
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PRACTICAL MECHANISM VIA SIMPLE INPUT CONTROL
FOR FAULT-TOLERANT SPIKING NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Neural Networks (SNNs) attract researchers due to their energy-efficient
operations in neuromorphic devices. Despite their energy efficiency, hardware-
implemented SNNs in neuromorphic devices are vulnerable to hardware faults,
which impair the functionality of learnable parameters (e.g., Stuck-At-Faults
(SAFs) in synaptic weights). This impairment reduces the capacity to absorb
information. When input data contains information exceeding the capacity, SNNs
may not absorb information correctly, referred to as the bottleneck problem.
Existing approaches have relied on complex algorithms or direct modification to
most synaptic weights in hardware-implemented SNNs, limiting their practicality
in neuromorphic devices. This paper proposes a simple yet effective input control
mechanism to address the problem, grounded in a thorough motivation study. Our
mechanism divides the input samples into small fragments, following the best frag-
mentation strategy, derived by analyzing the characteristics of the input samples
and diagnosing the current influence of faults. Experimental results demonstrate
that our mechanism significantly enhances fault tolerance over existing methods,
achieving these gains without complex algorithms or direct weight modification in
various SNN models. Additionally, our mechanism improves the fault tolerance of
SNN models implemented with actual hardware devices.

1 INTRODUCTION

Spiking Neural Networks (SNNs) attract researchers to develop neuromorphic devices that are
necessary to implement Artificial Intelligence (AI) in low-end devices (Garaffa et al., 2021; Jeong
et al., 2025). SNNs are third-generation neural networks that process data using spikes. They
are well-suited for neuromorphic devices with limited power sources and biological operations,
as SNNs consume less energy than other neural networks and exhibit high biological plausibility
(Schuman et al., 2022; Pfeiffer & Pfeil, 2018). Although SNNs are essential for neuromorphic
devices, hardware-implemented SNNs remain highly vulnerable to permanent hardware faults, which
frequently occur in the electrical components of neuromorphic devices and significantly impair the
SNNs’ learning performance (Spyrou et al., 2021; Lee & Lim, 2023). Their fault vulnerability stems
from the instability of hardware components and the fault sensitivity of SNNs’ neuron models in
neuromorphic devices (Garaffa et al., 2021).

Previous approaches to improve hardware-implemented SNNs’ tolerance against hardware faults rely
on complex algorithms to regulate abnormal neuronal activities or demand hardware reconfigurability
to manage electric components directly in neuromorphic devices (Vu et al., 2019; Putra et al., 2022).
Although these approaches have improved the fault tolerance of the SNNs, they exhibit the following
problems that reduce their practicality in implementation.

1. Algorithmic complexity in conventional mechanisms: The previous approaches require complex
algorithms that are impractical for hardware implementation (Vu et al., 2019; Yang et al., 2022;
Han et al., 2023). These approaches cannot work properly in neuromorphic devices that demand
low-power operation and prevent stable operation (Basu et al., 2018). This is because the complex
algorithms frequently malfunction due to unexpected events such as wrong input values and hardware
faults (Liu et al., 2017).
2. Difficulties for direct modifications to synapses: Modifying synaptic weights directly is essential
for the previous approaches to improve hardware-implemented SNNs’ fault tolerance, such as

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

synapse pruning and weight bounding. These approaches forcibly adjust whole synaptic weights and
configurations in neuromorphic devices (Putra et al., 2022; Chen & Chakrabarty, 2021). However,
external methods that enable direct modification require additional costs to design reconfigurable
hardware (Garaffa et al., 2021; Takano & Amano, 2022; Putra et al., 2023).

Pragmatic approaches for meeting these two problems are necessary to improve SNN’s fault tolerance
in the real world. To address these limitations, we identify a critical issue that significantly degrades
SNN performance in faulty neuromorphic devices through a detailed motivation study. We name this
issue the bottleneck problem, severely damaging SNNs’ usable learning capacity. Here, we explain
how the bottleneck problem occurs. When faults appear in SNNs’ synapses, the weights of the faulty
synapses become fixed during training. This means that the capacity is reduced because the faulty
synapses, which do not change their weight during training, cannot be used for memorizing data.
Furthermore, the pre-activation value (linear combination) of spiking neurons lies at an abnormal
point of the surrogate gradient function, causing a serious gradient vanishing problem, which results
in the capacity degradation. With the low usable capacity of faulty SNNs, they cannot memorize input
data properly when the data contains information exceeding the learning capacity. The bottleneck
problem occurs in neuromorphic devices that use gradients for on-chip learning during training
(Eslami et al., 2024; Martemucci et al., 2025). We aim to solve this problem as neuromorphic devices
with gradient-based online learning frequently suffer from hardware faults despite the necessity of
gradient-based online learning to enhance the data-processing ability of hardware-implemented SNNs
(Spyrou et al., 2021; Lee & Lim, 2023; Rostami et al., 2022; Lagorce et al., 2015; Stewart et al., 2020;
Cramer et al., 2022; Payvand et al., 2020; Renner et al., 2024; Yin et al., 2024).

Motivated by flow control methods used in computer networks (Kurose & Ross, 2012), we first
propose a practical mechanism based on simple input control to solve the bottleneck problem based
on data fragmentation. Our mechanism enhances the fault tolerance of SNNs by dividing input data
samples into small fragments. Our control scheme addresses the constraint of SNNs’ usable learning
capacity in faulty neuromorphic devices by exploiting an effective fragmentation strategy for fault
mitigation based on analysis of input images’ characteristics and the influence of faults. The novelty
of our mechanism is as follows. Unlike the previous approaches, our mechanism does not require
complex algorithms to control neuronal activities and hardware reconfigurability for modifying
synapses directly. This novelty is derived from the following features of our mechanism.

1. Data sample division into small fragments: Our algorithm fragments input data samples to
decrease the input samples’ size and shrink information in the input samples, leading the faulty SNN
models to memorize the information despite their degraded usable learning capacity due to faults.
2. Fragmentation method to minimize the adverse effect from faults: To ensure that our mechanism
provides the fragments that models can handle, we develop a fragmentation strategy that adapts
fragment geometry (i.e., the cut angle) to mitigate fault-induced damage during the forward pass.

We develop our mechanism through a thorough motivation study with faulty SNN models. With our
mechanism, various SNN models achieve significantly higher classification accuracy than models
using previous approaches for fault mitigation under fault-injected conditions, while consuming less
energy due to our simple approach. We additionally conduct experiments with real hardware SNNs
built in a Field-Programmable Gate Array (FPGA) device. Our work has the following contributions.

• We develop a practical mechanism to enhance hardware-implemented SNNs’ fault tolerance
without complex algorithms and direct synapse modifications, which easily malfunction and
demand high hardware reconfigurability.

• We present a concrete theoretical basis for our mechanism by mathematically and experimen-
tally investigating how synaptic faults degrade the usable learning capacity of SNN models
in our motivation study. Due to our detailed motivation study, we propose a theoretically
sound fragmentation mechanism.

• We provide a rich set of evaluation results in various scenarios, including hardware environ-
ments. The evaluation results demonstrate that our mechanism, which is based on simple
data fragmentation, improves the fault tolerance of SNNs more significantly than previous
approaches.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 BACKGROUNDS

2.1 SPIKING NEURAL NETWORKS

SNNs are third-generation neural networks motivated by the learning mechanisms of the human
brain (Yao et al., 2023). In SNNs, spiking neurons fire and emit output spikes at every time interval,
corresponding to each time step. Here, the time step is a unit of time for spike occurrence. The spiking
neurons generate spikes only when the membrane potential of the neurons reaches a threshold.

Researchers use various neuron models to build SNNs. Among them, the Integrate-and-Fire (IF)
model and Leaky Integrate-and-Fire (LIF) model, which have leakage in membrane potential unlike IF,
are widely used (Moitra et al., 2023). Synaptic weights determine how input spikes from pre-synaptic
neurons of the previous layer affect the post-synaptic neurons (Venkatesha et al., 2021). SNNs update
the weights with two approaches: supervised and unsupervised learning rules. Supervised learning
rules calculate gradients to update weights using surrogate gradient functions. Unsupervised learning
rules utilize the time difference between pre-synaptic and post-synaptic activity to update weights.

SNNs are necessary to implement neuromorphic devices. They exhibit less energy consumption
than conventional neural networks for the following reasons. First, spiking neurons fire and update
synaptic weights only when a specific event occurs (Lee & Lim, 2024). The SNN’s infrequent spike
generation is associated with sporadic data processing, resulting in low power consumption. Second,
SNNs replace complex Multiply-ACcumulate (MAC) operations with simple ACcumulate (AC)
operations, eliminating weight multiplication to input data while accumulating input information.

2.2 SYNAPTIC FAULTS

Synaptic faults are persistent or transient defects in the synaptic weights of a connection. They distort
pre-activations and inject biased or structured noise, which disrupts the learning process of SNN
models. A representative case of them is the Stuck-At Faults (SAFs), where a weight is fixed to
the highest (SA1) and lowest (SA0) synaptic weight, ignoring updates and introducing systematic
bias (Vatajelu et al., 2019). In other words, SAFs make synapses permanently stuck at a max or
min weight value, regardless of training or input. Note that SA0 and SA1 do not mean the weights
are stuck at the exact values 0 and 1. Another common case is Random Weight Faults (RWFs).
RWFs force synapses to randomly fluctuate around their original weight values due to thermal noise.
They transiently remove intended synaptic connections or create unintended connections (Vatajelu
et al., 2019). Additionally, Connectivity Error Faults (CEFs) permanently change the connections
between synapses, ruining synaptic connections. These faults shift the pre-activation away from
useful operating regions, shrink the effective gradient signal, and reduce usable learning capacity.

3 STATE OF THE ARTS

3.1 ANALYSIS ABOUT FAULTS IN NEUROMORPHIC DEVICES

Researchers have deeply investigated how faults affect neuromorphic devices. They inject faults into
synapses and neurons of SNNs in neuromorphic devices, and how these faults ruin the classification
performance of SNNs (Vatajelu et al., 2019). They build a memristive neuromorphic simulator and
analyze how faults disturb data classification (Lee & Lim, 2023). In this study, researchers prove
that the faults occurring in synapses correlated with important features of data samples influence the
devices more severely. Researchers also apply various fault types in neuromorphic devices and study
how spiking neurons act in detail (Ali El Sayed, 2021; Garaffa et al., 2021). However, these analysis
studies overlook the excessive updates caused by hardware faults in neuromorphic devices.

3.2 MECHANISMS TO IMPROVE FAULT TOLERANCE OF HARDWARE-IMPLEMENTED SNNS

The conventional methods to improve the fault tolerance of hardware-implemented SNNs in neuro-
morphic devices rely on modifying faulty elements and implementing additional fault-mitigation
architectures. Researchers utilize the error correction ability of binary codes in output decoding
to enhance the fault tolerance of neural networks (Liu et al., 2019; Yu et al., 2023). They also
induce spikes to avoid faults of hardware-implemented SNNs in neuromorphic devices to reduce

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

the bad effects caused by faults (Vu et al., 2019; Yang et al., 2022). They build a fault map of
hardware-implemented SNNs to identify spiking neurons severely affected by faults and reduce
these neurons’ influence in neuromorphic devices (Putra et al., 2022; Wicaksana Putra et al., 2021;
Yang et al., 2022). Additionally, they mask faulty elements by setting affected pre-trained weights
to zero, then retrain with per-layer threshold (Siddique & Hoque, 2023). Researchers also employ
self-recovering mechanisms from astrocytes in the human brain to neuromorphic devices. With
their self-recovering ability, these approaches significantly strengthen neuromorphic devices’ fault
tolerance (Han et al., 2023; Varshika et al., 2023). Enhancing the astrocyte-based approaches, they
augment SNNs with an astrocyte-inspired leaky integrator, stabilizing spiking dynamics and markedly
improving fault tolerance (Yunusoglu et al., 2025). Lightweight approaches, such as suppressing
abnormal pre-activation, removing fault-affected neurons, and tuning thresholds, have enhanced
the fault tolerance either (Saha et al., 2023; Spyrou et al., 2021; Saha et al., 2024). Despite their
enhancement of fault tolerance, these works require complex architectures based on complicated
algorithms and neglect the reconfigurability of electric components in neuromorphic devices.

4 MOTIVATION STUDY

4.1 OVERVIEW

We have discovered that the faults cause the bottleneck problem with the following procedures.

1. Synaptic faults increase the magnitude of pre-activation |z|, which is a linear combination of inputs
(z = Wx+ b) (Berzal, 2025). This is because the pre-activation changes significantly when faults
perturb the weights to W +∆W . Here, W is the synaptic weights, x is an input sample, and b is a
bias. ∆W indicates a weight change caused by faults.
2. As |z| grows and moves away from the (spiking) threshold of spiking neurons, the surrogate
gradient near the threshold collapses toward zero, so the learning signal cannot propagate backward.
3. The faulty weights are fixed to abnormal values, and the non-faulty weights barely change due to
near-zero gradients. This problem significantly reduces SNNs’ usable learning capacity, creating a
bottleneck that prevents the model from fitting the data it should learn.

We provide thorough explanations, describing mathematically how faults fail the learning process of
SNN models in Appendix C.

4.2 PRE-ACTIVATION MAGNITUDE INCREASE BY FAULTS

To demonstrate that the synaptic faults cause the pre-activation magnitude to increase, we inject
the SAFs (SA0 : SA1 = 1.75 : 9.04) (Chen et al., 2017) and RWFs (representative permanent
and transient faults) into 50% of synapses in a spiking Multi-Layered Perceptron (MLP) with 4
layers, VGG-7, and ResNet-18 with MNIST, CIFAR-10, and CIFAR-100 during training. We use
the Poisson encoder to convert input into spikes. We observe the change in pre-activation magnitude
of all neurons in the SNN models due to faults after training models with an Adam optimizer and
Root-Mean-Square Error (RMSE) as a loss function. We obtain the experimental results by repeating
experiments 10 times and present the pre-activation magnitude as a 95% confidence interval.

Table 1: Pre-activation magnitude of MLP, VGG-7, and ResNet-18 SNN models under fault injection.

MLP(MNIST) VGG-7(CIFAR-10) RESNET-18(CIFAR-100)

NOMINAL 2.7 ± 0.13 8.75 ± 2.08 14.54 ± 3.56
SAFS 393.42 ± 10.89 273.66 ± 13.69 140.03 ± 15.77
RWFS 8.08 ± 1.75 205.73 ± 10.27 103.41 ± 11.8

Table 1 compares the summation of the pre-activation magnitude of all spiking neurons in the MLP
(LIF), VGG-7 (LIF), and ResNet-18 (IF) SNN models with and without SAF and RWF injection. Our
experimental results show that SAFs and RWFs significantly increase the pre-activation magnitude
around all neurons with fault-injected synapses.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 1: The value (average on the layers of the model) of surrogate gradient ϕ′(z − ϑ) (arctangent) when we
inject SAFs into the synapses of the MLP model.

4.3 GRADIENT COLLAPSE BY ABNORMAL PRE-ACTIVATION MAGNITUDE

We call the region where the surrogate derivative is non-negligible the surrogate gradient corridor
and denote its half-width by δ (or threshold-aligned bound z⋆); outside this corridor, ϕ′(z − ϑ) ≈ 0.
As the pre-activation magnitude increases, the pre-activation value moves away from the corridor.
This alignment error, due to an abnormal pre-activation magnitude, makes the surrogate gradient
values nearly zero.

Figure 1 depicts the surrogate gradient function (arctangent) of an LIF neuron model and the position
of pre-activation of the SAF-injected neurons in the MLP model. The surrogate gradient ϕ′(z− ϑ) of
the SAF-injected neurons is near zero, and the gradient of these neurons vanishes. This is because the
following equation calculates the gradient: δ(l) =

(
∇a(l)L

)
⊙ ϕ′(z(l) − ϑ

)
(L is a loss function

and l is the index of a layer).

4.4 LEARNING ABILITY DEGRADATION BY GRADIENT COLLAPSE

We demonstrate that gradient vanishing due to faults causes degradation in the SNNs’ learning ability.

Table 2: The gradients’ L1 norm in 95% confidence interval upon all neurons and classification accuracy of
MLP, VGG-7, and ResNet-18 SNN models under fault injection with 50% fault ratio.

MLP(MNIST) VGG-7(CIFAR-10) RESNET-18(CIFAR-100)

NOMINAL (L1 NORM) 11.67 ± 1.71 25.68 ± 2.89 7.76 ± 1.92
NOMINAL (ACCURACY) 97.57 ± 0.38% 56.63 ± 0.91% 25.59 ± 1.24%
SAFS (L1 NORM) 0.01 ± 0.00026 1.83 ± 0.16 1.36 ± 0.25
SAFS (ACCURACY) 11.35 ± 0.01% 9.99 ± 0.08% 5.04 ± 1.07%
RWFS (L1 NORM) 65.86 ± 10.57 2.18 ± 0.45 0.49 ± 0.07
RWFS (ACCURACY) 79.8 ± 8.74% 22.28 ± 5.34% 1.5 ± 0.51%

Table 2 shows the gradients’ L1 norm upon all neurons in the SNN models during training and
the classification accuracy of the models with the various datasets after testing. The classification
accuracy is proportional to the L1 norm of the gradient under fault injection with 50% fault ratio. This
point demonstrates that vanishing surrogate gradients stall weight updates, preventing the network
from making new decision boundaries and thus directly reducing its learning capacity (occurrence
of the bottleneck problem). Interestingly, the MLP model does not accurately classify MNIST data
samples, despite having a large gradient L1 norm, when the model is under RWF injection. This
occurs because RWFs induce random changes in synaptic weights, which transiently perturb the loss
and cause a temporary increase in the gradient (Foret et al., 2021). Since the MLP model has limited
learning ability, it cannot effectively compensate for such perturbations.

4.5 PRE-ACTIVATION SENSITIVITY OF LAYERS IN MLP

Our motivation study outlines an interesting finding: in MLP, the gradients of neurons in the previous
layers are more sensitive to abnormal changes in pre-activation by faults than the later layers.

Table 3 shows the gradients’ L1 norm of all neurons in each layer of the MLP model. The error
signal that reaches layer ℓ is obtained by repeatedly applying the Jacobians of all higher layers
in MLP. Under faults, pre-activations drift away from the operating threshold, so the surrogate
derivatives ϕ′(z − ϑ) on affected layers become very small. During gradient calculation, gradients
are multiplicatively contracted by a chain of small factors. Because earlier layers, such as the first

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 3: The gradients’ L1 norm in a 95% confidence interval upon all neurons in each layer of the MLP model
under fault injection.

Layer 1 Layer 2 Layer 3 Layer 4

MNIST (SAFs) (3.18± 1.13)× 10−6 (3.31± 1.64)× 10−3 (1.15± 0.93)× 10−3 (2.67± 0.65)× 10−3

MNIST (RWFs) (5.61± 1.46)× 10−5 (5.19± 1.52)× 10−5 (1.37± 0.58)× 10−4 (1.39± 0.29)× 10−3

FMNIST (SAFs) (3.45± 0.91)× 10−15 (1.01± 0.37)× 10−12 (1.6± 0.69)× 10−7 (1.02± 0.36)× 10−2

FMNIST (RWFs) (4.91± 1.55)× 10−5 (5.11± 1.71)× 10−5 (1.46± 0.62)× 10−4 (1.76± 0.82)× 10−3

layer (smaller ℓ), accumulate more of these factors, they suffer disproportionately severe gradient
vanishing, explaining the front-loaded degradation we observe under faults.

4.6 SIMILARITY TO FLOW CONTROL IN COMPUTER NETWORKS

Data flow control mitigates the congestion problem in computer networks (Kurose & Ross, 2012;
Wigren & Karaki, 2018). The information of input samples in SNNs is related to the data in the
packets of computer networks, and the surrogate gradient corridor is related to the data capacity
that a receiver can handle in computer networks. The bottleneck problem in neural networks is also
similar to that of the receiver, which prevents the receiver from processing the large data packet
simultaneously. The objective of flow control, which involves adjusting the size of data in a packet to
satisfy the receiver’s data capacity, is similar to that of enhancing fault tolerance: changing the size of
information in the input samples to maintain the pre-activation within the surrogate gradient corridor.

5 PROPOSED MECHANISM

Our motivation study demonstrates that synaptic faults can inflate pre-activations beyond the surrogate
gradient corridor, causing the gradient collapse. To prevent the gradients from vanishing in hardware-
implemented SNNs of neuromorphic devices, we design an adaptive input fragmentation mechanism
to avoid drift in pre-activation magnitude based on flow control in computer networks by shrinking
the probability of cases where input data samples enter faulty synapses, which have abnormal weights
that cause the pre-activation magnitude to increase significantly. The main idea of our paper is to
enhance the fault tolerance of SNNs under synaptic faults by dividing inputs into fragments, selecting
the division angle that optimally ensures the suppression of sudden pre-activation drift in SNNs. We
mathematically prove why our mechanism is nearly-optimal in Appendix D.

