Under review as a conference paper at ICLR 2026

PRACTICAL MECHANISM VIA SIMPLE INPUT CONTROL
FOR FAULT-TOLERANT SPIKING NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Neural Networks (SNNs) attract researchers due to their energy-efficient
operations in neuromorphic devices.

This impairment reduces the capacity to absorb
information. When input data contains information exceeding the capacity, SNNs
may not absorb information correctly, referred to as the bottleneck problem.

This paper proposes a simple yet effective input control
mechanism to address the problem, grounded in a thorough motivation study. Our
mechanism divides the input samples into small fragments, following the best frag-
mentation strategy, derived by analyzing the characteristics of the input samples
and diagnosing the current influence of faults. Experimental results demonstrate
that our mechanism significantly enhances fault tolerance over existing methods,
achieving these gains without complex algorithms or direct weight modification in
various SNN models.

1 INTRODUCTION

Spiking Neural Networks (SNNs) attract researchers to develop neuromorphic devices that are
necessary to implement Artificial Intelligence (Al) in low-end devices (Garaffa et al., 2021; Jeong
et al., 2025). SNNs are third-generation neural networks that process data using spikes. They
are well-suited for neuromorphic devices with limited power sources and biological operations,
as SNNs consume less energy than other neural networks and exhibit high biological plausibility
(Schuman et al., 2022; Pfeiffer & Pfeil, 2018).

Although these approaches have improved the fault tolerance of the SNNs, they exhibit the following
problems that reduce their practicality in implementation.

1. Algorithmic complexity in conventional mechanisms: The previous approaches require complex
algorithms that are impractical for hardware implementation (Vu et al., 2019; Yang et al., 2022;
Han et al., 2023). These approaches cannot work properly in neuromorphic devices that demand
low-power operation and prevent stable operation (Basu et al., 2018). This is because the complex
algorithms frequently malfunction due to unexpected events such as wrong input values and hardware
faults (Liu et al., 2017).

2. Difficulties for direct modifications to synapses:

Under review as a conference paper at ICLR 2026

These approaches forcibly adjust whole synaptic weights and
configurations in neuromorphic devices (Putra et al., 2022; Chen & Chakrabarty, 2021). However,
external methods that enable direct modification require additional costs to design reconfigurable
hardware (Garaffa et al., 2021; Takano & Amano, 2022; Putra et al., 2023).

Pragmatic approaches for meeting these two problems are necessary to improve SNN’s fault tolerance
in the real world. To address these limitations, we identify a critical issue that significantly degrades
SNN performance in faulty neuromorphic devices through a detailed motivation study. We name this
issue the bottleneck problem, severely damaging SNNs’ usable learning capacity. Here, we explain
how the bottleneck problem occurs. When faults appear in SNNs’ synapses, the weights of the faulty
synapses become fixed during training. This means that the capacity is reduced because the faulty
synapses, which do not change their weight during training, cannot be used for memorizing data.
Furthermore, the pre-activation value (linear combination) of spiking neurons lies at an abnormal
point of the surrogate gradient function, causing a serious gradient vanishing problem, which results
in the capacity degradation. With the low usable capacity of faulty SNNs, they cannot memorize input
data properly when the data contains information exceeding the learning capacity. The bottleneck
problem occurs in neuromorphic devices that use gradients for on-chip learning during training
(Eslami et al., 2024; Martemucci et al., 2025). We aim to solve this problem as neuromorphic devices
with gradient-based online learning frequently suffer from hardware faults despite the necessity of
gradient-based online learning to enhance the data-processing ability of hardware-implemented SNNs
(Spyrou et al., 2021; Lee & Lim, 2023; Rostami et al., 2022; Lagorce et al., 2015; Stewart et al., 2020;
Cramer et al., 2022; Payvand et al., 2020; Renner et al., 2024; Yin et al., 2024).

Motivated by flow control methods used in computer networks (Kurose & Ross, 2012), we first
propose a practical mechanism based on simple input control to solve the bottleneck problem based
on data fragmentation. Our mechanism enhances the fault tolerance of SNNs by dividing input data
samples into small fragments. Our control scheme addresses the constraint of SNNs’ usable learning
capacity in faulty neuromorphic devices by exploiting an effective fragmentation strategy for fault
mitigation based on analysis of input images’ characteristics and the influence of faults. The novelty
of our mechanism is as follows. Unlike the previous approaches, our mechanism does not require
complex algorithms to control neuronal activities and hardware reconfigurability for modifying
synapses directly. This novelty is derived from the following features of our mechanism.

1. Data sample division into small fragments: Our algorithm fragments input data samples to
decrease the input samples’ size and shrink information in the input samples, leading the faulty SNN
models to memorize the information despite their degraded usable learning capacity due to faults.

2. Fragmentation method to minimize the adverse effect from faults: To ensure that our mechanism
provides the fragments that models can handle, we develop a fragmentation strategy that adapts
fragment geometry (i.e., the cut angle) to mitigate fault-induced damage during the forward pass.

We develop our mechanism through a thorough motivation study with faulty SNN models. With our
mechanism, various SNN models achieve significantly higher classification accuracy than models
using previous approaches for fault mitigation under fault-injected conditions, while consuming less
energy due to our simple approach. We additionally conduct experiments with real hardware SNNs
built in a Field-Programmable Gate Array (FPGA) device. Our work has the following contributions.

* We present a concrete theoretical basis for our mechanism by mathematically and experimen-
tally investigating how synaptic faults degrade the usable learning capacity of SNN models
in our motivation study. Due to our detailed motivation study, we propose a theoretically
sound fragmentation mechanism.

Under review as a conference paper at ICLR 2026

2 BACKGROUNDS

2.1 SPIKING NEURAL NETWORKS

SNNs are third-generation neural networks motivated by the learning mechanisms of the human
brain (Yao et al., 2023). In SNNss, spiking neurons fire and emit output spikes at every time interval,
corresponding to each time step. Here, the time step is a unit of time for spike occurrence. The spiking
neurons generate spikes only when the membrane potential of the neurons reaches a threshold.

Researchers use various neuron models to build SNNs. Among them, the Integrate-and-Fire (IF)
model and Leaky Integrate-and-Fire (LIF) model, which have leakage in membrane potential unlike IF,
are widely used (Moitra et al., 2023). Synaptic weights determine how input spikes from pre-synaptic
neurons of the previous layer affect the post-synaptic neurons (Venkatesha et al., 2021). SNNs update
the weights with two approaches: supervised and unsupervised learning rules. Supervised learning
rules calculate gradients to update weights using surrogate gradient functions. Unsupervised learning
rules utilize the time difference between pre-synaptic and post-synaptic activity to update weights.

SNNs are necessary to implement neuromorphic devices. They exhibit less energy consumption
than conventional neural networks for the following reasons. First, spiking neurons fire and update
synaptic weights only when a specific event occurs (Lee & Lim, 2024). The SNN’s infrequent spike
generation is associated with sporadic data processing, resulting in low power consumption. Second,
SNNs replace complex Multiply-ACcumulate (MAC) operations with simple ACcumulate (AC)
operations, eliminating weight multiplication to input data while accumulating input information.

2.2 SYNAPTIC FAULTS

Synaptic faults are persistent or transient defects in the synaptic weights of a connection. They distort
pre-activations and inject biased or structured noise, which disrupts the learning process of SNN
models. A representative case of them is the Stuck-At Faults (SAFs), where a weight is fixed to
the highest (SA1) and lowest (SAQ) synaptic weight, ignoring updates and introducing systematic
bias (Vatajelu et al., 2019). In other words, SAFs make synapses permanently stuck at a max or
min weight value, regardless of training or input. Note that SAO and SA1 do not mean the weights
are stuck at the exact values 0 and 1. Another common case is Random Weight Faults (RWFs).
RWFs force synapses to randomly fluctuate around their original weight values due to thermal noise.
They transiently remove intended synaptic connections or create unintended connections (Vatajelu
etal., 2019). Additionally, Connectivity Error Faults (CEFs) permanently change the connections
between synapses, ruining synaptic connections. These faults shift the pre-activation away from
useful operating regions, shrink the effective gradient signal, and reduce usable learning capacity.

3 STATE OF THE ARTS

3.1 ANALYSIS ABOUT FAULTS IN NEUROMORPHIC DEVICES

Researchers have deeply investigated how faults affect neuromorphic devices. They inject faults into
synapses and neurons of SNNs in neuromorphic devices, and how these faults ruin the classification
performance of SNNs (Vatajelu et al., 2019). They build a memristive neuromorphic simulator and
analyze how faults disturb data classification (Lee & Lim, 2023). In this study, researchers prove
that the faults occurring in synapses correlated with important features of data samples influence the
devices more severely. Researchers also apply various fault types in neuromorphic devices and study
how spiking neurons act in detail (Ali El Sayed, 2021; Garaffa et al., 2021). However, these analysis
studies overlook the excessive updates caused by hardware faults in neuromorphic devices.

3.2

Researchers utilize the error correction ability of binary codes in output decoding
to enhance the fault tolerance of neural networks (Liu et al., 2019; Yu et al., 2023).

Under review as a conference paper at ICLR 2026

Additionally, they mask faulty elements by setting affected pre-trained weights
to zero, then retrain with per-layer threshold (Siddique & Hoque, 2023). Researchers also employ
self-recovering mechanisms from astrocytes in the human brain to neuromorphic devices. With
their self-recovering ability, these approaches significantly strengthen neuromorphic devices’ fault
tolerance (Han et al., 2023; Varshika et al., 2023). Enhancing the astrocyte-based approaches, they
augment SNNs with an astrocyte-inspired leaky integrator, stabilizing spiking dynamics and markedly
improving fault tolerance (Yunusoglu et al., 2025).

Despite their
enhancement of fault tolerance, these works require complex architectures based on complicated
algorithms and neglect the reconfigurability of electric components in neuromorphic devices.

4 MOTIVATION STUDY

4.1 OVERVIEW

We have discovered that the faults cause the bottleneck problem with the following procedures.

1. Synaptic faults increase the magnitude of pre-activation |z|, which is a linear combination of inputs
(z = Wz + b) (Berzal, 2025). This is because the pre-activation changes significantly when faults
perturb the weights to W + AW. Here, W is the synaptic weights, z is an input sample, and b is a
bias. AW indicates a weight change caused by faults.

2. As |z| grows and moves away from the (spiking) threshold of spiking neurons, the surrogate
gradient near the threshold collapses toward zero, so the learning signal cannot propagate backward.

3. The faulty weights are fixed to abnormal values, and the non-faulty weights barely change due to
near-zero gradients. This problem significantly reduces SNNs’ usable learning capacity, creating a
bottleneck that prevents the model from fitting the data it should learn.

We provide thorough explanations, describing mathematically how faults fail the learning process of
SNN models in Appendix C.

4.2 PRE-ACTIVATION MAGNITUDE INCREASE BY FAULTS

To demonstrate that the synaptic faults cause the pre-activation magnitude to increase, we inject
the SAFs (SA0 : SA1 = 1.75 : 9.04) (Chen et al., 2017) and RWFs (representative permanent
and transient faults) into 50% of synapses in a spiking Multi-Layered Perceptron (MLP) with 4
layers, VGG-7, and ResNet-18 with MNIST, CIFAR-10, and CIFAR-100 during training. We use
the Poisson encoder to convert input into spikes. We observe the change in pre-activation magnitude
of all neurons in the SNN models due to faults after training models with an Adam optimizer and
Root-Mean-Square Error (RMSE) as a loss function. We obtain the experimental results by repeating
experiments 10 times and present the pre-activation magnitude as a 95% confidence interval.

Table 1: Pre-activation magnitude of MLP, VGG-7, and ResNet-18 SNN models under fault injection.

MLP(MNIST) VGG-7(CIFAR-10) RESNET-18(CIFAR-100)

NOMINAL 2.7£0.13 8.75 £2.08 14.54 £ 3.56
SAFs 393.42 £ 10.89 273.66 + 13.69 140.03 £ 15.77
RWFs 8.08 £ 1.75 205.73 £10.27 103.41 £ 11.8

Table 1 compares the summation of the pre-activation magnitude of all spiking neurons in the MLP
(LIF), VGG-7 (LIF), and ResNet-18 (IF) SNN models with and without SAF and RWF injection. Our
experimental results show that SAFs and RWFs significantly increase the pre-activation magnitude
around all neurons with fault-injected synapses.

Under review as a conference paper at ICLR 2026

arctangent surrogate
gradient ¢'(z - 9)
threshold
" 9=10
faulty pre-activation
z=393.42

0.0

0 100 200 300 400
z-0 Pre-activation z

Figure 1: The value (average on the layers of the model) of surrogate gradient ¢'(z — ¥9) (arctangent) when we
inject SAFs into the synapses of the MLP model.

4.3 GRADIENT COLLAPSE BY ABNORMAL PRE-ACTIVATION MAGNITUDE

We call the region where the surrogate derivative is non-negligible the surrogate gradient corridor
and denote its half-width by § (or threshold-aligned bound z*); outside this corridor, ¢'(z —) & 0.
As the pre-activation magnitude increases, the pre-activation value moves away from the corridor.
This alignment error, due to an abnormal pre-activation magnitude, makes the surrogate gradient
values nearly zero.

Figure 1 depicts the surrogate gradient function (arctangent) of an LIF neuron model and the position
of pre-activation of the SAF-injected neurons in the MLP model. The surrogate gradient ¢’ (z —) of
the SAF-injected neurons is near zero, and the gradient of these neurons vanishes. This is because the

following equation calculates the gradient:) = (Vo L) ® ¢/(z) —) (L is a loss function
and [is the index of a layer).

4.4 LEARNING ABILITY DEGRADATION BY GRADIENT COLLAPSE

We demonstrate that gradient vanishing due to faults causes degradation in the SNNs’ learning ability.

Table 2: The gradients’ L1 norm in 95% confidence interval upon all neurons and classification accuracy of
MLP, VGG-7, and ResNet-18 SNN models under fault injection with 50% fault ratio.

MLP(MNIST) VGG-7(CIFAR-10) RESNET-18(CIFAR-100)

NOMINAL (L1 NORM) 11.67 £ 1.71 25.68 +2.89 7.76 £ 1.92
NOMINAL (ACCURACY) 97.57 £ 0.38% 56.63 +£0.91% 25.59 + 1.24%
SAFs (L1 NORM) 0.01 £ 0.00026 1.83 £0.16 1.36 £ 0.25
SAFS (ACCURACY) 11.354+0.01% 9.99 £ 0.08% 5.04 £1.07%
RWFs (L1 NORM) 65.86 + 10.57 2.18£0.45 0.49 £+ 0.07
RWFs (ACCURACY) 79.8 + 8.74% 22.28 +5.34% 1.5+0.51%

Table 2 shows the gradients’ L1 norm upon all neurons in the SNN models during training and
the classification accuracy of the models with the various datasets after testing. The classification
accuracy is proportional to the L1 norm of the gradient under fault injection with 50% fault ratio. This
point demonstrates that vanishing surrogate gradients stall weight updates, preventing the network
from making new decision boundaries and thus directly reducing its learning capacity (occurrence
of the bottleneck problem). Interestingly, the MLP model does not accurately classify MNIST data
samples, despite having a large gradient L1 norm, when the model is under RWF injection. This
occurs because RWFs induce random changes in synaptic weights, which transiently perturb the loss
and cause a temporary increase in the gradient (Foret et al., 2021). Since the MLP model has limited
learning ability, it cannot effectively compensate for such perturbations.

4.5 PRE-ACTIVATION SENSITIVITY OF LAYERS IN MLP

Our motivation study outlines an interesting finding: in MLP, the gradients of neurons in the previous
layers are more sensitive to abnormal changes in pre-activation by faults than the later layers.

Table 3 shows the gradients’ L1 norm of all neurons in each layer of the MLP model. The error
signal that reaches layer ¢ is obtained by repeatedly applying the Jacobians of all higher layers
in MLP. Under faults, pre-activations drift away from the operating threshold, so the surrogate
derivatives ¢'(z —) on affected layers become very small. During gradient calculation, gradients
are multiplicatively contracted by a chain of small factors. Because earlier layers, such as the first

Under review as a conference paper at ICLR 2026

Table 3: The gradients’ L1 norm in a 95% confidence interval upon all neurons in each layer of the MLP model
under fault injection.

Layer 1 Layer 2 Layer 3 Layer 4
MNIST (SAFs) (318 £ 1.13) x 1076 (3.3141.64) x 1073 (1.1540.93) x 1073 (2.67 £0.65) x 1073
MNIST (RWFs) (5.61 +1.46) x 107> (5.194+1.52) x 107° (1.37+£0.58) x 10~% (1.39 £0.29) x 1073
FMNIST (SAFs) (3.45+0.91) x 1075 (1.01 £0.37) x 107! (1.6 +0.69) x 107 (1.02 £ 0.36) x 1072
FMNIST (RWFs) (4.91 £ 1.55) x 107° (5.11 £ 1.71) x 107™° (1.46 £0.62) x 10™* (1.76 £0.82) x 1073

layer (smaller ¢), accumulate more of these factors, they suffer disproportionately severe gradient
vanishing, explaining the front-loaded degradation we observe under faults.

4.6 SIMILARITY TO FLOW CONTROL IN COMPUTER NETWORKS

Data flow control mitigates the congestion problem in computer networks (Kurose & Ross, 2012;
Wigren & Karaki, 2018). The information of input samples in SNNGs is related to the data in the
packets of computer networks, and the surrogate gradient corridor is related to the data capacity
that a receiver can handle in computer networks. The bottleneck problem in neural networks is also
similar to that of the receiver, which prevents the receiver from processing the large data packet
simultaneously. The objective of flow control, which involves adjusting the size of data in a packet to
satisfy the receiver’s data capacity, is similar to that of enhancing fault tolerance: changing the size of
information in the input samples to maintain the pre-activation within the surrogate gradient corridor.

