2.64 6.47 4.55 0.83 1.65 1.24 4.45 8.33 6.39

CoCoOp 3.60 6.14 4.87 3.53 6.08 4.81 0.96 1.72 1.34 5.53 7.86 6.70
+DOR(Ours) 4.22 4.02 4.12 4.30 3.94 4.12 1.07 1.11 1.09 6.00 6.41 6.20

MaPLe 2.75 5.46 4.11 2.65 5.42 4.04 0.82 1.52 1.17 4.71 7.37 6.04
+DOR(Ours) 2.83 4.44 3.63 2.86 4.33 3.60 0.81 1.29 1.05 4.86 6.39 5.62

KgCoOp 5.82 4.48 5.15 5.78 4.52 5.15 1.43 1.19 1.31 6.88 6.73 6.81
+DOR(Ours) 6.07 3.99 5.03 6.03 4.02 5.02 1.52 1.02 1.27 7.09 6.33 6.71

DEPT 6.04 14.58 10.31 6.00 14.52 10.26 1.44 4.58 3.01 7.31 15.42 11.37
+DOR(Ours) 7.67 7.50 7.58 7.66 7.44 7.55 1.73 1.87 1.80 8.68 8.86 8.77

TCP 4.71 4.07 4.39 4.73 4.03 4.38 1.28 1.21 1.24 6.06 6.29 6.18
+DOR(Ours) 4.79 3.80 4.29 4.76 3.71 4.24 1.28 1.11 1.20 6.00 6.22 6.11

PromptSRC 3.75 4.15 3.95 3.61 4.13 3.87 1.06 1.17 1.11 5.26 6.48 5.87
+DOR(Ours) 3.88 3.80 3.84 3.76 3.58 3.67 1.10 1.01 1.06 5.36 6.32 5.84

CoPrompt 2.56 5.96 4.26 2.49 5.90 4.19 0.82 1.70 1.26 4.52 7.82 6.17
+DOR(Ours) 2.96 4.69 3.83 2.79 4.60 3.70 0.89 1.34 1.11 4.79 6.79 5.79

Baselines. We compare and incorporate our method with existing prompt tuning algorithms in-
cluding CoOp (Zhou et al., 2022b), CoCoOp (Zhou et al., 2022a), KgCoOp (Yao et al., 2023),
MaPLe (Khattak et al., 2023a), DEPT (Zhang et al., 2024a), TCP (Yao et al., 2024) PromptSRC (Khat-
tak et al., 2023b) and CoPrompt (Roy & Etemad, 2023).

Implementation details. We use CLIP ( ViT-B/16) (Radford et al., 2021) as the pre-trained VLM
throughout our experiments and report results averaged over 3 runs. We fine-tune the model with 16
samples per class in a few-shot setting (Zhou et al., 2022a). For the compared tuning methods, we
adopt them from the corresponding official implementation. For hyperparameter λ in DOR, we set λ
= 8.0 for CoOp and 2.0 for other fine-tuning methods. We set the number of selected dynamic outlier
repository to 5000. The number of outliers in each batch is the same as the base classes. We list the
details of the compared methods in Appendix D.

Evaluation metrics. Four standard metrics of confidence calibration are used in our evalua-
tion, including Expected Calibration Error (ECE) (Guo et al., 2017), Maximum Calibration Error
(MCE) (Guo et al., 2017), Adaptive Calibration Error (ACE) (Nixon et al., 2019) and Proximity-
Informed Expected Calibration Error (PIECE) (Xiong et al., 2023).

5.2 RESULTS

Generally, we investigate the effectiveness of DOR from three aspects: calibration, generalization
accuracy, and confidence level. Due to space constraints, we provide detailed calibration results of all
datasets in Appendix F.

DOR enhances the overall calibration of existing prompt-tuning methods. Table 1 shows the
calibration performance of the six baselines w/ or w/o our DOR framework under the base-to-new
evaluation protocol. From the average results in the table, we observe a trade-off between the base
and new class for all of the baseline methods, e.g., CoOp outperforms TCP on base classes but
significantly underperforms TCP on new classes. Notably, DOR consistently reduces miscalibration
on new classes across various metrics without calibration trade-offs on base and new classes. For
instance, DOR significantly reduces the ECE from 14.58% to 6.49% on new classes and maintains the
ECE from 3.07% to 2.67% on base classes, which makes CoOp more reliable in terms of predicted
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Table 2: Average base-to-new accuracy (%) of six methods with DOR on 11 datasets. “Vanilla”
denotes the baseline of fine-tuning methods. Bold numbers are significantly superior results.

ZSCLIP CoOp CoCoOp MaPLe KgCoOp DEPT CoPrompt

Class Vanilla Vanilla + DOR Vanilla + DOR Vanilla + DOR Vanilla + DOR Vanilla + DOR Vanilla + DOR

Base 69.49 82.97 83.20 80.57 79.89 82.11 82.08 82.29 82.13 83.70 83.81 82.32 82.39

New 74.32 61.74 72.01 72.47 74.59 73.89 75.89 72.21 73.14 65.04 71.39 73.29 74.50

HM 71.90 72.36 77.61 76.52 77.24 78.00 78.98 77.25 77.64 74.37 77.60 77.81 78.44

confidence. To showcase the versatility of DOR, we also present that DOR is also applicable to
multi-modal tuning (e.g., MaPLe). MaPLe adjusts both vision and language branches and DOR
consistently improves the calibration performance on new classes of it. In summary, our proposed
DOR can consistently boost calibration performance on new classes upon existing state-of-the-art
prompt tuning methods without compromising the vanilla fine-tuning objectives.

DOR benefits base-to-new generalization. To further verify that our DOR is effective on new
classes and non-toxic for performance on base classes, we summarize the comparison of average test
accuracy in Table 2. Similar to the evaluation of calibration, a salient observation is that our proposed
DOR drastically improves base-to-new generalization, with its accuracy consistently outperforming
all existing baselines in the harmonic mean of base and new classes. Moreover, DOR almost entirely
preserves model capability in the classification performance on base classes without degeneration. For
instance, applying DOR in DEPT can increase accuracy on new classes from 65.04% to 71.39%, while
keeping the accuracy of base classes similar to the baseline. Given that most prompt tuning methods
lag behind zero-shot CLIP on the accuracy of new classes, an intuitive explanation is that DOR
aligns the features of unseen classes with the zero-shot features, which can preserve the zero-shot
generalization on new classes. In addition, we observe that some methods (e.g., CoCoOp and MaPLe)
with DOR, resulting in improvements of 2.12% and 2.00% respectively, outperforming zero-shot
accuracy on new classes. This demonstrates that DOR can significantly enhance the base-to-new
generalization capacity of fine-tuned CLIP.
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Figure 4: Comparison between KgCoOp (KG) and
DOR (W/ CoOp). Left: Accuracy. Right: ECE.

DOR modifies the logit distribution and con-
fidence level. To further illustrate the influence
of DOR on confidence calibration, we visual-
ize and compare the distribution of output logit
and softmax confidence score for base and new
classes in Figure 5. We compare zero-shot CLIP
and CoOp w/ or w/o DOR on FGVCAircraft
dataset. We can observe that if the model tun-
ing With CoOp+DOR, the logit distribution of
base class approximate CoOp, and the new class
is similar to zero-shot CLIP, respectively. A
similar phenomenon is observed in the softmax
probability distribution. The results meet our
vision mentioned in Section 3.1, DOR can leverage the advantages of both models, which ensure the
confidence calibration on both base and new classes after fine-tuning.