5.1 OVERVIEW

The proposed mechanism consists of the sensitivity score, Gini coefficient, and fragment processing
modules. Here, we briefly explain how the three modules cooperate relatively.

1. The sensitivity score module generates a sensitivity map that quantifies the extent to which each
input pixel and its associated synapses influence pre-activation under fault conditions.
2. The Gini coefficient module searches over 1D projection angles on the sensitivity map, selecting
the direction along which the accumulated sensitivity is most evenly distributed. This procedure
defines a fair axis for fragmentation.
3. Our fragment processing module cuts the image along the fair axis into equal-sensitivity fragments,
normalizes each fragment’s energy via RMS normalization to keep pre-activations (z) inside the
surrogate corridor (Zhang & Sennrich, 2019). Then, it accumulates time-step outputs with entropy-
based weighting (Qiu et al., 2025).

Overall, these three modules cooperate by first identifying fault-sensitive pixels, then choosing the
most balanced way to partition them, and finally enforcing the pre-activation in the surrogate corridor
by RMS normalization (Zhang & Sennrich, 2019). Moreover, we ensure the accurate decoding of
fragment-oriented outputs by the entropy-based approach (Qiu et al., 2025). We execute these three
procedures per batch.

5.2 SENSITIVITY SCORE DEFINITION AND CALCULATION

Key point 1: The sensitivity score represents which pixel changes the pre-activation the most
significantly under faults.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: Sensitivity score calculation with an MNIST image.

Figure 2 depicts the sensitivity score of an MNIST image. To measure how input data samples are
affected by synaptic faults and explore the best fragment shape that prevents a significant increase in
pre-activation magnitude, we define the sensitivity score of input samples, consisting of an image
sample’s complexity and the influence measurement from faults.

I(x) = PN
(
(LoG(x) + Sobel(x) + Var(x))⊙

(
1 + λs SP(x) + λw WP(x)

))
. (1)

where LoG(x), Sobel(x), and Var(x) are information about edges, blobs, and texture contrast of
images. We adopt them to calculate the complexity of an image sample and design our algorithm to
minimize each fragment’s complexity (Lowe, 2004). This is because an image with high complexity
significantly changes the pre-activation since its norm is large. SP(x) is a saliency map (Petsiuk et al.,
2018), and WP(x) is the absolute value of the first layer’s weight projection to input resolution. We
decide to use the first layer’s weight projection since the pre-activation drift in the first layer causes
the most severe gradient vanishing. SP(x) identifies the input pixels whose perturbations cause large
shifts in pre-activations and, consequently, substantial changes in the final output. WP(x) converts
the pixel-derived map into a fault-influence field on the weights of the first layer. We apply it to our
mechanism to minimize the increase in pre-activation by reducing the probability that pixel values
enter many faulty synapses at once. ⊙ is the Hadamard product. PN is a percentile normalization,
which normalizes the values of the fault influence map in the range of 0 to 1. We adopt PN to prevent
the sensitivity score from increasing excessively. For batch stability and fast operation, we measure
the sensitivity score of the averaged image sample of a batch.

5.3 GINI COEFFICIENT CALCULATION WITH A 1D PROFILE

Key point 2: The Gini coefficient indicates the equality of the sensitivity score (Farris, 2010). It
should be minimized to increase the equality of the sensitivity score upon the fragments and
prevent the pre-activation from falling outside of the surrogate gradient corridor.

Figure 3: 1D projection and Gini coefficient calculation changing the projection angle.

In figure 3, we change the angle θ of the 1D sensitivity profile and project the pixels on the 1D profile.
Specifically, we transform 2D coordinated pixel position (x, y) into 1D bin index s using the equation
s = xsin(θ) + ycos(θ). Then, we calculate the Gini coefficient with equation 2 (Farris, 2010)

Gini(pθ) =
1

2L p̄θ

L−1∑
i=0

L−1∑
j=0

∣∣ pθ[i]− pθ[j]
∣∣. (2)

where, pθ is the 1D sensitivity profile bin obtained by projecting along an angle θ (range of [0◦, 360◦]).
pθ[i] is the value of bin i (i = 0, . . . , L− 1). In other words, we obtain pθ by projecting each pixel’s
sensitivity I onto the index of the 1D profile s, and aggregating along that axis. L is the number

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

of bins, which is related to the granularity of angle division. p̄θ is the mean value of pθ over the
number of bins (L). |pθ[i]− pθ[j]| is absolute difference between pθ[i] and pθ[j]. We divide the sum
of pairwise absolute differences by (2Lp̄θ) for normalization, so the coefficient is 0 for a uniform
profile and grows with inequality.

We explore the angle θ which makes the 1D profile have the minimum Gini coefficient. This is
because the Gini coefficient is a strictly Schur-convex function, ensuring the Gini coefficient strictly
increases under majorization: if x ≻ y (i.e., x is more unequal), then Gini(x) > Gini(y), with
equality only for permutations (Sandor, 2007). By minimizing the Gini coefficient, the fragment’s
equality of sensitivity score is maximized. We design our mechanism to maximize equality and
prevent the pre-activation from leaving the corridor. This is because as a fragment’s sensitivity score
becomes more equal by minimizing Gini coefficient, the maximum of each fragment’s energy ∥xt∥2
decreases, so the upper bounds |w⊤xt| ≤ ∥w∥2∥xt∥2 and |ut| = |w⊤xt + m|, (m = b − ϑ) are
pushed below δ, keeping the pre-activation fixed inside the corridor (b is a bias in SNNs’ layers.).

5.4 FRAGMENT GENERATION BASED ON EQUAL SENSITIVITY SCORE AND IN/OUT FOR SNNS

Key point 3: The fragmentation line is set by the 1D profile cutting to make the 1D bins have an
equal cumulative sum of the sensitivity score.

Figure 4: Dividing an image sample based on the cumulative sum of the sensitivity score.

After finding the angle that ensures the minimum Gini coefficient, we calculate the cumulative sum
of the sensitivity score. As depicted in figure 4, the division line for fragmentation (dashed line in
the figure) indicates the position to cut the 1D profile into bins B1, . . . , BT , making the bins have
equal sensitivity score. We generate fragments F1, . . . , FT ∈ {0, 1}H×W with the pixels correlated
to the points in bins B1, . . . , BT and feed the SNN models the fragments F1, . . . , FT over time steps
t = 1..T . We zero-pad the generated fragment to align the input dimension of fragments with the
input dimension of the original samples because the input dimension of SNNs is not changeable
during training and testing. We apply the same division angle to all data samples in the same batch.

To ensure that pre-activation zt of fragment Ft positions in the corridor, keeping the scale of active
pixels in each fragment to a target Root-Mean-Square (RMS) is also important. Therefore, we adopt
RMS normalization to the input fragments with the equation 3 (Zhang & Sennrich, 2019)

x̃t = gtxt, ∥x̃t∥2 = α ⇒ |zt| ≤ ∥ŵ∥2 α. (3)

where xt is an input of time step t and gt is the per-fragment normalization gain. α is the L2 norm
of the x̃t (the multiplication of xt and gt) and denotes the non-zero pixels in the fragment for the
input of time step t. We set gt to ensure that ∥ŵ∥2α is always smaller than the bound of the surrogate
corridor, placing zt inside the surrogate-derivative corridor.

We also adopt an entropy-based output decoding technique to aggregate the outputs (logits) from
SNNs across all time steps accurately with the equation 4 (Qiu et al., 2025)

ℓ̄ =

T∑
t=1

et ℓt, et =
exp
(
− τH(softmax(ℓt)

)∑T
s=1 exp

(
− τH(softmax(ℓs)

) . (4)

where ℓ̄ is the final output vector from the entropy-weighted aggregation. ℓt is an output vector
from SNNs at time t and T is the total number of steps. H(softmax(ℓt)) is the Shannon entropy
of the output vector’s softmax result, and τ controls how strongly low-entropy (confident) steps are
emphasized. et is a scaling factor to reflect the entropy of output vectors while decoding. exp is an
exponential function, and s is the start index of time steps.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTINGS

We conduct various experiments with MLP (LIF neurons), VGG-7/11/15 (LIF neurons), and ResNet-
18/34 (IF neurons) SNN models based on SpikingJelly, widely used for SNN implementation, by
classifying samples in MNIST/FMNIST/UCI-HAR/AudioMNIST (MLP), CIFAR-10/100 (VGG
and ResNet), and Tiny-ImageNet (ResNet) (Fang et al., 2023; LeCun et al., 1998; Xiao et al., 2017;
Krizhevsky, 2009; Reyes-Ortiz et al., 2013; Becker et al., 2024; Deng et al., 2015). We select these
SNN models and datasets because current SNN technologies do not adequately train large and deep
models on complex datasets (Fang et al., 2023; Schuman et al., 2022). We measure the classification
accuracy of the SNN models using our mechanism and the benchmarks under SAFs (injected during
training), setting the ratio of SA1 and SA0 to SA0 : SA1 = 1.75 : 9.04 (Chen et al., 2017) and
the weight boundary to [−1, 1] (Le Gallo et al., 2023; Lammie et al., 2022). Additionally, we inject
RWFs and CEFs into the synapses of these models. We use ECOC (Liu et al., 2019), SoftSNN
(Putra et al., 2022), Routing (Yang et al., 2022), Astrocyte (Han et al., 2023), FalVolt (Siddique &
Hoque, 2023), and LIFA (Yunusoglu et al., 2025) for our benchmarks1. The SNN models without
any fault-mitigation mechanism serve as the baseline. We use RMSE as a loss function and Adam
as the optimizer for SNN models (Fang et al., 2023). The batch size is 100, and the learning rate is
0.001 for MLP/VGG and 0.01 for ResNet. We set the number of time steps (fragments) to 2, 4, and 8.
We use 50 epochs for training. We set λs, λw to 0.1, and τ to 2.0 by tuning these parameters through
experimental repetition with the proposed mechanism. We repeat all experiments 10 times with
different random seeds and present the experimental results in a 95% confidence interval. We inject
faults into the synapses sporadically in a uniform distribution, resulting in the uniform position of
synaptic faults. Note that the additional results from the additional datasets (UCI-HAR, AudioMNIST,
and Tiny-ImageNet), different time steps (4 and 8 steps), other fault types (RWFs and CEFs), the
ablation study with the combination of our mechanism, various hyperparameter (λs and λw) settings,
and the results with DNN models are presented in Appendix A. Additionally, we demonstrate that
our mechanism successfully improves the fault tolerance of hardware-implemented SNNs through
evaluations with an actual FPGA device.

6.2 CLASSIFICATION ACCURACY COMPARISON

Figure 5: Average classification accuracy of various SNN models with the baseline, benchmarks, and proposed
mechanism under SAFs using 2 time steps. The x-axis is the fault ratio (%) and the y-axis is the accuracy (%).

Figure 5 illustrates the classification accuracy of SNN models compared to the baseline, benchmarks,
and proposed mechanism under SAFs with 2 time steps. Under SAFs, the SNN models with our
mechanism exhibit the best classification accuracy across all datasets and models in most cases.

1We briefly explain how these benchmarks enhance the fault tolerance in Section 3.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

6.2.1 MLP MODELS

In the MLP model, the classification accuracy drops dramatically as the fault ratio increases. This
is because the faulty weights are directly multiplied by the input values, and the pre-activation
magnitude increases significantly, allowing it to easily escape from the surrogate gradient corridor.
Our mechanism definitely outperforms the baseline and benchmarks, since it utilizes the input saliency
and weight projection map of the first layer in Gini-based equal fragmentation. The MLP model is
vulnerable to faults in the first layer, as mentioned in Subsection 4.1. By adopting the saliency and
weight projection map (fault influence map) of the first layer, we suppress its pre-activation, which
decides the surrogate gradient, from increasing significantly and escaping from the corridor. Thus,
the pre-activation does not lie far from the corridor, preserving the power of the first layer’s gradient.

6.2.2 VGG MODELS

While VGG models with the benchmarks using CIFAR-10 maintain proper classification perfor-
mance only up to a fault ratio of 30–40%, the models with the proposed mechanism sustain correct
classification even at fault ratios as high as 50%. This is because our mechanism targets to make
the pre-activation lie at the point in the surrogate gradient corridor with Gini-based equal mass
fragmentation, despite the large amount of faults. Contrarily, the benchmarks do not consider the
relations between pre-activation, corridor, and surrogate gradient, failing to bound the pre-activation
in the corridor. Therefore, the classification accuracy of the model using the benchmarks degrades
sharply with fewer faults. We also observe that the classification accuracy declines as the model
gets deeper. This occurs because surrogate gradients in deep SNNs cannot reliably approximate the
hypothetical gradients of LIF neurons (Guo et al., 2024). When we use CIFAR-100, the models do
not classify the data samples accurately due to their low learning ability. However, the models with
our mechanism exhibit the highest classification accuracy under SAFs in most cases.

6.2.3 RESNET MODELS

Different from VGG models, ResNet models integrated with the benchmarks and proposed mechanism
maintain the classification accuracy up to a fault ratio of 80-90% when we use CIFAR-10. This is
because ResNet models have internal mechanisms to compensate for errors in gradient calculations,
such as residual blocks. They also classify CIFAR-100 samples more accurately than VGG models
under faults, since they have a more powerful learning ability than VGG models. ResNet-18 using
CIFAR-100 maintains its classification ability up to the ratio of 60-70% only with our mechanism,
and the ResNet-34 with CIFAR-100 maintains the classification ability up to the ratio of 30-40% only
with our mechanism. These results demonstrate that our mechanism successfully enhances the fault
tolerance with complicated datasets and models. We observe that the astrocyte-based approaches
(Astrocyte and LIFA) do not improve the deep ResNet models’ fault tolerance at all. This problem
derives from the fact that they only mimic biological mechanisms of neuronal activity in brains,
which enhances the fault tolerance of shallow and highly bio-plausible models such as Diehl & Cook
2015, using a bio-plausible unsupervised learning rule (Han et al., 2023; Yunusoglu et al., 2025).
However, our mechanism successfully strengthens the models’ fault tolerance in most cases since
we tackle a fundamental problem of faulty SNN models regardless of the types of SNN models, and
develop a solution to mitigate the problem.

7 CONCLUSION

This paper introduces a simple yet effective fault mitigation mechanism for SNNs that does not require
complicated architectures or direct weight modifications based on input data control. Our mechanism
improves fault tolerance more effectively than conventional approaches in various SNN models
and datasets. Experimental results exhibited improvement in the fault tolerance of our mechanism
over benchmarks in various network models and datasets, including real hardware environments.
We emphasize that this improvement is primarily achieved through an effective input data control
mechanism based on detailed observation of how synaptic faults ruin the learning capability of SNNs.
Our mechanism allows SNNs to maintain reliable operation and high fault tolerance in a practical
and hardware-compatible manner, enabling more sustainable and reliable edge AI computing.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not involve human subjects, sensitive personal data, or potentially harmful applications.
We trained and validated our models using publicly available datasets (e.g., MNIST, FMNIST, CIFAR-
10, and CIFAR-100), without any private or identifiable information. We design our mechanism to
enhance the robustness of neuromorphic systems against hardware faults. We declare no conflict of
interest or external sponsorship that might have influenced the research outcomes.

REPRODUCIBILITY STATEMENT

We conducted all experiments on publicly available datasets with standard train/validation/test
splits. To facilitate replication, we provide our full implementation of the proposed mechanisms
in the anonymous supplementary material. We also present the hyperparameter settings, model
configurations, and hardware specifications to support reproducibility. We will publicly release the
code and scripts on GitHub if our paper is accepted for the conference.

LARGE LANGUAGE MODEL USAGE STATEMENT

We used Large Language Models (LLMs) as writing and experiment assistants to improve the clarity
of writing/editing mathematical equations (fixing typos/suggesting algebraic simplifications), and
assist us in conducting experiments with the benchmarks. We did not use LLMs for idea generation,
methodological design, analysis, or to originate any mathematical arguments or claims. We derived,
verified, and finalized all derivations, results, and claims.

REFERENCES

Sarah Ali El Sayed. Fault Tolerance in Hardware Spiking Neural Networks. Theses, Sorbonne
Université, October 2021. URL https://theses.hal.science/tel-03681910.

Arindam Basu, Jyotibdha Acharya, Tanay Karnik, Huichu Liu, Hai Li, Jae-Sun Seo, and Chang Song.
Low-power, adaptive neuromorphic systems: Recent progress and future directions. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 8(1):6–27, 2018. doi: 10.1109/JETCAS.
2018.2816339.

Sören Becker, Johanna Vielhaben, Marcel Ackermann, Klaus-Robert Müller, Sebastian Lapuschkin,
and Wojciech Samek. Audiomnist: Exploring explainable artificial intelligence for audio analysis
on a simple benchmark. Journal of the Franklin Institute, 361(1):418–428, 2024. ISSN 0016-
0032. doi: 10.1016/j.jfranklin.2023.11.038. URL https://www.sciencedirect.com/
science/article/pii/S0016003223007536.

Fernando Berzal. Dl101 neural network outputs and loss functions, 2025. URL https://arxiv.
org/abs/2511.05131.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning, 2018. URL https://arxiv.org/abs/1606.04838.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, 2004. doi: 10.1017/CBO9780511804441.

BrainChipInc. Akd1000 akida system-on-chip — product brief. Technical Report V2.3, BrainChip-
Inc., 8 2025. URL https://brainchip.com/wp-content/uploads/2025/08/
Akida-AKD1000-SoC-Product-Brief-V2.3-Aug.25.pdf. Accessed 2025-09-07.

Alessio Carpegna, Alessandro Savino, and Stefano Di Carlo. Spiker+: a framework for the generation
of efficient spiking neural networks fpga accelerators for inference at the edge. IEEE Transactions
on Emerging Topics in Computing, pp. 1–15, 2024. doi: 10.1109/TETC.2024.3511676.

11

https://theses.hal.science/tel-03681910
https://www.sciencedirect.com/science/article/pii/S0016003223007536
https://www.sciencedirect.com/science/article/pii/S0016003223007536
https://arxiv.org/abs/2511.05131
https://arxiv.org/abs/2511.05131
https://arxiv.org/abs/1606.04838
https://brainchip.com/wp-content/uploads/2025/08/Akida-AKD1000-SoC-Product-Brief-V2.3-Aug.25.pdf
https://brainchip.com/wp-content/uploads/2025/08/Akida-AKD1000-SoC-Product-Brief-V2.3-Aug.25.pdf

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kaiwei Che, Luziwei Leng, Kaixuan Zhang, Jianguo Zhang, Max Q.-H. Meng, Jie Cheng, Qinghai
Guo, and Jiangxing Liao. Differentiable hierarchical and surrogate gradient search for spik-
ing neural networks. In Proceedings of the 36th International Conference on Neural Informa-
tion Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN
9781713871088.

Ching-Yuan Chen and Krishnendu Chakrabarty. Pruning of deep neural networks for fault-tolerant
memristor-based accelerators. In 2021 58th ACM/IEEE Design Automation Conference (DAC),
pp. 889–894. IEEE Press, 2021. doi: 10.1109/DAC18074.2021.9586269. URL https://doi.
org/10.1109/DAC18074.2021.9586269.

Lerong Chen, Jiawen Li, Yiran Chen, Qiuping Deng, Jiyuan Shen, Xiaoyao Liang, and Li Jiang.
Accelerator-friendly neural-network training: Learning variations and defects in rram crossbar. In
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, pp. 19–24, 2017.
doi: 10.23919/DATE.2017.7926952.

Benjamin Cramer, Sebastian Billaudelle, Simeon Kanya, Aron Leibfried, Andreas Grübl, Vi-
tali Karasenko, Christian Pehle, Korbinian Schreiber, Yannik Stradmann, Johannes Weis, Jo-
hannes Schemmel, and Friedemann Zenke. Surrogate gradients for analog neuromorphic com-
puting. Proceedings of the National Academy of Sciences, 119(4):e2109194119, 2022. doi:
10.1073/pnas.2109194119. URL https://www.pnas.org/doi/abs/10.1073/pnas.
2109194119.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Tiny ImageNet challenge.
http://cs231n.stanford.edu/tiny-imagenet-200.zip, 2015. Stanford CS231n
course dataset. Accessed: 2025-11-12.