5 PROPOSED MECHANISM

Our motivation study demonstrates that synaptic faults can inflate pre-activations beyond the surrogate
gradient corridor, causing the gradient collapse. To prevent the gradients from vanishing in hardware-
implemented SNNs of neuromorphic devices, we design an adaptive input fragmentation mechanism
to avoid drift in pre-activation magnitude based on flow control in computer networks by shrinking
the probability of cases where input data samples enter faulty synapses, which have abnormal weights
that cause the pre-activation magnitude to increase significantly. The main idea of our paper is to
enhance the fault tolerance of SNN's under synaptic faults by dividing inputs into fragments, selecting
the division angle that optimally ensures the suppression of sudden pre-activation drift in SNNs. We
mathematically prove why our mechanism is nearly-optimal in Appendix D.

5.1 OVERVIEW

The proposed mechanism consists of the sensitivity score, Gini coefficient, and fragment processing
modules. Here, we briefly explain how the three modules cooperate relatively.

1. The sensitivity score module generates a sensitivity map that quantifies the extent to which each
input pixel and its associated synapses influence pre-activation under fault conditions.

2. The Gini coefficient module searches over 1D projection angles on the sensitivity map, selecting
the direction along which the accumulated sensitivity is most evenly distributed. This procedure
defines a fair axis for fragmentation.

3. Our fragment processing module cuts the image along the fair axis into equal-sensitivity fragments,
normalizes each fragment’s energy via RMS normalization to keep pre-activations (z) inside the
surrogate corridor (Zhang & Sennrich, 2019). Then, it accumulates time-step outputs with entropy-
based weighting (Qiu et al., 2025).

Overall, these three modules cooperate by first identifying fault-sensitive pixels, then choosing the
most balanced way to partition them, and finally enforcing the pre-activation in the surrogate corridor
by RMS normalization (Zhang & Sennrich, 2019). Moreover, we ensure the accurate decoding of
fragment-oriented outputs by the entropy-based approach (Qiu et al., 2025). We execute these three
procedures per batch.

5.2 SENSITIVITY SCORE DEFINITION AND CALCULATION

Key point 1: The sensitivity score represents which pixel changes the pre-activation the most
significantly under faults.

Under review as a conference paper at ICLR 2026

Input image Sensitivity score

—

Calculate the
sensitivity score

Figure 2: Sensitivity score calculation with an MNIST image.

Figure 2 depicts the sensitivity score of an MNIST image. To measure how input data samples are
affected by synaptic faults and explore the best fragment shape that prevents a significant increase in
pre-activation magnitude, we define the sensitivity score of input samples, consisting of an image
sample’s complexity and the influence measurement from faults.

I(z) = PN((LOG(JG) + Sobel(x) 4 Var(z)) ® (1 4 As SP(x) + Ay WP(m))).)

where LoG(z), Sobel(x), and Var(z) are information about edges, blobs, and texture contrast of
images. We adopt them to calculate the complexity of an image sample and design our algorithm to
minimize each fragment’s complexity (Lowe, 2004). This is because an image with high complexity
significantly changes the pre-activation since its norm is large. SP(z) is a saliency map (Petsiuk et al.,
2018), and WP () is the absolute value of the first layer’s weight projection to input resolution. We
decide to use the first layer’s weight projection since the pre-activation drift in the first layer causes
the most severe gradient vanishing. SP () identifies the input pixels whose perturbations cause large
shifts in pre-activations and, consequently, substantial changes in the final output. WP (z) converts
the pixel-derived map into a fault-influence field on the weights of the first layer. We apply it to our
mechanism to minimize the increase in pre-activation by reducing the probability that pixel values
enter many faulty synapses at once. © is the Hadamard product. PN is a percentile normalization,
which normalizes the values of the fault influence map in the range of 0 to 1. We adopt PN to prevent
the sensitivity score from increasing excessively. For batch stability and fast operation, we measure
the sensitivity score of the averaged image sample of a batch.

5.3 GINI COEFFICIENT CALCULATION WITH A 1D PROFILE

Key point 2: The Gini coefficient indicates the equality of the sensitivity score (Farris, 2010). It
should be minimized to increase the equality of the sensitivity score upon the fragments and
prevent the pre-activation from falling outside of the surrogate gradient corridor.

1D profile at angle 161°, Gini(6) = 0.414

Importance
mass

y; Sensitivity score I

P
[
[
[
[
IR
WAL

o

|
1V th
[|
R
Bins

xsin@ + ycos@ Calculate the Gini coefficient
of the sensitivity score of a
profile with the angle 6

Find the angle that ensures

Changing 0 the smallest Gini coefficient

Figure 3: 1D projection and Gini coefficient calculation changing the projection angle.

In figure 3, we change the angle 6 of the 1D sensitivity profile and project the pixels on the 1D profile.
Specifically, we transform 2D coordinated pixel position (z, y) into 1D bin index s using the equation
s = xsin(f) + ycos(#). Then, we calculate the Gini coefficient with equation 2 (Farris, 2010)

1 L—-1L-1
Gini(pg) = Lo D> | polil = palil | @)
i=0 j—0

where, py is the 1D sensitivity profile bin obtained by projecting along an angle ¢ (range of [0°, 360°]).
poli] is the value of bin ¢ (i = 0,..., L — 1). In other words, we obtain py by projecting each pixel’s

sensitivity I onto the index of the 1D profile s, and aggregating along that axis. L is the number

Under review as a conference paper at ICLR 2026

of bins, which is related to the granularity of angle division. py is the mean value of py over the
number of bins (L). |pg[i] — pe[j]| is absolute difference between py[i] and py[j]. We divide the sum
of pairwise absolute differences by (2Lpy) for normalization, so the coefficient is 0 for a uniform
profile and grows with inequality.

We explore the angle # which makes the 1D profile have the minimum Gini coefficient. This is
because the Gini coefficient is a strictly Schur-convex function, ensuring the Gini coefficient strictly
increases under majorization: if z > y (i.e., x is more unequal), then Gini(z) > Gini(y), with
equality only for permutations (Sandor, 2007). By minimizing the Gini coefficient, the fragment’s
equality of sensitivity score is maximized. We design our mechanism to maximize equality and
prevent the pre-activation from leaving the corridor. This is because as a fragment’s sensitivity score
becomes more equal by minimizing Gini coefficient, the maximum of each fragment’s energy ||z ||2
decreases, so the upper bounds |w ' z¢| < ||w]|2||2¢||2 and |u¢| = |w Tz + m|, (m = b —) are
pushed below 4, keeping the pre-activation fixed inside the corridor (b is a bias in SNNs’ layers.).

5.4 FRAGMENT GENERATION BASED ON EQUAL SENSITIVITY SCORE AND IN/OUT FOR SNNS

Key point 3: The fragmentation line is set by the 1D profile cutting to make the 1D bins have an
equal cumulative sum of the sensitivity score.

1D profile at angle

161°, Gini(8) = 0.414 8 Fragments (8 time steps)

|
| P
3521 | |
i

B1

1D projection bins ™~ ~ _ FH
related to the pixels ~<

time step 2
time step 1

Figure 4: Dividing an image sample based on the cumulative sum of the sensitivity score.

After finding the angle that ensures the minimum Gini coefficient, we calculate the cumulative sum
of the sensitivity score. As depicted in figure 4, the division line for fragmentation (dashed line in
the figure) indicates the position to cut the 1D profile into bins By, ..., By, making the bins have
equal sensitivity score. We generate fragments Fi, ..., Fr € {0, 1}*W with the pixels correlated
to the points in bins By, ..., B and feed the SNN models the fragments F1, ..., F; over time steps
t = 1..T. We zero-pad the generated fragment to align the input dimension of fragments with the
input dimension of the original samples because the input dimension of SNNs is not changeable
during training and testing. We apply the same division angle to all data samples in the same batch.

To ensure that pre-activation z; of fragment F; positions in the corridor, keeping the scale of active
pixels in each fragment to a target Root-Mean-Square (RMS) is also important. Therefore, we adopt
RMS normalization to the input fragments with the equation 3 (Zhang & Sennrich, 2019)

T = gire, ||Telle = = |z] < |2 0 3)

where x; is an input of time step ¢ and g; is the per-fragment normalization gain. « is the L2 norm
of the z; (the multiplication of z; and ¢;) and denotes the non-zero pixels in the fragment for the
input of time step ¢. We set g; to ensure that ||1||2c is always smaller than the bound of the surrogate
corridor, placing z; inside the surrogate-derivative corridor.

We also adopt an entropy-based output decoding technique to aggregate the outputs (logits) from
SNNSs across all time steps accurately with the equation 4 (Qiu et al., 2025)

T
_ — 7H (soft 14
ézZetfu e = TeXp(7H (softmax(t,)) .
pary sy exp(— 7H (softmax((,))

“

where / is the final output vector from the entropy-weighted aggregation. /; is an output vector
from SNNGs at time ¢ and T is the total number of steps. H (softmax(¢;)) is the Shannon entropy
of the output vector’s softmax result, and 7 controls how strongly low-entropy (confident) steps are
emphasized. e; is a scaling factor to reflect the entropy of output vectors while decoding. exp is an
exponential function, and s is the start index of time steps.

100
80
60
40
20

100
80
60
40
20

100

Under review as a conference paper at ICLR 2026

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTINGS

We conduct various experiments with MLP (LIF neurons), VGG-7/11/15 (LIF neurons), and ResNet-
18/34 (IF neurons) SNN models based on SpikingJelly, widely used for SNN implementation, by
classifying samples in MNIST/FMNIST/UCI-HAR/AudioMNIST (MLP), CIFAR-10/100 (VGG
and ResNet), and Tiny-ImageNet (ResNet) (Fang et al., 2023; LeCun et al., 1998; Xiao et al., 2017;
Krizhevsky, 2009; Reyes-Ortiz et al., 2013; Becker et al., 2024; Deng et al., 2015). We select these
SNN models and datasets because current SNN technologies do not adequately train large and deep
models on complex datasets (Fang et al., 2023; Schuman et al., 2022). We measure the classification
accuracy of the SNN models using our mechanism and the benchmarks under SAFs (injected during
training), setting the ratio of SA1 and SAO to SA0 : SA1 = 1.75 : 9.04 (Chen et al., 2017) and
the weight boundary to [—1, 1] (Le Gallo et al., 2023; Lammie et al., 2022). Additionally, we inject
RWFs and CEFs into the synapses of these models. We use ECOC (Liu et al., 2019), SoftSNN
(Putra et al., 2022), Routing (Yang et al., 2022), Astrocyte (Han et al., 2023), FalVolt (Siddique &
Hoque, 2023), and LIFA (Yunusoglu et al., 2025) for our benchmarks'. The SNN models without
any fault-mitigation mechanism serve as the baseline. We use RMSE as a loss function and Adam
as the optimizer for SNN models (Fang et al., 2023). The batch size is 100, and the learning rate is
0.001 for MLP/VGG and 0.01 for ResNet. We set the number of time steps (fragments) to 2, 4, and 8.
We use 50 epochs for training. We set A, Ay, to 0.1, and 7 to 2.0 by tuning these parameters through
experimental repetition with the proposed mechanism. We repeat all experiments 10 times with
different random seeds and present the experimental results in a 95% confidence interval. We inject
faults into the synapses sporadically in a uniform distribution, resulting in the uniform position of
synaptic faults. Note that the additional results from the additional datasets (UCI-HAR, AudioMNIST,
and Tiny-ImageNet), different time steps (4 and 8 steps), other fault types (RWFs and CEFs), the
ablation study with the combination of our mechanism, various hyperparameter (A and \,,) settings,
and the results with DNN models are presented in Appendix A.

6.2 CLASSIFICATION ACCURACY COMPARISON

\—Q—Baseline —=—ECOC SoftSNN —4—Routing —v—Astrocyte —»—FalVolt ——LIFA —i—Proposed\

MLP(MNIST) MLP(FMNIST) VGG-7(CIFAR-10) VGG-11(CIFAR-10)
: 1100 100 100
| 80 80 80
| 60 60 60
140 00 N 40
| A 120 20 WIS 20
I o 0 0
Q \Q (1/0 ‘bQ @ OJQ Q)Q ,\Q %Q Q)Q\QQ Q ,\Q ,—19 “.)Q D‘B @Q Q)Q ,\Q Q)B Q‘Q\QQ Q ,\Q "]/Q ’bb b(Q V)Q ‘bQ /\Q ch O_,Q\QQ Q ,\Q ,19 ’bQ b(% %Q @Q ,\Q ‘bb Q’B\QQ
VGG-15(CIFAR-10) 100 VGG-7(CIFAR-100) 100 VGG-11(CIFAR-100) 100 VGG-15(CIFAR-100)
| 80 80 80
| 60 60 60
40 40 40
1 % Nt e e as % %
o s = = [
CRPPREEO® P CRPPLREOR P CXPP RSO RS CLRP RSO RS
ResNet-18(CIFAR-10) _~ ResNet:34(CIFAR-10) _ ~ ResNet-18(CIFAR-100) _ ~ ResNet34(CIFAR-100)
80 80 80
| 60 60 60
| 40 %’4 40 40
120 20 B 20
0 o;\“vxv%—ﬂ-v,v:-: L= = N
Q.0 (I/Q ‘bQ @ QJQ COQ /\Q %Q QQNQQ NN '19 ,—bQ b&Q (,_)Q (‘ob ,\Q %Q QQ\BQ Q ,\Q (19 "bb D&Q %Q Q>Q ,\0 %Q QQ\QQ Q ,\Q ,-I/Q ’bQ b(b %Q Q)Q /\Q "bb Q’Q\QQ

Figure 5: Average classification accuracy of various SNN models with the baseline, benchmarks, and proposed
mechanism under SAFs using 2 time steps. The x-axis is the fault ratio (%) and the y-axis is the accuracy (%).

Figure 5 illustrates the classification accuracy of SNN models compared to the baseline, benchmarks,
and proposed mechanism under SAFs with 2 time steps. Under SAFs, the SNN models with our
mechanism exhibit the best classification accuracy across all datasets and models in most cases.

'We briefly explain how these benchmarks enhance the fault tolerance in Section 3.

Under review as a conference paper at ICLR 2026

6.2.1 MLP MODELS

In the MLP model, the classification accuracy drops dramatically as the fault ratio increases. This
is because the faulty weights are directly multiplied by the input values, and the pre-activation
magnitude increases significantly, allowing it to easily escape from the surrogate gradient corridor.
Our mechanism definitely outperforms the baseline and benchmarks, since it utilizes the input saliency
and weight projection map of the first layer in Gini-based equal fragmentation. The MLP model is
vulnerable to faults in the first layer, as mentioned in Subsection 4.1. By adopting the saliency and
weight projection map (fault influence map) of the first layer, we suppress its pre-activation, which
decides the surrogate gradient, from increasing significantly and escaping from the corridor. Thus,
the pre-activation does not lie far from the corridor, preserving the power of the first layer’s gradient.

6.2.2 VGG MODELS

While VGG models with the benchmarks using CIFAR-10 maintain proper classification perfor-
mance only up to a fault ratio of 30-40%, the models with the proposed mechanism sustain correct
classification even at fault ratios as high as 50%. This is because our mechanism targets to make
the pre-activation lie at the point in the surrogate gradient corridor with Gini-based equal mass
fragmentation, despite the large amount of faults. Contrarily, the benchmarks do not consider the
relations between pre-activation, corridor, and surrogate gradient, failing to bound the pre-activation
in the corridor. Therefore, the classification accuracy of the model using the benchmarks degrades
sharply with fewer faults. We also observe that the classification accuracy declines as the model
gets deeper. This occurs because surrogate gradients in deep SNNs cannot reliably approximate the
hypothetical gradients of LIF neurons (Guo et al., 2024). When we use CIFAR-100, the models do
not classify the data samples accurately due to their low learning ability. However, the models with
our mechanism exhibit the highest classification accuracy under SAFs in most cases.

6.2.3 RESNET MODELS

Different from VGG models, ResNet models integrated with the benchmarks and proposed mechanism
maintain the classification accuracy up to a fault ratio of 80-90% when we use CIFAR-10. This is
because ResNet models have internal mechanisms to compensate for errors in gradient calculations,
such as residual blocks. They also classify CIFAR-100 samples more accurately than VGG models
under faults, since they have a more powerful learning ability than VGG models. ResNet-18 using
CIFAR-100 maintains its classification ability up to the ratio of 60-70% only with our mechanism,
and the ResNet-34 with CIFAR-100 maintains the classification ability up to the ratio of 30-40% only
with our mechanism. These results demonstrate that our mechanism successfully enhances the fault
tolerance with complicated datasets and models. We observe that the astrocyte-based approaches
(Astrocyte and LIFA) do not improve the deep ResNet models’ fault tolerance at all. This problem
derives from the fact that they only mimic biological mechanisms of neuronal activity in brains,
which enhances the fault tolerance of shallow and highly bio-plausible models such as Diehl & Cook
2015, using a bio-plausible unsupervised learning rule (Han et al., 2023; Yunusoglu et al., 2025).
However, our mechanism successfully strengthens the models’ fault tolerance in most cases since
we tackle a fundamental problem of faulty SNN models regardless of the types of SNN models, and
develop a solution to mitigate the problem.

7 CONCLUSION

This paper introduces a simple yet effective fault mitigation mechanism for SNNs that does not require
complicated architectures or direct weight modifications based on input data control. Our mechanism
improves fault tolerance more effectively than conventional approaches in various SNN models
and datasets. Experimental results exhibited improvement in the fault tolerance of our mechanism
over benchmarks in various network models and datasets, including real hardware environments.
We emphasize that this improvement is primarily achieved through an effective input data control
mechanism based on detailed observation of how synaptic faults ruin the learning capability of SNNs.
Our mechanism allows SNNs to maintain reliable operation and high fault tolerance in a practical
and hardware-compatible manner, enabling more sustainable and reliable edge Al computing.