DOR is insensitive to hyperparameters. To further illustrate the influence of hyperparameter
λ, we present a sensitivity analysis. We report the average performance on 11 datasets under the
base-to-new evaluation protocol. As shown in Figure 4, we can observe that DOR demonstrates
robustness in model calibration as λ in Eq.(10) varies. Although KgCoOp has better calibration on
new classes as λ increases, it sacrifices accuracy and calibration on base classes while our method
does not. The results verify that DOR is an effective approach to boosting calibration performance
on new classes while maintaining performance on base classes. We provide more ablations on
DOR including selection strategy, similarity metric, outlier numbers, update frequency and outliers
databases in Appendix G.
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Table 3: Comparison of prompt learning in the domain generalization of ImageNet. DOR boosts the
performance of existing methods on calibration and generalization.

Accuracy (↑) ECE (↓)

Source Target Source Target

ImageNet -V2 -S -A -R AVG ImageNet -V2 -S -A -R AVG

CLIP 66.73 60.87 46.09 47.81 73.98 57.19 1.86 2.44 4.88 8.34 3.51 4.79

CoOp 71.44 63.55 45.76 47.81 73.74 57.72 1.10 4.19 8.40 15.34 0.80 7.18
+DOR(ours) 71.47 64.47 48.28 50.12 76.05 59.73 1.64 1.95 4.97 11.07 1.58 4.89

MaPLe 72.05 64.57 48.78 47.66 76.61 59.41 1.13 2.56 4.88 12.42 1.06 5.23
+DOR(ours) 71.89 64.94 48.77 48.29 76.20 59.55 1.46 1.89 3.96 11.08 1.37 4.58
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Figure 5: Distribution visualization of logit and maximum softmax probability on FGVCAircraft
dataset. Our method generates logit and probability distributions that closely resemble those of CoOp
for the base class and are similar to zero-shot CLIP for the new class.

DOR is robust to covariate shifts. To comprehensively verify the robustness of DOR, we further
evaluate its performance in the domain generalization setting, i.e., there is a covariate shift between
training and testing datasets. Specifically, we first fine-tune the model with all classes of ImageNet
on the 16-shot setting and then evaluate it on 4 types of datasets with covariate shifts. As is
shown in Table 3, the calibration performance indicates DOR maintains stability in the presence of
covariate shifts. Although DOR is not specially designed for the covariate shift, it outperforms the
calibration baseline of CoOp and MaPLe, reducing ECE by 2.29% and 0.65% under distribution
shifts respectively. Meanwhile, DOR demonstrates superior accuracy in domain generalization and
successfully maintains in-distribution performance.

6 DISCUSSION

Table 4: Calibration results of ECE (%)
with different outliers . Oracle* denotes
new classes that meet in the test time.

Method Policy Base New HM

CoOp

N/A 3.07 14.58 8.83
near-OOD 2.68 7.09 4.89
far-OOD 2.95 7.72 5.34

random-OOD 2.80 7.33 5.07
oracle* 3.13 4.34 3.74

MaPLe

N/A 2.75 5.46 4.11
near-OOD 3.00 4.52 3.76
far-OOD 2.65 4.95 3.80

random-OOD 2.87 4.83 3.85
oracle* 3.15 4.22 3.69

What makes a good regularization for CLIP fine-
tuning? Based on the above observation, we have
demonstrated that using the text outlier as the regular-
ization source could be better than the base classes used
in prompt tuning. In particular, we use the relevant but
non-overlapped outlier with the fine-tuning task (referred
to as near-OOD) as the regularization data. Such selection
raises a question: why we prefer to choose near-OOD?
To address this, we conducted an ablation on different
policies of outlier selection. We considered four types of
outliers: near-OOD (ours), far-OOD, random-OOD, and
new classes used at test time. The far-OOD is selected
by applying the opposite operation of Eq. 7. “N/A” de-
notes the baseline without outlier regularization.. Since
target new classes are unknown during fine-tuning, we
view them as an oracle, which serves as a performance
upper bound for base-to-new tasks. We report the average performance on the base-to-new datasets.
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Table 5: Calibration results of ECE (%) on fine-tuning of visual representation. DOR-V(ision) is
effective for better calibration via visual representation regularization.

Flowers Cars DTD UCF101 AVG

Method Base New Base New Base New Base New Base New Avg.

VPT 7.98 8.20 5.32 1.93 2.54 13.04 4.04 4.79 4.97 6.99 5.98
+DOR-V(ours) 8.19 7.54 4.90 1.78 2.68 8.40 3.73 4.58 4.88 5.58 5.23
CLIP-adapter 3.70 6.55 6.09 5.73 3.00 7.45 4.04 7.09 4.21 6.71 5.46

+DOR-V(ours) 4.02 4.86 7.13 4.85 3.25 5.63 1.90 5.23 4.08 5.14 4.61

We present the results in Table 4. Since we primarily fine-tune the model for a specific downstream
task, selecting random data or far-OOD data completely unrelated to the original task may not be
optimal for confidence calibration under base-to-new evaluation. Interestingly, the random selection
can serve as a strong baseline, demonstrating the robustness of our proposed regularization item.
Moreover, while the oracle can achieve impressive performance on the calibration of new classes, the
fixed number of outliers may cause the model to overfit them, resulting in a decline in generalization.
Additionally, we do not know which categories will be used at test time during the fine-tuning phase.
Therefore, we dynamically use near-OOD as regularization data, which reduces calibration errors on
new classes while preserving performance on base classes.

Can the criterion of DOR be extended to visual tuning? In this paper, we primarily focus on
prompt tuning and analyze how textual divergence impacts confidence calibration. Such analysis may
limit the potential scope of CLIP fine-tuning methods. To address this, we further consider a similar
regularization approach based on image outliers for fine-tuning on visual representation. Specifically,
we use ImageNet-1k (Deng et al., 2009) as an outlier repository and conduct experiments on four
downstream datasets. To avoid potential semantic overlap between the outlier and fine-tuning data,
we use class names to filter out images from semantically similar classes. We construct the outlier set
by retaining images from 50% of the classes of ImageNet-1k, which ensures these classes differ as
much as possible from those used during fine-tuning. For visual representation fine-tuning methods,
we utilize CLIP-adapter (Gao et al., 2024) and visual prompt tuning (VPT) (Jia et al., 2022).

As is shown in Table 5, we observe that visual-based DOR can successfully reduce the calibration error
on new classes. For example, DOR outperforms VPT and CLIP-adapter baseline by reducing ECE
by 4.64% and 1.82% on the DTD dataset, respectively. In general, visual-based DOR achieves better
average calibration across various downstream datasets and leaves space for further improvement.
Given that expected image outliers are not always accessible easily as text, a potential method is to
generate them by diffusion (Du et al., 2024) for high-quality image outliers.

7 CONCLUSION & LIMITATION

In this paper, we introduce Dynamic Outlier Regularization (DOR), a simple yet effective technique
that enhances the confidence calibration on both base and new classes. We show that current prompt
tuning methods typically lead to a tradeoff between the base and new classes. Through the textual
divergence, we provide a thorough explanation for the limitations of those tuning methods. By
utilizing relevant but non-overlapped outlier outliers, DOR regularizes the textual distribution to
preserve calibration capacity in zero-shot CLIP. Our method is compatible with existing prompt-
tuning methods and can be extended to improve visual fine-tuning methods, like adapters. We hope
future research can extend the insight in this work to other VLMs.