Peter Diehl and Matthew Cook. Unsupervised learning of digit recognition using spike-timing-
dependent plasticity. Frontiers in Computational Neuroscience, 9, 2015. doi: 10.3389/fncom.2015.
00099. URL https://www.frontiersin.org/article/10.3389/fncom.2015.
00099.

M. Reza Eslami, Dhiman Biswas, Soheib Takhtardeshir, Sarah S. Sharif, and Yaser M. Banad. On-
chip learning with memristor-based neural networks: Assessing accuracy and efficiency under
device variations, conductance errors, and input noise, 2024. URL https://arxiv.org/
abs/2408.14680.

Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang,
Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning
infrastructure platform for spike-based intelligence. Science Advances, 9(40):eadi1480, 2023.
doi: 10.1126/sciadv.adi1480. URL https://www.science.org/doi/abs/10.1126/
sciadv.adi1480.

Frank A. Farris. The gini index and measures of inequality. The American Mathematical Monthly,
117(10):pp. 851–864, 2010. ISSN 00029890, 19300972. URL https://www.jstor.org/
stable/10.4169/000298910x523344.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization, 2021. URL https://arxiv.org/abs/2010.
01412.

Luíza C. Garaffa, Abdullah Aljuffri, Cezar Reinbrecht, Said Hamdioui, Mottaqiallah Taouil, and
Johanna Sepulveda. Revealing the secrets of spiking neural networks: The case of izhikevich
neuron. In 2021 24th Euromicro Conference on Digital System Design (DSD), pp. 514–518, 2021.
doi: 10.1109/DSD53832.2021.00083.

Yufei Guo, Yuanpei Chen, Zecheng Hao, Weihang Peng, Zhou Jie, Yuhan Zhang, Xiaode Liu, and Zhe
Ma. Take a shortcut back: Mitigating the gradient vanishing for training spiking neural networks.
In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.),
Advances in Neural Information Processing Systems, volume 37, pp. 24849–24867. Curran Asso-
ciates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/2c37c5bcef24b9541550261dcd63261b-Paper-Conference.pdf.

12

https://doi.org/10.1109/DAC18074.2021.9586269
https://doi.org/10.1109/DAC18074.2021.9586269
https://www.pnas.org/doi/abs/10.1073/pnas.2109194119
https://www.pnas.org/doi/abs/10.1073/pnas.2109194119
http://cs231n.stanford.edu/tiny-imagenet-200.zip
https://www.frontiersin.org/article/10.3389/fncom.2015.00099
https://www.frontiersin.org/article/10.3389/fncom.2015.00099
https://arxiv.org/abs/2408.14680
https://arxiv.org/abs/2408.14680
https://www.science.org/doi/abs/10.1126/sciadv.adi1480
https://www.science.org/doi/abs/10.1126/sciadv.adi1480
https://www.jstor.org/stable/10.4169/000298910x523344
https://www.jstor.org/stable/10.4169/000298910x523344
https://arxiv.org/abs/2010.01412
https://arxiv.org/abs/2010.01412
https://proceedings.neurips.cc/paper_files/paper/2024/file/2c37c5bcef24b9541550261dcd63261b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/2c37c5bcef24b9541550261dcd63261b-Paper-Conference.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhuangyu Han, A N M Nafiul Islam, and Abhronil Sengupta. Astromorphic self-repair of neuro-
morphic hardware systems. Proceedings of the AAAI Conference on Artificial Intelligence, 37
(6):7821–7829, Jun. 2023. doi: 10.1609/aaai.v37i6.25947. URL https://ojs.aaai.org/
index.php/AAAI/article/view/25947.

Hananel Hazan, Daniel J. Saunders, Hassaan Khan, Devdhar Patel, Darpan T. Sanghavi, Hava T.
Siegelmann, and Robert Kozma. Bindsnet: A machine learning-oriented spiking neural networks
library in python. Frontiers in Neuroinformatics, 12, 2018. doi: 10.3389/fninf.2018.00089. URL
https://www.frontiersin.org/article/10.3389/fninf.2018.00089.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963. doi: 10.1080/01621459.1963.10500830.

Hakcheon Jeong, Seungjae Han, See-On Park, Tae Ryong Kim, Jongmin Bae, Taehwan Jang, Yoonho
Cho, Seokho Seo, Hyun-Jun Jeong, Seungwoo Park, Taehoon Park, Juyoung Oh, Jeongwoo Park,
Kwangwon Koh, Kang-Ho Kim, Dongsuk Jeon, Inyong Kwon, Young-Gyu Yoon, and Shinhyun
Choi. Self-supervised video processing with self-calibration on an analogue computing platform
based on a selector-less memristor array. Nature Electronics, Jan 2025. ISSN 2520-1131. doi: 10.
1038/s41928-024-01318-6. URL https://doi.org/10.1038/s41928-024-01318-6.

Mehrzad Karamimanesh, Ebrahim Abiri, Mahyar Shahsavari, Kourosh Hassanli, André van Schaik,
and Jason Eshraghian. Spiking neural networks on fpga: A survey of methodologies and recent
advancements. Neural Networks, 186:107256, 2025. ISSN 0893-6080. doi: https://doi.org/10.1016/
j.neunet.2025.107256. URL https://www.sciencedirect.com/science/article/
pii/S0893608025001352.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-łojasiewicz condition, 2020. URL https://arxiv.org/
abs/1608.04636.

Asif Ali Khan, João Paulo C. De Lima, Hamid Farzaneh, and Jeronimo Castrillon. The landscape
of compute-near-memory and compute-in-memory: A research and commercial overview, 2024.
URL https://arxiv.org/abs/2401.14428.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical re-
port, University of Toronto, 2009. URL https://www.cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf.

James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down Approach (6th Edition).
Pearson, 6th edition, 2012. ISBN 0132856204.

Xavier Lagorce, Evangelos Stromatias, Francesco Galluppi, Luis A. Plana, Shih-Chii Liu,
Steve B. Furber, and Ryad B. Benosman. Breaking the millisecond barrier on spinnaker:
implementing asynchronous event-based plastic models with microsecond resolution. Fron-
tiers in Neuroscience, Volume 9 - 2015, 2015. ISSN 1662-453X. doi: 10.3389/fnins.
2015.00206. URL https://www.frontiersin.org/journals/neuroscience/
articles/10.3389/fnins.2015.00206.

Corey Lammie, Wei Xiang, Bernabé Linares-Barranco, and Mostafa Rahimi Azghadi. Mem-
torch: An open-source simulation framework for memristive deep learning systems. Neu-
rocomputing, 485:124–133, 2022. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.
2022.02.043. URL https://www.sciencedirect.com/science/article/pii/
S0925231222002053.

Manuel Le Gallo, Corey Lammie, Julian Büchel, Fabio Carta, Omobayode Fagbohungbe, Charles
Mackin, Hsinyu Tsai, Vijay Narayanan, Abu Sebastian, Kaoutar El Maghraoui, and Malte J.
Rasch. Using the ibm analog in-memory hardware acceleration kit for neural network training
and inference. APL Machine Learning, 1(4), November 2023. ISSN 2770-9019. doi: 10.1063/5.
0168089. URL http://dx.doi.org/10.1063/5.0168089.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

13

https://ojs.aaai.org/index.php/AAAI/article/view/25947
https://ojs.aaai.org/index.php/AAAI/article/view/25947
https://www.frontiersin.org/article/10.3389/fninf.2018.00089
https://doi.org/10.1038/s41928-024-01318-6
https://www.sciencedirect.com/science/article/pii/S0893608025001352
https://www.sciencedirect.com/science/article/pii/S0893608025001352
https://arxiv.org/abs/1608.04636
https://arxiv.org/abs/1608.04636
https://arxiv.org/abs/2401.14428
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2015.00206
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2015.00206
https://www.sciencedirect.com/science/article/pii/S0925231222002053
https://www.sciencedirect.com/science/article/pii/S0925231222002053
http://dx.doi.org/10.1063/5.0168089

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Hyun-Jong Lee and Jae-Han Lim. Analysis on effects of fault elements in memristive neuromorphic
systems. In IJCAI 2023 GLOW workshop, 2023. URL https://arxiv.org/abs/2312.
04840.

Hyun-Jong Lee and Jae-Han Lim. Adaptive synaptic adjustment mechanism to improve learning
performances of spiking neural networks. Computational Intelligence, 40(5):e70001, 2024. doi:
https://doi.org/10.1111/coin.70001. URL https://onlinelibrary.wiley.com/doi/
abs/10.1111/coin.70001.

Yudong Li, Yunlin Lei, and Xu Yang. Spikeformer: Training high-performance spiking neural network
with transformer. Neurocomputing, 574:127279, 2024a. ISSN 0925-2312. doi: https://doi.org/
10.1016/j.neucom.2024.127279. URL https://www.sciencedirect.com/science/
article/pii/S092523122400050X.

Yuhang Li, Tamar Geller, Youngeun Kim, and Priyadarshini Panda. Seenn: towards temporal
spiking early-exit neural networks. In Proceedings of the 37th International Conference on Neural
Information Processing Systems, NIPS ’23, Red Hook, NY, USA, 2024b. Curran Associates Inc.

Shuang Lian, Jiangrong Shen, Qianhui Liu, Ziming Wang, Rui Yan, and Huajin Tang. Learnable
surrogate gradient for direct training spiking neural networks. In Edith Elkind (ed.), Proceedings
of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23, pp.
3002–3010. International Joint Conferences on Artificial Intelligence Organization, 8 2023. doi:
10.24963/ijcai.2023/335. URL https://doi.org/10.24963/ijcai.2023/335. Main
Track.

Ling Liang, Xing Hu, Lei Deng, Yujie Wu, Guoqi Li, Yufei Ding, Peng Li, and Yuan Xie. Exploring
adversarial attack in spiking neural networks with spike-compatible gradient. IEEE Transactions
on Neural Networks and Learning Systems, 34(5):2569–2583, 2023. doi: 10.1109/TNNLS.2021.
3106961.

Tao Liu, Wujie Wen, Lei Jiang, Yanzhi Wang, Chengmo Yang, and Gang Quan. A fault-tolerant
neural network architecture. In 2019 56th ACM/IEEE Design Automation Conference (DAC), pp.
1–6, 2019.

Tongliang Liu, Gábor Lugosi, Gergely Neu, and Dacheng Tao. Algorithmic stability and hypothesis
complexity, 2017. URL https://arxiv.org/abs/1702.08712.

David G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91–110, Nov 2004. ISSN 1573-1405. doi: 10.1023/B:VISI.0000029664.
99615.94. URL https://doi.org/10.1023/B:VISI.0000029664.99615.94.

M. Martemucci, F. Rummens, Y. Malot, et al. A ferroelectric–memristor memory for both training
and inference. Nature Electronics, 8:921–933, 2025. doi: 10.1038/s41928-025-01454-7.

Abhishek Moitra, Abhiroop Bhattacharjee, Runcong Kuang, Gokul Krishnan, Yu Cao, and
Priyadarshini Panda. Spikesim: An end-to-end compute-in-memory hardware evaluation tool
for benchmarking spiking neural networks. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 42(11):3815–3828, 2023. doi: 10.1109/TCAD.2023.3274918.

Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51–63, 2019. doi: 10.1109/MSP.2019.2931595.

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer Publishing
Company, Incorporated, 1 edition, 2014. ISBN 1461346916.

Sathish Panchapakesan, Zhenman Fang, and Jian Li. Syncnn: Evaluating and accelerating spiking
neural networks on fpgas. In 2021 31st International Conference on Field-Programmable Logic
and Applications (FPL), pp. 286–293, 2021. doi: 10.1109/FPL53798.2021.00058.

Melika Payvand, Mohammed E. Fouda, Fadi Kurdahi, Ahmed M. Eltawil, and Emre O. Neftci.
On-chip error-triggered learning of multi-layer memristive spiking neural networks. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 10(4):522–535, 2020. doi: 10.1109/
JETCAS.2020.3040248.

14

https://arxiv.org/abs/2312.04840
https://arxiv.org/abs/2312.04840
https://onlinelibrary.wiley.com/doi/abs/10.1111/coin.70001
https://onlinelibrary.wiley.com/doi/abs/10.1111/coin.70001
https://www.sciencedirect.com/science/article/pii/S092523122400050X
https://www.sciencedirect.com/science/article/pii/S092523122400050X
https://doi.org/10.24963/ijcai.2023/335
https://arxiv.org/abs/1702.08712
https://doi.org/10.1023/B:VISI.0000029664.99615.94

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for explanation of
black-box models, 2018. URL https://arxiv.org/abs/1806.07421.

Michael Pfeiffer and Thomas Pfeil. Deep learning with spiking neurons: Opportunities and
challenges. Frontiers in Neuroscience, 12, 2018. ISSN 1662-453X. doi: 10.3389/fnins.
2018.00774. URL https://www.frontiersin.org/journals/neuroscience/
articles/10.3389/fnins.2018.00774.

Rachmad Vidya Wicaksana Putra, Muhammad Abdullah Hanif, and Muhammad Shafique. Softsnn:
low-cost fault tolerance for spiking neural network accelerators under soft errors. In Proceedings
of the 59th ACM/IEEE Design Automation Conference, DAC ’22, pp. 151–156, New York, NY,
USA, 2022. Association for Computing Machinery. ISBN 9781450391429. doi: 10.1145/3489517.
3530657. URL https://doi.org/10.1145/3489517.3530657.

Rachmad Vidya Wicaksana Putra, Muhammad Abdullah Hanif, and Muhammad Shafique. Res-
cuesnn: enabling reliable executions on spiking neural network accelerators under perma-
nent faults. Frontiers in Neuroscience, 17, 2023. ISSN 1662-453X. doi: 10.3389/fnins.
2023.1159440. URL https://www.frontiersin.org/journals/neuroscience/
articles/10.3389/fnins.2023.1159440.

Zexuan Qiu, Zijing Ou, Bin Wu, Jingjing Li, Aiwei Liu, and Irwin King. Entropy-based decod-
ing for retrieval-augmented large language models. In Proceedings of the 2025 Conference of
the North American Chapter of the Association for Computational Linguistics (NAACL), Long
Papers, pp. 4616–4627, Albuquerque, New Mexico, 2025. Association for Computational Linguis-
tics. doi: 10.18653/v1/2025.naacl-long.236. URL https://aclanthology.org/2025.
naacl-long.236/.

Mehul Rastogi, Sen Lu, Nafiul Islam, and Abhronil Sengupta. On the self-repair role of astrocytes
in stdp enabled unsupervised snns. Frontiers in Neuroscience, Volume 14 - 2020, 2021. ISSN
1662-453X. doi: 10.3389/fnins.2020.603796. URL https://www.frontiersin.org/
journals/neuroscience/articles/10.3389/fnins.2020.603796.

Alpha Renner, Forrest Sheldon, Anatoly Zlotnik, Louis Tao, and Andrew Sornborger. The backpropa-
gation algorithm implemented on spiking neuromorphic hardware. Nature Communications, 15(1):
9691, 2024. doi: 10.1038/s41467-024-53827-9.

Reyes-Ortiz, Jorge, Anguita, Davide, Ghio, Alessandro, Oneto, Luca, Parra, and Xavier. Hu-
man activity recognition using smartphones. UCI Machine Learning Repository, 2013. DOI:
https://doi.org/10.24432/C54S4K.

Amirhossein Rostami, Bernhard Vogginger, Yexin Yan, and Christian G. Mayr. E-prop on
spinnaker 2: Exploring online learning in spiking rnns on neuromorphic hardware. Fron-
tiers in Neuroscience, Volume 16 - 2022, 2022. ISSN 1662-453X. doi: 10.3389/fnins.
2022.1018006. URL https://www.frontiersin.org/journals/neuroscience/
articles/10.3389/fnins.2022.1018006.

Anurup Saha, Chandramouli Amarnath, and Abhijit Chatterjee. A resilience framework for synapse
weight errors and firing threshold perturbations in rram spiking neural networks. In 2023 IEEE
European Test Symposium (ETS), pp. 1–4, 2023. doi: 10.1109/ETS56758.2023.10174229.

Anurup Saha, Chandramouli Amarnath, Kwondo Ma, and Abhijit Chatterjee. Signature driven
post-manufacture testing and tuning of rram spiking neural networks for yield recovery. In 2024
29th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 740–745, 2024. doi:
10.1109/ASP-DAC58780.2024.10473874.

Jozsef Sandor. The Schur-convexity of Stolarsky and Gini means. Banach Journal of Mathematical
Analysis, 1(2):212 – 215, 2007. doi: 10.15352/bjma/1240336218. URL https://doi.org/
10.15352/bjma/1240336218.

Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date,
and Bill Kay. Opportunities for neuromorphic computing algorithms and applications. Nature
Computational Science, 2(1):10–19, Jan 2022. doi: 10.1038/s43588-021-00184-y. URL https:
//doi.org/10.1038/s43588-021-00184-y.

15

https://arxiv.org/abs/1806.07421
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2018.00774
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2018.00774
https://doi.org/10.1145/3489517.3530657
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1159440
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1159440
https://aclanthology.org/2025.naacl-long.236/
https://aclanthology.org/2025.naacl-long.236/
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2020.603796
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2020.603796
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.1018006
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.1018006
https://doi.org/10.15352/bjma/1240336218
https://doi.org/10.15352/bjma/1240336218
https://doi.org/10.1038/s43588-021-00184-y
https://doi.org/10.1038/s43588-021-00184-y

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Sumit Bam Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time, 2018.
URL https://arxiv.org/abs/1810.08646.

Ayesha Siddique and Khaza Anuarul Hoque. Improving reliability of spiking neural networks through
fault aware threshold voltage optimization, 2023. URL https://arxiv.org/abs/2301.
05266.

Steven S. Skiena. The Algorithm Design Manual. Springer, 2 edition, 2008. doi: 10.1007/
978-1-84800-070-4.

Theofilos Spyrou, Sarah A. El-Sayed, Engin Afacan, Luis A. Camuñas-Mesa, Bernabé Linares-
Barranco, and Haralampos-G. Stratigopoulos. Neuron fault tolerance in spiking neural networks.
In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 743–748,
2021. doi: 10.23919/DATE51398.2021.9474081.

Kenneth Stewart, Garrick Orchard, Sumit Bam Shrestha, and Emre Neftci. Live demonstration:
On-chip few-shot learning with surrogate gradient descent on a neuromorphic processor. In 2020
2nd IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp.
128–128, 2020. doi: 10.1109/AICAS48895.2020.9073961.

Shigeyuki Takano and Hideharu Amano. Reconfiguration cost for reconfigurable computing archi-
tectures. In 2022 23rd ACIS International Summer Virtual Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Summer), pp. 62–
67, 2022. doi: 10.1109/SNPD-Summer57817.2022.00019.

Yudong Tao, Rui Ma, Mei-Ling Shyu, and Shu-Ching Chen. Challenges in energy-efficient deep
neural network training with FPGA. In Proceedings of the 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1602–1611. Computer Vision
Foundation / IEEE, 2020. ISBN 978-1-7281-9360-1. doi: 10.1109/CVPRW50498.2020.00208.
URL https://openaccess.thecvf.com/content_CVPRW_2020/html/w28/
Tao_Challenges_in_Energy-Efficient_Deep_Neural_Network_Training_
with_FPGA_CVPRW_2020_paper.html.

M. L. Varshika, Sarah Johari, Jayanth Dubey, and Anup Das. Design of a tunable astrocyte neuromor-
phic circuitry with adaptable fault tolerance. In 2023 IEEE 66th International Midwest Symposium
on Circuits and Systems (MWSCAS), pp. 904–908, 2023. doi: 10.1109/MWSCAS57524.2023.
10405978.

Elena-Ioana Vatajelu, Giorgio Di Natale, and Lorena Anghel. Special session: Reliability of hardware-
implemented spiking neural networks (snn). In 2019 IEEE 37th VLSI Test Symposium (VTS), pp.
1–8, 2019. doi: 10.1109/VTS.2019.8758653.

Yeshwanth Venkatesha, Youngeun Kim, Leandros Tassiulas, and Priyadarshini Panda. Federated
learning with spiking neural networks. IEEE Transactions on Signal Processing, 69:6183–6194,
2021. doi: 10.1109/TSP.2021.3121632.

The H. Vu, Ogbodo Mark Ikechukwu, and Abderazek Ben Abdallah. Fault-tolerant spike routing
algorithm and architecture for three dimensional noc-based neuromorphic systems. IEEE Access,
7:90436–90452, 2019. doi: 10.1109/ACCESS.2019.2925085.

Ziming Wang, Runhao Jiang, Shuang Lian, Rui Yan, and Huajin Tang. Adaptive smoothing gradient
learning for spiking neural networks. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Bar-
bara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
35798–35816. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
wang23j.html.