10

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not involve human subjects, sensitive personal data, or potentially harmful applications.
We trained and validated our models using publicly available datasets (e.g., MNIST, FMNIST, CIFAR-
10, and CIFAR-100), without any private or identifiable information. We design our mechanism to
enhance the robustness of neuromorphic systems against hardware faults. We declare no conflict of
interest or external sponsorship that might have influenced the research outcomes.

REPRODUCIBILITY STATEMENT

We conducted all experiments on publicly available datasets with standard train/validation/test
splits. To facilitate replication, we provide our full implementation of the proposed mechanisms
in the anonymous supplementary material. We also present the hyperparameter settings, model
configurations, and hardware specifications to support reproducibility. We will publicly release the
code and scripts on GitHub if our paper is accepted for the conference.

LARGE LANGUAGE MODEL USAGE STATEMENT

We used Large Language Models (LLMs) as writing and experiment assistants to improve the clarity
of writing/editing mathematical equations (fixing typos/suggesting algebraic simplifications), and
assist us in conducting experiments with the benchmarks. We did not use LLMs for idea generation,
methodological design, analysis, or to originate any mathematical arguments or claims. We derived,
verified, and finalized all derivations, results, and claims.

REFERENCES

Sarah Ali El Sayed. Fault Tolerance in Hardware Spiking Neural Networks. Theses, Sorbonne
Université, October 2021. URL https://theses.hal.science/tel-03681910.

Arindam Basu, Jyotibdha Acharya, Tanay Karnik, Huichu Liu, Hai Li, Jae-Sun Seo, and Chang Song.
Low-power, adaptive neuromorphic systems: Recent progress and future directions. /IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 8(1):6-27, 2018. doi: 10.1109/JETCAS.
2018.2816339.

Soren Becker, Johanna Vielhaben, Marcel Ackermann, Klaus-Robert Miiller, Sebastian Lapuschkin,
and Wojciech Samek. Audiomnist: Exploring explainable artificial intelligence for audio analysis
on a simple benchmark. Journal of the Franklin Institute, 361(1):418-428, 2024. ISSN 0016-
0032. doi: 10.1016/j.jfranklin.2023.11.038. URL https://www.sciencedirect.com/
science/article/pii/S0016003223007536.

Fernando Berzal. D1101 neural network outputs and loss functions, 2025. URL https://arxiv.
org/abs/2511.05131.

Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning, 2018. URL https://arxiv.org/abs/1606.04838.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, 2004. doi: 10.1017/CB0O9780511804441.

BrainChipInc. Akd1000 akida system-on-chip — product brief. Technical Report V2.3, BrainChip-
Inc., 8 2025. URL https://brainchip.com/wp—-content/uploads/2025/08/
Akida-AKD1000-SoC-Product-Brief-V2.3-Aug.25.pdf. Accessed 2025-09-07.

Alessio Carpegna, Alessandro Savino, and Stefano Di Carlo. Spiker+: a framework for the generation
of efficient spiking neural networks fpga accelerators for inference at the edge. IEEE Transactions
on Emerging Topics in Computing, pp. 1-15, 2024. doi: 10.1109/TETC.2024.3511676.

11

https://theses.hal.science/tel-03681910
https://www.sciencedirect.com/science/article/pii/S0016003223007536
https://www.sciencedirect.com/science/article/pii/S0016003223007536
https://arxiv.org/abs/2511.05131
https://arxiv.org/abs/2511.05131
https://arxiv.org/abs/1606.04838
https://brainchip.com/wp-content/uploads/2025/08/Akida-AKD1000-SoC-Product-Brief-V2.3-Aug.25.pdf
https://brainchip.com/wp-content/uploads/2025/08/Akida-AKD1000-SoC-Product-Brief-V2.3-Aug.25.pdf

Under review as a conference paper at ICLR 2026

Kaiwei Che, Luziwei Leng, Kaixuan Zhang, Jianguo Zhang, Max Q.-H. Meng, Jie Cheng, Qinghai
Guo, and Jiangxing Liao. Differentiable hierarchical and surrogate gradient search for spik-
ing neural networks. In Proceedings of the 36th International Conference on Neural Informa-
tion Processing Systems, NIPS °22, Red Hook, NY, USA, 2022. Curran Associates Inc. ISBN
9781713871088.

Ching-Yuan Chen and Krishnendu Chakrabarty. Pruning of deep neural networks for fault-tolerant
memristor-based accelerators. In 2021 58th ACM/IEEE Design Automation Conference (DAC),
pp- 889-894. IEEE Press, 2021. doi: 10.1109/DAC18074.2021.9586269. URL https://doi.
org/10.1109/DAC18074.2021.9586269.

Lerong Chen, Jiawen Li, Yiran Chen, Qiuping Deng, Jiyuan Shen, Xiaoyao Liang, and Li Jiang.
Accelerator-friendly neural-network training: Learning variations and defects in rram crossbar. In
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, pp. 19-24, 2017.
doi: 10.23919/DATE.2017.7926952.

Benjamin Cramer, Sebastian Billaudelle, Simeon Kanya, Aron Leibfried, Andreas Griibl, Vi-
tali Karasenko, Christian Pehle, Korbinian Schreiber, Yannik Stradmann, Johannes Weis, Jo-
hannes Schemmel, and Friedemann Zenke. Surrogate gradients for analog neuromorphic com-
puting. Proceedings of the National Academy of Sciences, 119(4):¢2109194119, 2022. doi:
10.1073/pnas.2109194119. URL https://www.pnas.org/doi/abs/10.1073/pnas.
21091941109.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Tiny ImageNet challenge.
http://cs231n.stanford.edu/tiny—-imagenet-200.zip, 2015. Stanford CS231n
course dataset. Accessed: 2025-11-12.

Peter Diehl and Matthew Cook. Unsupervised learning of digit recognition using spike-timing-
dependent plasticity. Frontiers in Computational Neuroscience, 9, 2015. doi: 10.3389/fncom.2015.
00099. URL https://www.frontiersin.org/article/10.3389/fncom.2015.
00099.

M. Reza Eslami, Dhiman Biswas, Soheib Takhtardeshir, Sarah S. Sharif, and Yaser M. Banad. On-
chip learning with memristor-based neural networks: Assessing accuracy and efficiency under
device variations, conductance errors, and input noise, 2024. URL https://arxiv.org/
abs/2408.14680.

Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang,
Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning
infrastructure platform for spike-based intelligence. Science Advances, 9(40):eadil480, 2023.
doi: 10.1126/sciadv.adi1480. URL https://www.science.org/doi/abs/10.1126/
sciadv.adil480.

Frank A. Farris. The gini index and measures of inequality. The American Mathematical Monthly,
117(10):pp. 851-864, 2010. ISSN 00029890, 19300972. URL https://www. jstor.org/
stable/10.4169/000298910x523344.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimiza-
tion for efficiently improving generalization, 2021. URL https://arxiv.org/abs/2010.
01412.

Luiza C. Garaffa, Abdullah Aljuffri, Cezar Reinbrecht, Said Hamdioui, Mottagiallah Taouil, and
Johanna Sepulveda. Revealing the secrets of spiking neural networks: The case of izhikevich
neuron. In 2021 24th Euromicro Conference on Digital System Design (DSD), pp. 514-518, 2021.
doi: 10.1109/DSD53832.2021.00083.

Yufei Guo, Yuanpei Chen, Zecheng Hao, Weihang Peng, Zhou Jie, Yuhan Zhang, Xiaode Liu, and Zhe
Ma. Take a shortcut back: Mitigating the gradient vanishing for training spiking neural networks.
In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.),
Advances in Neural Information Processing Systems, volume 37, pp. 24849-24867. Curran Asso-
ciates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/
2024/file/2c37c5bcef24b9541550261dcd63261b-Paper—Conference.pdf.

12

https://doi.org/10.1109/DAC18074.2021.9586269
https://doi.org/10.1109/DAC18074.2021.9586269
https://www.pnas.org/doi/abs/10.1073/pnas.2109194119
https://www.pnas.org/doi/abs/10.1073/pnas.2109194119
http://cs231n.stanford.edu/tiny-imagenet-200.zip
https://www.frontiersin.org/article/10.3389/fncom.2015.00099
https://www.frontiersin.org/article/10.3389/fncom.2015.00099
https://arxiv.org/abs/2408.14680
https://arxiv.org/abs/2408.14680
https://www.science.org/doi/abs/10.1126/sciadv.adi1480
https://www.science.org/doi/abs/10.1126/sciadv.adi1480
https://www.jstor.org/stable/10.4169/000298910x523344
https://www.jstor.org/stable/10.4169/000298910x523344
https://arxiv.org/abs/2010.01412
https://arxiv.org/abs/2010.01412
https://proceedings.neurips.cc/paper_files/paper/2024/file/2c37c5bcef24b9541550261dcd63261b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/2c37c5bcef24b9541550261dcd63261b-Paper-Conference.pdf

Under review as a conference paper at ICLR 2026

Zhuangyu Han, A N M Nafiul Islam, and Abhronil Sengupta. Astromorphic self-repair of neuro-
morphic hardware systems. Proceedings of the AAAI Conference on Artificial Intelligence, 37
(6):7821-7829, Jun. 2023. doi: 10.1609/aaai.v37i6.25947. URL https://0ojs.aaai.org/
index.php/AAAI/article/view/25947.

Hananel Hazan, Daniel J. Saunders, Hassaan Khan, Devdhar Patel, Darpan T. Sanghavi, Hava T.
Siegelmann, and Robert Kozma. Bindsnet: A machine learning-oriented spiking neural networks
library in python. Frontiers in Neuroinformatics, 12, 2018. doi: 10.3389/fninf.2018.00089. URL
https://www.frontiersin.org/article/10.3389/fninf.2018.00089.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13-30, 1963. doi: 10.1080/01621459.1963.10500830.

Hakcheon Jeong, Seungjae Han, See-On Park, Tae Ryong Kim, Jongmin Bae, Tachwan Jang, Yoonho
Cho, Seokho Seo, Hyun-Jun Jeong, Seungwoo Park, Taehoon Park, Juyoung Oh, Jeongwoo Park,
Kwangwon Koh, Kang-Ho Kim, Dongsuk Jeon, Inyong Kwon, Young-Gyu Yoon, and Shinhyun
Choi. Self-supervised video processing with self-calibration on an analogue computing platform
based on a selector-less memristor array. Nature Electronics, Jan 2025. ISSN 2520-1131. doi: 10.
1038/s41928-024-01318-6. URL https://doi.org/10.1038/s41928-024-01318-6.

Mehrzad Karamimanesh, Ebrahim Abiri, Mahyar Shahsavari, Kourosh Hassanli, André van Schaik,
and Jason Eshraghian. Spiking neural networks on fpga: A survey of methodologies and recent
advancements. Neural Networks, 186:107256, 2025. ISSN 0893-6080. doi: https://doi.org/10.1016/
j-neunet.2025.107256. URL https://www.sciencedirect.com/science/article/
pii/S0893608025001352.

Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
gradient methods under the polyak-tojasiewicz condition, 2020. URL https://arxiv.org/
abs/1608.04636.

Asif Ali Khan, Jodao Paulo C. De Lima, Hamid Farzaneh, and Jeronimo Castrillon. The landscape
of compute-near-memory and compute-in-memory: A research and commercial overview, 2024.
URL https://arxiv.org/abs/2401.14428.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical re-
port, University of Toronto, 2009. URL https://www.cs.toronto.edu/~kriz/
learning-features-2009-TR.pdf.

James F. Kurose and Keith W. Ross. Computer Networking: A Top-Down Approach (6th Edition).
Pearson, 6th edition, 2012. ISBN 0132856204.

Xavier Lagorce, Evangelos Stromatias, Francesco Galluppi, Luis A. Plana, Shih-Chii Liu,
Steve B. Furber, and Ryad B. Benosman. Breaking the millisecond barrier on spinnaker:
implementing asynchronous event-based plastic models with microsecond resolution. Fron-
tiers in Neuroscience, Volume 9 - 2015, 2015. ISSN 1662-453X. doi: 10.3389/fnins.
2015.00206. URL https://www.frontiersin.org/journals/neuroscience/
articles/10.3389/fnins.2015.00206.

Corey Lammie, Wei Xiang, Bernabé Linares-Barranco, and Mostafa Rahimi Azghadi. Mem-
torch: An open-source simulation framework for memristive deep learning systems. Neu-
rocomputing, 485:124-133, 2022. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.
2022.02.043. URL https://www.sciencedirect.com/science/article/pii/
50925231222002053.

Manuel Le Gallo, Corey Lammie, Julian Biichel, Fabio Carta, Omobayode Fagbohungbe, Charles
Mackin, Hsinyu Tsai, Vijay Narayanan, Abu Sebastian, Kaoutar El Maghraoui, and Malte J.
Rasch. Using the ibm analog in-memory hardware acceleration kit for neural network training
and inference. APL Machine Learning, 1(4), November 2023. ISSN 2770-9019. doi: 10.1063/5.
0168089. URL http://dx.doi.org/10.1063/5.0168089.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998. doi: 10.1109/5.726791.

13

https://ojs.aaai.org/index.php/AAAI/article/view/25947
https://ojs.aaai.org/index.php/AAAI/article/view/25947
https://www.frontiersin.org/article/10.3389/fninf.2018.00089
https://doi.org/10.1038/s41928-024-01318-6
https://www.sciencedirect.com/science/article/pii/S0893608025001352
https://www.sciencedirect.com/science/article/pii/S0893608025001352
https://arxiv.org/abs/1608.04636
https://arxiv.org/abs/1608.04636
https://arxiv.org/abs/2401.14428
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2015.00206
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2015.00206
https://www.sciencedirect.com/science/article/pii/S0925231222002053
https://www.sciencedirect.com/science/article/pii/S0925231222002053
http://dx.doi.org/10.1063/5.0168089

Under review as a conference paper at ICLR 2026

Hyun-Jong Lee and Jae-Han Lim. Analysis on effects of fault elements in memristive neuromorphic
systems. In IJCAI 2023 GLOW workshop, 2023. URL https://arxiv.org/abs/2312.
04840.

Hyun-Jong Lee and Jae-Han Lim. Adaptive synaptic adjustment mechanism to improve learning
performances of spiking neural networks. Computational Intelligence, 40(5):¢70001, 2024. doi:
https://doi.org/10.1111/coin.70001. URL https://onlinelibrary.wiley.com/doi/
abs/10.1111/coin.70001.

Yudong Li, Yunlin Lei, and Xu Yang. Spikeformer: Training high-performance spiking neural network
with transformer. Neurocomputing, 574:127279, 2024a. ISSN 0925-2312. doi: https://doi.org/
10.1016/j.neucom.2024.127279. URL https://www.sciencedirect.com/science/
article/pii/S092523122400050X.

Yuhang Li, Tamar Geller, Youngeun Kim, and Priyadarshini Panda. Seenn: towards temporal
spiking early-exit neural networks. In Proceedings of the 37th International Conference on Neural
Information Processing Systems, NIPS *23, Red Hook, NY, USA, 2024b. Curran Associates Inc.

Shuang Lian, Jiangrong Shen, Qianhui Liu, Ziming Wang, Rui Yan, and Huajin Tang. Learnable
surrogate gradient for direct training spiking neural networks. In Edith Elkind (ed.), Proceedings
of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI-23, pp.
3002-3010. International Joint Conferences on Artificial Intelligence Organization, 8 2023. doi:
10.24963/ijcai.2023/335. URL https://doi.org/10.24963/1jcai.2023/335. Main
Track.

Ling Liang, Xing Hu, Lei Deng, Yujie Wu, Guoqi Li, Yufei Ding, Peng Li, and Yuan Xie. Exploring
adversarial attack in spiking neural networks with spike-compatible gradient. IEEE Transactions
on Neural Networks and Learning Systems, 34(5):2569-2583, 2023. doi: 10.1109/TNNLS.2021.
3106961.

Tao Liu, Wujie Wen, Lei Jiang, Yanzhi Wang, Chengmo Yang, and Gang Quan. A fault-tolerant
neural network architecture. In 2019 56th ACM/IEEE Design Automation Conference (DAC), pp.
1-6, 2019.

Tongliang Liu, Gdbor Lugosi, Gergely Neu, and Dacheng Tao. Algorithmic stability and hypothesis
complexity, 2017. URL https://arxiv.org/abs/1702.08712.

David G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of
Computer Vision, 60(2):91-110, Nov 2004. ISSN 1573-1405. doi: 10.1023/B:VISI.0000029664.
99615.94. URL https://doi.org/10.1023/B:VISI.0000029664.99615.94.

M. Martemucci, F. Rummens, Y. Malot, et al. A ferroelectric-memristor memory for both training
and inference. Nature Electronics, 8:921-933,2025. doi: 10.1038/s41928-025-01454-7.

Abhishek Moitra, Abhiroop Bhattacharjee, Runcong Kuang, Gokul Krishnan, Yu Cao, and
Priyadarshini Panda. Spikesim: An end-to-end compute-in-memory hardware evaluation tool
for benchmarking spiking neural networks. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 42(11):3815-3828, 2023. doi: 10.1109/TCAD.2023.3274918.

Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking
neural networks: Bringing the power of gradient-based optimization to spiking neural networks.
IEEE Signal Processing Magazine, 36(6):51-63, 2019. doi: 10.1109/MSP.2019.2931595.

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Springer Publishing
Company, Incorporated, 1 edition, 2014. ISBN 1461346916.