Limitations Similar to previous regularization methods of CLIP, our method involves a hyperpa-
rameter λ to control the weight of regularization, which will require extra computational costs for
tuning. Moreover, our analysis is limited in the scope of CLIP, leaving other kinds of VLMs to be
explored in the future.
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A RELATED WORK

Vision-language models. Large pre-trained large vision-language models (Jia et al., 2021; Radford
et al., 2021) have been verified that effectively comprehend visual concepts using language supervision
and apply them in downstream tasks (e.g. image classification (Radford et al., 2021; Zhou et al.,
2022b; Lu et al., 2022; Naeem et al., 2023), knowledge-augmented retrieval(Ming & Li, 2024) and
visual question answering (Parelli et al., 2023)) in a zero-shot manner. Despite VLM’s effectiveness in
generalizing new visual concepts, the performance of zero-shot CLIP still lags behind the fine-tuned
performance on specific downstream tasks (Zhang et al., 2024b). To further boost the downstream
adaptation of pre-trained VLMs, many parameter-efficient tuning methods like vanilla prompt tuning
(Zhou et al., 2022b;a; Khattak et al., 2023a) and adapter tuning (Gao et al., 2024; Zhang et al.,
2022) have been proposed for high efficiency. Moreover, many regularization-based tuning methods
have been proposed to preserve the generalization performance on unseen classes Yao et al. (2023;
2024); Zhu et al. (2023); Roy & Etemad (2023); Khattak et al. (2023b). Despite the great success of
CLIP fine-tuning, their effectiveness on safety-related evaluation like confidence has largely been
overlooked, which is essential for real-world deployment.

Confidence calibration. Confidence calibration has been widely studied to ensure that the con-
fidence levels output by models accurately reflect their empirical accuracy. To achieve this, the
state-of-the-art calibration methods can be categorized into regularization methods and post-hoc
methods. For regularization methods, they either explicitly or implicitly regularize modern neural
networks to have better calibration. Although regularization methods may not designed for calibration,
they generally have better calibration performance including L2 regularization (Guo et al., 2017),
Entropy regularization (Pereyra et al., 2017), focal loss (Mukhoti et al., 2020), etc. On the other hand,
post-hoc methods fix the output probability after the training phase. For post-hoc methods, the most
representative and simple method is temperature scaling (Guo et al., 2017), which learns a single
scalar for rescaling the softmax logit. ATS (Joy et al., 2023) modifies the predicted confidence by
per-data-point adaptive temperature. Another type of post-hoc calibration is binning-based calibra-
tion (Zadrozny & Elkan, 2001; 2002). For instance, Mix-n-Match (Zhang et al., 2020) leverages
ensemble and composition techniques to achieve data efficiency and maintain accuracy in confidence
estimates. Recently, given that existing post-hoc calibration on base classes can not transfer to new
classes, DAC (Wang et al., 2024) fixes the logit scale of prediction via textual deviation-informed
score in a post-hoc manner. Different from them, we address the calibration issue during the fine-
tuning phase. In this work, we introduce a regularization based on dynamic outliers. We demonstrate
that DOR boosts the calibration performance of many existing state-of-the-art prompt tuning methods
of CLIP without affecting the vanilla fine-tuning objective.

Outlier regularization in trustworthy machine learning. The outlier plays an important role in
trustworthy machine learning research including out-of-distribution (OOD) detection, noisy label
learning, adversarial attack, long-tailed datasets re-balancing, etc. In OOD detection, outliers are
typically used to simulate the distribution of OOD data, thereby increasing the distinction between
ID data and OOD data (Hendrycks et al., 2019; Liu et al., 2020; Ming et al., 2022; Jiang et al., 2024).
Recently, Dream-OOD generate the expected OOD data by diffusion (Du et al., 2024). In noisy label
learning, ODNL (Wei et al., 2021) leverages outliers as dynamical noisy labels to improve model
robustness against noisy labels. To address the extreme class imbalance, Open-sampling (Wei et al.,
2022) re-balance class priors via open-set noisy labels. OAT (Lee et al., 2021) leverages outlier data
to improve model generalization in adversarial robustness, which regularizes the softmax probabilities
to be a uniform distribution for outliers. In this paper, we utilize text outliers to control the divergence
of unseen textual distribution, and further improve the calibration of fine-tuned CLIP.

B ADDITIONAL ANALYSIS OF THE MOTIVATION

B.1 DETAILED RESULTS OF TEXTUAL DIVERGENCE

In section 3.2, we mainly derive the reason for the miscalibration issue from CoOp and KgCoOp.
specifically, We use FD score to measure the diversity of textual representation and evaluate the
prompt tuning methods on the value of output confidence and logit gap. To comprehensively verify
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Figure 6: Comparison between zero-shot CLIP and different prompt tuning methods on UCF101
dataset. Fine-tuned CLIP tends to have higher confidence and FD score on both base and new classes.
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Figure 7: Comparison between the maximum logit and the average of other logits on DTD dataset.
The logit gap widens in fine-tuned CLIP.

our motivation, we further compare more prompt tuning methods including CoCoOp, MaPLe,
PromptSRC and CoPrompt.

As is in Figure 6a, we can observe a similar phenomenon as we discussed in section 3.2. We find that
fine-tuning can significantly increase the FD score of textual features compared to the zero-shot CLIP.
Notably, this observation can extend to new classes, even if they are not explicitly optimized during
the fine-tuning phase. Consequently, the gap between the maximum logit and the others widens after
fine-tuning in Figure 7. Therefore, the tuned CLIP with CE loss will make softmax predictions with
high confidence, which can generate higher average confidence (See Figure 6b). Such an increase in
confidence aligns with the improved accuracy on base classes. However, it is not consistent with the
nearly unchanged accuracy on new classes, which leads to overconfidence.

B.2 EVIDENCE FOR USING OUTLIERS

To further demonstrate the superiority of outliers in the regularization for CLIP fine-tuning, we
provide additional analysis in this section. Specifically, we first analyze the calibration issue from
the perspective of gradient conflicts (SHI et al., 2023) and present empirical evidence to understand
previous regularization terms hinder the calibration of base classes. We can decouple CLIP’s
optimization objective as

Lclip = Lce + λ · Lreg,

where Lce is the cross-entropy loss for classification, and Lreg denotes the regularization term.
Previously proposed regularization terms include Lkg (KgCoOp), Ldistill (CoPrompt), and Lscl

(PromptSRC). For reasonable comparison, we set hyperparameters to be the same including optimizer,
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Figure 8: The distributions of gradient conflicts (in
terms of cosϕ). DOR shows less gradient conflict
compared with recent prompt tuning methods.
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Figure 9: ECE comparison as the the proportion
of outliers changed. Outliers can break the cali-
bration trade-off on base and new classes.

learning rate, etc. We calculate the cosine similarity of the prompt gradients between Lreg and Lce to
reflect the degree of gradient conflicts.