Rachmad Vidya Wicaksana Putra, Muhammad Abdullah Hanif, and Muhammad Shafique. Respawn:
Energy-efficient fault-tolerance for spiking neural networks considering unreliable memories. In
2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD), pp. 1–9, 2021.
doi: 10.1109/ICCAD51958.2021.9643524.

16

https://arxiv.org/abs/1810.08646
https://arxiv.org/abs/2301.05266
https://arxiv.org/abs/2301.05266
https://openaccess.thecvf.com/content_CVPRW_2020/html/w28/Tao_Challenges_in_Energy-Efficient_Deep_Neural_Network_Training_with_FPGA_CVPRW_2020_paper.html
https://openaccess.thecvf.com/content_CVPRW_2020/html/w28/Tao_Challenges_in_Energy-Efficient_Deep_Neural_Network_Training_with_FPGA_CVPRW_2020_paper.html
https://openaccess.thecvf.com/content_CVPRW_2020/html/w28/Tao_Challenges_in_Energy-Efficient_Deep_Neural_Network_Training_with_FPGA_CVPRW_2020_paper.html
https://proceedings.mlr.press/v202/wang23j.html
https://proceedings.mlr.press/v202/wang23j.html

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Torbjörn Wigren and Reem Karaki. Globally stable wireless data flow control. IEEE Transactions on
Control of Network Systems, 5(1):469–478, 2018. doi: 10.1109/TCNS.2016.2619906.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: A novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017. URL
https://arxiv.org/abs/1708.07747.

Shuangming Yang, Jiang Wang, Bin Deng, Mostafa Rahimi Azghadi, and Bernabe Linares-Barranco.
Neuromorphic context-dependent learning framework with fault-tolerant spike routing. IEEE
Transactions on Neural Networks and Learning Systems, 33(12):7126–7140, 2022. doi: 10.1109/
TNNLS.2021.3084250.

Man Yao, Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and Guoqi
Li. Attention spiking neural networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(8):9393–9410, 2023. doi: 10.1109/TPAMI.2023.3241201.

Mingqi Yin, Xiaole Cui, Feng Wei, Hanqing Liu, Yuanyuan Jiang, and Xiaoxin Cui. A re-
configurable fpga-based spiking neural network accelerator. Microelectronics Journal, 152:
106377, 2024. ISSN 1879-2391. doi: https://doi.org/10.1016/j.mejo.2024.106377. URL https:
//www.sciencedirect.com/science/article/pii/S187923912400081X.

Shlomo Yitzhaki and Edna Schechtman. The Gini Methodology: A Primer on a Statistical Method-
ology. Springer Series in Statistics. Springer, New York, 2013. ISBN 978-1-4614-4719-1. doi:
10.1007/978-1-4614-4720-7.

Anlan Yu, Ning Lyu, Jieming Yin, Zhiyuan Yan, and Wujie Wen. COLA: Orchestrating error coding
and learning for robust neural network inference against hardware defects. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 40277–40289. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/yu23a.html.

Aybars Yunusoglu, Dexter Le, Murat Isik, I. Can Dikmen, and Teoman Karadag. Neuromorphic
circuits with spiking astrocytes for increased energy efficiency, fault tolerance, and memory
capacitance, 2025. URL https://arxiv.org/abs/2502.20492.

Friedemann Zenke and Tim P. Vogels. The remarkable robustness of surrogate gradient learning for
instilling complex function in spiking neural networks. Neural Computation, 33(4):899–925, 03
2021. ISSN 0899-7667. doi: 10.1162/neco_a_01367. URL https://doi.org/10.1162/
neco_a_01367.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. In Advances in Neural Informa-
tion Processing Systems 32 (NeurIPS 2019), pp. 12360–12371, 2019. URL https://papers.
nips.cc/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.
pdf.

17

https://arxiv.org/abs/1708.07747
https://www.sciencedirect.com/science/article/pii/S187923912400081X
https://www.sciencedirect.com/science/article/pii/S187923912400081X
https://proceedings.mlr.press/v202/yu23a.html
https://arxiv.org/abs/2502.20492
https://doi.org/10.1162/neco_a_01367
https://doi.org/10.1162/neco_a_01367
https://papers.nips.cc/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://papers.nips.cc/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://papers.nips.cc/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

APPENDIX INDEX

Appendix A Discussion

A Discussion

Appendix B Additional experimental results on classification accuracy

B.1 Additional datasets beyond MNIST, FMNIST, CIFAR-10, and CIFAR-100
B.1.1 Sequential dataset
B.1.2 Large image dataset

B.2 Changing the number of time steps
B.2.1 4 time steps
B.2.2 8 time steps

B.3 Under the different types of synaptic faults
B.3.1 RWFs
B.3.2 CEFs

B.4 Ablation study on the combination of our mechanism
B.4.1 MLP model (MNIST, FMNIST)
B.4.2 VGG-7 and ResNet-18 models (CIFAR-10 and CIFAR-100)

B.5 Various hyperparameter settings with our mechanism
B.5.1 MLP model (MNIST and FMNIST)
B.5.2 VGG-7 and ResNet-18 models (CIFAR-10 and CIFAR-100)

B.6 Using Deep Neural Networks (DNNs)
B.7 Using SNNs with unsupervised learning
B.8 Evaluations with real FPGA hardware

Appendix C Efficiency analysis based on time/spatial complexity and time/energy consumption

C.1 Complexity analysis
C.1.1 Time complexity
C.1.2 Spatial complexity

C.2 Training time
C.3 Energy consumption on the real FPGA device

Appendix D Detailed mathematical explanation of the motivation study

D.1 Setup and notation
D.2 Surrogate gradient corridor
D.3 Fault modeling
D.4 From faults to saturation
D.5 Expected gradient bound for a single neuron
D.6 Depth- and time-wise compounding
D.7 First-layer sensitivity in MLP
D.8 Sufficient condition for gradient collapse
D.9 Effective bias interpretation for SA0/SA1 of SAFs
D.10 Summary

Appendix E Near-optimality of the proposed mechanism

E.1 Setup and notation
E.2 Fault models and a basic upper bound
E.3 Calibration: aligning the importance map with the effective per-index load
E.4 Quantile stripes are additively near-optimal (contiguous case)
E.5 Corridor preservation: sufficient conditions
E.6 On the Gini objective (primary surrogate for min–max load)
E.7 Computing the scan/stripes
E.8 Summary

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Appendix F Fault-tolerance capacity prediction of our mechanism
F.1 Setup and notation
F.2 Capacity under SAFs
F.3 Capacity under RWFs
F.4 Capacity under CEFs
F.5 Summary

Appendix G Convergence analysis with the proposed mechanism
G.1 Setup and notation
G.2 Band condition enforced by our mechanism
G.3 Optimization objective and assumptions
G.4 Descent lemma and master inequality
G.5 Summary

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A DISCUSSION

In this section, we discuss the pros and cons of the proposed mechanism and the lightweight
approaches mentioned in Subsection 3.2 (Saha et al., 2023; Spyrou et al., 2021; Saha et al., 2024).
Furthermore, we demonstrate that our mechanism exhibits stronger fault mitigation ability than the
lightweight approaches, consuming less overhead than the other approaches. Existing lightweight
mechanisms for hardware SNN fault mitigation rely on continuously monitoring internal neuron
currents or spike statistics and mitigating the adversarial effects of hardware defects (Spyrou et al.,
2021; Saha et al., 2023). These designs are acceptable and lightweight for neuromorphic devices that
frequently perform inferences due to their simple operations. However, their computational overhead
significantly increases in large SNN models. This is because scanning all weights or neuron states
and aggregating their statistics grows exponentially as the model’s size increases. Furthermore, they
inevitably discard fault-affected pre-activation values, which causes information loss. In contrast, our
mechanism avoids direct inspection of entire elements in SNN models or modification of synaptic
weights or circuits in hardware. Instead, it computes a sensitivity score from the input samples and a
single reference layer for fragmentation. Therefore, the external controller only needs to exchange
a small amount of metadata with the neuromorphic device instead of full weight or neuron maps
(Khan et al., 2024). When it comes to test-based schemes, they amortize their cost by running only
intermittently (Spyrou et al., 2021; Saha et al., 2024). However, they cannot react to permanent faults
that arise during deployment. On the other hand, our mechanism always executes during training
and inference, incurs modest per-execution overhead, and can immediately adapt the fragmentation
strategy to the current fault state in agile environments. Overall, the proposed mechanism provides
the following complementary points in the design space. First, it scales better than forward-pass
approaches with scanning to large hardware-implemented SNNs, which are important for modern
neuromorphic devices (Yin et al., 2024). Second, it trades higher continuous overhead than periodic
self-test approaches, achieving substantially stronger mitigation of permanent faults. We compare the
accuracy and inference time of the proposed mechanism to that of other representative lightweight
mechanisms: input suppression, fault hopping, and threshold tuning (Saha et al., 2023; Spyrou et al.,
2021; Saha et al., 2024).

Table 4: The SNN model’s classification accuracy and summation of inference time over 100 repetitions in a
95% confidence interval with other lightweight approaches and our mechanism under the 30% fault ratio of
SAFs.

DATASETS (MODELS) INPUT SUPPRESSION FAULT HOPPING THRESHOLD TUNING PROPOSED

ACCURACY (%) IN SOFTWARE-BASED SNN MODELS

MNIST (MLP) 88.38± 1.15 86.41± 0.98 87.23± 1.52 93.79 ± 1.06
FMNIST (MLP) 80.45± 1.22 79.86± 1.16 78.98± 1.39 85.47 ± 0.92
CIFAR-10 (VGG-7) 34.67± 3.21 30.28± 3.34 27.91± 3.26 45.94 ± 3.17

ACCURACY (%) IN FPGA-IMPLEMENTED SNN MODELS

MNIST (MLP) 86.7± 1.32 84.28± 1.28 85.87± 1.65 91.43 ± 1.17
FMNIST (MLP) 78.46± 0.98 75.39± 1.14 73.63± 1.27 84.05 ± 1.09
CIFAR-10 (VGG-7) 31.94± 3.8 27.14± 3.72 24.75± 2.87 38.11 ± 3.58

INFERENCE TIME (SEC) IN FPGA-IMPLEMENTED SNN MODELS

MNIST (MLP) 283.64± 4.85 254.43± 2.1 213.67± 2.38 191.28 ± 1.25
FMNIST (MLP) 285.27± 5.17 255.79± 1.98 215.09± 2.51 193.54 ± 1.62
CIFAR-10 (VGG-7) 500.59± 7.34 327.11± 3.83 292.41± 4.86 277.09 ± 3.47

INFERENCE TIME (SEC) IN FPGA-IMPLEMENTED SNN MODELS

MNIST (MLP) 80.26± 1.06 62.35± 0.93 50.39± 0.61 45.26 ± 0.73
FMNIST (MLP) 81.38± 1.19 64.84± 1.25 51.08± 0.67 46.38 ± 0.76
CIFAR-10 (VGG-7) 124.22± 2.42 101.57± 2.61 78.53± 1.3 68.91 ± 1.05

Table 4 presents the accuracy and summation of inference time over 100 iterations (assuming the actual
scenarios) for the SNN models using the lightweight approaches and the proposed mechanism under
20% SAFs. Our mechanism exhibits more effective fault mitigation ability than other lightweight
approaches, consuming less or comparable inference time to these approaches.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B ADDITIONAL EXPERIMENTAL RESULTS ON CLASSIFICATION ACCURACY

We present additional experimental results that support the proposed mechanism in this section.
The extra results demonstrate that our mechanism enhances the neural networks’ fault tolerance
more effectively than the previous methods2 in various environments and scenarios, including real
hardware. Furthermore, we discuss the changes in the proposed mechanism’s fault mitigation ability
by adopting various settings to our mechanism.

B.1 ADDITIONAL DATASETS BEYOND MNIST, FMNIST, CIFAR-10, AND CIFAR-100

We use UCI-HAR, AudioMNIST, and Tiny-ImageNet to evaluate the fault mitigation ability of our
mechanism on a sequential and large-scale dataset.

B.1.1 SEQUENTIAL DATASET

To demonstrate that our mechanism works well with the models using sequential datasets, we conduct
experiments with UCI-HAR and AudioMNIST, which comprises six types of human activities
collected by electric sensors and a dataset consisting of verbal sounds of digits (Reyes-Ortiz et al.,
2013; Becker et al., 2024).
Table 5: The MLP model’s classification accuracy in a 95% confidence interval using MNIST, FMNIST,
UCI-HAR, and AudioMNIST with 2 time steps under SAFs.

FAULT RATIO(%) BASELINE ECOC SOFTSNN ROUTING ASTROCYTE FALVOLT LIFA PROPOSED

ACCURACY (%) WITH MLP (UCI-HAR)

0 64.14± 4.91 69.86 ± 4.73 63.41± 4.78 65.17± 4.65 64.78± 4.39 65.76± 4.55 64.69± 4.81 63.14± 4.8
10 20.19± 2.95 23.01± 4.28 22.21± 4.63 23.1± 4.58 21.25± 3.56 23.24± 4.01 16.93± 4.52 50.31±4.68
20 19.66± 2.54 17.1± 0 20.52± 3.85 17.1± 0 20.59± 2.81 22.34± 3.68 17.1± 0 49.24 ± 4.59
30 17.1± 0 17.1± 0 19.9± 2.26 17.1± 0 17.1± 0 19.85± 2.92 17.1± 0 47.31 ± 4.36
40 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.21 ± 0.09
50 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.1± 0
60 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.1± 0
70 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.1± 0
80 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.1± 0
90 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.1± 0

ACCURACY (%) WITH MLP (AUDIOMNIST)

0 96.45± 0.91 96.88 ± 0.97 95.89± 0.92 96.21± 0.85 96.29± 0.93 96.34± 0.89 96.09± 0.93 96.31± 0.87
10 94.47± 1.07 94.56± 1.79 92.56± 1.61 94.03± 1.84 93.08± 1.92 94.47± 1.58 93.28± 2.18 94.98 ± 1.54
20 93.17± 1.56 93.29± 1.98 88.15± 2.84 92.59± 2.02 85.24± 3.68 93.29± 2.13 88.57± 4.26 93.78 ± 1.98
30 92.89± 2.05 93.33± 2.32 75.83± 3.51 91.7± 2.75 51.47± 5.56 92.76± 2.47 55.81± 6.01 93.43 ± 3.09
40 89.5± 3.21 92.51± 2.15 62.49± 5.07 91.24± 3.18 37.55± 6.27 90.63± 2.99 39.64± 6.8 92.65 ± 3.17
50 86.15± 4.18 85.46± 3.83 48.61± 6.92 86.45± 3.97 22.13± 4.49 87.51± 4.24 24.48± 5.07 88.93 ± 4.16
60 52.87± 5.71 66.42± 5.2 34.62± 5.33 64.92± 5.34 10.96± 0.96 65.97± 5.93 12.74± 2.38 67.83 ± 5.77
70 14.6± 1.23 21.64± 2.15 14.58± 1.4 25.84± 3.42 10± 0 28.18± 3.85 10± 0 37.17 ± 3.01
80 11.77± 0.95 13.38± 0.94 9.83± 1.05 14.19± 1.36 10± 0 15.53± 2.36 10± 0 19.75 ± 2.89
90 11.21± 1.01 11.86± 0.87 9.46± 1.22 11.68± 0.96 10± 0 10± 0 10± 0 12.83 ± 1.02

Table 5 shows the classification accuracy of the MLP model using UCI-HAR. Using the MLP model
with a sequential dataset, the model with the proposed mechanism exhibits better fault tolerance
than the baseline and benchmarks, classifying data samples more accurately than the models with
the baseline and benchmarks. As results with UCI-HAR, the model with the proposed mechanism
achieves the highest classification accuracy under SAFs. These experimental results with the two
sequential datasets demonstrate that our mechanism successfully improves fault tolerance of SNNs
on other domains, such as sensor-obtained and audio data samples.

2The benchmarks mentioned in Section 6.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

B.1.2 LARGE IMAGE DATASET

We use the ResNet-34 model to classify data samples in Tiny-ImageNet, which is a small version
of the ImageNet dataset, consisting of 64 × 64 pixel images with 200 classes. We measure the
classification accuracy of the model with Tiny-ImageNet under SAFs.
Table 6: The ResNet-34 model’s classification accuracy in a 95% confidence interval using Tiny-ImageNet
under SAFs with 2 time steps.

FAULT RATIO(%) BASELINE ECOC SOFTSNN ROUTING ASTROCYTE FALVOLT LIFA PROPOSED

0 3.38± 2.11 3.61± 2.24 3.27± 2.08 3.24± 2.16 0.65± 0.15 3.47± 1.98 0.59± 0.09 3.96 ± 2.39
10 0.65± 0.12 0.69± 0.15 0.68± 0.13 0.71± 0.19 0.5± 0 0.72± 0.16 0.5± 0 1.17±0.28
20 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.63 ± 0.12
30 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.56 ± 0.06
40 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0
50 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0
60 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0
70 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0
80 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0
90 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0

Table 6 presents the average classification accuracy of the ResNet-34 model with the baseline,
benchmarks, and proposed mechanism using Tiny-ImageNet. The classification accuracy of the
model degrades because the dataset is complex, and SNN models have lower learning capabilities
compared to DNN models. Despite the low classification accuracy, the model with our mechanism
classifies data samples in Tiny-ImageNet with the highest accuracy. Moreover, the model with our
mechanism exhibits higher accuracy than others in the clean scenario (without SAFs). This is because
our mechanism leads the models to emit the output precisely through entropy-based decoding.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

B.2 CHANGING THE NUMBER OF TIME STEPS

We change the number of time steps to 4 and 8, observing the accuracy trend of all SNN models in
the number of time steps. We obtain the experiment results with 4 and 8 time steps by repeating the
experiments 10 times.

B.2.1 4 TIME STEPS

Figure 6: Average classification accuracy of various SNN models with the baseline, benchmarks, and proposed
mechanism under SAFs using 4 time steps. The x-axis is the fault ratio (%) and the y-axis is the accuracy (%).

Figure 6 illustrates the classification accuracy of SNN models compared to the baseline, benchmarks,
and proposed mechanism under SAFs with 4 time steps. The models with our mechanism exhibit the
best fault tolerance to faults in most cases, like the experimental results with 2 time steps. We observe
that the classification accuracy of all models overall improves as the number of time steps increases,
because the large number of time steps improves the performance of SNNs (Li et al., 2024b).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B.2.2 8 TIME STEPS

Figure 7: Average classification accuracy of various SNN models with the baseline, benchmarks, and proposed
mechanism under SAFs using 8 time steps. The x-axis is the fault ratio (%) and the y-axis is the accuracy (%).

Figure 7 depicts the classification accuracy of SNN models compared to the baseline, benchmarks,
and proposed mechanism under SAFs with 8 time steps. As demonstrated in the experimental results
with 2 and 4 time steps, the models with our mechanism classify data samples most accurately. The
models’ accuracy is also higher than when using 2 and 4 time steps. Interestingly, the fault mitigation
ability of our mechanism degrades only in the experiment with MNIST samples. This is because the
MNIST samples contain fewer pixels than FMNIST, CIFAR-10, and CIFAR-100. However, they are
divided into too small fragments, and these fragments do not have sufficient information for the MLP
model to learn. Thus, the fault tolerance of the model with our mechanism weakens, although it is
more fault-robust than models with the benchmarks.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

B.3 UNDER THE DIFFERENT TYPES OF SYNAPTIC FAULTS

We inject RWFs and CEFs into the synapses of the SNN models and measure the fault mitigation
ability of the benchmarks and the proposed mechanism. The models with our mechanism classify
data samples most accurately under RWFs and CEFs.

B.3.1 RWFS

We use a Gaussian distribution to model RWFs, setting the standard deviation of the distribution to
0.5 (Garaffa et al., 2021; Spyrou et al., 2021; Vatajelu et al., 2019). We

Figure 8: Average classification accuracy of various SNN models with the baseline, benchmarks, and proposed
mechanism under RWFs using 2 time steps. The x-axis is the fault ratio (%) and the y-axis is the accuracy (%).

Figure 8 depicts the classification accuracy of SNN models with the baseline, benchmarks, and
proposed mechanism under RWFs. The models with our mechanism exhibit the highest accuracy
in classifying MNIST, FMNIST, CIFAR-10, and CIFAR-100. This is because our mechanism suc-
cessfully prevents the pre-activation magnitude from increasing excessively by RWFs. Interestingly,
ECOC presents high fault mitigation ability under RWFs. This is because ECOC uses error correcting
codes, which are robust against Gaussian noise in channels to compensate for errors caused by faults
in the last layer (Liu et al., 2019).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

B.3.2 CEFS

CEFs change the connections between spiking neurons randomly, ruining the learned information of
SNN models (Vatajelu et al., 2019).