Sathish Panchapakesan, Zhenman Fang, and Jian Li. Syncnn: Evaluating and accelerating spiking
neural networks on fpgas. In 2021 31st International Conference on Field-Programmable Logic
and Applications (FPL), pp. 286-293, 2021. doi: 10.1109/FPL53798.2021.00058.

Melika Payvand, Mohammed E. Fouda, Fadi Kurdahi, Ahmed M. Eltawil, and Emre O. Neftci.
On-chip error-triggered learning of multi-layer memristive spiking neural networks. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems, 10(4):522-535, 2020. doi: 10.1109/
JETCAS.2020.3040248.

14

https://arxiv.org/abs/2312.04840
https://arxiv.org/abs/2312.04840
https://onlinelibrary.wiley.com/doi/abs/10.1111/coin.70001
https://onlinelibrary.wiley.com/doi/abs/10.1111/coin.70001
https://www.sciencedirect.com/science/article/pii/S092523122400050X
https://www.sciencedirect.com/science/article/pii/S092523122400050X
https://doi.org/10.24963/ijcai.2023/335
https://arxiv.org/abs/1702.08712
https://doi.org/10.1023/B:VISI.0000029664.99615.94

Under review as a conference paper at ICLR 2026

Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized input sampling for explanation of
black-box models, 2018. URL https://arxiv.org/abs/1806.07421.

Michael Pfeiffer and Thomas Pfeil. Deep learning with spiking neurons: Opportunities and
challenges. Frontiers in Neuroscience, 12, 2018. ISSN 1662-453X. doi: 10.3389/fnins.
2018.00774. URL https://www.frontiersin.org/journals/neuroscience/
articles/10.3389/fnins.2018.00774.

Rachmad Vidya Wicaksana Putra, Muhammad Abdullah Hanif, and Muhammad Shafique. Softsnn:
low-cost fault tolerance for spiking neural network accelerators under soft errors. In Proceedings
of the 59th ACM/IEEE Design Automation Conference, DAC °22, pp. 151-156, New York, NY,
USA, 2022. Association for Computing Machinery. ISBN 9781450391429. doi: 10.1145/3489517.
3530657. URL https://doi.org/10.1145/3489517.3530657.

Rachmad Vidya Wicaksana Putra, Muhammad Abdullah Hanif, and Muhammad Shafique. Res-
cuesnn: enabling reliable executions on spiking neural network accelerators under perma-
nent faults. Frontiers in Neuroscience, 17, 2023. ISSN 1662-453X. doi: 10.3389/fnins.
2023.1159440. URL https://www.frontiersin.org/journals/neuroscience/
articles/10.3389/fnins.2023.1159440.

Zexuan Qiu, Zijing Ou, Bin Wu, Jingjing Li, Aiwei Liu, and Irwin King. Entropy-based decod-
ing for retrieval-augmented large language models. In Proceedings of the 2025 Conference of
the North American Chapter of the Association for Computational Linguistics (NAACL), Long
Papers, pp. 4616-4627, Albuquerque, New Mexico, 2025. Association for Computational Linguis-
tics. doi: 10.18653/v1/2025.naacl-long.236. URL https://aclanthology.org/2025.
naacl-long.236/.

Mehul Rastogi, Sen Lu, Nafiul Islam, and Abhronil Sengupta. On the self-repair role of astrocytes
in stdp enabled unsupervised snns. Frontiers in Neuroscience, Volume 14 - 2020, 2021. ISSN
1662-453X. doi: 10.3389/fnins.2020.603796. URL https://www.frontiersin.org/
journals/neuroscience/articles/10.3389/fnins.2020.603796.

Alpha Renner, Forrest Sheldon, Anatoly Zlotnik, Louis Tao, and Andrew Sornborger. The backpropa-
gation algorithm implemented on spiking neuromorphic hardware. Nature Communications, 15(1):
9691, 2024. doi: 10.1038/s41467-024-53827-9.

Reyes-Ortiz, Jorge, Anguita, Davide, Ghio, Alessandro, Oneto, Luca, Parra, and Xavier. Hu-
man activity recognition using smartphones. UCI Machine Learning Repository, 2013. DOI:
https://doi.org/10.24432/C54S54K.

Amirhossein Rostami, Bernhard Vogginger, Yexin Yan, and Christian G. Mayr. E-prop on
spinnaker 2: Exploring online learning in spiking rnns on neuromorphic hardware. Fron-
tiers in Neuroscience, Volume 16 - 2022, 2022. ISSN 1662-453X. doi: 10.3389/fnins.
2022.1018006. URL https://www.frontiersin.org/journals/neuroscience/
articles/10.3389/fnins.2022.1018006.

Anurup Saha, Chandramouli Amarnath, and Abhijit Chatterjee. A resilience framework for synapse
weight errors and firing threshold perturbations in rram spiking neural networks. In 2023 IEEE
European Test Symposium (ETS), pp. 1-4, 2023. doi: 10.1109/ETS56758.2023.10174229.

Anurup Saha, Chandramouli Amarnath, Kwondo Ma, and Abhijit Chatterjee. Signature driven
post-manufacture testing and tuning of rram spiking neural networks for yield recovery. In 2024
29th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 740-745, 2024. doi:
10.1109/ASP-DAC58780.2024.10473874.

Jozsef Sandor. The Schur-convexity of Stolarsky and Gini means. Banach Journal of Mathematical
Analysis, 1(2):212 — 215, 2007. doi: 10.15352/bjma/1240336218. URL https://doi.org/
10.15352/bjma/1240336218.

Catherine D. Schuman, Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date,
and Bill Kay. Opportunities for neuromorphic computing algorithms and applications. Nature
Computational Science, 2(1):10-19, Jan 2022. doi: 10.1038/s43588-021-00184-y. URL https:
//doi.org/10.1038/s43588-021-00184~-y.

15

https://arxiv.org/abs/1806.07421
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2018.00774
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2018.00774
https://doi.org/10.1145/3489517.3530657
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1159440
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1159440
https://aclanthology.org/2025.naacl-long.236/
https://aclanthology.org/2025.naacl-long.236/
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2020.603796
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2020.603796
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.1018006
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.1018006
https://doi.org/10.15352/bjma/1240336218
https://doi.org/10.15352/bjma/1240336218
https://doi.org/10.1038/s43588-021-00184-y
https://doi.org/10.1038/s43588-021-00184-y

Under review as a conference paper at ICLR 2026

Sumit Bam Shrestha and Garrick Orchard. Slayer: Spike layer error reassignment in time, 2018.
URL https://arxiv.org/abs/1810.08646.

Ayesha Siddique and Khaza Anuarul Hoque. Improving reliability of spiking neural networks through
fault aware threshold voltage optimization, 2023. URL https://arxiv.org/abs/2301.
05266.

Steven S. Skiena. The Algorithm Design Manual. Springer, 2 edition, 2008. doi: 10.1007/
978-1-84800-070-4.

Theofilos Spyrou, Sarah A. El-Sayed, Engin Afacan, Luis A. Camuiias-Mesa, Bernabé Linares-
Barranco, and Haralampos-G. Stratigopoulos. Neuron fault tolerance in spiking neural networks.
In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 743-748,
2021. doi: 10.23919/DATES51398.2021.9474081.

Kenneth Stewart, Garrick Orchard, Sumit Bam Shrestha, and Emre Neftci. Live demonstration:
On-chip few-shot learning with surrogate gradient descent on a neuromorphic processor. In 2020
2nd IEEFE International Conference on Artificial Intelligence Circuits and Systems (AICAS), pp.
128-128, 2020. doi: 10.1109/AICAS48895.2020.9073961.

Shigeyuki Takano and Hideharu Amano. Reconfiguration cost for reconfigurable computing archi-
tectures. In 2022 23rd ACIS International Summer Virtual Conference on Software Engineering,
Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Summer), pp. 62—
67,2022. doi: 10.1109/SNPD-Summer57817.2022.00019.

Yudong Tao, Rui Ma, Mei-Ling Shyu, and Shu-Ching Chen. Challenges in energy-efficient deep
neural network training with FPGA. In Proceedings of the 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1602-1611. Computer Vision
Foundation / IEEE, 2020. ISBN 978-1-7281-9360-1. doi: 10.1109/CVPRW50498.2020.00208.
URL https://openaccess.thecvf.com/content_CVPRW_2020/html/w28/
Tao_Challenges_in_Energy-Efficient_Deep_Neural_ Network_Training_
with_ FPGA_CVPRW_2020_paper.html.

M. L. Varshika, Sarah Johari, Jayanth Dubey, and Anup Das. Design of a tunable astrocyte neuromor-
phic circuitry with adaptable fault tolerance. In 2023 IEEE 66th International Midwest Symposium
on Circuits and Systems (MWSCAS), pp. 904-908, 2023. doi: 10.1109/MWSCAS57524.2023.
10405978.

Elena-Ioana Vatajelu, Giorgio Di Natale, and Lorena Anghel. Special session: Reliability of hardware-
implemented spiking neural networks (snn). In 2019 IEEE 37th VLSI Test Symposium (VTS), pp.
1-8, 2019. doi: 10.1109/VTS.2019.8758653.

Yeshwanth Venkatesha, Youngeun Kim, Leandros Tassiulas, and Priyadarshini Panda. Federated
learning with spiking neural networks. IEEE Transactions on Signal Processing, 69:6183-6194,
2021. doi: 10.1109/TSP.2021.3121632.

The H. Vu, Ogbodo Mark Ikechukwu, and Abderazek Ben Abdallah. Fault-tolerant spike routing
algorithm and architecture for three dimensional noc-based neuromorphic systems. /EEE Access,
7:90436-90452, 2019. doi: 10.1109/ACCESS.2019.2925085.

Ziming Wang, Runhao Jiang, Shuang Lian, Rui Yan, and Huajin Tang. Adaptive smoothing gradient
learning for spiking neural networks. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Bar-
bara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
35798-35816. PMLR, 23-29 Jul 2023. URL https://proceedings.mlr.press/v202/
wang23j.html.

Rachmad Vidya Wicaksana Putra, Muhammad Abdullah Hanif, and Muhammad Shafique. Respawn:
Energy-efficient fault-tolerance for spiking neural networks considering unreliable memories. In
2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD), pp. 1-9, 2021.
doi: 10.1109/ICCAD51958.2021.9643524.

16

https://arxiv.org/abs/1810.08646
https://arxiv.org/abs/2301.05266
https://arxiv.org/abs/2301.05266
https://openaccess.thecvf.com/content_CVPRW_2020/html/w28/Tao_Challenges_in_Energy-Efficient_Deep_Neural_Network_Training_with_FPGA_CVPRW_2020_paper.html
https://openaccess.thecvf.com/content_CVPRW_2020/html/w28/Tao_Challenges_in_Energy-Efficient_Deep_Neural_Network_Training_with_FPGA_CVPRW_2020_paper.html
https://openaccess.thecvf.com/content_CVPRW_2020/html/w28/Tao_Challenges_in_Energy-Efficient_Deep_Neural_Network_Training_with_FPGA_CVPRW_2020_paper.html
https://proceedings.mlr.press/v202/wang23j.html
https://proceedings.mlr.press/v202/wang23j.html

Under review as a conference paper at ICLR 2026

Torbjorn Wigren and Reem Karaki. Globally stable wireless data flow control. IEEE Transactions on
Control of Network Systems, 5(1):469-478, 2018. doi: 10.1109/TCNS.2016.2619906.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: A novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017. URL
https://arxiv.org/abs/1708.07747.

Shuangming Yang, Jiang Wang, Bin Deng, Mostafa Rahimi Azghadi, and Bernabe Linares-Barranco.
Neuromorphic context-dependent learning framework with fault-tolerant spike routing. IEEE
Transactions on Neural Networks and Learning Systems, 33(12):7126-7140, 2022. doi: 10.1109/
TNNLS.2021.3084250.

Man Yao, Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and Guoqi
Li. Attention spiking neural networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(8):9393-9410, 2023. doi: 10.1109/TPAMI.2023.3241201.

Mingqi Yin, Xiaole Cui, Feng Wei, Hanqing Liu, Yuanyuan Jiang, and Xiaoxin Cui. A re-
configurable fpga-based spiking neural network accelerator. Microelectronics Journal, 152:
106377, 2024. ISSN 1879-2391. doi: https://doi.org/10.1016/j.mejo.2024.106377. URL https:
//www.sciencedirect.com/science/article/pii/S187923912400081X.

Shlomo Yitzhaki and Edna Schechtman. The Gini Methodology: A Primer on a Statistical Method-
ology. Springer Series in Statistics. Springer, New York, 2013. ISBN 978-1-4614-4719-1. doi:
10.1007/978-1-4614-4720-7.

Anlan Yu, Ning Lyu, Jieming Yin, Zhiyuan Yan, and Wujie Wen. COLA: Orchestrating error coding
and learning for robust neural network inference against hardware defects. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 40277-40289. PMLR, 23-29 Jul 2023. URL
https://proceedings.mlr.press/v202/yu23a.html.

Aybars Yunusoglu, Dexter Le, Murat Isik, I. Can Dikmen, and Teoman Karadag. Neuromorphic
circuits with spiking astrocytes for increased energy efficiency, fault tolerance, and memory
capacitance, 2025. URL https://arxiv.org/abs/2502.20492.

Friedemann Zenke and Tim P. Vogels. The remarkable robustness of surrogate gradient learning for
instilling complex function in spiking neural networks. Neural Computation, 33(4):899-925, 03
2021. ISSN 0899-7667. doi: 10.1162/neco_a_01367. URL https://doi.org/10.1162/
neco_a_01367.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. In Advances in Neural Informa-
tion Processing Systems 32 (NeurIPS 2019), pp. 12360-12371, 2019. URL https://papers.
nips.cc/paper/2019/file/1e8al19426224ca89e83cefd7fle7£f53b-Paper.
pdf.

17

https://arxiv.org/abs/1708.07747
https://www.sciencedirect.com/science/article/pii/S187923912400081X
https://www.sciencedirect.com/science/article/pii/S187923912400081X
https://proceedings.mlr.press/v202/yu23a.html
https://arxiv.org/abs/2502.20492
https://doi.org/10.1162/neco_a_01367
https://doi.org/10.1162/neco_a_01367
https://papers.nips.cc/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://papers.nips.cc/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf
https://papers.nips.cc/paper/2019/file/1e8a19426224ca89e83cef47f1e7f53b-Paper.pdf

Under review as a conference paper at ICLR 2026

APPENDIX INDEX

Appendix A Discussion
A Discussion
Appendix B Additional experimental results on classification accuracy

B.1 Additional datasets beyond MNIST, FMNIST, CIFAR-10, and CIFAR-100
B.1.1 Sequential dataset
B.1.2 Large image dataset
B.2 Changing the number of time steps
B.2.1 4 time steps
B.2.2 8 time steps
B.3 Under the different types of synaptic faults
B.3.1 RWFs
B.3.2 CEFs
B.4 Ablation study on the combination of our mechanism
B.4.1 MLP model (MNIST, FMNIST)
B.4.2 VGG-7 and ResNet-18 models (CIFAR-10 and CIFAR-100)
B.5 Various hyperparameter settings with our mechanism

B.5.1 MLP model (MNIST and FMNIST)
B.5.2 VGG-7 and ResNet-18 models (CIFAR-10 and CIFAR-100)

B.6 Using Deep Neural Networks (DNN5s)
B.7 Using SNNs with unsupervised learning
B.8 Evaluations with real FPGA hardware

Appendix C Efficiency analysis based on time/spatial complexity and time/energy consumption

C.1 Complexity analysis
C.1.1 Time complexity
C.1.2 Spatial complexity
C.2 Training time
C.3 Energy consumption on the real FPGA device

Appendix D Detailed mathematical explanation of the motivation study

D.1 Setup and notation
D.2 Surrogate gradient corridor
D.3 Fault modeling
D.4 From faults to saturation
D.5 Expected gradient bound for a single neuron
D.6 Depth- and time-wise compounding
D.7 First-layer sensitivity in MLP
D.8 Sufficient condition for gradient collapse
D.9 Effective bias interpretation for SAO/SA1 of SAFs
D.10 Summary
Appendix E Near-optimality of the proposed mechanism
E.1 Setup and notation
E.2 Fault models and a basic upper bound
E.3 Calibration: aligning the importance map with the effective per-index load
E.4 Quantile stripes are additively near-optimal (contiguous case)
E.5 Corridor preservation: sufficient conditions
E.6 On the Gini objective (primary surrogate for min—max load)
E.7 Computing the scan/stripes
E.8 Summary

18

Under review as a conference paper at ICLR 2026

Appendix F Fault-tolerance capacity prediction of our mechanism

F.1 Setup and notation
F.2 Capacity under SAFs
F.3 Capacity under RWFs
F.4 Capacity under CEFs
F.5 Summary
Appendix G Convergence analysis with the proposed mechanism
G.1 Setup and notation
G.2 Band condition enforced by our mechanism
G.3 Optimization objective and assumptions
G.4 Descent lemma and master inequality
G.5 Summary

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A DISCUSSION

In this section, we discuss the pros and cons of the proposed mechanism and the lightweight
approaches mentioned in Subsection 3.2 (Saha et al., 2023; Spyrou et al., 2021; Saha et al., 2024).
Furthermore, we demonstrate that our mechanism exhibits stronger fault mitigation ability than the
lightweight approaches, consuming less overhead than the other approaches. Existing lightweight
mechanisms for hardware SNN fault mitigation rely on continuously monitoring internal neuron
currents or spike statistics and mitigating the adversarial effects of hardware defects (Spyrou et al.,
2021; Saha et al., 2023). These designs are acceptable and lightweight for neuromorphic devices that
frequently perform inferences due to their simple operations. However, their computational overhead
significantly increases in large SNN models. This is because scanning all weights or neuron states
and aggregating their statistics grows exponentially as the model’s size increases. Furthermore, they
inevitably discard fault-affected pre-activation values, which causes information loss. In contrast, our
mechanism avoids direct inspection of entire elements in SNN models or modification of synaptic
weights or circuits in hardware. Instead, it computes a sensitivity score from the input samples and a
single reference layer for fragmentation. Therefore, the external controller only needs to exchange
a small amount of metadata with the neuromorphic device instead of full weight or neuron maps
(Khan et al., 2024). When it comes to test-based schemes, they amortize their cost by running only
intermittently (Spyrou et al., 2021; Saha et al., 2024). However, they cannot react to permanent faults
that arise during deployment. On the other hand, our mechanism always executes during training
and inference, incurs modest per-execution overhead, and can immediately adapt the fragmentation
strategy to the current fault state in agile environments. Overall, the proposed mechanism provides
the following complementary points in the design space. First, it scales better than forward-pass
approaches with scanning to large hardware-implemented SNNs, which are important for modern
neuromorphic devices (Yin et al., 2024). Second, it trades higher continuous overhead than periodic
self-test approaches, achieving substantially stronger mitigation of permanent faults. We compare the
accuracy and inference time of the proposed mechanism to that of other representative lightweight
mechanisms: input suppression, fault hopping, and threshold tuning (Saha et al., 2023; Spyrou et al.,
2021; Saha et al., 2024).