Regularization from base classes hinders original fine-tuning objective. As shown in Figure 8,
the gradient conflict distributions for KgCoOp, CoPrompt, and PromptSRC are predominantly within
the range of [−1, 0], which indicates a conflict with the original learning objective. Considering that
CoOp with vanilla Lce is an efficient calibrator for base classes, we can infer that these regularization
terms may hinder the calibration performance for base classes. As an alternative, our proposed DOR
leverages outliers to construct the regularization term. We observe that the gradient conflicts for DOR
are primarily concentrated within the range (−0.1, 0.1]. Compared to previous regularization terms,
it shows significantly fewer conflicts in the [−1, 0] range. The phenomenon supports our claim that
outliers can be used in regularization without interfering with the original fine-tuning objective.

Outlier can effectively mitigate the miscalibration issue on new classes while maintaining the
calibration performance on the base classes. To further illustrate the actual performance of
outliers in calibration, we conducted an analysis based on KgCoOp. Since KgCoOp uses a fixed
number of base classes as the regularization term, we progressively replaced these texts with textual
outliers at varying proportions [0.1, 0.2...1.0]. As shown in Figure 9, as the proportion of outliers
increases, the calibration of base classes improves while the performance on new classes remains
largely unaffected. Such observation strongly supports our claim.

C THEORETICAL JUSTIFICATION

To help readers understand the insights, we formalize our observations of CLIP fine-tuning that the
textual divergence is a significant factor for confidence estimation in this part. As the image feature
remains unchanged in the fine-tuning, the textual divergence can be translated to the variance of
logits, which is computed by the similarity between the image feature and different text features. In
the following, we formally show the relationship between the logit variance and the confidence.

For simplicity, we consider a binary classification problem. Let {zi}ni=1 be a set of logit vectors (i.e.,
model outputs), where each vector zi = [z1, z2]

T consists of two logits. We assume that the logit z is
an independent random variable drawn from a normal distribution N (µ, σ2). The confidence (i.e.,
maximum softmax probability) pi is given by the softmax (or sigmoid) function defined as in Eq.(2).
We have the following proposition.

Proposition 1. Let E[pσ] denote the expected value of the maximum probability pi when the logits
are distributed as N (µ, σ2). Then, for any σ1, σ2 > 0 and µ, we have E[pσ2

] > E[pσ1
], if σ2 > σ1.

This suggests that the high divergence in the logit distribution tends to generate larger predicted
confidence, which is induced by the textual divergence using CE loss. In Section 5, we empirically
verify that our proposed method can preserve the textual divergence on the new classes, thereby
improving the calibration performance.
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Proof. We first remove the influence of µ. For any constant c, we have:

pi =
ezi+c∑N
j=1 e

zj+c
=

ezi∑N
j=1 e

zj
.

Thus, the mean value µ of the logits does not affect the softmax output. Therefore, without loss of
generality, we can assume that µ = 0 in our proof. For binary classification, we have:

p1 =
ez1

ez1 + ez2
=

1

1 + e−(z1−z2)
= sigmoid (z1 − z2) , p2 = sigmoid (z2 − z1) .

Hence, the maximum softmax probability is:

pmax = max(p1, p2) = sigmoid(|z1 − z2|).

Since z1−z2 ∼ N (0, 2σ2), the absolute difference Z = |z1−z2| follows a folded normal distribution
with the probability density function:

fZ(z) =
1√
πσ2

e−
z2

4σ2 , z ≥ 0.

Thus, the expected value of the maximum softmax probability is:

E[pmax] = E[sigmoid(Z)] =
∫ ∞

0

sigmoid(z) · fZ(z)dz =
∫ ∞

0

1

1 + e−z
· 1√

πσ2
e−

z2

4σ2 dz.

For simplicity, we perform the substitution u = z
σ
√
2

. The integral can be simplified to:

E[pmax] =

∫ ∞

0

1

1 + e−σ
√
2u
·
√
2√
π
e−

u2

2 du.

Using Leibniz’s rule, we can differentiate with respect to σ under the integral sign:

dE[pmax]

dσ
=

∫ ∞

0

∂

∂σ

(
1

1 + e−σ
√
2u

)
·
√
2√
π
e−

u2

2 du =

∫ ∞

0

e−σ
√
2u · 2u(

1 + e−σ
√
2u
)2 ·

1√
π
e−

u2

2 du ≥ 0.

Hence, the expected maximum probability E[pmax] increase alone with σ. Then, We have E[pσ2
] >

E[pσ1
], if σ2 > σ1. The proposition is proven.

D IMPLEMENTATION DETAILS

Table 6: Hyperparameters for VLM tuning methods. “BS” denotes the batch size. “LR” denotes the
learning rate. “CTX” is the context length of the learnable prompt.

CoOp CoCoOp DEPT KgCoOp MaPLe TCP CLIP-Adapter VPT

Epochs 200 10 200 200 5 50 200 5
BS 32 1 32 32 4 32 32 4
LR 0.002 0.002 0.002 0.002 0.0026 0.002 0.002 0.0025
CTX 16 4 16 16 2 4 - 8

Our implementations are based on the open-source repository of DAC (Wang et al., 2024). Generally,
We use CLIP ( ViT-B/16) (Radford et al., 2021) as the pre-trained VLM throughout our experiments
and report results averaged over 3 runs. We fine-tune the model with 16 samples per class in a
few-shot setting (Zhou et al., 2022a). Following the corresponding official implementation, We list
the general hyperparameters in Table 6. Here, we briefly introduce the corresponding exclusive
hyperparameters of each VLM tuning method. All the methods are adopted from their official
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Table 7: Outlier selection from WordNet based on zero-shot CLIP.

Dataset Base class Selected outlier

Flowers102

[’pink primrose’, ’hard-leaved pocket orchid’, ’sweet pea’,
’english marigold’, ’tiger lily’, ’moon orchid’, ’bird of paradise’,
’monkshood’, ’globe thistle’, ’snapdragon’, "colt’s foot", ’king

protea’, ’spear thistle’, ’yellow iris’, ’globe-flower’,
’purple coneflower’, ’peruvian lily’, ’balloon flower’]

[’May_lily’, ’flowering_plant’, ’dayflower’, ’coast_lily’,
’flower’, ’lily’, ’orchid’, ’African_lily’,

’non-flowering_plant’, ’plant’, ’sego_lily’, ’plant_material’,
’flower-of-an-hour’, ’flora’, ’liliaceous_plant’, ’Liliaceae’,

’apetalous_flower’, ’tongueflower’, ’herbaceous_plant’, ’daisybush’]

OxfordPets

[’abyssinian’, ’american_bulldog’, ’american_pit_bull_terrier’,
’basset_hound’, ’beagle’, ’bengal’, ’birman’, ’bombay’, ’boxer’,

’british_shorthair’, ’chihuahua’, ’egyptian_mau’,
’english_cocker_spaniel’, ’english_setter’, ’german_shorthaired’]

[’spaniel’, ’bulldog’, ’dog’,
’dog_do’, ’doggie’, ’doggy’, ’domestic_dog’,

’canine’, ’pug-dog’, ’pooch’, ’Japanese_spaniel’,
’Labrador_retriever’, ’sausage_dog’, ’Labrador’, ’Little_Dog’,
’housedog’, ’CAT’, ’retriever’, ’French_bulldog’, ’bird_dog’]

StanfordCars
[ ’2012 Acura RL Sedan’, ’2012 Acura TL Sedan’,
’2008 Acura TL Type-S’, ’2012 Acura TSX Sedan’,