Figure 9: Average classification accuracy of various SNN models with the baseline, benchmarks, and proposed
mechanism under CEFs using 2 time steps. The x-axis is the fault ratio (%) and the y-axis is the accuracy (%).

Figure 9 illustrates the classification accuracy of SNN models with the baseline, benchmarks, and
proposed mechanism under CEFs. Our mechanism also presents the best fault mitigation ability. The
classification accuracy of SNN models under CEFs is higher than that of the models under SAFs and
RWFs. This is because the weights of faulty synapses are uniform under CEFs, and the pre-activation
magnitude does not increase significantly. Thus, the pre-activation does not lie in a value that is far
from the surrogate gradient corridor.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

B.4 ABLATION STUDY ON THE COMBINATION OF OUR MECHANISM

We conduct ablation studies by changing the settings of our mechanism (horizontally-fixed vs Gini-
based and only complexity-based sensitivity score vs complexity and influence combined sensitivity
score).

B.4.1 MLP MODEL (MNIST, FMNIST)

Table 7: The MLP model’s classification accuracy in a 95% confidence interval with different settings of our
mechanism under SAFs.

FAULT RATIO(%) BASELINE HORIZONTAL GINI(COMPLEXITY ONLY) GINI(PROPOSED)

ACCURACY (%) WITH MLP (MNIST)

0 97.35± 0.46 86.68± 3.51 97.37± 0.44 97.44 ± 0.39
10 96.94± 1.01 75.77± 4.96 96.76± 0.95 97.25 ± 0.98
20 11.35± 0 71.13± 4.81 93.64± 1.44 93.84 ± 1.37
30 10.82± 0 65.78± 5.39 91.56± 2.61 93.55 ± 1.94
40 10.82± 0 11.35± 0 11.35± 0 86.71 ± 4.68
50 9.8± 0 9.8± 0 9.8± 0 26.91 ± 7.53
60 9.8± 0 9.8± 0 9.8± 0 9.8± 0
70 9.8± 0 9.8± 0 9.8± 0 9.8± 0
80 9.8± 0 9.8± 0 9.8± 0 9.8± 0
90 9.8± 0 9.8± 0 9.8± 0 9.8± 0

ACCURACY (%) WITH MLP (FMNIST)

0 83.99± 0.86 78.09± 1.03 86.29± 0.94 86.8 ± 0.89
10 83.74± 1.79 76.78± 1.9 85.49± 1.43 85.6 ± 1.23
20 10± 0 74.22± 2.54 80.41± 2.19 85.33 ± 1.45
30 10± 0 70.65± 6.17 79.6± 3.72 83.53 ± 2.69
40 10± 0 17.16± 8.84 21.93± 7.63 54.55 ± 6.76
50 10± 0 10± 0 10± 0 10± 0
60 10± 0 10± 0 10± 0 10± 0
70 10± 0 10± 0 10± 0 10± 0
80 10± 0 10± 0 10± 0 10± 0
90 10± 0 10± 0 10± 0 10± 0

Table 7 presents the classification accuracy of the baseline, horizontally-fixed fragmentation, Gini-
based fragmentation using image complexity for the sensitivity score, and Gini-based fragmentation
using image complexity and fault influence of the first layer for the sensitivity score (proposed)
when using MNIST models to classify MNIST and FMNIST data samples. The proposed version
significantly enhances the fault tolerance of the MLP model, as demonstrated by its performance
on MNIST and FMNIST, compared to other settings. This is because the MLP model is vulnerable
to faults in the first layer, as mentioned in Section 4. Thus, using fault influence for the sensitivity
score enhances our mechanism’s fault mitigation ability since it induces the mechanism to minimize
the pre-activation magnitude. We also observe that the wrong fragmentation strategy degrades
classification performance because it damages the information of data samples.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

B.4.2 VGG-7 AND RESNET-18 MODELS (CIFAR-10 AND CIFAR-100)

Table 8: The VGG-7 and ResNet-18 models’ classification accuracy in a 95% confidence interval with different
settings of our mechanism under SAFs.

FAULT RATIO(%) BASELINE HORIZONTAL GINI(COMPLEXITY ONLY) GINI(PROPOSED)

ACCURACY (%) WITH VGG-7 (CIFAR-10)

0 56.26± 1.28 55.75± 1.33 56.68± 1.28 56.86 ± 1.63
10 40.09± 3.34 48.8± 2.67 49.13± 2.32 50.38 ± 2.07
20 31.78± 4.97 42.69± 3.83 45.39± 3.44 45.58 ± 3.76
30 11.74± 4.81 36.55± 4.64 38.23± 4.91 40.26 ± 5.04
40 10.79± 3.56 29.09± 5.72 31.18± 5.52 32.07 ± 5.15
50 10± 0 10± 0 10± 0 17.08 ± 5.74
60 10± 0 10± 0 10± 0 10± 0
70 10± 0 10± 0 10± 0 10± 0
80 10± 0 10± 0 10± 0 10± 0
90 10± 0 10± 0 10± 0 10± 0

ACCURACY (%) WITH RESNET-18 (CIFAR-100)

0 23.77± 4.56 24.12± 4.69 25.11± 4.74 27.96 ± 4.83
10 10.64± 3.82 23.98± 4.41 24.15± 4.32 25.5 ± 4.79
20 6.1± 2.65 19.86± 5.52 21.92± 5.48 24.41 ± 5.38
30 1.98± 0.93 16.62± 4.63 18.43± 5.01 19.72 ± 5.23
40 1.03± 0.82 13.53± 4.29 14.26± 4.57 16.8 ± 4.72
50 0.97± 0.79 11.89± 4.17 12.34± 4.48 13.13 ± 4.52
60 1.01± 0.86 4.68± 2.1 5.12± 2.96 6.25 ± 3.26
70 1± 0 2.25± 1.12 3.9± 1.44 4.27 ± 1.56
80 1± 0 1± 0 1± 0 1.24 ± 0.81
90 1± 0 1± 0 1± 0 1± 0

Table 8 exhibits our ablation study with VGG-7 and ResNet-18 models using CIFAR-10 and CIFAR-
100. Although the proposed mechanism outperforms other settings, the improvement in fault
mitigation ability is not as large as in the cases with the MLP models. This is because VGG-7 and
ResNet-18 models are not as vulnerable to faults in the first layer as the MLP model since they have
additional features to compensate for errors during gradient calculations. Therefore, containing the
fault influence in the sensitivity score does not significantly enhance the fault mitigation ability of our
mechanism.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

B.5 VARIOUS HYPERPARAMETER SETTINGS WITH OUR MECHANISM

We change (λs, λw) to (0.5, 0.5), (0.5, 0.1), and (0.1, 0.5) to show the influence of hyperparameters
on our mechanism.

B.5.1 MLP MODEL (MNIST AND FMNIST)

Table 9: The MLP model’s classification accuracy in a 95% confidence interval with different settings of the
hyperparameter (λs, λw) under SAFs.

FAULT RATIO(%) (0.5, 0.5) (0.5, 0.1) (0.1, 0.5) (0.1, 0.1) (DEFAULT)

ACCURACY (%) WITH MLP (MNIST)

0 97.28± 0.53 97.35± 0.54 97.29± 0.51 97.44 ± 0.39
10 96.34± 1.25 96.58± 1.38 96.05± 1.19 97.25 ± 0.98
20 95.29± 1.67 93.3± 1.63 95.43± 1.58 93.84 ± 1.37
30 91.59± 2.82 92.15± 2.97 86.93± 2.86 93.55 ± 1.94
40 9.8± 0 14.28± 5.47 10.48± 1.39 86.71 ± 4.68
50 9.8± 0 12.6± 5.61 9.8± 0 26.91 ± 7.53
60 9.8± 0 9.8± 0 9.8± 0 9.8± 0
70 9.8± 0 9.8± 0 9.8± 0 9.8± 0
80 9.8± 0 9.8± 0 9.8± 0 9.8± 0
90 9.8± 0 9.8± 0 9.8± 0 9.8± 0

ACCURACY (%) WITH MLP (FMNIST)

0 85.53± 1.05 85.56± 1.14 85.29± 0.99 86.8 ± 0.89
10 85.46± 1.46 85.52± 1.31 85.23± 1.36 85.6 ± 1.23
20 80.89± 3.48 83.57± 2.12 84.41± 2.29 85.33 ± 1.45
30 80.23± 3.8 31.58± 7.03 75.39± 5.45 83.53 ± 2.69
40 33.54± 6.15 18.84± 7.65 10± 0 54.55 ± 6.76
50 10± 0 10± 0 10± 0 10± 0
60 10± 0 10± 0 10± 0 10± 0
70 10± 0 10± 0 10± 0 10± 0
80 10± 0 10± 0 10± 0 10± 0
90 10± 0 10± 0 10± 0 10± 0

Table 9 exhibits the MLP model’s classification accuracy by changing (λs and λw) under SAFs.
The hyperparameter settings predominantly affect the classification accuracy of the MLP model, as
they adjust how the mechanism mitigates the adverse influence of synaptic faults in the first layer,
which damages the model the most severely. We observe that increasing the hyperparameters and
strengthening the effects of the fault influence map do not always leverage the MLP model’s fault
tolerance. This is because the excessive effects of the fault influence map prevent our mechanism
from setting the angle accurately by reflecting the complexity of the input samples and the fault
influence in a balanced way. In addition, we observe that the weight projection map affects our
mechanism more predominantly than the saliency map, since the weight projection map is more
sensitive to changes in weights due to synaptic faults.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

B.5.2 VGG-7 AND RESNET-18 MODELS (CIFAR-10 AND CIFAR-100)

Table 10: The VGG-7 and ResNet-18 models’ classification accuracy in a 95% confidence interval with different
settings of the hyperparameter (λs, λw) under SAFs.

FAULT RATIO(%) (0.5, 0.5) (0.5, 0.1) (0.1, 0.5) (0.1, 0.1) (DEFAULT)

ACCURACY (%) WITH VGG-7 (CIFAR-10)

0 56.48± 1.84 56.06± 1.73 56.03± 1.89 56.86 ± 1.63
10 48.12± 3.04 48.88± 2.85 49.34± 2.16 50.38 ± 2.07
20 44.68± 3.69 44.56± 3.66 45.3± 3.59 45.58 ± 3.76
30 39.42± 5.25 39.22± 5.59 39.92± 5.23 40.26 ± 5.04
40 29.62± 5.38 29.52± 5.04 30.21± 5.4 32.07 ± 5.15
50 15.09± 4.76 15.28± 5.17 15.31± 4.98 17.08 ± 5.74
60 10± 0 10± 0 10± 0 10± 0
70 10± 0 10± 0 10± 0 10± 0
80 10± 0 10± 0 10± 0 10± 0
90 10± 0 10± 0 10± 0 10± 0

ACCURACY (%) WITH RESNET-18 (CIFAR-100)

0 26.96± 5.08 26.02± 4.93 25.71± 5.86 27.96 ± 4.83
10 24.26± 4.29 24.76± 4.38 21.75± 4.71 25.5 ± 4.79
20 20.09± 5.66 21.23± 5.96 19.03± 5.09 24.41 ± 5.38
30 16.88± 5.48 17.7± 5.48 15.89± 5.42 19.72 ± 5.23
40 13.25± 5.24 13.68± 5.05 13.25± 4.93 16.8 ± 4.71
50 12.04± 4.93 12.55± 4.34 9.14± 4.69 13.13 ± 4.5
60 4.46± 3.52 4.77± 3.15 4.86± 2.96 6.25 ± 3.26
70 3.61± 1.95 2.89± 1.7 3.05± 1.78 4.27 ± 1.56
80 1± 0 1± 0 1± 0 1.24 ± 0.81
90 1± 0 1± 0 1± 0 1± 0

Table 10 presents the VGG and ResNet Models’ classification accuracy by changing (λs and λw)
under SAFs. Since the significance of the faults in the first layer of the VGG and ResNet Models is
weaker than that of the MLP model, the sensitivity to hyperparameter setting is smaller than that of
the MLP model. Despite the low significance of tuning hyperparameters when using the VGG and
ResNet Models, setting the hyperparameters to the proper value is still important to ensure the best
fault mitigation ability of our mechanism.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

B.6 USING DEEP NEURAL NETWORKS (DNNS)

We inject SAFs into synapses of Deep Neural Networks (DNNs) version of the SNN models,
measuring their classification accuracy with the baseline, benchmarks, and proposed mechanism. We
use Cross-Entropy (CE) as a loss function and Rectified Linear Unit (ReLU) as an activation function.
We set the range of weights to [-100, 100] for MLP and [-500, 500] for CNNs (VGG and ResNet)
since current DNN accelerator devices have a large weight range (Liu et al., 2019; Chen et al., 2017).
Other settings are the same as the SNN models. We exclude Astrocyte, FalVolt, and LIFA from the
benchmarks since they necessarily require bio-plausible spiking neuron models for operation. We use
2 fragments for our mechanism.
Table 11: The DNN models’ classification accuracy in a 95% confidence interval using MNIST, FMNIST,
CIFAR-10, and CIFAR-100 under SAFs.

FAULT RATIO(%) BASELINE ECOC SOFTSNN (TUNED FOR DNN) ROUTING PROPOSED

ACCURACY(%) WITH MLP (MNIST)

0 98.48± 0.19 98.6 ± 0.26 98.49± 0.23 98.45± 0.31 98.54± 0.25
10 97.32± 0.86 97.28± 0.81 97.48± 0.96 97.28± 0.89 97.56 ± 0.74
20 96.62± 1.55 9.8± 0 97.02± 1.32 96.76± 1.47 96.85 ± 1.38
30 96.58± 1.93 9.8± 0 96.3± 1.89 96.64± 1.69 96.72 ± 1.71
40 96.35± 1.81 9.8± 0 96.02± 1.76 96.43± 1.74 96.48 ± 1.85
50 93.3± 3.52 9.8± 0 93.47± 3.62 93.54± 4.02 93.58 ± 3.91
60 77.36± 9.15 9.8± 0 78.03± 8.99 79.89± 8.56 82.62 ± 8.8
70 65.9± 10.49 9.8± 0 68.39± 10.05 67.79± 9.95 74.8 ± 9.72
80 39.64± 8.77 9.8± 0 41.31± 9.12 18.71± 8.89 55.43 ± 8.73
90 8.92± 0 9.8± 0 9.8± 0 15.5± 5.7 19.07 ± 6.21

ACCURACY(%) WITH MLP (FMNIST)

0 90.05± 1.22 91.24 ± 1.3 90.08± 1.24 90.12± 1.13 90.51± 1.19
10 84.38± 2.73 10± 0 84.72± 2.86 86.03± 2.69 86.83 ± 2.71
20 71.67± 3.49 10± 0 72.07± 3.35 74.51± 3.48 79.66 ± 3.48
30 68.01± 5.05 10± 0 70.75± 4.94 73.54± 4.75 74.63 ± 4.79
40 64.93± 5.91 10± 0 63.5± 6.04 64.06± 5.97 65.23 ± 6.25
50 58.63± 6.27 10± 0 62.78± 6.38 60.92± 6.09 64.8 ± 6.31
60 53.57± 7.86 10± 0 57.01± 8.11 54.51± 9.23 58.68 ± 8.77
70 38.01± 9.91 10± 0 39.48± 10.26 35.12± 9.84 41.62 ± 10.34
80 23.5± 8.44 10± 0 26.45± 8.79 25.41± 7.98 33.21 ± 8.59
90 10± 0 10± 0 10± 0 10± 0 11.02 ± 1.02

ACCURACY(%) WITH VGG-7 (CIFAR-10)

0 83.21± 2.76 83.36± 2.58 83.58± 2.53 83.73± 2.47 84.29 ± 2.63
0.01 10± 0 10± 0 52.97± 4.84 67.78± 5.04 70.36 ± 4.81
0.025 10± 0 10± 0 10± 0 10± 0 10± 0
0.05 10± 0 10± 0 10± 0 10± 0 10± 0
0.075 10± 0 10± 0 10± 0 10± 0 10± 0

ACCURACY(%) WITH RESNET-18 (CIFAR-100)

0 53.09± 1.02 40.96± 1.56 53.51± 1.16 53.6± 1.24 53.82 ± 1.19
0.01 46.17± 1.35 37.87± 1.53 47.26± 1.58 46.99± 1.56 48.49 ± 1.47
0.025 43.32± 1.68 34.05± 1.79 43.76± 1.73 44.07± 1.79 45.09 ± 1.66
0.05 41.14± 1.54 32.28± 2.01 42.23± 1.69 42.51± 1.55 42.78 ± 1.48
0.075 39.05± 1.82 31.64± 1.98 40.64± 1.91 39.89± 2.05 41.32 ± 1.85

Table 11 presents the classification accuracy of DNN models with the baseline, benchmarks, and
proposed mechanism. The models with ours exhibit the highest fault robustness among the DNN
models since our mechanism prevents the pre-activation from increasing excessively, and gradients do
not explode severely during training. The MLP DNN model presents higher fault tolerance than the
SNN model regardless of the datasets. This is because the gradient vanishing caused by pre-activation
magnitude growth does not occur severely, since gradients are active when the pre-activation is larger
than 0 in ReLU. Conversely, the fault tolerance of the complicated CNN models (VGG and ResNet)
degrades seriously. This situation appears because these models use lots of batch normalization layers.
The normalization layers normalize the whole channels in the same scale calculated with the batch
samples, causing the amplification of inputs that enter faulty synapses. However, the SNN VGG
and ResNet models are more tolerant of faults than the DNN versions. This is because the spiking
neurons block the perturbation from faults through their internal activation mechanism: only firing
and emitting spikes when their membrane potential reaches the threshold (Liang et al., 2023).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

B.7 USING SNNS WITH UNSUPERVISED LEARNING

The SNN models using unsupervised learning are also important models to implement on-chip
learning of neuromorphic devices. Therefore, we adopt the benchmarks and proposed mechanism to
the widely used SNN model: Diehl&Cook2015 using Spike-Timing-Dependent Plasticity (STDP),
which is a representative unsupervised learning rule (Lee & Lim, 2024; Diehl & Cook, 2015). We
use a reliable framework to implement STDP-based SNNs, named BindsNET, for our experiments
(Hazan et al., 2018).
Table 12: The Diehl&Cook2015 model’s classification accuracy in a 95% confidence interval using MNIST and
FMNIST with 250 time steps under SAFs.