Table 4: The SNN model’s classification accuracy and summation of inference time over 100 repetitions in a
95% confidence interval with other lightweight approaches and our mechanism under the 30% fault ratio of
SAFs.

DATASETS (MODELS) INPUT SUPPRESSION FAULT HOPPING THRESHOLD TUNING PROPOSED

ACCURACY (%) IN SOFTWARE-BASED SNN MODELS

MNIST (MLP) 88.38 £ 1.15 86.41 + 0.98 87.23 £ 1.52 93.79 + 1.06

FMNIST (MLP) 80.45 £+ 1.22 79.86 +£1.16 78.98 +£1.39 85.47 +0.92

CIFAR-10 (VGG-7) 34.67 £ 3.21 30.28 + 3.34 27.91 + 3.26 45.94 + 3.17

ACCURACY (%) IN FPGA-IMPLEMENTED SNN MODELS

MNIST (MLP) 86.7 +1.32 84.28 +1.28 85.87 + 1.65 91.43 +1.17

FMNIST (MLP) 78.46 + 0.98 75.39 £ 1.14 73.63 £ 1.27 84.05 +1.09

CIFAR-10 (VGG-7) 31.94 + 3.8 27.14+ 3.72 24.75 + 2.87 38.11 + 3.58
INFERENCE TIME (SEC) IN FPGA-IMPLEMENTED SNN MODELS

MNIST (MLP) 283.64 £+ 4.85 254.43 + 2.1 213.67 +2.38 191.28 +1.25

FMNIST (MLP) 285.27 + 5.17 255.79 + 1.98 215.09 + 2.51 193.54 + 1.62

CIFAR-10 (VGG-7) 500.59 + 7.34 327.11 +3.83 292.41 + 4.86 277.09 + 3.47
INFERENCE TIME (SEC) IN FPGA-IMPLEMENTED SNN MODELS

MNIST (MLP) 80.26 + 1.06 62.35 + 0.93 50.39 £ 0.61 45.26 + 0.73

FMNIST (MLP) 81.38 £1.19 64.84 +1.25 51.08 £ 0.67 46.38 = 0.76

CIFAR-10 (VGG-7) 124.22 £ 2.42 101.57 £ 2.61 7853+ 1.3 68.91 + 1.05

Table 4 presents the accuracy and summation of inference time over 100 iterations (assuming the actual
scenarios) for the SNN models using the lightweight approaches and the proposed mechanism under
20% SAFs. Our mechanism exhibits more effective fault mitigation ability than other lightweight
approaches, consuming less or comparable inference time to these approaches.

20

Under review as a conference paper at ICLR 2026

B ADDITIONAL EXPERIMENTAL RESULTS ON CLASSIFICATION ACCURACY

We present additional experimental results that support the proposed mechanism in this section.
The extra results demonstrate that our mechanism enhances the neural networks’ fault tolerance
more effectively than the previous methods? in various environments and scenarios, including real
hardware. Furthermore, we discuss the changes in the proposed mechanism’s fault mitigation ability
by adopting various settings to our mechanism.

B.1 ADDITIONAL DATASETS BEYOND MNIST, FMNIST, CIFAR-10, AND CIFAR-100

We use UCI-HAR, AudioMNIST, and Tiny-ImageNet to evaluate the fault mitigation ability of our
mechanism on a sequential and large-scale dataset.

B.1.1 SEQUENTIAL DATASET

To demonstrate that our mechanism works well with the models using sequential datasets, we conduct
experiments with UCI-HAR and AudioMNIST, which comprises six types of human activities
collected by electric sensors and a dataset consisting of verbal sounds of digits (Reyes-Ortiz et al.,
2013; Becker et al., 2024).

Table 5: The MLP model’s classification accuracy in a 95% confidence interval using MNIST, FMNIST,
UCI-HAR, and AudioMNIST with 2 time steps under SAFs.

FAULT RATIO(%) BASELINE ECOC SOFTSNN ROUTING ASTROCYTE FALVOLT LIFA PROPOSED
ACCURACY (%) WITH MLP (UCI-HAR)
0 64.14+£491 69.86+4.73 63.414+4.78 65.17+4.65 64.78£4.39 65.76 £4.55 64.69+4.81 63.14+48
10 20.194+2.95 23.01+£4.28 2221+£4.63 23.14+4.58 21.25+3.56 23.24+4.01 16.934+4.52 50.31+4.68
20 19.66 £ 2.54 17140 20.52 + 3.85 17140 20.59+2.81 22.34 4 3.68 17140 49.24 +£4.59
30 17.1+0 17140 19.9 4 2.26 17140 17.1£0 19.85 4+ 2.92 17140 47.31 £4.36
40 17.1+0 17140 17.1+0 17140 17.1£0 16.93 £0 17.14£0 17.21 £ 0.09
50 17.1+0 17140 17.1£0 17140 17.1£0 16.93 £0 17140 17.1£0
60 17.1£0 17.1£0 171£0 17.1£0 17.1£0 16.93 £0 17.1£0 171£0
70 17.1£0 17.1£0 171£0 17.1+0 17.1£0 16.93 £0 17.1£0 17.1£0
80 17.1£0 17.1£0 17.1+£0 17.1£0 17.1£0 16.93 £0 17.1£0 17.1£0
90 17.1£0 17.1£0 171£0 17.1£0 17.1£0 16.93 £0 17.1£0 17.1£0
ACCURACY (%) WITH MLP (AUDIOMNIST)

0 96.45+0.91 96.88+0.97 95.894+0.92 96.21+0.85 96.29+£0.93 96.34+£0.89 96.09+0.93 96.31 £0.87
10 94.47+£1.07 9456 £1.79 92.56+1.61 94.03+1.84 93.08+£1.92 9447+1.58 93.28+2.18 94.98+1.54
20 93.17+£1.56 93.29+£1.98 88.15+2.84 92.59+£2.02 8524+£3.68 93.29+213 88.57+426 93.78+1.98
30 92.89 £2.05 93.33£2.32 75.83+3.51 91.7£275 51.47£556 92.76+£2.47 55.81+£6.01 93.43+3.09
40 89.5 £3.21 92.514+£2.15 6249 £5.07 91.24+£3.18 37.55+£6.27 90.63+2.99 39.64£6.8 92.65+£3.17
50 86.15£4.18 85.46 £3.83 48.61+6.92 86.45+3.97 22.13+£4.49 87.51+£4.24 2448+£5.07 88.93+4.16
60 52.87+5.71 66.42+£5.2 34.62+533 6492+534 10964096 6597+593 12.74+238 67.83+5.77
70 146 £1.23 21.64+2.15 1458 £ 1.4 25.84 £3.42 10+0 28.18 + 3.85 10£0 37.17 £3.01
80 11.77£0.95 13.38+£0.94 9.83£1.05 14.19+1.36 10£0 15.53 £ 2.36 10£0 19.75 £ 2.89
90 11.21£1.01 11.86+0.87 9.46+1.22 11.6840.96 10£0 10£0 10£0 12.83 +1.02

Table 5 shows the classification accuracy of the MLP model using UCI-HAR. Using the MLP model
with a sequential dataset, the model with the proposed mechanism exhibits better fault tolerance
than the baseline and benchmarks, classifying data samples more accurately than the models with
the baseline and benchmarks. As results with UCI-HAR, the model with the proposed mechanism
achieves the highest classification accuracy under SAFs. These experimental results with the two
sequential datasets demonstrate that our mechanism successfully improves fault tolerance of SNNs
on other domains, such as sensor-obtained and audio data samples.

The benchmarks mentioned in Section 6.

21

Under review as a conference paper at ICLR 2026

B.1.2 LARGE IMAGE DATASET

We use the ResNet-34 model to classify data samples in Tiny-ImageNet, which is a small version
of the ImageNet dataset, consisting of 64 x 64 pixel images with 200 classes. We measure the
classification accuracy of the model with Tiny-ImageNet under SAFs.

Table 6: The ResNet-34 model’s classification accuracy in a 95% confidence interval using Tiny-ImageNet
under SAFs with 2 time steps.

FAULT RATIO(%) BASELINE ECOC SOFTSNN ROUTING ASTROCYTE FALVoLT LIFA PROPOSED
0 3.38+2.11 3.614+2.24 3.274+208 3.24+216 0.65+0.15 3.47+1.98 0.594+0.09 3.96+2.39
10 0.65+0.12 0.69+0.15 0.68+0.13 0.71+0.19 0.5+0 0.72£0.16 0.5£0 1.17+0.28
20 05+0 05+0 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0 0.63 +£0.12
30 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0 05+0 0.56 = 0.06
40 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0 05+0
50 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0
60 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0
70 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0
80 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0
90 0.5+0 0.5£0 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0 0.5+0

Table 6 presents the average classification accuracy of the ResNet-34 model with the baseline,
benchmarks, and proposed mechanism using Tiny-ImageNet. The classification accuracy of the
model degrades because the dataset is complex, and SNN models have lower learning capabilities
compared to DNN models. Despite the low classification accuracy, the model with our mechanism
classifies data samples in Tiny-ImageNet with the highest accuracy. Moreover, the model with our
mechanism exhibits higher accuracy than others in the clean scenario (without SAFs). This is because
our mechanism leads the models to emit the output precisely through entropy-based decoding.

22

100
80
60
40
20

100~

80
60
40
20

100

Under review as a conference paper at ICLR 2026

B.2 CHANGING THE NUMBER OF TIME STEPS

We change the number of time steps to 4 and 8, observing the accuracy trend of all SNN models in
the number of time steps. We obtain the experiment results with 4 and 8 time steps by repeating the
experiments 10 times.

B.2.1 4 TIME STEPS
[—o—BaseIine -=—ECOC SoftSNN ——Routing —v—Astrocyte —»—FalVolt ——LIFA —*—Proposed\

MLP(MNIST) MLP(FMNIST) VGG-7(CIFAR-10) VGG-11(CIFAR-10)

731001 — 100 T o100 T T

80 80 80

60 60 60
40 40 40
20 20 20

Q.\QQ’B%B WO QAP QQ\QQ Q\Qq/%,-bb WO QAP QQ\QQ

SIS S S S SRS P TP S
VGG-IS(CIFAR10) __ ~ VGG-7(CIFAR-100) _VGG-11(CIFAR-100) _VGG-15(CIFAR-100)

80 80 80

60 60 60

40 40 40

20 \ 20 \ 20 | e
: 0L 0t . 0

ONXPPE RSO PP ONXPR RS ECL PP OXPRARSLECL PSS ORXPPERRECL PP

100~ ~1100

ResNet-18(CIFAR-10) ResNet-34(CIFAR-10) ResNet-18(CIFAR-100) ResNet-34(CIFAR-100)

100 100 100
80 80 80

60 60 60

40 40 40

20 20 % 20 ﬁ
0 0 0

Q ,\Q{I/Q%Q @@Q Q)Q/\Q %Q %Q\QQ Q .\QQ,Q%B ka(OQ Q)Q’\Q Q)Q QQ\QQ Q \9'19“9 VQ(')Q Q)Q/\Q %Q Q,Q\QQ Q \0‘19’56 D‘Q%Q Q_’Q /\Q %Q qQ\QQ
Figure 6: Average classification accuracy of various SNN models with the baseline, benchmarks, and proposed
mechanism under SAFs using 4 time steps. The x-axis is the fault ratio (%) and the y-axis is the accuracy (%).

Figure 6 illustrates the classification accuracy of SNN models compared to the baseline, benchmarks,
and proposed mechanism under SAFs with 4 time steps. The models with our mechanism exhibit the
best fault tolerance to faults in most cases, like the experimental results with 2 time steps. We observe
that the classification accuracy of all models overall improves as the number of time steps increases,
because the large number of time steps improves the performance of SNNs (Li et al., 2024b).

23

Under review as a conference paper at ICLR 2026

B.2.2 8 TIME STEPS

|—0— Baseline —=—ECOC SoftSNN —4—Routing —v—Astrocyte —»—FalVolt —+—LIFA —k—Proposed \

MLP(MNIST) MLP(FMNIST) VGG-7(CIFAR-10) VGG-11(CIFAR-10)
100 100 100 100
80 80 80 80
60 60 60 60
40 40 40 40
20 20 20 20
ob, oo™ 4ot TETOEART)] S0 O D O
CROPP PP OSSP CROP PR SOS S, S CRXPPRE SRS PSP FRPP RO SRS RS
VGG-15(CIFAR-10) VGG-7(CIFAR-100) VGG-11(CIFAR-100) VGG-15(CIFAR-100)
100 100 100 100
80 80 80 80
60 60 60 60
40 40 40 40
% % M—a—e—o—o) M‘—a T M«—a—«
0 0 0 0
COPRRE OO P NS CRP DRSSP PSP CRP PRSP PP CRPPRREOLHS
ResNet-18(CIFAR-10) ResNet-34(CIFAR-10) ResNet-18(CIFAR-100) ResNet-34(CIFAR-100)
100 100 100 100
80 80 80 80
60 60 60 60
40 40 40 40
i % 1 “ m‘ i~ = ="V
0 0 0 0
ONXPHE RSO PP ONXPRARSLECL PP ONXPRERSLECL PSP ORXPRERSECL PP

Figure 7: Average classification accuracy of various SNN models with the baseline, benchmarks, and proposed
mechanism under SAFs using 8 time steps. The x-axis is the fault ratio (%) and the y-axis is the accuracy (%).

Figure 7 depicts the classification accuracy of SNN models compared to the baseline, benchmarks,
and proposed mechanism under SAFs with 8§ time steps. As demonstrated in the experimental results
with 2 and 4 time steps, the models with our mechanism classify data samples most accurately. The
models’ accuracy is also higher than when using 2 and 4 time steps. Interestingly, the fault mitigation
ability of our mechanism degrades only in the experiment with MNIST samples. This is because the
MNIST samples contain fewer pixels than FMNIST, CIFAR-10, and CIFAR-100. However, they are
divided into too small fragments, and these fragments do not have sufficient information for the MLP
model to learn. Thus, the fault tolerance of the model with our mechanism weakens, although it is
more fault-robust than models with the benchmarks.

24

100
80
60
40
20

100
80
60
40
20

100
80
60
40
20

Under review as a conference paper at ICLR 2026

B.3 UNDER THE DIFFERENT TYPES OF SYNAPTIC FAULTS

We inject RWFs and CEFs into the synapses of the SNN models and measure the fault mitigation
ability of the benchmarks and the proposed mechanism. The models with our mechanism classify
data samples most accurately under RWFs and CEFs.

B.3.1 RWFs

We use a Gaussian distribution to model RWFs, setting the standard deviation of the distribution to
0.5 (Garaffa et al., 2021; Spyrou et al., 2021; Vatajelu et al., 2019). We

|~e—Baseline —=—ECOC SoftSNN ——Routing ~v—Astrocyte —»—FalVolt ——LIFA —*—Proposed|

MLP(FMNIST) VGG-7(CIFAR-10) VGG-11(CIFAR-10)
T T 10 ToM00f T T T
80

60
40
20

_MLP(UNIST)
i 80
| 60
| 40
120

0t

70 L

OSSP EDS COPP IS TSPS SOPP IS OSDS SOPO DSOS DS
VGG-15(CIFAR-10) 100 VGG-7(CIFAR-100) 100 VGG-11(CIFAR-100) 100 VGG-15(CIFAR-100)

| 80 80 80

| 60 60 60

140 40 40

120 20 20
‘ o%ﬁ—*—f e = o AR i S
ORPR PR S NS SRR L RERL NS RENESESENESF SRR RENESESENESE SRR SN

ResNet-18(CIFAR-10) 100 ResNet-34(CIFAR-10) 100 ResNet-18(CIFAR-100) 100 ResNet-34(CIFAR-100)
| 80 80 80

1 60 60 60
140 40 40
120 20 %R = 20 :

0

ONXPHERRECSL PP ONXPRERLECL PP ONXPRAIRSECL PSP ORXPRAIRSECL P

Figure 8: Average classification accuracy of various SNN models with the baseline, benchmarks, and proposed
mechanism under RWFs using 2 time steps. The x-axis is the fault ratio (%) and the y-axis is the accuracy (%).

Figure 8 depicts the classification accuracy of SNN models with the baseline, benchmarks, and
proposed mechanism under RWFs. The models with our mechanism exhibit the highest accuracy
in classifying MNIST, FMNIST, CIFAR-10, and CIFAR-100. This is because our mechanism suc-
cessfully prevents the pre-activation magnitude from increasing excessively by RWFs. Interestingly,
ECOC presents high fault mitigation ability under RWFs. This is because ECOC uses error correcting
codes, which are robust against Gaussian noise in channels to compensate for errors caused by faults
in the last layer (Liu et al., 2019).