’2001 Acura Integra Type R’, ’2012 Acura ZDX Hatchback’]

[’estate_car’, ’automotive_vehicle’, ’sedan’, ’used-car’,
’tesla’, ’Tesla’, ’pickup_truck’, ’car’, ’SUV’,

’hatchback’, ’subcompact_car’, ’patrol_car’, ’station_wagon’,
’sports_car’, ’sport_utility_vehicle’, ’passenger_vehicle’,
’secondhand_car’, ’vehicle’, ’sport_car’, ’touring_car’]

FGVCAircraft

[’707-320’, ’727-200’, ’737-200’, ’737-300’, ’737-400’, ’737-500’,
’747-200’, ’747-300’, ’747-400’, ’757-200’, A340-600’, ’A380’,

’ATR-72’, ’BAE 146-200’, ’BAE 146-300’, ’BAE-125’, ’Beechcraft
’Boeing 717’, ’C-130’, ’C-47’, ’CRJ-200’, ’CRJ-700’, ’CRJ-900’,

’Cessna 172’, ’Cessna 208’, ’Cessna 525’]

[’airliner’, ’widebody_aircraft’, ’aircraft’, ’airbus’, ’jetliner’,
’wide-body_aircraft’, ’jumbojet’, ’air_transport’,

’narrow-body_aircraft’, ’multiengine_airplane’, ’airline’,
’attack_aircraft’, ’reconnaissance_plane’, ’air_transportation’,
’military_plane’, ’aeroplane’, ’plane’, ’multiengine_plane’, ]

Food101

[’apple_pie’, ’baby_back_ribs’, ’baklava’,
’beef_carpaccio’, ’beef_tartare’, ’beet_salad’, ’beignets’,

’bibimbap’, ’bread_pudding’, ’breakfast_burrito’, ’bruschetta’,
’caesar_salad’, ’cannoli’, ’caprese_salad’, ’carrot_cake’, ’ceviche’,

’cheese_plate’, ’cheesecake’, ’chicken_curry’, ’chicken_quesadilla’,

[’entree’, ’pastry’, ’bread’, ’breakfast_food’, ’food’,
’salad’, ’burger’, ’Burger’, ’dessert’, ’soup’,

’French_pastry’, ’sandwich’, ’steak’, ’meat’, ’pizza’,
’cuisine’, ’pie’, ’PIE’, ’French_bread’, ’dish’]

UCF101
[’Apply_Eye_Makeup’, ’Apply_Lipstick’, ’Archery’, ’Baby_Crawling’,

’Balance_Beam’, ’Band_Marching’, ’Baseball_Pitch’,
’Basketball’, ’Basketball_Dunk’, ’Bench_Press’, ’Biking’]

[’weightlifting’, ’athletics’, ’sports_implement’, ’hitting’,
’physical_exercise’, ’near_thing’, ’athletic_competition’, ’phot’,

’depicting’, ’fitness’, ’athletic_game’, ’physical_fitness’,
’batting’, ’goal’, ’musical_style’, ’photography’, ’going’]

implementation. For CoOp and CoCoOp, they do not contain other hyperparameters. For KgCoOp,
we set λ = 8.0. For MaPLe, we set prompt depth J to 0 and the language and vision prompt lengths
to 2. For DePT, the learning rate for updating the parameters in the devised CAT head is set to 6.5× δ.
where δ is the adopted learning rate of CoOp. Moreover, the weight in the linear probe is set to
0.7. For TCP, the weight for prompt fusion is 1.0, and the loss weight is the same as KgCoOp. For
CLIP-adapter, we set α to 0.6, which is a trade-off hyperparameter between fine-tuned and zero-shot
visual representation. Finally, following MaPLe, we set the context length to 8.0 and prompt depth to
12 for VPT.

E A CLOSE LOOK AT SELECTED OUTLIERS

In this section, we present the detailed results for the dynamic outlier selection. Specifically, we
select nouns from WordNet that do not overlap but share higher-level concept relations with the base
classes seen in the fine-tuning task. We use the textual encoder of zero-shot CLIP as the modality
encoder.

As is shown in Table 7, we can conclude that the selected outlier meets our requirement. For example,
if our base class contains certain aircraft models such as ’A340-600’, ’A380’, and ’ATR-72’, the
outliers we selected include words like ’air_transport’, ’air_transportation’, and ’military_plane’.
These nouns are highly relevant to the downstream task but do not overlap with the base class. For
further influence, we show that using outliers that are relevant but do not overlap with our fine-tuning
task are helpful in reducing calibration error while preserving performance in the base classes. To
verify it, we empirically demonstrate that using base classes as the regularization may sacrifice its
accuracy and calibration in Figure 4. Moreover, as is shown in Table 4, dynamic text is better than
fixed text since the fixed number of text may cause the model to overfit them.

F DETAILED EXPERIMENTAL RESULTS OF THE MAIN EXPERIMENT

In this section, We present the detailed results of accuracy and Expected Calibration Error (ECE) to
verify the effectiveness of our proposed DOR in Table 8-9.
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Table 8: ECE (%) comparison of existing prompt tuning in the base-to-new generalization.

Methods Caltech101 Pets Cars Flowers Food101 FGVC SUN397 DTD EuroSAT UCF101 ImageNet AVG

ZeroshotCLIP 6.49 2.25 3.74 3.11 1.57 3.03 1.59 4.53 8.35 3.24 1.51 3.58

CoCoOp 1.45 2.32 6.61 7.67 1.10 3.41 1.66 2.61 8.06 2.08 2.66 3.60
CoCoOp+DOR 2.20 2.97 6.85 8.49 0.97 3.33 3.19 2.86 10.12 2.96 2.52 4.22

CoOp 0.95 0.96 2.59 2.38 2.79 5.84 4.57 6.73 1.50 4.04 1.38 3.07
CoOp+DOR 1.59 1.78 4.20 4.90 0.63 3.35 0.87 5.81 2.66 1.61 1.96 2.67

DEPT 2.22 6.83 12.08 7.75 5.41 5.23 2.90 3.29 8.26 3.32 9.15 6.04
DEPT+DOR 2.95 8.32 13.37 10.26 7.04 6.51 5.55 4.78 9.50 5.08 10.96 7.67

KgCoOp 2.30 2.95 11.42 10.05 1.35 5.40 4.69 8.02 10.97 4.18 2.65 5.82
KgCoOp+DOR 2.48 2.96 11.02 10.19 1.39 7.64 4.84 8.34 11.03 4.32 2.57 6.07

MaPLe 1.21 2.09 5.81 4.23 0.82 3.46 1.04 4.34 3.53 1.77 1.95 2.75
MaPLe+DOR 1.84 2.05 6.49 4.47 0.86 2.40 2.28 2.32 4.44 3.08 2.02 2.93

TCP 1.99 2.44 8.93 6.83 1.56 5.28 2.64 6.83 9.58 3.58 2.12 4.71
TCP+DOR 2.03 2.46 9.34 7.10 1.63 5.28 2.90 6.52 9.84 3.48 2.09 4.79

PromptSRC 2.41 2.37 8.14 4.62 0.89 4.29 2.08 2.87 9.15 2.43 2.01 3.75
PromptSRC+DOR 2.32 2.56 8.19 4.92 0.95 4.12 2.16 3.53 9.20 2.59 2.13 3.88