FAULT RATIO(%) BASELINE SOFTSNN ROUTING ASTROCYTE FALVOLT LIFA PROPOSED

ACCURACY (%) WITH DIEHL&COOK2015 (MNIST)

0 86.37± 1.23 85.96± 1.45 86.34± 1.28 86.49± 1.65 86.41 ± 1.61 86.16± 1.54 85.69± 1.72
10 77.07± 1.86 79.34± 2.51 78.5± 2.08 79.16± 1.93 78.89± 2.02 79.58± 2.37 81.03 ± 2.44
20 76.41± 1.9 78.48± 2.67 77.27± 2.36 78.91± 1.88 78.04± 2.45 78.61± 2.51 80.27 ± 2.53
30 74.45± 2.79 76.59± 2.81 77.03± 3.05 77.62± 2.56 78.04± 3.16 78.72± 2.98 79.86 ± 3.14
40 70.87± 4.52 71.95± 4.93 72.35± 4.74 72.48± 4.59 73.19± 4.72 73.43± 4.6 76.57 ± 3.66
50 69.7± 5.15 70.83± 5.26 72.08± 4.91 71.27± 5.38 71.96± 5.84 71.78± 5.64 74.36 ± 5.42
60 67.79± 5.98 69.25± 6.2 70.7± 6.12 69.49± 5.84 70.35± 6.27 70.96± 6.32 72.18 ± 5.96
70 63.46± 5.76 65.51± 5.69 65.28± 5.57 66.93± 5.65 65.97± 5.96 68.08± 5.84 70.4 ± 5.71
80 54.62± 4.84 56.26± 4.98 55.93± 5.05 57.15± 4.72 56.59± 5.13 59.27± 4.99 62.11 ± 5.27
90 33.25± 3.61 38.59± 4.06 40.27± 3.96 39.45± 4.11 41.73± 4.5 43.98± 4.76 52.64 ± 4.98

ACCURACY (%) WITH DIEHL&COOK2015 (FMNIST)

0 27.4± 2.68 27.61± 2.75 27.57± 2.46 27.43± 2.37 27.77 ± 2.84 27.59± 2.7 26.76± 2.36
10 22.66± 3.83 24.54± 3.96 24.8± 3.69 24.96± 3.92 25.11± 3.63 25.7± 3.91 26.17 ± 3.94
20 20.84± 3.95 22.55± 4.12 22.89± 4.17 22.74± 3.86 22.68± 4.09 23.59± 4.28 23.85 ± 4.47
30 18.81± 4.06 20.72± 4.27 21.63± 4.15 20.98± 4.07 21.16± 3.96 22.07± 3.96 22.83 ± 4.25
40 15.47± 2.97 16.8± 3.11 17.25± 3.08 16.97± 3.2 17.15± 3.19 18.23± 3.38 20.65 ± 3.8
50 12.35± 1.76 13.15± 2.57 12.98± 2.61 13.41± 2.85 13.61± 2.79 14.02± 2.91 14.58 ± 3.13
60 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
70 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
80 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
90 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0

Table 12 shows the classification accuracy of Deihl&Cook2015 with the benchmarks and proposed
mechanism under SAFs. We set the number of time steps to 250 and the number of fragments to
2. The model obtains the first fragment repeatedly during the first 125 time steps and the second
fragment during the second 125 time steps. We apply this setting to Deihl&Cook2015 since it cannot
classify data samples as accurately as SNN models with supervised learning (Diehl & Cook, 2015).
We exclude ECOC from the experiment due to its implementation difficulty in STDP-based SNN
models. This is because it is not available in Diehl&Cook since it disturbs the Winner-Takes-All
(WTA) mechanism in Diehl&Cook2015 (Lee & Lim, 2024). As presented in the table, the model with
our mechanism has the highest accuracy under SAFs. This is because our mechanism can mitigate the
adversarial effects of hardware faults for the following reasons. Hardware faults excessively increase
the absolute value of membrane potential (pre-activation in SNN using gradient-based learning rules),
and this unnatural increase causes the over-firing of spiking neurons of the Diehl&Cook2015 (Putra
et al., 2022; Han et al., 2023; Rastogi et al., 2021). When faulty Deihl&Cook2015 obtains the whole
data samples that are not fragmented, fault-injected neurons’ membrane potential always increases or
decreases significantly, preventing the neurons from spiking properly since the pixel values easily
enter the fault-injected synapses. We divide the input samples into small pieces by considering
the complexity of the input samples and the influence of faults to minimize the adversarial effects
of faults and prevent neurons from over- or under-firing. Through fragmentation, the proposed
mechanism reduces the probability that the input pixels enter faulty synapses, and the neurons’
membrane potential avoids increasing or decreasing abnormally. Interestingly, the astrocyte-based
approaches show high fault mitigation ability integrated with Diehl&Cook2015. This is because they
aim to improve the fault tolerance of SNN models using STDP (Han et al., 2023; Yunusoglu et al.,
2025).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

B.8 EVALUATIONS WITH REAL FPGA HARDWARE

We implement the MLP SNN model on a real FPGA device (AMD Virtex UltraScale+ HBM VU47P
of Amazon F2 instance) with SpikerPlus, which is a powerful library to convert Python scripts for
SNNs to VHSIC Hardware Description Language (VHDL) (Carpegna et al., 2024). We choose the
FPGA device for SNN implementation because FPGAs are necessary devices to develop hardware-
based SNN models (Karamimanesh et al., 2025). Due to circuit-level limitations, current FPGA-based
SNN models do not support on-chip training (Carpegna et al., 2024; Tao et al., 2020). Thus, we train
the fault-injected SNN model in a software environment with a Graphics Processing Unit (GPU),
saving the trained weights, and convert the Python script of the software-based models to the VHDL
script. Then, we synthesize the FPGA circuit with Xilinx Vivado and Amazon FPGA Image (AFI),
which is widely used for handling FPGAs on Amazon F2 instances. We build the SNN models on
the FPGA chip and the proposed mechanism on the additional control processor connected to the
FPGA chip. We set the bit-width for the membrane potential and the synaptic weights of the FPGA
device to 8 and 6, respectively. We set the floating-point precision of the input data samples to 32.
We select this setting, referring to the setting of real hardware (BrainChipInc, 2025). Other settings
are the same as the settings in Subsection 6.1.
Table 13: The FPGA-based MLP SNNs’ classification accuracy in a 95% confidence interval using MNIST,
FMNIST, UCI-HAR, and AudioMNIST with 2 time steps under SAFs. Note that we adopt 2 time steps for
training. For inference, we use 100 cycles to process data in the FPGA device.

FAULT RATIO(%) BASELINE ECOC SOFTSNN ROUTING ASTROCYTE FALVOLT LIFA PROPOSED

ACCURACY (%) WITH HARDWARE-IMPLEMENTED MLP (MNIST)

0 94.36± 0.52 93.86± 0.66 94.56± 0.63 94.34± 0.71 94.06± 0.68 93.92± 0.79 93.98± 0.85 94.59 ± 0.65
10 93.18± 1.29 90.94± 2.35 93.29± 1.56 93.58± 1.9 93.26± 1.44 92.69± 1.62 92.59± 1.74 94.01 ± 1.41
20 11.35± 0 88.11± 2.74 9.8± 0 9.8± 0 10.1± 1.05 89.97± 2.69 15.92± 5.31 91.14 ± 2.03
30 10.82± 0 11.35± 0 9.8± 0 9.8± 0 10.82± 0 9.8± 0 9.8± 0 90.57 ± 3.16
40 9.8± 0 9.8± 0 9.8± 0 11.35± 0 9.8± 0 9.8± 0 9.8± 0 80.49 ± 6.65
50 9.8± 0 9.8± 0 9.8± 0 11.35± 0 9.8± 0 9.8± 0 9.8± 0 21.46 ± 4.72
60 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0
70 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0
80 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0
90 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0

ACCURACY (%) WITH HARDWARE-IMPLEMENTED MLP (FMNIST)

0 84.21± 1.79 83.58± 1.91 83.65± 2.13 84.19± 1.82 83.9± 1.75 83.97± 1.68 84.1± 1.58 87.01 ± 1.45
10 82.16± 2.28 82.75± 2.46 80.74± 2.67 83.58± 2.33 82.86± 2.09 83.11± 2.53 82.46± 2.38 86.14 ± 2.84
20 79.6± 3.05 10± 0 10± 0 10± 0 10± 0 82.54± 3.18 17.26± 5.98 83.98 ± 3.27
30 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 81.71 ± 3.7
40 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 52.75 ± 4.89
50 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
60 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
70 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
80 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
90 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0

ACCURACY (%) WITH HARDWARE-IMPLEMENTED MLP (UCI-HAR)

0 60.14± 3.87 65.27 ± 3.56 60.48± 3.81 61.15± 3.69 61.78± 3.48 61.83± 3.45 61.52± 3.62 60.08± 3.24
10 17.1± 0 17.1± 0 15.21± 0 17.1± 0 15.21± 0 18.34± 0 16.93± 0 47.01±5.17
20 18.52± 0 17.1± 0 18.52± 0 17.1± 0 18.52± 0 18.34± 0 17.1± 0 45.85 ± 5.39
30 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 18.34± 0 17.1± 0 44.86 ± 4.91
40 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.1± 0
50 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.1± 0
60 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.1± 0
70 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.1± 0
80 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.1± 0
90 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.1± 0

ACCURACY (%) WITH HARDWARE-IMPLEMENTED MLP (AUDIOMNIST)

0 93.76± 1.34 93.82 ± 1.6 92.02± 1.66 92.63± 1.21 92.36± 1.53 91.38± 1.27 93.33± 1.29 92.34± 1.38
10 91.80± 1.22 90.89± 2.12 89.32± 2.01 89.87± 2.22 90.01± 2.45 90.71± 2.45 90.41± 2.74 91.56 ± 1.93
20 89.45± 2.1 88.92± 2.56 84.39± 3.41 89.59± 2.50 81.61± 3.81 89.42± 2.68 84.47± 4.79 90.86 ± 2.83
30 89.04± 2.44 89.65± 2.77 72.35± 3.93 88.19± 3.28 48.31± 5.73 89.57± 3.01 51.64± 6.53 89.8 ± 3.42
40 86.24± 3.59 90.26± 2.58 59.43± 5.48 87.99± 3.97 34.69± 6.61 87.8± 3.42 35.73± 7.49 89.27 ± 4.13
50 83.50± 4.63 82.63± 4.43 45.26± 7.31 82.39± 4.42 19.38± 5.2 83.21± 4.93 21.22± 5.56 86.29 ± 4.9
60 49.11± 6.32 62.20± 5.82 31.23± 5.78 61.16± 5.94 10± 0 62.48± 6.63 10± 0 63.88 ± 6.34
70 10± 0 16.74± 2.45 10± 0 21.92± 3.84 10± 0 24.72± 4.47 10± 0 34.75 ± 3.76
80 10± 0 10± 0 10± 0 10± 0 10± 0 13.15± 2.14 10± 0 17.29 ± 3.55
90 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0

Table 13 presents the classification accuracy of the MLP model, along with the baseline, benchmarks,
and our mechanism, under SAFs, using the MNIST, FMNIST, UCI-HAR, and AudioMNIST. The
model incorporating our mechanism classifies the data samples more accurately than the baseline and
benchmarks when implemented with hardware. We observe that the overall classification accuracy of
the model decreases. This is because the precision for neurons’ membrane potential and synaptic
weights degrades due to low floating-point and bit width in the FPGA device, which damages the
data stored in trained synaptic weights and neuronal activities.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

We implement VGG-7/11/15 with the SyncNN framework and evaluate the fault tolerance of the
benchmarks and proposed mechanism (Panchapakesan et al., 2021). We set the bit-width for synaptic
weights to 8. Other settings for SyncNN are the same as the settings in the SyncNN paper (Pancha-
pakesan et al., 2021). We adopt the same SNN model settings in Subsection 6.1 to the FPGA-based
VGG models.
Table 14: The FPGA-based VGG-7/11/15 SNNs’ classification accuracy in a 95% confidence interval using
CIFAR-10 with 2 time steps under SAFs. Note that we adopt 2 time steps for training. For inference, we use
1800 cycles to process data in the FPGA device.

FAULT RATIO(%) BASELINE ECOC SOFTSNN ROUTING ASTROCYTE FALVOLT LIFA PROPOSED

ACCURACY (%) WITH HARDWARE-IMPLEMENTED VGG-7

0 53.84± 4.94 51.09± 4.86 54.08± 4.67 54.15 ± 4.26 53.21± 4.6 53.91± 4.57 52.72± 4.65 53.89± 4.48
10 34.18± 4.15 39.26± 4.07 22.48± 4.46 33.37± 4.12 32.16± 4.54 36.92± 4.82 35.38± 4.73 45.93 ± 4.31
20 18.73± 3.07 31.97± 3.65 17.52± 5.11 24.06± 3.71 22.18± 3.95 31.91± 3.79 21.99± 4.02 41.23 ± 4.05
30 11.62± 1.62 25.78± 3.14 16.8± 3.92 10± 0 10± 0 20.7± 4.15 10± 0 35.97 ± 4.88
40 10± 0 19.29± 3.28 15.04± 3.17 10± 0 10± 0 17.28± 3.84 10± 0 26.29 ± 3.96
50 10± 0 12.81± 2.25 10± 0 10± 0 10± 0 10± 0 10± 0 13.39 ± 2.94
60 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
70 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
80 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
90 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0

ACCURACY (%) WITH HARDWARE-IMPLEMENTED VGG-11

0 52.74± 4.63 50.34± 4.51 54.82 ± 4.32 54.29± 4.45 52.13± 4.63 53.89± 4.38 53.02± 4.47 52.87± 4.2
10 33.27± 3.95 33.02± 3.84 26.53± 3.72 32.98± 3.93 34.16± 4.05 41.81± 4.24 35.57± 4.13 45.02 ± 4.08
20 26.91± 3.28 30.83± 3.37 18.88± 3.6 24.17± 3.56 24.93± 3.75 27.3± 3.43 24.89± 3.94 42.58 ± 3.79
30 10± 0 25.65± 3.51 17.63± 3.92 10± 0 16.89± 3.81 10± 0 11.46± 1.46 36.62 ± 3.84
40 10± 0 20.27± 3.64 10± 0 10± 0 10± 0 10± 0 10± 0 26.84 ± 3.29
50 10± 0 14.44± 3.76 10± 0 10± 0 10± 0 10± 0 10± 0 17.92 ± 3.65
60 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
70 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
80 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
90 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0

ACCURACY (%) WITH HARDWARE-IMPLEMENTED VGG-15

0 45.04± 4.07 41.92± 3.95 47.39 ± 3.81 43.58± 3.86 43.02± 3.77 45.58± 3.26 44.61± 3.74 44.35± 4.61
10 40.16± 5.24 31.19± 4.76 14.21± 1.91 41.5± 4.83 32.28± 5.13 41.87± 4.59 29.84± 5.33 42.94±5.09
20 21.42± 4.64 23.7± 4.59 13.22± 2.08 25.28± 4.29 10± 0 10± 0 20.37± 3.91 41.47 ± 4.96
30 10± 0 21.26± 3.54 12.89± 1.75 10± 0 10± 0 10± 0 10± 0 33.62 ± 5.17
40 10± 0 15.28± 2.94 11.01± 1.01 10± 0 10± 0 10± 0 10± 0 27.59 ± 4.25
50 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 11.74 ± 1.19
60 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
70 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
80 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
90 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0

Table 14 exhibits the classification accuracy of the VGG-7/11/15 models, along with the baseline,
benchmarks, and proposed mechanism under SAFs, using CIFAR-10. In the cases with deep
convolution SNNs, our mechanism successfully enhances the fault tolerance of hardware-implemented
SNNs based on the FPGA device.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

C EFFICIENCY ANALYSIS BASED ON TIME/SPATIAL COMPLEXITY AND
TIME/ENERGY CONSUMPTION

To demonstrate that our mechanism enhances the fault tolerance of SNN models without requiring
complex algorithms, we measure the computational and spatial complexities of our mechanism and
compare them to those of the benchmarks. Additionally, we measure the energy consumption of our
mechanisms on the FPGA device since energy consumption is a significant advantage of SNNs that
makes them suitable for neuromorphic device implementation.

C.1 COMPLEXITY ANALYSIS

We calculate the time and spatial complexities of the benchmarks and the proposed mechanism
through experimental evidence that demonstrates the time and energy consumption of them in real
devices.

C.1.1 TIME COMPLEXITY

We thoroughly analyze the time complexity of the benchmarks and the proposed mechanism. The
following items present the time complexity of the benchmarks and the proposed mechanism.

1. ECOC: TECOC = Θ
(
EP 2n + NBCL

)
.

2. SoftSNN: TSoftSNN = Θ
(
NW

)
.

3. Routing: Troute = Θ

(∑L
ℓ=1 C

(ℓ)
outC

(ℓ)
in k2ℓ + δswap

∑L
ℓ=1 Kℓ logKℓ

)
.

4. Astrocyte: TAstro = Θ
(
P +N P

)
.

5. FalVolt: TFalVolt = Θ
(
M + N (M + fW)

)
.

6. LIFA: TLIFA = Θ
(
P +NP

)
.

7. Proposed: Tproposed, mlp = Θ
(
N S [B +A+ T +BTD]

)
+ O

(
Nsal F

MLP
model

)
,

Tproposed, conv = Θ
(
N S [B +A+ T +BTD]

)
.

Notations of time complexity equations

1. ECOC. B: batch size; N : number of training/inference steps (batches processed); C:
number of classes; E: number of extension code blocks; m: Hamming-code parameter;
n = 2m − 1: per code block length; L = E n: code length; P : candidate-pool size used
in code book construction.

2. Soft SNN. W =
∑M

i=1 Pi: total number of trainable weights over the M layers; Pi: number
of weights in layer i; Pmax = maxi Pi: size of the largest layer.

3. Routing. Llayers: number of routed layers; C
(ℓ)
in , C(ℓ)

out: input/output channels of layer
ℓ; kℓ: kernel size of layer ℓ (so k2ℓ = 1 for MLP/Linear); Kℓ = min{C(ℓ)

in , C
(ℓ)
out}:

effective channel count for top-K matching; δswap ∈ {0, 1}: flag indicating whether
sorting + channel-swap is enabled; W : total number of trainable weights across routed
layers.

4. Astrocyte. N : number of batch iterations in an epoch; P : total number of trainable
parameters over hooked layers; χ: output-channel chunk size used in the backward pass;
pmax
out : maximum number of parameters associated with a single output channel (e.g., 9Cin

for a 3×3 conv).

5. FalVolt. N : number of batch iterations in an epoch; W : total number of weights subject
to potential fault mapping; M : number of spiking/protected modules whose thresholds or
states are managed; f ∈ [0, 1]: fraction of weights affected by faults (worst case f = 1);
Wmask: number of stored fault-mask entries.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

6. LIFA. N : number of batch iterations in an epoch; P : total number of trainable parameters
across protected layers (for conv: P =

∑
ℓ C

(ℓ)
outC

(ℓ)
in k2ℓ ; for linear: k2ℓ = 1); C =∑

ℓ C
(ℓ)
out: total output-channel count across protected layers.

7. Proposed. N : number of batch iterations in an epoch; S = H × W : spatial size
(pixels) per sample; B: batch size; D: input channels; T : number of time steps
(fragments) per sample; A: number of orientation candidates; (optional only if the fault
influence map (saliency and weight projection) is used) Nsal: number of steps that compute
saliency/backprop; FMLP

model: per-step FLOPs of the MLP backbone under saliency.

With MNIST and FMNIST (S = 28× 28 = 784, D = 1), our fragmentation step scales as

Tproposed = Θ
(
S B T

)
= Θ

(
784B T

)
, (5)

while all weight-scanning benchmarks (Astrocyte and LIFA) based on astrocytes scale with the
number of parameters:

Tscan = Θ(W), TFalVolt = Θ(M + fW) ≍ Θ(fW) (for non-vanishing f), (6)

where W is the total trainable weights, M the number of spiking/protected modules, and f ∈ [0, 1]
the fraction of weights affected by faults. Hence, the decisive ratios are

Tproposed

Tscan
≍ 784B T

W
,

Tproposed

TFalVolt
≍ 784B T

f W
. (7)

For the CNNs in our setting (VGG-7/11/15, ResNet-18), W is in the multi-million range even on
MNIST/FMNIST; with common batches/fragments (B∈ [64, 128], T ∈ [2, 4]) one has W ≫784B T ,
so strictly Tproposed<Tscanning. The same conclusion holds against FalVolt for any fixed, non-negligible
f (e.g., f ≥ 0.05), since then fW ≫ 784B T in these networks, yielding Tours < TFalVolt as well.
ECOC differs in that its per-step cost is TECOC = Θ(BC L), giving

Tproposed

TECOC
≍ S T D

C L
=

784T

C L
, (8)

which is typically of the same order for C=10 and L∈ [64, 256], while ECOC still incurs a one-off
build of Θ(E P 2n). In summary, without the fault influence, our mechanism has strictly smaller
per-step time complexity than all weight-scanning benchmarks under the MLP/VGG/ResNet models.
It is competitive with (or smaller than) ECOC while avoiding the heavy one-time construction of
ECOC. As shown in Appendix A.1 and A.2, our mechanism is not significantly dependent on the
fault influence with CIFAR-10 and CIFAR-100 under VGG and ResNet models, indicating that our
mechanism saves time by using only the complexity to make fragments under VGG and ResNet
models with CIFAR-10 and CIFAR-100.

C.1.2 SPATIAL COMPLEXITY

We evaluate the spatial complexity of the benchmarks and the proposed mechanism in detail. The
following items present the spatial complexity of the benchmarks and the proposed mechanism

1. ECOC: SECOC = Θ
(
P 2 + CL + BC

)
.

2. SoftSNN: SSoftSNN = Θ
(
W
)
.

3. Routing: Sroute = Θ(W).

4. Astrocyte: SAstro = Θ
(
P + χpmax

out

)
.

5. FalVolt: SFalVolt = Θ
(
M + Wmask

)
.

6. LIFA: SLIFA = Θ
(
P + C

)
.

7. Proposed: Sproposed = Θ
(
S [BTD +A]

)
.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Notations of spatial complexity equations

1. ECOC. C: number of classes; E: number of extension code blocks; m: Hamming pa-
rameter; n = 2m − 1: code block length; L = E n: code length (size of the stored code
book is C L); B: batch size (per-step logits buffer BC); P : candidate-pool size (build-time
pairwise matrix P 2 gives peak memory).

2. SoftSNN. W =
∑M

i=1 Pi: total number of trainable weights over the M layers; Pmax =

maxi Pi: size of the largest layer (often dictates per-layer peak); C =
∑M

i=1 Cout,i: total
number of output channels if per-channel thresholds are stored.

3. Routing. W : total number of trainable weights across routed layers (in-place operations
keep the footprint parameter–scaled); C(ℓ)

in : input channels of layer ℓ (small per-layer
index/permutation buffers scale with C

(ℓ)
in but are absorbed by W in big-Θ terms).