25

100
80
60
40
20

100
80
60

20

100
80
60
40
20

Under review as a conference paper at ICLR 2026

B.3.2 CEFs

CEFs change the connections between spiking neurons randomly, ruining the learned information of
SNN models (Vatajelu et al., 2019).

|~e—Baseline -=—ECOC

SoftSNN —4—Routing —v—Astrocyte —»—FalVolt ——LIFA —ﬁ—Proposed\

MLP(MNIST)

MLP(FMNIST)

VGG-7(CIFAR-10)

VGG-11(CIFAR-10)

100
80
60
40
20

0

100
80
60
40
20

0

hais o

100
80
60
40
20

0

Rass =N

SR PP RS PP

VGG-15(CIFAR-10)

ORPELLECE PP

VGG-7(CIFAR-100)

SR PERLECL PP

VGG-11(CIFAR-100)

Q’\Q’]/Q’bg @@QBQ,\Q%QQ’Q\QQ

VGG-15(CIFAR-100)

Raas <=

ORNPPE RS ECS P

ResNet-18(CIFAR-10)

100
80
60

20

= = = DU

NI .-19 APPSO QQ\QQ

ResNet-34(CIFAR-10)

100
80
60

20

i === S

NI ,19 APPSO QQ\QQ

ResNet-18(CIFAR-100)

100
80
60

20

b = e = e

Q,\Q,LQ%Q b(QQJQQ)Q,\Q%QQ,Q\QQ

ResNet-34(CIFAR-100)

ﬁ%

100
80
60
40
20

Nedass St

100
80
60
40
20

S =SSSSS0W

100
80
60
40
20

=== = == SIS

ORP IR LSO PS

NN "19 APPSO QQ\QB

NI Q,Q APPSO QQ\QQ

0\0(19,50 @@QbQ/\Q‘bBQ’Q\QQ

Figure 9: Average classification accuracy of various SNN models with the baseline, benchmarks, and proposed
mechanism under CEFs using 2 time steps. The x-axis is the fault ratio (%) and the y-axis is the accuracy (%).

Figure 9 illustrates the classification accuracy of SNN models with the baseline, benchmarks, and
proposed mechanism under CEFs. Our mechanism also presents the best fault mitigation ability. The
classification accuracy of SNN models under CEFs is higher than that of the models under SAFs and
RWFs. This is because the weights of faulty synapses are uniform under CEFs, and the pre-activation
magnitude does not increase significantly. Thus, the pre-activation does not lie in a value that is far
from the surrogate gradient corridor.

26

Under review as a conference paper at ICLR 2026

B.4 ABLATION STUDY ON THE COMBINATION OF OUR MECHANISM

We conduct ablation studies by changing the settings of our mechanism (horizontally-fixed vs Gini-
based and only complexity-based sensitivity score vs complexity and influence combined sensitivity

score).

B.4.1 MLP MODEL (MNIST, FMNIST)

Table 7: The MLP model’s classification accuracy in a 95% confidence interval with different settings of our

mechanism under SAFs.

FAULT RATIO(%) BASELINE HORIZONTAL GINI(COMPLEXITY ONLY) GINI(PROPOSED)
ACCURACY (%) WITH MLP (MNIST)
0 97.35£0.46 86.68 £ 3.51 97.37£0.44 97.44 + 0.39
10 96.94 £1.01 75.77 £ 4.96 96.76 £ 0.95 97.25 £ 0.98
20 11.35+0 71.13£4.81 93.64 £1.44 93.84 +1.37
30 10.82+0 65.78 £ 5.39 91.56 + 2.61 93.55+1.94
40 10.82+0 11.35+0 11.35+0 86.71 + 4.68
50 9.8£0 9.8£0 9.8+0 26.91 + 7.53
60 9.8+£0 9.8+£0 9.8+0 9.8£0
70 9.8£0 9.8£0 9.8+0 9.8£0
80 9.8+£0 9.8+0 9.8+0 9.8+0
90 9.8£0 9.8+£0 9.8+0 9.8£0
ACCURACY (%) WiITH MLP (FMNIST)

0 83.99£0.8 78.09+1.03 86.29 £+ 0.94 86.8 £ 0.89
10 83.74 £ 1.79 76.78 £ 1.9 85.49 +1.43 85.6 +£1.23
20 10+0 74.22 £2.54 80.41 £2.19 85.33+1.45
30 10+0 70.65 £ 6.17 79.6 £3.72 83.53 £ 2.69
40 10+0 17.16 - 8.84 2193 £7.63 54.55 +6.76
50 10+0 10+0 10+0 10£0
60 10+0 10+0 10+0 10+0
70 10+0 10+0 10+0 10£0
80 10+0 10+0 10+0 10+0
90 10+0 10+0 10+0 10+£0

Table 7 presents the classification accuracy of the baseline, horizontally-fixed fragmentation, Gini-
based fragmentation using image complexity for the sensitivity score, and Gini-based fragmentation
using image complexity and fault influence of the first layer for the sensitivity score (proposed)
when using MNIST models to classify MNIST and FMNIST data samples. The proposed version
significantly enhances the fault tolerance of the MLP model, as demonstrated by its performance
on MNIST and FMNIST, compared to other settings. This is because the MLP model is vulnerable
to faults in the first layer, as mentioned in Section 4. Thus, using fault influence for the sensitivity
score enhances our mechanism’s fault mitigation ability since it induces the mechanism to minimize
the pre-activation magnitude. We also observe that the wrong fragmentation strategy degrades
classification performance because it damages the information of data samples.

27

Under review as a conference paper at ICLR 2026

B.4.2 VGG-7 AND RESNET-18 MODELS (CIFAR-10 AND CIFAR-100)

Table 8: The VGG-7 and ResNet-18 models’ classification accuracy in a 95% confidence interval with different
settings of our mechanism under SAFs.

FAULT RATIO(%) BASELINE HORIZONTAL GINI(COMPLEXITY ONLY) GINI(PROPOSED)
ACCURACY (%) WITH VGG-7 (CIFAR-10)
0 56.26 = 1.28 55.75 £ 1.33 56.68 £+ 1.28 56.86 + 1.63
10 40.09 £ 3.34 48.8 £ 2.67 49.13 £ 2.32 50.38 +2.07
20 31.78 24.97 42.69 £+ 3.83 45.39 + 3.44 45.58 + 3.76
30 11.74 £4.81 36.55 +4.64 38.23 £ 4.91 40.26 = 5.04
40 10.79 £3.56 29.09 £ 5.72 31.18 = 5.52 32.07 +5.15
50 10£+0 10£+0 10+0 17.08 £ 5.74
60 10+0 10+0 10+0 10+0
70 10+0 10£+0 10+0 10+0
80 10+0 10+0 10+0 10+0
90 10+0 10£+0 10+0 10+0
ACCURACY (%) WITH RESNET-18 (CIFAR-100)

0 23.77+4.56 24.12 +4.69 25.11 +4.74 27.96 - 4.83
10 10.64 £3.82 23.98 +4.41 24.15 +4.32 25.5+4.79
20 6.1 &+ 2.65 19.86 £+ 5.52 21.92 £ 5.48 24.41 +5.38
30 1.98 +0.93 16.62 £ 4.63 18.43 £5.01 19.72 £5.23
40 1.03 £ 0.82 13.53 £4.29 14.26 + 4.57 16.8 +4.72
50 0.97 £0.79 11.89 +£4.17 12.34 + 4.48 13.13 £ 4.52
60 1.01 £ 0.86 4.68 + 2.1 5.12 4+ 2.96 6.25 + 3.26
70 14+0 2.25+1.12 3.9+1.44 4.27 +1.56
80 1+0 1+0 1+0 1.24 + 0.81
90 14+0 14+0 1+0 14+0

Table 8 exhibits our ablation study with VGG-7 and ResNet-18 models using CIFAR-10 and CIFAR-
100. Although the proposed mechanism outperforms other settings, the improvement in fault
mitigation ability is not as large as in the cases with the MLP models. This is because VGG-7 and
ResNet-18 models are not as vulnerable to faults in the first layer as the MLP model since they have
additional features to compensate for errors during gradient calculations. Therefore, containing the
fault influence in the sensitivity score does not significantly enhance the fault mitigation ability of our
mechanism.

28

Under review as a conference paper at ICLR 2026

B.5 VARIOUS HYPERPARAMETER SETTINGS WITH OUR MECHANISM

We change (\g, A\y) to (0.5, 0.5), (0.5, 0.1), and (0.1, 0.5) to show the influence of hyperparameters

on our mechanism.

B.5.1

Table 9: The MLP model’s classification accuracy in a 95% confidence interval with different settings of the

hyperparameter (As, Ay,) under SAFs.

MLP MODEL (MNIST AND FMNIST)

FAULT RATIO(%)

(0.5,0.5)

(0.5,0.1)

(0.1, 0.5)

(0.1, 0.1) (DEFAULT)

ACCURACY (%) WITH MLP (MNIST)

0 97.28+0.53 97.35+0.54 97.294+0.51 97.44 + 0.39
10 96.34 +1.25 96.58 £1.38 96.05+1.19 97.25 + 0.98
20 95.29+1.67 93.3+1.63 9543+ 1.58 93.84 +1.37
30 91.59+2.82 92.15+297 86.93+2.86 93.55 +1.94
40 9.84+0 14.28 £5.47 10.48 £1.39 86.71 + 4.68
50 9.8+0 12.6 £ 5.61 9.8+0 26.91 + 7.53
60 9.8+0 9.8+0 9.8+0 9.8+0
70 9.8+0 9.8+0 9.8+0 9.8+0
80 9.8+0 9.8+0 9.8+0 9.8+0
90 9.8+0 9.8+0 9.8+0 9.8+0
ACCURACY (%) WiTH MLP (FMNIST)
0 85.53+1.05 85.56+1.14 85.29 +0.99 86.8 + 0.89
10 85.46 +1.46 85.52+1.31 85.23+1.36 85.6 +1.23
20 80.89 +3.48 83.57+2.12 84.41 +2.29 85.33 +1.45
30 80.23 +3.8 31.58+7.03 75.39+5.45 83.53 + 2.69
40 33.54+6.15 18.84 +7.65 10+0 54.55 +6.76
50 104+0 10+0 10+0 10+0
60 10+0 10+0 10+0 10+0
70 10+0 10+0 10+0 10+0
80 10+0 10+0 10+0 10+0
90 10+0 10+0 10+0 10+0

Table 9 exhibits the MLP model’s classification accuracy by changing (As; and \,,) under SAFs.
The hyperparameter settings predominantly affect the classification accuracy of the MLP model, as
they adjust how the mechanism mitigates the adverse influence of synaptic faults in the first layer,
which damages the model the most severely. We observe that increasing the hyperparameters and
strengthening the effects of the fault influence map do not always leverage the MLP model’s fault
tolerance. This is because the excessive effects of the fault influence map prevent our mechanism
from setting the angle accurately by reflecting the complexity of the input samples and the fault
influence in a balanced way. In addition, we observe that the weight projection map affects our
mechanism more predominantly than the saliency map, since the weight projection map is more
sensitive to changes in weights due to synaptic faults.

29

Under review as a conference paper at ICLR 2026

B.5.2 VGG-7 AND RESNET-18 MODELS (CIFAR-10 AND CIFAR-100)

Table 10: The VGG-7 and ResNet-18 models’ classification accuracy in a 95% confidence interval with different
settings of the hyperparameter (As, A.,) under SAFs.

FAULT RATIO(%) (0.5, 0.5) (0.5,0.1) (0.1, 0.5) (0.1, 0.1) (DEFAULT)
ACCURACY (%) WITH VGG-7 (CIFAR-10)
0 56.48 £1.84 56.06 £1.73 56.03 +1.89 56.86 + 1.63
10 48.12+£3.04 48.88+2.85 49.34+2.16 50.38 + 2.07
20 44.68 £3.69 44.56 +3.66 45.3 + 3.59 45.58 + 3.76
30 39.42+5.25 39.22+5.59 39.924+5.23 40.26 + 5.04
40 29.62 +5.38 29.52+5.04 30.21+5.4 32.07 +5.15
50 15.09 +£4.76 15.28 £5.17 15.31 £4.98 17.08 +5.74
60 10+0 10+0 10+0 10+0
70 10+£0 10+£0 10+0 10+0
80 10+0 10+0 10+0 10+0
90 10+£0 10+£0 10+0 10+0
ACCURACY (%) WITH RESNET-18 (CIFAR-100)

0 26.96 +£5.08 26.02+4.93 25.71 +5.86 27.96 + 4.83
10 24.26 +4.29 24.76 +4.38 21.75+4.71 25.5+4.79
20 20.09 £5.66 21.23+£5.96 19.03 £ 5.09 24.41 +5.38
30 16.88 £5.48 17.7+5.48 15.89 £+ 5.42 19.72 +£5.23
40 13.25 +£5.24 13.68 £5.05 13.25+4.93 16.8 +4.71
50 12.04 £4.93 12.55+4.34 9.14 +4.69 13.13 £ 4.5
60 4.46 £+ 3.52 4.77 4+ 3.15 4.86 + 2.96 6.25 + 3.26
70 3.61 £1.95 2.89+1.7 3.05 £ 1.78 4.27 +1.56
80 1+£0 1+0 1+£0 1.24 £ 0.81
90 1+0 1+0 1+0 1+0

Table 10 presents the VGG and ResNet Models’ classification accuracy by changing (A, and)
under SAFs. Since the significance of the faults in the first layer of the VGG and ResNet Models is
weaker than that of the MLP model, the sensitivity to hyperparameter setting is smaller than that of
the MLP model. Despite the low significance of tuning hyperparameters when using the VGG and
ResNet Models, setting the hyperparameters to the proper value is still important to ensure the best
fault mitigation ability of our mechanism.

30

Under review as a conference paper at ICLR 2026

B.6 USING DEEP NEURAL NETWORKS (DNNS)

We inject SAFs into synapses of Deep Neural Networks (DNNs) version of the SNN models,
measuring their classification accuracy with the baseline, benchmarks, and proposed mechanism. We
use Cross-Entropy (CE) as a loss function and Rectified Linear Unit (ReLU) as an activation function.
We set the range of weights to [-100, 100] for MLP and [-500, 500] for CNNs (VGG and ResNet)
since current DNN accelerator devices have a large weight range (Liu et al., 2019; Chen et al., 2017).
Other settings are the same as the SNN models. We exclude Astrocyte, FalVolt, and LIFA from the
benchmarks since they necessarily require bio-plausible spiking neuron models for operation. We use
2 fragments for our mechanism.

Table 11: The DNN models’ classification accuracy in a 95% confidence interval using MNIST, FMNIST,
CIFAR-10, and CIFAR-100 under SAFs.

FAULT RATIO(%) BASELINE ECOC SOFTSNN (TUNED FOR DNN) ROUTING PROPOSED
ACCURACY(%) WITH MLP (MNIST)
0 98.48+0.19 98.6 +0.26 98.49 +0.23 98.45 +0.31 98.54 + 0.25
10 97.324+0.86 97.28 +0.81 97.48 + 0.96 97.28 +£0.89 97.56 £ 0.74
20 96.62 &+ 1.55 98+0 97.02 +1.32 96.76 = 1.47 96.85 + 1.38
30 96.58 +1.93 98+0 96.3 + 1.89 96.64 +1.69 96.72 £ 1.71
40 96.35 + 1.81 98+0 96.02 + 1.76 96.43+1.74 96.48 + 1.85
50 93.3 +£3.52 98+0 93.47 + 3.62 93.54+4.02 93.58 £3.91
60 77.36 £9.15 98+0 78.03 &+ 8.99 79.89 + 8.56 82.62 £ 8.8
70 65.9 £ 10.49 98+0 68.39 + 10.05 67.79 +9.95 74.8 +9.72
80 39.64 + 8.77 98+0 41.31 +£9.12 18.71 £8.89 55.43+8.73
90 8.924+0 98+0 98+0 15.5 +5.7 19.07 £ 6.21
ACCURACY(%) WITH MLP (FMNIST)
0 90.05+1.22 91.24+1.3 90.08 +1.24 90.12+1.13 90.51 £ 1.19
10 84.38 +£2.73 10+0 84.72 + 2.86 86.03 +2.69 86.83 +£2.71
20 71.67 + 3.49 10+0 72.07 + 3.35 74.51 +3.48 79.66 + 3.48
30 68.01 + 5.05 10+0 70.75 +4.94 73.54+4.75 74.63 +4.79
40 64.93 +£5.91 10+0 63.5 +6.04 64.06 +£5.97 65.23 +£6.25
50 58.63 + 6.27 10+0 62.78 £6.38 60.92 + 6.09 64.8 +6.31
60 53.57 + 7.86 10+0 57.01 £8.11 54.51+9.23 58.68 +8.77
70 38.01 +£9.91 10+0 39.48 £ 10.26 35.12+9.84 41.62+10.34
80 23.5 +8.44 10+0 26.45 + 8.79 25.41+798 33.21 +8.59
90 10+0 10+0 10+0 10£0 11.02 £ 1.02
ACCURACY (%) WITH VGG-7 (CIFAR-10)
0 83.21 +£2.76 83.36 + 2.58 83.58 + 2.53 83.73 +£2.47 84.29 £ 2.63
0.01 10+£0 10+£0 52.97 +4.84 67.78 +£5.04 70.36 + 4.81
0.025 10+0 10+£0 10+0 10+0 10+0
0.05 10+0 10£0 10+0 10+0 10+0
0.075 10+0 10+0 10+0 10+0 10+0
ACCURACY (%) WITH RESNET-18 (CIFAR-100)
0 53.09 £1.02 40.96 £+ 1.56 53.51 £ 1.16 53.6 +1.24 53.82 +1.19
0.01 46.17+£1.35 37.87+1.53 47.26 £ 1.58 46.99 £1.56 48.49 +1.47
0.025 43.32£1.68 34.05+1.79 43.76 £1.73 44.07£1.79 45.09 +1.66
0.05 41.14 £1.54 3228 £2.01 42.23 +£1.69 4251 £1.55 42.78 +1.48
0.075 39.05+1.82 31.64+1.98 40.64 £1.91 39.80+2.05 41.32+1.85

Table 11 presents the classification accuracy of DNN models with the baseline, benchmarks, and
proposed mechanism. The models with ours exhibit the highest fault robustness among the DNN
models since our mechanism prevents the pre-activation from increasing excessively, and gradients do
not explode severely during training. The MLP DNN model presents higher fault tolerance than the
SNN model regardless of the datasets. This is because the gradient vanishing caused by pre-activation
magnitude growth does not occur severely, since gradients are active when the pre-activation is larger
than 0 in ReL.U. Conversely, the fault tolerance of the complicated CNN models (VGG and ResNet)
degrades seriously. This situation appears because these models use lots of batch normalization layers.
The normalization layers normalize the whole channels in the same scale calculated with the batch
samples, causing the amplification of inputs that enter faulty synapses. However, the SNN VGG
and ResNet models are more tolerant of faults than the DNN versions. This is because the spiking
neurons block the perturbation from faults through their internal activation mechanism: only firing
and emitting spikes when their membrane potential reaches the threshold (Liang et al., 2023).