CoPrompt 1.56 2.81 3.91 4.92 0.99 2.47 0.90 2.78 4.05 2.10 1.68 2.56
CoPrompt+DOR 1.96 2.86 4.25 6.24 1.02 2.50 1.53 2.97 5.63 1.74 1.91 2.96

(a) Base

Methods Caltech101 Pets Cars Flowers Food101 FGVC SUN397 DTD EuroSAT UCF101 ImageNet AVG

ZeroshotCLIP 1.60 3.42 3.31 4.91 1.83 6.55 3.48 8.89 9.12 5.52 2.09 4.61

CoCoOp 3.94 2.35 2.26 11.33 1.63 12.51 2.03 16.40 9.17 4.39 1.57 6.14
CoCoOp+DOR 1.30 2.98 3.03 6.77 1.82 7.67 1.12 6.00 8.26 3.65 1.67 4.02

CoOp 4.11 1.57 11.81 19.84 4.42 32.12 15.98 26.49 15.50 18.09 10.40 14.58
CoOp+DOR 1.42 2.94 8.01 7.34 1.22 21.21 2.31 11.34 8.67 5.07 1.89 6.49

DEPT 4.23 2.71 11.15 18.32 2.71 34.21 15.15 24.30 18.90 18.94 9.73 14.58
DEPT+DOR 2.51 2.64 7.53 6.58 0.74 22.62 5.01 17.10 7.34 7.65 2.77 7.50

KgCoOp 2.02 3.15 3.35 5.92 1.87 12.76 1.51 7.41 6.56 2.95 1.74 4.48
KgCoOp+DOR 1.43 3.04 3.46 6.68 1.83 9.63 2.33 5.78 5.29 2.52 1.86 3.99

MaPLe 2.66 2.35 2.95 10.32 1.16 10.72 2.42 15.54 6.06 3.65 2.27 5.46
MaPLe+DOR 1.71 2.50 2.42 10.27 1.51 10.56 0.90 10.64 7.15 2.52 1.68 4.71

TCP 1.15 2.94 2.46 5.14 2.34 8.07 1.98 4.91 8.36 5.78 1.59 4.07
TCP+DOR 1.21 3.03 2.43 4.26 2.23 7.51 2.56 4.72 6.21 5.91 1.70 3.80

PromptSRC 1.55 3.07 2.02 5.53 1.66 11.31 0.66 6.42 8.53 3.24 1.71 4.15
PromptSRC+DOR 1.64 2.82 1.84 5.58 1.49 9.58 0.74 5.72 7.56 3.04 1.82 3.80

CoPrompt 1.69 2.41 5.59 10.19 1.67 11.54 2.28 8.64 16.18 2.60 2.79 5.96
CoPrompt+DOR 1.43 3.13 5.50 8.48 1.70 13.16 1.17 5.68 6.28 2.66 2.40 4.69

(b) New

G THE ABLATIONS OF DOR

G.1 SIMILARITY METRIC IN OUTLIER SELECTION

In the outlier selection, we use cosine similarity as the distance metric for selecting textual outliers.
To assess the metric sensitivity of our proposed DOR, we conduct an ablation and use three metrics
including Cosine similarity, Euclidean distance (L2), and Mahalanobis distance. We report the
average calibration performance on the base-to-new datasets across various prompt tuning methods,
including CoOp, MaPLe, and CoPrompt.

We present the results in Table 10. We find that our DOR framework is not very sensitive to the choice
of similarity metric and consistently reduces the calibration error. Surprisingly, Euclidean distance
can outperform Cosine similarity across different prompt tuning methods and achieve better harmonic
mean (HM). For example, using Euclidean distance with CoOp yielded an HM of 3.83%, compared
to 4.58% with Cosine similarity. Despite this, we use Cosine similarity as the default distance metric
throughout this work since it is widely used in the feature selection of vision-language models (Yi
et al., 2024; Mayilvahanan et al., 2024; Wang et al., 2024).
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Table 9: Accuracy (%) comparison of existing prompt tuning in the base-to-new generalization.

Methods Caltech101 Pets Cars Flowers Food101 FGVC SUN397 DTD EuroSAT UCF101 ImageNet AVG

ZeroshotCLIP 97.16 91.33 63.57 71.79 90.06 27.73 69.36 53.01 57.00 70.99 72.39 69.49

CoCoOp 97.79 94.84 70.46 95.22 90.55 35.71 79.45 77.20 87.48 81.64 75.93 80.57
CoCoOp+DOR 97.87 95.18 69.72 93.41 90.42 34.61 79.02 75.43 86.16 81.28 75.70 79.89

CoOp 98.21 93.85 79.70 98.01 87.72 42.08 80.29 80.71 92.01 84.18 75.89 82.97
CoOp+DOR 98.13 94.63 78.11 97.44 89.78 42.26 81.30 79.98 91.39 85.54 76.61 83.20

DEPT 98.15 93.43 80.01 98.48 89.76 44.10 81.33 82.18 91.45 85.47 76.31 83.70
DEPT+DOR 98.32 94.05 79.88 98.45 90.08 44.44 81.88 82.37 90.09 85.75 76.64 83.81

KgCoOp 97.76 94.97 75.50 96.55 90.66 37.74 80.90 81.13 89.51 84.37 76.05 82.29
KgCoOp+DOR 97.78 94.97 74.68 96.04 90.63 39.56 80.14 80.83 88.95 84.02 75.81 82.13

MaPLe 97.93 95.60 72.54 96.65 90.61 36.67 80.91 79.98 91.61 83.75 76.91 82.11
MaPLe+DOR 98.00 95.04 71.60 95.44 90.64 35.59 80.92 80.17 92.31 84.16 76.74 81.87

TCP 98.17 94.59 79.91 97.91 90.68 42.20 82.65 82.72 89.98 87.19 77.49 83.95
TCP+DOR 98.10 94.59 80.23 97.98 90.62 41.50 82.62 82.48 90.65 86.69 77.37 83.89

PromptSRC 98.45 95.36 80.39 98.29 90.73 44.18 82.94 83.64 93.10 87.57 77.83 84.77
PromptSRC+DOR 98.39 95.46 80.18 98.32 90.69 44.70 82.85 83.80 93.06 87.57 77.64 84.79

CoPrompt 98.47 95.27 71.22 96.42 90.50 35.11 81.55 82.25 92.87 85.54 76.32 82.32
CoPrompt+DOR 98.47 95.59 70.63 95.70 90.37 35.85 81.56 81.63 94.98 85.32 76.14 82.39

(a) Base

Methods Caltech101 Pets Cars Flowers Food101 FGVC SUN397 DTD EuroSAT UCF101 ImageNet AVG

ZeroshotCLIP 94.10 97.15 74.97 77.52 91.14 35.93 75.52 60.63 63.77 78.64 68.11 74.32

CoCoOp 93.08 97.82 73.58 70.09 91.34 32.71 76.69 52.70 65.12 73.54 70.55 72.47
CoCoOp+DOR 94.80 97.46 75.62 74.21 91.89 36.09 78.11 57.05 67.73 76.80 70.72 74.59

CoOp 91.52 91.01 59.27 56.29 83.16 21.22 61.62 44.81 56.85 52.98 60.45 61.74
CoOp+DOR 94.72 96.98 67.42 74.07 91.05 25.73 75.58 57.01 65.59 74.76 69.25 72.01