4. Astrocyte. P : total number of trainable parameters over hooked layers (CPU-side caches
such as W0, inverse denominators, masks, q scale with P); χ: output-channel chunk size
used on GPU during the backward pass; pmax

out : maximum number of parameters per output
channel (e.g., 9Cin for a 3×3 conv); the additional VRAM peak scales with χpmax

out .
5. FalVolt. W : total number of potentially fault-mapped weights (upper bound on parame-

ter–scaled storage); M : number of protected/spiking modules (small bookkeeping state);
Wmask: number of stored fault-mask entries (persistent); typically Wmask ≤ W .

6. LIFA. P : total number of trainable parameters across protected layers (dominant persistent
buffers: W0, inverse denominators, masks); C =

∑
ℓ C

(ℓ)
out: total number of output channels

(per-channel EMA/state vectors).
7. Proposed (fragmentation). S = H×W : per-sample spatial size (pixels); B: batch size; D:

input channels; T : number of fragments per sample (fragment tensor B T DS dominates);
A: number of orientation candidates (angle buffers AS).

With MNIST and FMNIST (S = 28 × 28 = 784, D = 1), the peak additional memory of the
proposed mechanism scales as (Note that saliency map S is not essential for VGG and ResNet
models.)

Sours = Θ
(
S [B T D +A]

)
= Θ

(
784 [B T +A]

)
. (9)

where B is the batch size, T the number of fragments, and A the number of angle candidates. In
contrast, weight–scan benchmarks that scan all parameters each step exhibit parameter–dominated
footprints:

SLIFA/Astro = Θ(W) SSoftSNN = Θ(Pmax) (per–layer peak) ≲ Θ(W). (10)

SRouting = Θ(W) SFalVolt = Θ(M +Wmask) ≤ Θ(W). (11)

where W is the total number of trainable weights, Pmax the size of the largest layer’s weight tensor,
M the number of protected/spiking modules, and Wmask the number of stored fault–mask entries.
Therefore, for typical MNIST/FMNIST settings (e.g., B∈ [64, 128], T ∈ [2, 4], A≤180) and CNN
backbones (VGG-7/11/15, ResNet-18) with W in the multi–million range,

Sproposed

SLIFA/Astro
≍ 784 [B T +A]

W
≪ 1,

Sproposed

SFalVolt
≍ 784 [B T +A]

M +Wmask
≪ 1. (12)

and similarly Sours ≪ SRouting and Sours ≲ SSoftSNN whenever Pmax is large (as in VGG/ResNet).
ECOC is different: per–step it stores only the code book and logits,

SECOC, step = Θ(C L+BC) (C=10 on MNIST/FMNIST, L = O(102)). (13)

which is often smaller than Sproposed on these datasets; however, ECOC incurs a one–time build peak of
Θ(P 2) (candidate–pair matrix) that can dominate transient memory. In summation, without the fault
influence map, our method achieves strictly smaller parameter space complexity than all weight–scan
benchmarks (LIFA, Astrocyte, Soft SNN, Routing, FalVolt), while remaining competitive with ECOC
apart from its negligible per–step footprint but heavy one–off construction of ECOC.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

C.2 TRAINING TIME

We measure the training time of the baseline, benchmarks, and the proposed mechanism using the
MLP (MNIST), VGG-7 (CIFAR-10), ResNet-18 (CIFAR-100), and ResNet-34 (Tiny-ImageNet)
models with 2 time steps. We train the models on a workstation with an Nvidia GeForce RTX 4080
GPU with Ubuntu 24.04.
Table 15: Various models’ training time (sec) in a 95% confidence interval with the baseline, benchmarks, and
proposed mechanism on a workstation under SAFs with a fault ratio of 0.5 and 2 time steps.

Baseline ECOC SoftSNN Routing Astrocyte FalVolt LIFA Proposed

MLP 193.84 ± 2.71 197.62± 2.85 196.51± 2.56 198.29± 3.05 288.75± 4.51 201.47± 3.21 293.86± 4.77 205.24± 4.23
VGG-7 291.16 ± 3.57 296.91± 3.8 294.34± 3.65 298.81± 4.01 351.82± 5.27 303.53± 4.26 356.74± 5.53 310.38± 5.18
ResNet-18 382.53 ± 4.12 385.61± 4.03 384.77± 4.53 396.54± 4.68 721.97± 6.28 408.9± 4.94 724.62± 6.09 413.32± 4.5
ResNet-34 4259.57 ± 18.62 4304.4± 20.11 4298.46± 21.39 4350.83± 25.75 8005.37± 36.21 4317.89± 26.04 8154.17± 32.83 4392.13± 26.51

Our mechanism consumes significantly less training time than weight-scanning approaches based on
astrocytes (Astrocyte and LIFA), as we demonstrate that our mechanism definitely consumes less
time than the astrocyte-based approaches due to their less complexity. Unlike these approaches, the
training time of the models with our mechanism does not increase significantly as the complexity of
the models and datasets increases. The model with ours also consumes comparable training time to
that of ECOC, SoftSNN, Routing, and FalVolt. This evaluation result shows that our mechanism does
not severely inflate the burden on training time.

C.3 ENERGY CONSUMPTION ON THE REAL FPGA DEVICE

We measure the energy consumption of the model with the baseline, benchmarks, and proposed
mechanism on the FPGA device during testing. Table 16 exhibits the energy consumption of the
FPGA-based MLP with MNIST/FMNIST and FPGA-based VGG-7 with CIFAR-100 using 2 time
steps.
Table 16: The MLP models’ energy consumption (mJ) to process a single sample in a 95% confidence interval
with the baseline, benchmarks, and proposed mechanism on the real FPGA hardware with two time steps.

Baseline ECOC SoftSNN Routing Astrocyte FalVolt LIFA Proposed

MNIST 85.31± 1.05 88.76± 1.27 86.23± 1.18 90.44± 1.31 150.72± 1.61 95.15± 1.23 165.69± 1.59 67.16 ± 0.82
FMNIST 87.19± 1.36 90.54± 1.57 88.68± 1.43 92.82± 1.51 156.08± 1.99 98.23± 1.72 168.33± 1.93 78.37 ± 0.95
CIFAR-10 203.85± 2.07 216.41± 2.13 212.96± 1.97 228.16± 2.45 319.5± 3.56 209.87± 2.92 336.09± 3.44 194.14 ± 2.35

The MLP model with our mechanism exhibits the least energy consumption among the MLP models
on the real FPGA device. This is because our mechanism shrinks the size of the data samples through
fragmentation, and the probability of spike occurrence declines since the number of non-zero pixels
decreases during fragmentation, as mentioned in Subsection 5.3. This effect enables the model with
our mechanism to consume less energy than the models with all benchmarks, despite our mechanism
having higher time complexity and consumption than some benchmarks. However, the benchmarks
increase the complexity of the decoding (ECOC), keep neurons’ activation frequent (SoftSNN and
Routing), utilize the astrocyte module to activate non-faulty synapses (Astrocyte and LIFA), and
incorporate additional learnable parameters to adjust neuronal activities (Falvolt). Therefore, the
MLP models with the benchmark require more energy than ours.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

D DETAILED MATHEMATICAL EXPLANATION OF THE MOTIVATION STUDY

We demonstrate how synaptic faults ruin the usable learning capacity of SNN models mathematically.

D.1 SETUP AND NOTATION

Consider a spiking neuron with membrane potential Vt ∈ R, threshold ϑ ∈ R, and spike output
Kt ∈ {0, 1}. During training, we replace the Heaviside step H by a surrogate σ : R→ [0, 1] so that
Kt ≈ σ(Vt − ϑ) and σ′ is used in backpropagation. Let the surrogate gradient corridor width be
δ > 0 such that σ′(u) ≈ 0 whenever |u| > δ. For a feedforward pre-activation at layer ℓ and time t,

z
(ℓ)
t = W (ℓ)K

(ℓ−1)
t + b(ℓ) (vector form), (14)

and for a single neuron with input x ∈ Rd and weights w ∈ Rd we write z = w⊤x+ b. For an LIF
neuron, we use

Vt = αVt−1 + zt − ϑKt−1, Kt ≈ σ(Vt − ϑ), α ∈ (0, 1). (15)

D.2 SURROGATE GRADIENT CORRIDOR

Let u := z − ϑ. Many arctangent surrogates used in SNNs have a backward derivative of the rational
form

ϕ′(u) =
A

1 + (βu)2
, A > 0, β > 0, (16)

which yields, for a target gradient floor γ ∈ (0, A), the corridor

Cγ := {u : ϕ′(u) ≥ γ } = [−δ(γ), δ(γ)], δ(γ) =
1

β

√
A

γ
− 1. (17)

Additionally, we derive the surrogate gradient corridor of the arctangent function, which is widely
used as a surrogate gradient function for LIF neurons.

Let u := z − ϑ and consider the arctangent surrogate derivative

ϕ′(u) =
αs

π
(
1 + (αsu)2

) , αs > 0. (18)

For a target gradient floor γ ∈ (0, αs/π), define the corridor(Li et al., 2024a; Zenke & Vogels, 2021;
Shrestha & Orchard, 2018)

Cγ := {u : ϕ′(u) ≥ γ } = [−δ, δ], δ(γ) =
1

αs

√
αs

πγ
− 1. (19)

whose peak is A = 1/π. Setting the gradient floor to r = fA = f/π yields the corridor half-width

δ(f) =
2

πα

√
1

f
− 1. (20)

In practice, we initialize α = 2 and f = 0.2 (thus r ≈ 0.0637), then adapt f per layer using
mini-batch membrane statistics so that the corridor covers a target score p of the observed U − ϑ
distribution: with σ̂ℓ the running standard deviation and zp the normal quantile for score p, we set
δ(fℓ) ≈ zpσ̂ℓ, i.e (Zenke & Vogels, 2021; Wang et al., 2023; Che et al., 2022; Lian et al., 2023).

fℓ =
1

1 +
(
πα
2 zpσ̂ℓ

)2 . (21)

This keeps most samples within the high-gradient band while avoiding an overly narrow corridor.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Remark 1 (Mapping to implementation). For the common parameterization ϕ′(u) = αs

π(1+(αsu)2)
,

one has A = αs/π and β = αs. For the SpikingJelly ATan ϕ′(u) = α/2
1+(πα

2 u)2 , one has A = α/2 and
β = πα/2 (Fang et al., 2023). Both are instances of equation 16, so equation 17 applies verbatim.

D.3 FAULT MODELING

We consider synaptic faults that perturb parameters and/or inputs:

w 7→ w +∆w, x 7→ x+∆x, (22)

where ∆w,∆x may be sparse (e.g., SA0/SA1 at a subset of synapses) or dense (e.g., analog drift).
The post-fault pre-activation is

z′ = (w +∆w)⊤(x+∆x) + b = z +∆z, ∆z = ∆w⊤x︸ ︷︷ ︸
param fault

+w⊤∆x︸ ︷︷ ︸
input fault

+∆w⊤∆x︸ ︷︷ ︸
higher-order

. (23)

By the Cauchy–Schwarz inequality,

|∆z| ≤ ∥x∥2 ∥∆w∥2 + ∥w∥2 ∥∆x∥2 + ∥∆w∥2 ∥∆x∥2. (24)

SA0 on an input line j is modeled by (∆x)j = −xj ; SA1 by (∆x)j = c− xj for a fixed logic level
c. Bit/weight stuck faults are included in ∆w.

D.4 FROM FAULTS TO SATURATION

At time t, the only instantaneous change from a synaptic fault is zt 7→ zt +∆zt, hence

V ′
t = αVt−1 + (zt +∆zt)− ϑKt−1 = Vt +∆zt, ⇒ V ′

t − ϑ = (Vt − ϑ) + ∆zt. (25)

Lemma 1 (Corridor escape: sufficient conditions). Let at :=Vt − ϑ and suppose |at| ≤ δ (pre-fault
state inside the corridor).

1. (Sign-aligned escape) If at∆zt ≥ 0 and |∆zt| ≥ δ − |at|, then |at + ∆zt| ≥ δ, hence
σ′(V ′

t − ϑ) ≈ 0 at time t.

2. (Sign-agnostic escape) Regardless of the sign of ∆zt, if |∆zt| > δ+|at|, then |at+∆zt| > δ.

Proof. (1) If at∆zt ≥ 0 then |at +∆zt| = | |at| + |∆zt| | ≥ δ when |∆zt| ≥ δ − |at|. (2) By the
reverse triangle inequality, |at +∆zt| ≥

∣∣|∆zt| − |at|
∣∣ > δ.

D.5 EXPECTED GRADIENT BOUND FOR A SINGLE NEURON

Let gt := ∂L/∂St and suppose 0 ≤ σ′(u) ≤ Cσ1{|u| ≤ δ}. Then,∥∥∥∥∂L∂w
∥∥∥∥ =

∥∥∥∥∥
T∑

t=1

gt σ
′(V ′

t − ϑ)xt

∥∥∥∥∥ ≤ Cσ

T∑
t=1

∥gt∥ ∥xt∥1{|V ′
t − ϑ| ≤ δ}. (26)

Taking expectations and using the Cauchy–Schwarz inequality yields the model-free bound

E
∥∥∥∥∂L∂w

∥∥∥∥ ≤ Cσ

T∑
t=1

(
E
[
∥gt∥2∥xt∥2

])1/2
· P(|V ′

t − ϑ| ≤ δ)
1/2

. (27)

Under a mild independence/mixing assumption between ∥gt∥∥xt∥ and the corridor event, one may
write the simpler scaling

E
∥∥∥∥∂L∂w

∥∥∥∥ ≲ Cσ

T∑
t=1

E
[
∥gt∥ ∥xt∥

]
pt, pt := P(|V ′

t − ϑ| ≤ δ) . (28)

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

D.6 DEPTH- AND TIME-WISE COMPOUNDING

For a parameter in layer ℓ, a generic backpropagation path contains factors σ′(V
(j)
t − ϑ) for j ≤ ℓ

and relevant t. Bounding σ′ by indicators,

|Π| ≤ CNΠ
σ

∏
j,t: γj,t=1

1{|V (j)
t − ϑ| ≤ δ}, NΠ =

∑
j,t

γj,t. (29)

Taking expectations gives (Π denotes the product of all gradient factors along a single backpropagation
path leading to a given parameter.)

E |Π| ≤ CNΠ
σ P

 ⋂
j,t: γj,t=1

{|V (j)
t − ϑ| ≤ δ}

 . (30)

A conservative bound is

E |Π| ≤ CNΠ
σ min

j,t: γj,t=1
pj,t, pj,t := P

(
|V (j)

t − ϑ| ≤ δ
)
. (31)

If corridor events are approximately independent (or satisfy a weak-mixing condition), then

E |Π| ≤ CNΠ
σ

∏
j,t: γj,t=1

pj,t ≤ CNΠ
σ (p⋆)NΠ , p⋆ := sup

j,t
pj,t, (32)

exhibiting exponential attenuation as NΠ grows.

D.7 FIRST-LAYER SENSITIVITY IN MLP

For the first layer (vector form) with z(1) = W (1)x+ b(1) and perturbations (∆W (1),∆x),∥∥∆z(1)
∥∥ ≤ ∥∆W (1)∥op ∥x∥2 + ∥W (1)∥op ∥∆x∥2 + ∥∆W (1)∥op ∥∆x∥2, (33)

so sizeable input/weight faults directly shift z(1) without any preceding contraction, shrinking corridor
occupancy in deeper layers via equation 30–equation 32.

D.8 SUFFICIENT CONDITION FOR GRADIENT COLLAPSE

Define pj,t as above and let G be the multiset of “corridor gates” along dominant backpropagation
paths with size N∗. If a fraction ρ ∈ (0, 1] of gates satisfy pj,t ≤ ε ≪ 1, then

E |Π| ≤

{
CN∗

σ ε ρN∗ , under independence/mixing,

CN∗
σ ε, (conservative, no independence).

(34)

Either case shows attenuation; the independent/mixing case yields exponential decay in depth × time.

D.9 EFFECTIVE BIAS INTERPRETATION FOR SA0/SA1 OF SAFS

For SA1 on a subset J of input lines with logic level c,

∆z = w⊤∆x =
∑
j∈J

wj(c− xj) = c
∑
j∈J

wj −
∑
j∈J

wjxj , (35)

acting as an additive bias shift plus removal of signal terms. Persistent shifts displace Vt away from
ϑ across time steps, driving down corridor occupancy pj,t and compounding the bottleneck via
equation 32.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

D.10 SUMMARY

Synaptic faults induce a pre-activation shift ∆z decomposed in equation 23 and bounded in equa-
tion 24. When |∆z| is large relative to the corridor width δ, Lemma 1 ensures |Vt − ϑ| > δ so
σ′(Vt − ϑ) ≈ 0. The expected gradient is then attenuated proportionally to (at least) √pj,t per time
step equation 27; under independence/mixing, it scales with pj,t equation 28. Across layers and time
steps, this attenuation multiplies equation 32, producing the bottleneck problem, with the first layer of
MLP especially vulnerable by equation 33.

E NEAR-OPTIMALITY OF THE PROPOSED MECHANISM

We show why our solution is the near-optimal solution to improve the fault tolerance of SNNs in this
section.

E.1 SETUP AND NOTATION

We consider inputs x ∈ Rn and a fixed number of stripes (1D profiles in Section 5) T ∈ N. Indices
are i ∈ {1, . . . , n} and stripes are t ∈ {1, . . . , T}. A stripe partition is represented by binary masks
Mt(i) ∈ {0, 1} that satisfy

∑T
t=1 Mt(i) = 1 for every i, and contiguity is taken with respect to a

one–dimensional scan order of the indices induced by an angle θ in a finite set Θ ⊂ [0, π). Given
any nonnegative vector s ∈ Rn

+, the load of stripe t is the linear functional St(s) =
∑

i siMt(i); we
also write the total mass U(s) =

∑
i si, the per–stripe mean µ(s) = U(s)/T , and the element-wise

maximum m(s) = maxi si. For vectors a, b ∈ Rn, the inner product is ⟨a, b⟩ =
∑

i aibi and ∥v∥p
denotes the ℓp norm; the Hadamard product is a⊙ b.

St(s) :=

n∑
i=1

siMt(i), U(s) :=

n∑
i=1

si, µ(s) :=
U(s)

T
, m(s) := max

i
si. (36)

Given trained weights w ∈ Rn and a fault/perturbation ∆w, we set ŵ := w +∆w and restrict the
input to stripe t by xt := x⊙Mt. The (stripe) pre-activation is

zt := ⟨ŵ, xt⟩, xt := x⊙Mt, ŵ := w +∆w. (37)

We denote by z∗ > 0 the corridor threshold, i.e., the largest value for which the chosen surrogate
derivative ϕ′(z) remains in its effective (non–vanishing) regime for all |z| ≤ z∗. To construct stripes,
we employ an implementable importance map I ∈ Rn

+ and assume a two–sided calibration with
respect to the ideal per–index load ui := |wi| |xi|: there exist constants 0 < c− ≤ 1 ≤ c+ such that

c− |wi| |xi| ≤ Ii ≤ c+ |wi| |xi|, i = 1, . . . , n. (38)

When I = u one has c− = c+ = 1. The quantile (greedy) stripes used in the paper are obtained by
scanning indices in the chosen order and inserting a cut whenever the cumulative load with respect to
I first exceeds integer multiples of µ(I), producing T contiguous fragments.

E.2 FAULT MODELS AND A BASIC UPPER BOUND

We consider the following three fault models, mentioned in Section 2.

SAFs: Some synapses are permanently stuck at Gmin or Gmax so the implemented weight becomes
w′

i (e.g., SA0/SA1). Let ∆wi := w′
i − wi and assume ∥∆w∥∞ ≤ εSAF. Then for any stripe t (Boyd

& Vandenberghe, 2004),

|zt| = |⟨w +∆w, xt⟩| ≤
∑
i

|wi| |xi|Mt(i)︸ ︷︷ ︸
St(u)

+ εSAF

∑
i

|xi|Mt(i)︸ ︷︷ ︸
St(|x|)

= St(u) + εSAF St(|x|).

(39)

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

RWFs: Each coordinate experiences an independent, mean-zero, bounded (or sub-Gaussian) pertur-
bation ∆wi. If |∆wi| ≤ b and the ∆wi are independent, then for any τ > 0 and stripe t,

Pr
(
|⟨∆w, xt⟩| > τ

)
≤ 2 exp

(
− τ2

2 b2 ∥xt∥22

)
, (40)

so equalizing St(|x|) = ∥xt∥1 across t uniformly tightens the tail bound (sub-Gaussian and Hoeffd-
ing) (Hoeffding, 1963).