31

Under review as a conference paper at ICLR 2026

B.7 USING SNNS WITH UNSUPERVISED LEARNING

The SNN models using unsupervised learning are also important models to implement on-chip
learning of neuromorphic devices. Therefore, we adopt the benchmarks and proposed mechanism to
the widely used SNN model: Diehl&Cook2015 using Spike-Timing-Dependent Plasticity (STDP),
which is a representative unsupervised learning rule (Lee & Lim, 2024; Diehl & Cook, 2015). We
use a reliable framework to implement STDP-based SNNs, named BindsNET, for our experiments
(Hazan et al., 2018).

Table 12: The Diehl&Cook2015 model’s classification accuracy in a 95% confidence interval using MNIST and
FMNIST with 250 time steps under SAFs.

FAULT RATIO(%) BASELINE SOFTSNN ROUTING ASTROCYTE FALVOLT LIFA PROPOSED
ACCURACY (%) WITH DIEHL&COOK2015 (MNIST)
0 86.37 £1.23 85.96+1.45 86.34+1.28 86.49+1.65 86.41+1.61 86.16+1.54 85.69=£1.72
10 77.07+£1.86 79.34+251 7854208 79.16+1.93 78.89+202 79.58+237 81.03+2.44
20 76.41+1.9 7848+267 T77.27+£236 7891+188 78044245 7861+251 80.27+2.53
30 74.45+£279 76.59+281 77.03+£3.05 77.62+2.56 78.04+£3.16 78.72+£298 79.86+3.14
40 70.87 £4.52 71.954+4.93 7235+4.74 72.48+4.59 73.19+4.72 73.43+4.6 76.57 £ 3.66
50 69.7+5.15 70.83+5.26 72.08+491 71.27+538 71.96+584 T71.78+5.64 74.36+5.42
60 67.79 £5.98 69.25 £ 6.2 70.7£6.12 69.49+£584 70.35+£6.27 70.96+6.32 72.18+5.96
70 63.46 £5.76 65.51 +£5.69 65.28 £5.57 66.93+5.65 65.97+5.96 68.08+584 70.4 £5.71
80 54.62+£4.84 56.26+4.98 55.93+5.05 57.154+4.72 56.59+5.13 59.27+4.99 62.11 £5.27
90 33.25 £3.61 38.59+4.06 40.27+£3.96 39.45+4.11 41.73+4.5 4398 +4.76 52.64 +4.98
ACCURACY (%) WITH DIEHL&CO0K2015 (FMNIST)

0 27.4+268 27.61+£275 27.57+246 2743+237 27.77+2.84 27.59+2.7 26.76 +2.36
10 22.66 £3.83 24.54+396 24.8+3.69 24964392 2511+3.63 25.7+3.91 26.17 £3.94
20 20.84 £3.95 22.55+4.12 22.89£4.17 22.74+3.86 22.68+4.09 23.59+4.28 23.85+4.47
30 18.81 +4.06 20.72+4.27 21.63+4.15 20.98+4.07 21.16+3.96 22.07+3.96 22.83+4.25
40 15474297 16.8+3.11 17.25+3.08 16.97+3.2 17.15+3.19 18.23+3.38 20.65+3.8
50 1235+ 1.76 13.15+£2.57 12.984+2.61 1341+285 13.61+2.79 14.024+291 14.58+3.13
60 10+0 10+0 10+0 10+0 10+0 10+0 10+0
70 10+£0 10+£0 10+£0 10+£0 10+0 10+0 10+0
80 10+0 10+0 10+0 10+0 10+0 10+0 10+0
90 10+0 10+0 10+0 10+0 10+0 10+0 10+0

Table 12 shows the classification accuracy of Deihl&Cook2015 with the benchmarks and proposed
mechanism under SAFs. We set the number of time steps to 250 and the number of fragments to
2. The model obtains the first fragment repeatedly during the first 125 time steps and the second
fragment during the second 125 time steps. We apply this setting to Deihl&Cook2015 since it cannot
classify data samples as accurately as SNN models with supervised learning (Diehl & Cook, 2015).
We exclude ECOC from the experiment due to its implementation difficulty in STDP-based SNN
models. This is because it is not available in Diehl&Cook since it disturbs the Winner-Takes-All
(WTA) mechanism in Diehl&Cook2015 (Lee & Lim, 2024). As presented in the table, the model with
our mechanism has the highest accuracy under SAFs. This is because our mechanism can mitigate the
adversarial effects of hardware faults for the following reasons. Hardware faults excessively increase
the absolute value of membrane potential (pre-activation in SNN using gradient-based learning rules),
and this unnatural increase causes the over-firing of spiking neurons of the Diehl&Cook2015 (Putra
et al., 2022; Han et al., 2023; Rastogi et al., 2021). When faulty Deihl&Cook2015 obtains the whole
data samples that are not fragmented, fault-injected neurons’ membrane potential always increases or
decreases significantly, preventing the neurons from spiking properly since the pixel values easily
enter the fault-injected synapses. We divide the input samples into small pieces by considering
the complexity of the input samples and the influence of faults to minimize the adversarial effects
of faults and prevent neurons from over- or under-firing. Through fragmentation, the proposed
mechanism reduces the probability that the input pixels enter faulty synapses, and the neurons’
membrane potential avoids increasing or decreasing abnormally. Interestingly, the astrocyte-based
approaches show high fault mitigation ability integrated with Diehl&Cook2015. This is because they
aim to improve the fault tolerance of SNN models using STDP (Han et al., 2023; Yunusoglu et al.,
2025).

32

Under review as a conference paper at ICLR 2026

B.8 EVALUATIONS WITH REAL FPGA HARDWARE

We implement the MLP SNN model on a real FPGA device (AMD Virtex UltraScale+ HBM VU47P
of Amazon F2 instance) with SpikerPlus, which is a powerful library to convert Python scripts for
SNNs to VHSIC Hardware Description Language (VHDL) (Carpegna et al., 2024). We choose the
FPGA device for SNN implementation because FPGAs are necessary devices to develop hardware-
based SNN models (Karamimanesh et al., 2025). Due to circuit-level limitations, current FPGA-based
SNN models do not support on-chip training (Carpegna et al., 2024; Tao et al., 2020). Thus, we train
the fault-injected SNN model in a software environment with a Graphics Processing Unit (GPU),
saving the trained weights, and convert the Python script of the software-based models to the VHDL
script. Then, we synthesize the FPGA circuit with Xilinx Vivado and Amazon FPGA Image (AFI),
which is widely used for handling FPGAs on Amazon F2 instances. We build the SNN models on
the FPGA chip and the proposed mechanism on the additional control processor connected to the
FPGA chip. We set the bit-width for the membrane potential and the synaptic weights of the FPGA
device to 8 and 6, respectively. We set the floating-point precision of the input data samples to 32.
We select this setting, referring to the setting of real hardware (BrainChiplnc, 2025). Other settings
are the same as the settings in Subsection 6.1.

Table 13: The FPGA-based MLP SNNs’ classification accuracy in a 95% confidence interval using MNIST,
FMNIST, UCI-HAR, and AudioMNIST with 2 time steps under SAFs. Note that we adopt 2 time steps for
training. For inference, we use 100 cycles to process data in the FPGA device.

FAULT RATIO(%) BASELINE ECOC SOFTSNN ROUTING ASTROCYTE FALVOLT LIFA PROPOSED

ACCURACY (%) WITH HARDWARE-IMPLEMENTED MLP (MNIST)

0 94.36 £0.52 93.86 +£0.66 94.56 +£0.63 94.34 £0.71 94.06 £0.68 93.92+0.79 93.98 +0.85 94.59 + 0.65
10 93.18£1.29 90944235 93.29+1.56 93.58+1.9 93.26+1.44 92.69+1.62 92.59+1.74 94.01+1.41
20 11.35+0 88.11 £2.74 9.8+0 9.8+0 10.1+1.05 89.97+2.69 1592+531 91.14+2.03
30 10.824+0 11.35+0 9.8+0 9.8+0 10.824+0 9.8+0 9.8+0 90.57 £ 3.16
40 9.8+0 9.8+0 9.8+0 11.35+0 9.84+0 9.8+0 9.8+0 80.49 + 6.65
50 9.84+0 9.84+0 9.8+0 11.35+0 9.84+0 9.8+0 9.8+0 21.46 +£4.72
60 9.84+0 9.84+0 9.8+0 9.84+0 9.84+0 9.8+0 9.84+0 9.8+0
70 9.8+0 9.84+0 9.8+0 9.84+0 9.84+0 9.8+0 9.84+0 9.8+0
80 9.8+0 9.8+0 9.8+0 9.8+0 9.84+0 9.8+0 9.84+0 9.8+0
90 9.8+0 9.8+0 9.8+0 9.8+0 9.8+0 9.8+0 9.8+0 9.8+0
ACCURACY (%) WITH HARDWARE-IMPLEMENTED MLP (FMNIST)
0 84.21 £1.79 8358+1.91 83.65+2.13 84.19+1.82 839+1.75 83.97+1.68 84.1+1.58 87.01+1.45
10 82.16 £2.28 82.75+2.46 80.74+2.67 83.58+2.33 82.86+2.09 83.11+2.53 82.46+2.38 86.14+2.84
20 79.6 £ 3.05 10+0 10+0 10+0 10+0 82.54£3.18 17.26 £598 83.98 + 3.27
30 104+0 10+0 10+0 10+0 10+0 10+0 10+0 81.71 + 3.7
40 10+0 10+0 10+0 10+0 10+0 10+0 10+0 52.75 +4.89
50 10+0 10+0 10+0 10+0 10+0 10+ 0 10+ 0 10+ 0
60 10+0 10+0 10+0 10+0 10+0 10+ 0 10+0 10+ 0
70 10+0 10+0 10+0 10£0 10+0 10+0 10£0 10+0
80 10+0 10+£0 10+0 10£0 10+0 10+0 10+£0 10+0
90 10+0 10+0 10+0 10+0 10+0 10+0 10+0 10+0
ACCURACY (%) WITH HARDWARE-IMPLEMENTED MLP (UCI-HAR)
0 60.14 £3.87 65.27+3.56 60.48+3.81 61.15+3.69 61.78 +£3.48 61.83+3.45 61.52+3.62 60.08 +3.24
10 17.1+£0 17.1+0 152140 17.1+0 15.214+0 18.344+0 16.93+0 47.01+5.17
20 18.52+£0 17.1+0 18.524+0 17.1+0 18.52+0 18.344+0 17.1+0 45.85 +5.39
30 17.1+0 17.1+0 17140 17.1+0 17.1+0 18.344+0 17.1+0 44.86 + 4.91
40 17.1+0 17.1+£0 17.1+0 17.1+£0 17.1+0 16.93£0 17.1+£0 171+0
50 17.1+0 17.1+0 17.1+£0 17.1+£0 17.1+0 16.93+£0 17.1+£0 17.1+0
60 171+0 17.1+0 17.1+£0 17.1+£0 17.1+0 16.93 £0 171+£0 171+0
70 17.1+£0 17.1+£0 17.1+£0 17.1+£0 17.1+0 16.93 £0 17.1+£0 171+0
80 17.1+£0 17.1+0 17140 17.1+0 17.1+£0 16.93+0 17.1+0 17140
90 17.1+£0 17.1+0 17140 17.1+0 17.1+£0 16.934+0 17.1+0 17140
ACCURACY (%) WITH HARDWARE-IMPLEMENTED MLP (AUDIOMNIST)
0 93.76 £1.34 93.82+1.6 92.02+1.66 92.63+1.21 92.36+1.53 91.38+1.27 93.33+1.29 92.34+1.38
10 91.80 £1.22 90.89+2.12 89.32+2.01 89.87+2.22 90.01+2.45 90.71+2.45 90.41+2.74 91.56 +1.93
20 89.45+2.1 88.92+256 84.39+341 89.59+250 81.61+3.81 89.42+268 84.47+4.79 90.86+2.83
30 89.04 £2.44 89.65+2.77 7235+3.93 88.19+3.28 48.31+573 89.57+3.01 51.64+6.53 89.8+3.42
40 86.24 £3.59 90.26 £2.58 59.43+5.48 87.99+3.97 34.69+6.61 87.8+3.42 3573+7.49 89.27+4.13
50 83.50 £4.63 82.63+4.43 4526+ 7.31 82.39+4.42 19.38 £5.2 83.21+4.93 21.22+5.56 86.29 +4.9
60 49.11+6.32 62.20+£5.82 31.23+5.78 61.16 £5.94 10+0 62.48 + 6.63 10+0 63.88 + 6.34
70 10+0 16.74 £ 2.45 10+0 21.92+3.84 10+0 24.72 +4.47 10+£0 34.75 £ 3.76
80 10+0 10+0 10+0 10+0 10+0 13.15+2.14 10+0 17.29 £ 3.55
90 10+0 10+0 10+0 10+0 10+0 10+0 10+0 10+0

Table 13 presents the classification accuracy of the MLP model, along with the baseline, benchmarks,
and our mechanism, under SAFs, using the MNIST, FMNIST, UCI-HAR, and AudioMNIST. The
model incorporating our mechanism classifies the data samples more accurately than the baseline and
benchmarks when implemented with hardware. We observe that the overall classification accuracy of
the model decreases. This is because the precision for neurons’ membrane potential and synaptic
weights degrades due to low floating-point and bit width in the FPGA device, which damages the
data stored in trained synaptic weights and neuronal activities.

33

Under review as a conference paper at ICLR 2026

We implement VGG-7/11/15 with the SyncNN framework and evaluate the fault tolerance of the
benchmarks and proposed mechanism (Panchapakesan et al., 2021). We set the bit-width for synaptic
weights to 8. Other settings for SyncNN are the same as the settings in the SyncNN paper (Pancha-
pakesan et al., 2021). We adopt the same SNN model settings in Subsection 6.1 to the FPGA-based
VGG models.

Table 14: The FPGA-based VGG-7/11/15 SNNs’ classification accuracy in a 95% confidence interval using
CIFAR-10 with 2 time steps under SAFs. Note that we adopt 2 time steps for training. For inference, we use
1800 cycles to process data in the FPGA device.