DEPT 92.17 96.21 61.56 60.42 87.49 20.22 65.38 49.44 60.20 58.38 63.92 65.04
DEPT+DOR 94.00 97.07 67.11 75.17 91.51 25.93 74.76 52.53 63.31 74.06 69.80 71.39

KgCoOp 94.21 97.41 74.42 73.24 91.58 29.61 75.47 49.84 64.31 74.73 69.53 72.21
KgCoOp+DOR 94.61 97.03 74.57 73.90 91.31 32.01 77.36 54.39 65.82 73.86 69.73 73.14

MaPLe 93.78 96.51 73.77 72.29 91.55 34.63 78.59 55.15 69.13 76.92 70.52 73.89
MaPLe+DOR 94.18 97.22 74.14 74.52 91.88 35.69 78.46 59.50 74.49 77.48 70.48 75.28

TCP 94.80 97.11 74.04 75.03 91.35 34.41 77.85 57.16 75.15 80.93 69.45 75.21
TCP+DOR 94.80 97.20 74.26 76.05 91.37 35.29 78.37 58.05 73.15 80.26 69.63 75.31

PromptSRC 94.11 97.45 75.24 77.04 91.54 36.23 78.72 62.85 72.27 78.03 70.23 75.79
PromptSRC+DOR 94.00 97.28 75.18 77.16 91.34 36.09 78.99 64.20 73.32 78.66 70.05 76.02

CoPrompt 94.80 97.32 69.81 73.19 91.77 35.31 78.62 56.32 60.25 78.06 70.78 73.29
CoPrompt+DOR 94.69 96.98 69.48 74.59 91.47 33.37 79.47 61.15 69.44 78.29 70.57 74.50

(b) New

Table 10: Average calibration performance (ECE%) across 11 datasets using different similarity
metrics. Calibration error is given by ×10−2. “HM” denotes the harmonic mean.

CoOp MaPLe CoPrompt

Metric Base New HM Base New HM Base New HM

w/o DOR 3.07 14.58 8.83 2.75 5.46 4.11 2.56 5.96 4.26
Cosine 2.67 6.49 4.58 2.93 4.71 3.82 2.96 4.96 3.96

Euclidean 2.92 4.74 3.83 2.83 4.63 3.73 2.92 4.78 3.85
Mahalanobis 2.83 6.73 4.78 3.05 4.86 3.96 2.96 4.76 3.86

G.2 THE SIZE OF SELECTED OUTLIER SET.

We evaluate how the number of selected outliers in DOR affects the calibration performance.
Specifically, we present this ablation with average ECE on the base-to-new datasets with three
prompt tuning methods including CoOp, MaPLe, and CoPrompt. We vary the number of outliers
k = {10, 50, 100, . . . , 20000}.
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Figure 10: The ablation on the number of selected outliers. ECE (%) is calculated from the average
performance on base-to-new datasets.

Table 11: Average ECE (%) across 11 datasets with different frequencies of outlier update in the
batch. We use “1” denotes that the outliers are updated in every iteration.

CoOp CoPrompt

1 10 100 1000 1 10 100 1000
Base 2.67 2.76 2.71 2.65 2.96 3.00 2.80 2.86
New 6.49 6.72 7.00 7.43 4.69 4.68 4.85 5.03
HM 4.58 4.74 4.86 5.04 3.83 3.84 3.83 3.95

As shown in Figure 10, increasing the number of selected outliers leads to an evident reduction in
ECE on the new classes. The performance starts to reach a point of saturation with more outliers.
Notably, even setting k = 10 yields significant calibration improvements on the new classes. For the
base classes, the outliers may be fixed in the batch during the fine-tuning due to the small number,
leading to poor performance due to overfitting. We can observe a similar phenomenon in Table 1
(KgCoOp) or Table 4. Hence, we suggest to set a moderate number (e.g., 5000). Furthermore, when
the number of outliers is sufficiently large, DOR becomes less sensitive to the exact value of numbers,
demonstrating its robustness.

G.3 THE FREQUENCY OF OUTLIERS

In DOR, we randomly sample a batch of textual outliers from the selected textual outlier set, in each
iteration. Therefore, the textual outliers used in each iteration can be different, which establishes
a dynamic regularization. To evaluate the impact of outlier update frequency on performance, we
conduct an ablation study by varying the frequency at which outliers are sampled for the batch with
the update intervals in the range [1, 10, 100, 1000]. We present this ablation with average ECE on the
base-to-new datasets with two prompt tuning methods including CoOp and CoPrompt.

As shown in Table 11, low update frequencies (or large update intervals) are observed to negatively
impact the calibration performance of DOR. The phenomenon suggests that infrequent updates may
allow the model to overfit to noise and reduce its calibration performance. In short, The experimental
results highlight the benefits of employing a dynamic update strategy in DOR, since it helps mitigate
overfitting to noise (Wei et al., 2021) and achieves superior calibration performance.

G.4 THE CHOICE OF LEXICAL DATABASE

In this work, we construct a set of text outliers using nouns from WordNet. To evaluate whether
different lexical databases significantly affect the results, we performed an ablation study on the
choice of lexical databases. Specifically, we consider two additional textual databases: CLIP’s
vocabulary and ConceptNet 5.7. For CLIP’s vocabulary, it includes 49,407 characters and words.
For ConceptNet, we use raw sentences and filter out those exceeding CLIP’s input limit (77 tokens).
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Table 12: The ablation on the repository of the outlier set. The average ECE on the base-to-new
datasets is compared. DOR is insensitive to lexical databases.

Method Class Vanilla WordNet CLIP ConceptNet5

CoOp
Base 3.07 2.67 2.91 3.02
New 14.58 6.49 8.43 8.37
HM 8.83 4.58 5.67 5.70

MaPLe
Base 2.75 2.93 2.86 3.19
New 5.46 4.71 5.11 5.24
HM 4.11 3.82 3.99 4.22

Finally. it consists of 705,662 short sentences. We report the average calibration results on the
base-to-new datasets.

As shown in Table 12, we find that DOR can achieve the best calibration performance with WordNet
and all databases can achieve better results than the baseline. Additionally, we observed that short
sentences may not perform as well as prompts like “a photo of [class].”

Table 13: Calibration results of ECE (%) of prompt tuning methods with DOR on pathMNIST.
“Vanilla” denotes the baseline of fine-tuning methods. Bold numbers are significantly superior results.
DOR boosts the performance of existing methods on confidence calibration.

ZSCLIP CoOp KgCoOp MaPLe DEPT PromptSRC CoPrompt

Class Vanilla Vanilla + DOR Vanilla + DOR Vanilla + DOR Vanilla + DOR Vanilla + DOR Vanilla + DOR

Base 29.80 1.56 1.25 13.45 12.15 14.12 15.47 6.57 7.63 12.43 11.52 12.26 6.27

New 15.27 61.28 14.99 12.45 7.48 13.47 6.54 62.18 13.91 11.08 10.34 8.39 7.57

HM 22.54 31.42 8.12 12.95 9.82 13.80 11.01 34.38 10.77 11.76 10.93 10.33 6.92

Table 14: Accuracy (%) of prompt tuning methods with DOR on pathMNIST. “Vanilla” denotes the
baseline of fine-tuning methods. Bold numbers are significantly superior results. DOR boosts the
performance of existing methods on generalization.