CEFs: Wiring errors apply a linear transformation to the input so that zt = w⊤(Axt). This is
equivalent to using the effective weight w′ := A⊤w, i.e., ∆w(c) := (A⊤ − I)w. If ∥∆w(c)∥∞ ≤
εCEF, then

|zt| = |⟨w +∆w(c), xt⟩| ≤ St(u) + εCEF St(|x|). (41)

A permutation fault A = P is a special case; taking εCEF = ∥(P⊤ − I)w∥∞ yields the same bound
(Boyd & Vandenberghe, 2004).

E.3 CALIBRATION: ALIGNING THE IMPORTANCE MAP WITH THE EFFECTIVE PER-INDEX LOAD

We formalize the requirement that the implementable importance I should approximate u within
stripe-wise sums.

Assumption 1 (Two-sided calibration.). There exist constants 0 < c− ≤ 1 ≤ c+ such that for all
indices i,

c− ui ≤ Ii ≤ c+ ui. (42)

Lemma 2 (Calibration). Under the assumption (Two-sided calibration), for any stripe partition,

St(u) ≤ 1
c−

St(I), µ(u) ≤ 1
c−

µ(I), m(u) ≤ 1
c−

m(I). (43)

Proof. From ui ≤ Ii/c−, sum over i in stripe t. Similar for totals and maxima.

E.4 QUANTILE STRIPES ARE ADDITIVELY NEAR–OPTIMAL (CONTIGUOUS CASE)

Fix a nonnegative sequence a1, . . . , an obtained by scanning the image along any 1D order (e.g.,
the θ-scan used in the main text). Let U(a) =

∑
i ai and target mean µ(a) = U(a)/T . Define the

quantile (greedy) contiguous partition in Subsections 5.2 and 5.3 by sweeping from left to right and
cutting whenever the cumulative sum first exceeds multiples of µ(a), producing T contiguous stripes.

Lemma 3 (Additive bound for greedy quantiles). Let m(a) := maxi ai. Then the greedy quantile
partition satisfies

max
t≤T

St(a) ≤ µ(a) +m(a). (44)

Moreover, any contiguous partition must have maxt St(a) ≥ µ(a); hence, the greedy partition is a
+m(a)-additive approximation to the optimal contiguous partition.

Proof. Each of the first T − 1 stripes stops at the first index that causes the running sum to exceed
µ(a). The overshoot over µ(a) is therefore at most the last included element, i.e., ≤ m(a). Hence
every one of the first T −1 stripes has load in (µ(a), µ(a)+m(a)]. The final stripe has the remaining
mass U(a) −

∑T−1
t=1 St(a) ≤ µ(a). Thus, the maximum stripe load is at most µ(a) +m(a). The

lower bound ≥ µ(a) holds by a pigeonhole argument.

Theorem 1 (Near–optimality for u via quantiles on I). Construct stripes by greedy quantiles on the
calibrated importance I . Under Assumption 1:

max
t

St(u) ≤ 1
c−

(
µ(I) +m(I)

)
. (45)

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

If I = u (so c− = c+ = 1), the greedy partition achieves maxt St(u) ≤ µ(u) + m(u), i.e., a
+m(u) additive approximation to the optimal contiguous value. For a calibrated I with Assumption
1, we have maxt St(u) ≤ 1

c−

(
µ(I) +m(I)

)
. Translating this bound to the u–optimum introduces

a calibration-dependent drift via µ(I) ∈ [c−µ(u), c+µ(u)], so the additive gap to the optimal
contiguous value is at most 1

c−
m(I) +

(c+
c−

− 1
)
µ(u). The baseline µ(u) is at most 1

c−
µ(I).

Proof. Apply Lemma 3 with a = I to obtain maxt St(I) ≤ µ(I) + m(I). Then use Lemma 2:
St(u) ≤ St(I)/c−.

Remark 2 (Direct partitioning condition). (i) If one directly partitions using a = u, then c− = 1
and the bound gives maxt St(u) ≤ µ(u) +m(u). (ii) The proof does not assume the particular 1D
order beyond contiguity; the order may be induced by any scan (e.g., the θ-parameterization used to
define stripes).

E.5 CORRIDOR PRESERVATION: SUFFICIENT CONDITIONS

Under SAFs and CEFs, combining the bounds with Theorem 1 yields a closed-form uniform bound
on |zt|:

|zt| ≤ 1
c−

(
µ(I) +m(I)

)︸ ︷︷ ︸
from u

+ ε St(|x|)︸ ︷︷ ︸
fault term

. (46)

The stripes are constructed by greedy quantiles on I (not on |x|). Let Xmax := maxt≤T St(|x|),
computed on the same I-quantile partition. A simple sufficient condition for staying within the
corridor is then

1

c−

{
µ(I)+m(I)

}
+ εXmax ≤ z⋆, Xmax := max

t∈[T]
St(|x|) (computed on the same I-quantile partition).

(47)

Remark 3 (Optional (co-monotone scan)). If along the 1D scan used to build the I-quantile
partition the sequences I and |x| are approximately co-monotone—so that applying Lemma 3 to |x|
is justified—then

Xmax ≤ µ(|x|) +m(|x|). (48)

In this case, a convenient sufficient condition is

1

c−

{
µ(I) +m(I)

}
+ ε

(
µ(|x|) +m(|x|)

)
≤ z⋆. (49)

Under RWFs, Hoeffding’s tail (and a union bound) implies that with probability at least 1 −
2T exp{−τ2/(2b2 maxt ∥xt∥22)}, all stripes satisfy |⟨∆w, xt⟩| ≤ τ (Hoeffding, 1963). Thus, the
(random) bound analogous to the above holds with the deterministic term ε St(|x|) replaced by τ ,
chosen at the desired confidence level.

E.6 ON THE GINI OBJECTIVE (PRIMARY SURROGATE FOR MIN–MAX LOAD)

We treat minimizing the Gini coefficient of the 1D projection of I as a primary surrogate for
suppressing the worst-case stripe load. Recall that G(S) equals one-half of the relative mean absolute
difference and is equivalent to the Lorenz-based definition. Hence, it directly reduces pairwise
dispersion. The next proposition turns this dispersion control into a deviation bound that is linear in
G(S) (Yitzhaki & Schechtman, 2013).

Proposition 1 (Gini ⇒ deviation bound). Let S ∈ RT
+ with mean µ and Gini coefficient G(S). Then

max
t

|St − µ| ≤ 1

T

∑
i,j

|Si − Sj | = 2T µG(S).

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Proof. By
∑

j(St − Sj) = T (St − µ) and the triangle inequality, |St − µ| = 1
T

∣∣∑
j(St − Sj)

∣∣ ≤
1
T

∑
j |St−Sj |. Summing over t and taking the maximum yields maxt |St−µ| ≤ 1

T

∑
i,j |Si−Sj |.

Since
∑

i,j |Si − Sj | = 2T 2µG(S), the claim follows.

Combine Proposition 1 with the additive near-optimality bound for contiguous quantile stripes
(Lemma/Theorem: maxt St ≤ µ+m for the greedy split). Minimizing G(S) tightens maxt |St −µ|
and thus reduces maxt St under the same partition, making the corridor constraint strictly easier to
satisfy. In short: Gini ↓⇒ pairwise dispersion ↓⇒ deviation ↓⇒ min–max load ↓.

E.7 COMPUTING THE SCAN/STRIPES

Let Θ ⊂ [0, π) denote a finite set of scan angles (or any family of 1D orders). For a fixed order, the
greedy quantile partition runs in linear time. If one wishes to search over Θ, evaluate the objective
maxt St(I) for each order and pick the best; since the objective only changes at permutation “event
points”, coarse uniform sampling of Θ is typically sufficient in practice. When an exact optimum
over contiguous partitions is desired for a fixed order, classical Dynamic Programming (DP) or
feasibility–check with binary search finds mincontig maxt St(I) in polynomial time; our greedy rule
is the simple additive-approximate alternative used in the paper (Skiena, 2008).

E.8 SUMMARY

For any calibrated I , greedy quantile stripes achieve the near–optimality bound above; if I = u,
the achieved maximum load is within +m(u) of the contiguous optimum for u. Under the SAFs
and CEFs, the closed-form sufficient condition ensures |zt| ≤ z∗ for all stripes, preventing gradient
collapse; under RWFs, the analogous high-probability statement follows from the sub-Gaussian tail
bound. The constants involved are the calibration c−, the fault radius ε (or (b, τ) in the probabilistic
model), and the observable statistics µ(·) and m(·).

F FAULT-TOLERANCE CAPACITY PREDICTION OF OUR MECHANISM

In this section, we analyze the fault-tolerance capacity of our mechanism under the SAF, RWF, and
CEF injection using arctangent as a surrogate gradient function. The boundary of synaptic weights is
[-1,1] (Le Gallo et al., 2023; Lammie et al., 2022).

F.1 SETUP AND NOTATION

Let w ∈ [−1, 1]N be the clean weight vector, K := ∥w∥2, and let a fraction ρ ∈ [0, 1] of synapses be
faulty. All results below are per layer and can be applied layer-wise. Please refer to the derivation
of the surrogate gradient (arctangent) corridor in Subsection C.2 while reading our paragraphs on
capacity calculation.

With dynamic fragmentation and per-fragment RMS normalization to ∥x̃t∥2 = αn,

|ut| =
∣∣ŵ⊤x̃t + b− ϑ

∣∣ ≤ ∥ŵ∥2 αn +m, m := |b− ϑ|. (50)

Hence it suffices that ∥ŵ∥2 ≤ B, where

B :=
δ(γ)−m

αn
(requires δ(γ) > m). (51)

F.2 CAPACITY UNDER SAFS

Under SA0, we replace faulty entries by −1; under SA1 by +1. In either case |ŵi| = 1 on faulty
indices, so

∥ŵ∥22 = ∥w∥22 −
∑
i∈F

w2
i + ρN · 1 ≤ K2 + ρN, (52)

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

where the inequality is the deterministic worst-case (we drop the nonnegative subtraction term).
Therefore, a sufficient condition to remain inside the corridor is

K2 + ρN ≤ B2 =⇒ ρ⋆SA±, worst =
B2 −K2

N
(clipped to [0, 1]). (53)

If faulty indices are drawn uniformly at random (independent of w), then E
[∑

i∈F w2
i

]
= ρK2 and

E∥ŵ∥22 = (1− ρ)K2 + ρN · 1 = K2 + ρ (N −K2), (54)

whence the in-expectation capacity is

ρ⋆SA±, exp =
B2 −K2

N −K2
(clipped to [0, 1]). (55)

F.3 CAPACITY UNDER RWFS

On faulty indices, ŵi = wi + εi with E[εi] = 0 and Var(εi) = σ2
w. Independence yields E∥ŵ∥22 =

K2 + ρNσ2
w, so

ρ⋆RWF, exp =
B2 −K2

N σ2
w

(clipped to [0, 1]). (56)

A high-probability version follows from sub-Gaussian concentration by replacing Nσ2
w with an

upper-tail bound.

F.4 CAPACITY UNDER CEFS

A fraction ρ of entries are replaced by i.i.d. U [a, b] and then frozen. Let µf = a+b
2 and σ2

f = (b−a)2

12

so that E[ŵ2
i] = µ2

f + σ2
f . If faulty indices are random (independent of w),

E∥ŵ∥22 = (1− ρ)K2 + ρN(µ2
f + σ2

f) ⇒ ρ⋆CEF, exp =
B2 −K2

N(µ2
f + σ2

f)−K2
(clipped to [0, 1]).

(57)
For the common symmetric case U [−1, 1], µf = 0, σ2

f = 1/3 and thus

ρ⋆CEF, exp =
B2 −K2

N/3−K2
(clipped). (58)

If a deterministic worst-case guarantee is required (independent of the draw), note that |ŵi| ≤ 1
almost surely, so the same bound as SA0/SA1 applies:

ρ⋆CEF, worst =
B2 −K2

N
(clipped to [0, 1]). (59)

F.5 SUMMARY

Here, we explain how to calculate the capacity of the proposed mechanism. Choose a gradient
floor γ (e.g., f% of the arctangent peak so γ = f · αs/π), compute δ(γ) and B via equation 51,
measure K = ∥w∥2, and then plug into the formula for the fault model of interest. If ρ ≤ ρ⋆, our
mechanism keeps |ut| ≤ δ(γ) for all steps (deterministic case) or in expectation (stochastic case),
thereby ensuring ϕ′(ut) ≥ γ.

G CONVERGENCE ANALYSIS WITH THE PROPOSED MECHANISM

We present that Stochastic Gradient Descent (SGD) and Gradient Descent (GD) optimizers derive
gradients of fault-injected SNN models and induce the models to update weights when we adopt our
mechanism to the SNN models.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

G.1 SETUP AND NOTATION

We denote a data sample by (x, y), and the SNN by fW (·) with parameters W . We include the
(possibly stochastic) fragment + RMS transform T and analyze the expected objective L̃(W) =
E(x,y), T

[
ℓ(fW (T (x)), y)

]
. At step t, with mini-batch estimator gt and step size ηt, the update is

Wt+1 = Wt − ηtgt. For spiking neurons, we write the pre-activation as ut := zt − ϑ and use a
surrogate derivative ϕ′(u). Throughout, we assume the gradient-corridor condition ϕ′(ut) ≥ γ holds
along the iterates, which is enforced by the fragment RMS bound and the per-layer effective weight
norms ∥ŵ(ℓ)∥2 ≤ B(ℓ) referring to Appendix E. Symbols L, σ2, µ are in Appendix C, D, and E,
referenced only when required by a lemma or theorem.

G.2 BAND CONDITION ENFORCED BY OUR MECHANISM

With dynamic fragmentation and per-fragment RMS normalization ∥x̃t∥2 = αn, each step satisfies

|ut| =
∣∣ŵ⊤x̃t + b− ϑ

∣∣ ≤ ∥ŵ∥2 αn +m, m := |b− ϑ|. (60)

Defining

B :=
δ(γ)−m

αn
(requires δ(γ) > m), (61)

One obtains the following corridor-invariance lemma.

Lemma 4 (Corridor invariance). If ∥ŵ∥2 ≤ B, then |ut| ≤ δ(γ) for all fragments t, hence ϕ′(ut) ≥ γ.
Proof. Combine equation 60 with equation 61 and the definition of δ(γ) in equation 17.

G.3 OPTIMIZATION OBJECTIVE AND ASSUMPTIONS

Let L̃(W) := E(x,y),T
[
ℓ
(
fW (T (x)), y

)]
, where T denotes the (possibly stochastic, data/model-

aware) transformation induced by our mechanism (e.g., masks and RMS scaling). Assume:

Assumption 2 (L-smoothness). ∇L̃ is L-Lipschitz.

Assumption 3 (Unbiased mini-batch gradients, bounded variance). E[gt |Wt] = ∇L̃(Wt) and

E
[
∥gt −∇L̃(Wt)∥2

∣∣Wt

]
≤ σ2.

Assumption 4 (Corridor stability). For each layer, capacity constraints on the fault ratio ensure
∥ŵ(ℓ)∥2 ≤ B(ℓ), so Lemma holds layer-wise and ϕ′(u

(ℓ)
t) ≥ γ during training.

G.4 DESCENT LEMMA AND MASTER INEQUALITY

By L-smoothness and Wt+1 = Wt − ηtgt,

L̃(Wt+1) ≤ L̃(Wt) − ηt

〈
∇L̃(Wt), gt

〉
+

Lη2t
2

∥gt∥2. (62)

Taking expectation and using Assumption 2 with E∥gt∥2 = ∥∇L̃(Wt)∥2 + E∥gt −∇L̃(Wt)∥2 ≤
∥∇L̃(Wt)∥2 + σ2 gives(Nesterov, 2014)

E
[
L̃(Wt+1)

]
≤ E

[
L̃(Wt)

]
− ηt

(
1− Lηt

2

)
E
[
∥∇L̃(Wt)∥2

]
+

Lη2t
2

σ2. (63)

Theorem 2 (SGD convergence to stationarity). If ηt ≡ η ∈ (0, 1/L], summing equation 63 over
t = 0, . . . , T − 1 yields

1

T

T−1∑
t=0

E
[
∥∇L̃(Wt)∥2

]
≤

2
(
L̃(W0)− L̃⋆

)
η T

+ Lη σ2. (64)

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

With a Robbins–Monro schedule (
∑

t ηt = ∞,
∑

t η
2
t < ∞) we obtain

limT→∞ mint<T E∥∇L̃(Wt)∥2 = 0. Role of Assumption 3: By preventing artificial satura-
tion (ϕ′(u) ≈ 0), the corridor ensures that gradient signals remain informative until genuine
stationarity (Bottou et al., 2018).

Theorem 3 (Monotone decrease for full-batch GD). In the deterministic case (σ = 0) with η ∈
(0, 1/L],

L̃(Wt+1) ≤ L̃(Wt) − η

2
∥∇L̃(Wt)∥2, (65)

so
∑

t ∥∇L̃(Wt)∥2 < ∞ and every limit point of {Wt} is stationary.

Corollary 1 (Linear rate under PL). If L̃ satisfies the Polyak-Łojasiewicz (PL) inequality
1
2∥∇L̃(W)∥2 ≥ µ

(
L̃(W) − L̃⋆

)
for some µ > 0 on the corridor-stable region, then for GD

with η ∈ (0, 1/L] (Karimi et al., 2020),

L̃(Wt)− L̃⋆ ≤ (1− ηµ)t
(
L̃(W0)− L̃⋆

)
. (66)

G.5 SUMMARY

Our mechanism enforces equation 17–equation 61 so that surrogate gradients do not vanish spuri-
ously; Under standard smoothness/stochasticity assumptions, SGD converges to stationarity, and
GD decreases monotonically, with linear rates under PL. Capacity bounds on the fault ratio provide
concrete regimes where the corridor assumption holds layer-wise (Neftci et al., 2019).

48

	Introduction
	Backgrounds
	Spiking neural networks
	Synaptic faults

	State of the arts
	Analysis about faults in neuromorphic devices
	Mechanisms to improve fault tolerance of hardware-implemented SNNs

	Motivation study
	Overview
	Pre-activation magnitude increase by faults
	Gradient collapse by abnormal pre-activation magnitude
	Learning ability degradation by gradient collapse
	Pre-activation sensitivity of layers in MLP
	Similarity to flow control in computer networks

	Proposed Mechanism
	Overview
	Sensitivity score definition and calculation
	Gini coefficient calculation with a 1D profile
	Fragment generation based on equal sensitivity score and in/out for SNNs

	Experiments
	Experimental settings
	Classification accuracy comparison
	MLP models
	VGG models
	ResNet models

	Conclusion
	Appendix Index
	Discussion
	Additional experimental results on classification accuracy
	Additional datasets beyond MNIST, FMNIST, CIFAR-10, and CIFAR-100
	Sequential dataset
	Large image dataset

	Changing the number of time steps
	4 time steps
	8 time steps

	Under the different types of synaptic faults
	RWFs
	CEFs

	Ablation study on the combination of our mechanism
	MLP model (MNIST, FMNIST)
	VGG-7 and ResNet-18 models (CIFAR-10 and CIFAR-100)

	Various hyperparameter settings with our mechanism
	MLP model (MNIST and FMNIST)
	VGG-7 and ResNet-18 models (CIFAR-10 and CIFAR-100)

	Using Deep Neural Networks (DNNs)
	Using SNNs with unsupervised learning
	Evaluations with real FPGA hardware

	Efficiency analysis based on time/spatial complexity and time/energy consumption
	Complexity analysis
	Time complexity
	Spatial complexity

	Training time
	Energy consumption on the real FPGA device

	Detailed mathematical explanation of the motivation study
	Setup and notation
	Surrogate gradient corridor
	Fault modeling
	From faults to saturation
	Expected gradient bound for a single neuron
	Depth- and time-wise compounding
	First-layer sensitivity in MLP
	Sufficient condition for gradient collapse
	Effective bias interpretation for SA0/SA1 of SAFs
	Summary

	Near-Optimality of the proposed mechanism
	Setup and notation
	Fault models and a basic upper bound
	Calibration: aligning the importance map with the effective per-index load
	Quantile stripes are additively near–optimal (contiguous case)
	Corridor preservation: sufficient conditions
	On the Gini objective (primary surrogate for min–max load)
	Computing the scan/stripes
	Summary

	Fault-tolerance capacity prediction of our mechanism
	Setup and notation
	Capacity under SAFs
	Capacity under RWFs
	Capacity under CEFs
	Summary

	Convergence analysis with the proposed mechanism
	Setup and notation
	Band condition enforced by our mechanism
	Optimization objective and assumptions
	Descent lemma and master inequality
	Summary