ZSCLIP CoOp KgCoOp MaPLe DEPT PromptSRC CoPrompt

Class Vanilla Vanilla + DOR Vanilla + DOR Vanilla + DOR Vanilla + DOR Vanilla + DOR Vanilla + DOR

Base 24.64 92.52 93.52 87.77 86.89 85.87 85.73 92.33 91.37 92.16 91.58 88.70 88.55

New 44.71 31.58 35.68 40.80 47.31 35.46 40.13 30.06 44.57 42.46 43.47 41.72 50.27

HM 34.68 62.05 64.60 64.29 67.10 60.67 62.93 61.20 67.97 67.31 67.53 65.21 69.41

H APPLICATION ON MEDICAL IMAGING.

To verify our proposed DOR can be applied in real-world tasks, we conduct the experiments on
PathMNIST from MedMNIST+ (Yang et al., 2023) as the medical benchmark. PathMNIST is
comprised of 9 types of tissues, resulting in a multi-class classification task. For the text of each label,
we use the caption from the official implementation. Specifically, the dataset includes the following
labels: adipose tissue (0), background (1), debris (2), lymphocytes (3), mucus (4), smooth muscle (5),
normal colon mucosa (6), cancer-associated stroma (7), and colorectal adenocarcinoma epithelium
(8). we use We fine-tune the CLIP with 16 shots from the first 5 classes and evaluate the model on all
9 classes under the base-to-new evaluation protocol.

As is shown in Table 13 and 14, we find that DOR can effectively help with the calibration of
fine-tuned CLIP on medical datasets. Noted that existing prompt tuning methods can be effectively
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Table 15: Average ECE (%) comparsion with post-hoc scaling methods on base-to-new datasets.
ZS-TS fails to calibrate the base classes. DOR effectively mitigates the miscalibration issue on new
classes while maintaining the calibration performance on the base classes.

CoOp CoCoOp KgCoOp MaPLe PromptSRC

Vanilla +ZS-TS +DOR Vanilla +ZS-TS +DOR Vanilla +ZS-TS +DOR Vanilla +ZS-TS +DOR Vanilla +ZS-TS +DOR

base 3.07 8.25 2.67 3.60 9.12 4.22 5.82 8.49 6.07 2.75 6.68 2.83 3.75 6.74 3.88
new 14.58 7.96 6.49 6.14 4.81 4.02 4.48 3.36 3.99 5.46 4.05 4.44 4.15 3.48 3.80
HM 8.83 8.11 4.58 4.87 6.97 4.12 5.15 5.93 5.03 4.11 5.37 3.64 3.95 5.11 3.84

Table 16: ECE (%) comparsion with regularization-based methods on base-to-new datasets. DOR
can incorporate with CaRot to achieve better calibration.

Caltech101 Pets Cars Flowers Food101 FGVC SUN397 DTD EuroSAT UCF101 ImageNet AVG

Base
CaRot 7.68 6.14 12.93 8.34 6.92 6.15 5.31 6.68 10.12 6.76 3.05 7.28

CaRot+DOR 5.71 5.10 11.35 8.55 6.13 5.72 5.23 6.86 9.67 6.81 2.91 6.73

New
CaRot 2.51 6.46 4.32 5.66 7.16 5.20 3.54 6.03 6.37 5.09 1.78 4.92

CaRot+DOR 2.87 4.93 3.71 4.66 6.39 5.74 3.62 5.10 8.74 4.92 1.80 4.77

applied to medical image datasets. For instance, after fine-tuning, the accuracy of the base class
improved significantly from 29.80% to over 85% for all methods. However, compared with standard
benchmarks used in the main experiment, the calibration performance could be worse and output
worse ECE for new classes. To this end, DOR effectively reduces ECE across all methods. For
example, DOR lowers the ECE for new classes from 61.28% to 14.99% in CoOp. Moreover, DOR can
fit existing advanced methods like CoPrompt and significantly reduces the overall ECE from 10.33%
to 6.92%. In summary, DOR can notably improve the calibration performance of prompt-tuning
methods and is capable of real-world domain-specific tasks.

I COMPARISON WITH EXISTING CALIBRATION METHODS

To further validate the effectiveness of our proposed DOR, we compare it with two recent calibration
approaches for CLIP. We consider two main calibration strategies: post-hoc scaling and regularization-
based training. For post-hoc scaling, we compare DOR with Zero-Shot-Enabled Temperature Scaling
(ZS-TS) (LeVine et al., 2023). Specifically, we perform post-hoc calibration on the fine-tuned
model using ImageNet-1k and evaluate the learnable temperature τ on both the base and new
classes. For regularization-based calibration, we incorporate DOR into calibrated robust fine-tuning
method (CaRot) (Oh et al., 2024) like Equation 10. We report the average ECE performance on the
base-to-new datasets.

DOR outperforms post-hoc scaling under base-to-new evaluation. We present the results in
Table 15. We observe that the temperature τ optimized on ImageNet-1k significantly mitigates the
overconfidence and improves the calibration of the fine-tuned CLIP on new classes. For instance,
it reduces the Expected Calibration Error (ECE) of the state-of-the-art method PromptSRC from
4.15% to 3.48%. However, such calibration can not used on the base classes. ZS-TS exacerbates the
model’s underconfidence and increases the ECE from 3.75% to 6.74% on PromptSRC. In contrast,
our approach effectively mitigates the miscalibration issue on new classes while maintaining the
calibration performance on the base classes.

DOR boosts existing regularization-based methods for better calibration. As is shown in
Table 16, we observe that CaRot achieves decent calibration performance on both base and new
classes. Furthermore, our DOR method can be effectively integrated into CaRot and improve
calibration on both base and new classes. For instance, DOR reduces the ECE by 1.14% and 1.21%
on base and new classes of the OxfordPets dataset, respectively. This demonstrates that DOR is a
flexible regularization strategy compatible with various fine-tuning methods.
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Figure 11: The t-SNE plots for visualizing visual features on the base classes of DTD dataset. DOR-V
denotes our method applied on CLIP-Adapter. CLIP-Adapter generates more discriminative features
compared with ZS-CLIP. and DOR does not significantly affect the visual feature space

Table 17: Distribution similarity between visual features in Zero-Shot CLIP (Z), CLIP-Adapter (C),
and CLIP-Adapter with DOR-V (D) on the DTD dataset.

Metric Z←→ C Z←→ D C←→ D

MMD 0.39 0.84 0.22
Wasserstein 1.48 1.01 0.47

J FEATURE VISUALIZATION OF DOR-V

In the discussion (Section 6), we show that DOR-V can successfully reduce the calibration error for
visual feature adaptation. To investigate how DOR influences the feature space of base classes when
incorporating visual outliers, we visualized the performance of CLIP-Adapter on the DTD dataset.
For a better view, we randomly selected 10 base classes for visualization. We denote DOR-V to our
method combined with CLIP-Adapter.

We present the visualization in Figure 11. Compared to ZS-CLIP, CLIP-Adapter generates more
discriminative features. Importantly, we observe that DOR does not significantly affect the visual
feature space and maintains accuracy on the base class. To further quantify the difference between
visual distributions, we measure the distance between distributions via Maximum Mean Discrepancy
(MMD) and Wasserstein distance. As shown in Table 17, compared with ZS-CLIP, the gap between
CLIP-Adapter and DOR-V is relatively smaller. These results confirm that DOR does significantly
affect the feature space and can achieve better calibration results as evidenced in Table 5.
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