FAULT RATIO(%) BASELINE ECOC SOFTSNN ROUTING ASTROCYTE FALVoOLT LIFA PROPOSED

ACCURACY (%) WITH HARDWARE-IMPLEMENTED VGG-7

0 53.84 £4.94 51.09+4.86 54.08+4.67 54.15+4.26 53.21+4.6 53.91 £4.57 52.72+4.65 53.89 £4.48
10 3418 £4.15 39.26 £4.07 2248 +4.46 33.37+4.12 32.16+4.54 36.92+4.82 35.38+4.73 45.93+4.31
20 18.73+£3.07 31.97+3.65 17.52+£5.11 24.06+3.71 2218+3.95 31.91+£3.79 21.99+4.02 41.23+4.05
30 11.62+1.62 25.78+3.14 16.8 +3.92 10+0 10+0 20.7+£4.15 10+0 35.97 £ 4.88
40 10£0 19.29 +£3.28 15.04 £3.17 10+0 10+0 17.28 £ 3.84 10+0 26.29 £+ 3.96
50 10+0 12.81 £2.25 10+0 10+0 10+0 10+0 10+0 13.39 +2.94
60 10+0 10+0 10+0 10+£0 10+0 10+0 10+0 10+£0
70 10+ 0 10+ 0 10+0 10+0 10+0 10+0 10+0 10+£0
80 10+0 10£0 10+0 10+0 10+0 10+0 10+0 10+0
90 10+0 10+0 10+0 10+0 10+0 10+0 10+0 10+0
ACCURACY (%) WITH HARDWARE-IMPLEMENTED VGG-11
0 52.74+£4.63 50.34 +£4.51 54.82+4.32 54.29+4.45 52.13+4.63 53.89+4.38 53.02+4.47 52.87+4.2
10 33.27+3.95 33.02+3.84 26.53+3.72 3298 +3.93 34.16+4.05 41.814+4.24 3557+4.13 45.02+4.08
20 26.91 +3.28 30.83 £3.37 18.88 £ 3.6 24.17+3.56 24.93+3.75 27.3+3.43 24.89 +3.94 42.58 +3.79
30 10+0 25.65 +£3.51 17.63 £3.92 10+0 16.89 + 3.81 10+0 11.46 +1.46 36.62 + 3.84
40 10+0 20.27 £ 3.64 10+0 10+£0 10+0 10+0 10+0 26.84 +3.29
50 10+0 14.44 + 3.76 10+0 10£0 10+0 10+0 10+0 17.92 + 3.65
60 10+0 10£0 10+0 10+0 10+0 10+0 10+0 10+0
70 10+0 10+0 10+0 10+0 10+0 10+0 10+0 10+0
80 10+0 10+0 10+0 10£0 10+0 10+0 10+0 10+£0
90 10+0 10+0 10+0 10+£0 10+0 10+0 10+ 0 10+0
ACCURACY (%) WITH HARDWARE-IMPLEMENTED VGG-15
0 45.04 £4.07 41.92+3.95 47.39+3.81 4358 +£3.86 43.02+£3.77 4558 £3.26 44.61+3.74 44.35+4.61
10 40.16 £5.24 31.19+4.76 14.21+1.91 41.54+4.83 3228 £5.13 41.87+4.59 29.84+5.33 42.94+5.09
20 21.424+4.64 23.7+4.59 13.22 £2.08 25.28 +4.29 10+0 10+0 20.37+3.91 41.47 +4.96
30 10+0 21.26 +£3.54 12.89+1.75 10+0 10+0 10+0 10+0 33.62 +5.17
40 10+0 1528 £2.94 11.01+1.01 10+0 10+0 10+0 10+0 27.59 + 4.25
50 10+0 10+0 10+0 10+0 10+0 10+0 10+0 11.74 + 1.19
60 10+0 10+0 10+0 10+£0 10+0 10+ 0 10+ 0 10+0
70 10+0 10+0 10+0 10+0 10+0 10+0 10+0 10+0
80 10+0 10£0 10+0 10+0 10+0 10+0 10+0 10+0
90 10+0 10+0 10+0 10+0 10+0 10+0 10+0 10+0

Table 14 exhibits the classification accuracy of the VGG-7/11/15 models, along with the baseline,
benchmarks, and proposed mechanism under SAFs, using CIFAR-10. In the cases with deep
convolution SNNs, our mechanism successfully enhances the fault tolerance of hardware-implemented
SNNs based on the FPGA device.

34

Under review as a conference paper at ICLR 2026

C EFFICIENCY ANALYSIS BASED ON TIME/SPATIAL COMPLEXITY AND
TIME/ENERGY CONSUMPTION

To demonstrate that our mechanism enhances the fault tolerance of SNN models without requiring
complex algorithms, we measure the computational and spatial complexities of our mechanism and
compare them to those of the benchmarks. Additionally, we measure the energy consumption of our
mechanisms on the FPGA device since energy consumption is a significant advantage of SNNs that
makes them suitable for neuromorphic device implementation.

C.1 COMPLEXITY ANALYSIS

We calculate the time and spatial complexities of the benchmarks and the proposed mechanism
through experimental evidence that demonstrates the time and energy consumption of them in real
devices.

C.1.1 TIME COMPLEXITY

We thoroughly analyze the time complexity of the benchmarks and the proposed mechanism. The
following items present the time complexity of the benchmarks and the proposed mechanism.

1. ECOC: Ticoc = O(EP?n + NBCL).
2. SoftSNN: TSoftSNN = @(NW)

3. Routing: T,oute = @(Zle Céﬂ)toif)k? + Jswap Zfﬂ Kylog Ke) :

. Astrocyte: Tpgpro = O(P + N P).
. FalVolt: Travorr = @(M + N(M + fW))
. LIFA: Tyips = 6(P + NP).

. Pmposed3 Tproposed,mlp = @(NS[B +A+T + BTD]) + O(Nsal Fnl\:IoLéiZI)v
Tproposed,conv = @(NS [B +A+T+ BTD])

S ENC Y NN

Notations of time complexity equations

1. ECOC. B: batch size; N: number of training/inference steps (batches processed); C-
number of classes; FE: number of extension code blocks; m: Hamming-code parameter;
n = 2™ — 1: per code block length; L = E'n: code length; P: candidate-pool size used
in code book construction.

2. Soft SNN. W = Zf\il P;: total number of trainable weights over the M layers; P;: number
of weights in layer ¢; Py,.x = max; P;: size of the largest layer.

3. Routing. Lijayers: number of routed layers; Ci(f), C’C()ﬁ)t: input/output channels of layer
¢, ky: kernel size of layer ¢ (so k} = 1 for MLP/Linear); K, = min{C’i(If),C(()ﬁ)t}:
effective channel count for top-K matching; dswap € {0,1}: flag indicating whether
sorting + channel-swap is enabled; W: total number of trainable weights across routed
layers.

4. Astrocyte. N: number of batch iterations in an epoch; P: total number of trainable
parameters over hooked layers; x: output-channel chunk size used in the backward pass;
max.

phaX: maximum number of parameters associated with a single output channel (e.g., 9 Ciy
for a 3x3 conv).

5. FalVolt. N: number of batch iterations in an epoch; W: total number of weights subject
to potential fault mapping; M : number of spiking/protected modules whose thresholds or
states are managed; f € [0, 1]: fraction of weights affected by faults (worst case f = 1);
Winask: number of stored fault-mask entries.

35

Under review as a conference paper at ICLR 2026

6. LIFA. N: number of batch iterations in an epoch; P: total number of trainable parameters
across protected layers (for conv: P = Ze C’(e) C’.(Z)kf; for linear: kf =1); C =

out ~in

Yoo C’(()ﬁ)t: total output-channel count across protected layers.

7. Proposed. N: number of batch iterations in an epoch; S = H x W: spatial size
(pixels) per sample; B: batch size; D: input channels; 7': number of time steps
(fragments) per sample; A: number of orientation candidates; (optional only if the fault
influence map (saliency and weight projection) is used) Ng,1: number of steps that compute
saliency/backprop; Frlr\l/lolélzlz per-step FLOPs of the MLP backbone under saliency.

With MNIST and FMNIST (S = 28 x 28 = 784, D = 1), our fragmentation step scales as

Tproposed = @(S B T) = @(784 B T), 5)

while all weight-scanning benchmarks (Astrocyte and LIFA) based on astrocytes scale with the
number of parameters:

Tiean = @(W)> Trarvor = ®(M + fW) = G(fW) (fOI' non—vanishing f)v (6)

where W is the total trainable weights, M the number of spiking/protected modules, and f € [0, 1]
the fraction of weights affected by faults. Hence, the decisive ratios are

Tyroposed T84BT Tyroposed T84BT
Tscan w ’ TFalVolt f w ’

For the CNNs in our setting (VGG-7/11/15, ResNet-18), W is in the multi-million range even on
MNIST/FMNIST; with common batches/fragments (B € [64,128], T'€ [2,4]) one has W >>784 BT,
so strictly Tproposed < Tscanning- The same conclusion holds against Fal Volt for any fixed, non-negligible
f (e.g., f >0.05), since then fW > 784 BT in these networks, yielding Tyyrs < Travorr as well.
ECOC differs in that its per-step cost is Tgcoc = (B C L), giving

@)

Tproposed - STD - 84T
Tecoc =~ CL CL’

which is typically of the same order for C=10 and L € [64, 256], while ECOC still incurs a one-off
build of ©(E P?n). In summary, without the fault influence, our mechanism has strictly smaller
per-step time complexity than all weight-scanning benchmarks under the MLP/VGG/ResNet models.
It is competitive with (or smaller than) ECOC while avoiding the heavy one-time construction of
ECOC. As shown in Appendix A.1 and A.2, our mechanism is not significantly dependent on the
fault influence with CIFAR-10 and CIFAR-100 under VGG and ResNet models, indicating that our
mechanism saves time by using only the complexity to make fragments under VGG and ResNet
models with CIFAR-10 and CIFAR-100.

®)

C.1.2 SPATIAL COMPLEXITY

We evaluate the spatial complexity of the benchmarks and the proposed mechanism in detail. The
following items present the spatial complexity of the benchmarks and the proposed mechanism

1. ECOC: Sgcoc = ©(P? + CL + BC).
. SoftSNN: Ssonsnn = O(1).

. Routing: S,oute = O(W).

. Astrocyte: Sago = O(P + x phax).

. FalVolt: Sparvore = O(M + Winask).

. LIFA: Spipa = O(P + C).

. Proposed: Syroposca = O(S [BTD + A]).

~N N L AW

36

Under review as a conference paper at ICLR 2026

Notations of spatial complexity equations

1. ECOC. C: number of classes; E: number of extension code blocks; m: Hamming pa-
rameter; n = 2™ — 1: code block length; L = E'n: code length (size of the stored code
book is C' L); B: batch size (per-step logits buffer B C'); P: candidate-pool size (build-time
pairwise matrix P? gives peak memory).

2. SoftSNN. W = Zf\il P;: total number of trainable weights over the M layers; Ppax =

max; P;: size of the largest layer (often dictates per-layer peak); C = Zf\il Cout,i: total
number of output channels if per-channel thresholds are stored.

3. Routing. W: total number of trainable weights across routed layers (in-place operations
keep the footprint parameter—scaled); Ci(f): input channels of layer ¢ (small per-layer
index/permutation buffers scale with Ci(f) but are absorbed by W in big-O terms).

4. Astrocyte. P: total number of trainable parameters over hooked layers (CPU-side caches
such as Wy, inverse denominators, masks, ¢ scale with P); x: output-channel chunk size

used on GPU during the backward pass; p5*: maximum number of parameters per output
channel (e.g., 9 C, for a 3x3 conv); the additional VRAM peak scales with y phii*.

5. FalVolt. WW: total number of potentially fault-mapped weights (upper bound on parame-
ter—scaled storage); M: number of protected/spiking modules (small bookkeeping state);

Winask: number of stored fault-mask entries (persistent); typically Wiase < W.
6. LIFA. P: total number of trainable parameters across protected layers (dominant persistent

buffers: Wy, inverse denominators, masks); C' = y Cée) :

- total number of output channels
(per-channel EMA/state vectors).

7. Proposed (fragmentation). S = H x W: per-sample spatial size (pixels); B: batch size; D:
input channels; 7": number of fragments per sample (fragment tensor BT D S dominates);
A: number of orientation candidates (angle buffers A .S).

With MNIST and FMNIST (S = 28 x 28 = 784, D = 1), the peak additional memory of the
proposed mechanism scales as (Note that saliency map S is not essential for VGG and ResNet
models.)

Sous = O(S[BT D+ A]) =©(784[BT + A}). ©)

where B is the batch size, T" the number of fragments, and A the number of angle candidates. In
contrast, weight—scan benchmarks that scan all parameters each step exhibit parameter—dominated
footprints:

Stiraasro = O(W) Ssofisne = O(Phmax) (per-layer peak) < ©(W). (10)

SRouling = @(W) SFalVoll = @(M + Wmask) < @(W) (1 1)

where W is the total number of trainable weights, P, the size of the largest layer’s weight tensor,
M the number of protected/spiking modules, and W,k the number of stored fault-mask entries.
Therefore, for typical MNIST/FMNIST settings (e.g., B € [64,128], T'€ [2, 4], A<180) and CNN
backbones (VGG-7/11/15, ResNet-18) with W in the multi-million range,

Sproposed _ 784 BT + A] <1 Shroposed _ 784 BT + A] < 1. (12)
SLIFA/Astro w SFalVolt M + Whnask

and similarly Sours << Srouting aNd Sours S Ssofisnn Whenever P,y is large (as in VGG/ResNet).
ECOC is different: per—step it stores only the code book and logits,

Skcoc, step = O(C' L+ BC) (C=10 on MNIST/FMNIST, L = O(10?)). (13)

which is often smaller than Sproposea On these datasets; however, ECOC incurs a one—time build peak of
©(P?) (candidate—pair matrix) that can dominate transient memory. In summation, without the fault
influence map, our method achieves strictly smaller parameter space complexity than all weight—scan
benchmarks (LIFA, Astrocyte, Soft SNN, Routing, FalVolt), while remaining competitive with ECOC
apart from its negligible per—step footprint but heavy one—off construction of ECOC.

37

Under review as a conference paper at ICLR 2026

C.2 TRAINING TIME

We measure the training time of the baseline, benchmarks, and the proposed mechanism using the
MLP (MNIST), VGG-7 (CIFAR-10), ResNet-18 (CIFAR-100), and ResNet-34 (Tiny-ImageNet)
models with 2 time steps. We train the models on a workstation with an Nvidia GeForce RTX 4080
GPU with Ubuntu 24.04.

Table 15: Various models’ training time (sec) in a 95% confidence interval with the baseline, benchmarks, and
proposed mechanism on a workstation under SAFs with a fault ratio of 0.5 and 2 time steps.

Baseline ECOC SoftSNN Routing Astrocyte FalVolt LIFA Proposed
MLP 193.84 +2.71 197.62 £ 2.85 196.51 + 2.56 198.29 + 3.05 288.75 + 4.51 201.47 +3.21 293.86 +4.77 205.24 +4.23
VGG-7 291.16 + 3.57 296.91 + 3.8 294.34 + 3.65 298.81 +4.01 351.82 4+ 5.27 303.53 + 4.26 356.74 & 5.53 310.38 £5.18

ResNet-18 382.53 +4.12 385.61 +4.03 384.77 + 4.53 396.54 + 4.68 721.97 £ 6.28 408.9 £4.94 724.62 £ 6.09 413.32 +£4.5
ResNet-34 4259.57 +18.62 4304.4 £20.11 4298.46 +21.39 4350.83 £25.75 8005.37 4+ 36.21 4317.89 +26.04 8154.17 4 32.83 4392.13 & 26.51

Our mechanism consumes significantly less training time than weight-scanning approaches based on
astrocytes (Astrocyte and LIFA), as we demonstrate that our mechanism definitely consumes less
time than the astrocyte-based approaches due to their less complexity. Unlike these approaches, the
training time of the models with our mechanism does not increase significantly as the complexity of
the models and datasets increases. The model with ours also consumes comparable training time to
that of ECOC, SoftSNN, Routing, and FalVolt. This evaluation result shows that our mechanism does
not severely inflate the burden on training time.

C.3 ENERGY CONSUMPTION ON THE REAL FPGA DEVICE

We measure the energy consumption of the model with the baseline, benchmarks, and proposed
mechanism on the FPGA device during testing. Table 16 exhibits the energy consumption of the
FPGA-based MLP with MNIST/FMNIST and FPGA-based VGG-7 with CIFAR-100 using 2 time
steps.

Table 16: The MLP models’ energy consumption (mJ) to process a single sample in a 95% confidence interval
with the baseline, benchmarks, and proposed mechanism on the real FPGA hardware with two time steps.

Baseline ECOC SoftSNN Routing Astrocyte FalVolt LIFA Proposed

MNIST 85.31+£1.05 88.76£1.27 86.23+£1.18 9044 +£1.31 150.72£1.61 9515+£1.23 165.69£1.59 67.16 £ 0.82
FMNIST 87.19+1.36 90.54£1.57 88.68+£1.43 92.82+£151 156.08£1.99 98.23+1.72 168.33+£1.93 78.37£0.95
CIFAR-10 203.85£2.07 216.41+£2.13 212.96+1.97 228.164+2.45 319.5£3.56 209.87£2.92 336.09£3.44 194.14+2.35

The MLP model with our mechanism exhibits the least energy consumption among the MLP models
on the real FPGA device. This is because our mechanism shrinks the size of the data samples through
fragmentation, and the probability of spike occurrence declines since the number of non-zero pixels
decreases during fragmentation, as mentioned in Subsection 5.3. This effect enables the model with
our mechanism to consume less energy than the models with all benchmarks, despite our mechanism
having higher time complexity and consumption than some benchmarks. However, the benchmarks
increase the complexity of the decoding (ECOC), keep neurons’ activation frequent (SoftSNN and
Routing), utilize the astrocyte module to activate non-faulty synapses (Astrocyte and LIFA), and
incorporate additional learnable parameters to adjust neuronal activities (Falvolt). Therefore, the
MLP models with the benchmark require more energy than ours.

38

Under review as a conference paper at ICLR 2026

D DETAILED MATHEMATICAL EXPLANATION OF THE MOTIVATION STUDY
We demonstrate how synaptic faults ruin the usable learning capacity of SNN models mathematically.

D.1 SETUP AND NOTATION

Consider a spiking neuron with membrane potential V; € R, threshold ¥ € R, and spike output
K, € {0,1}. During training, we replace the Heaviside step H by a surrogate o : R— [0, 1] so that
K; ~ o(V; — ¥) and ¢’ is used in backpropagation. Let the surrogate gradient corridor width be
d > 0 such that o’ (u) ~ 0 whenever |u| > 4. For a feedforward pre-activation at layer £ and time ¢,

zy) - W“)Kt(lfl) + b0 (vector form), (14)

and for a single neuron with input x € R and weights w € R? we write z = w "z + b. For an LIF
neuron, we use

Vi = aVi_1 + 2z — 9K _q, Kt’N"O’(V;g—ﬁ), [AS (071). (15)

D.2 SURROGATE GRADIENT CORRIDOR

Let u := z — . Many arctangent surrogates used in SNNs have a backward derivative of the rational
form

A

! = A>0, 0, 16
¢'(u) T (B >0, 5> (16)
which yields, for a target gradient floor v € (0, A), the corridor
, 1 /A
= {uidl(w) 27} = [20(0), 600, 00y) = z4/= 1 (17)

Additionally, we derive the surrogate gradient corridor of the arctangent function, which is widely
used as a surrogate gradient function for LIF neurons.

Let u := z — ¢} and consider the arctangent surrogate derivative

(1 + (osu)?)’

For a target gradient floor v € (0, a5 /), define the corridor(Li et al., 2024a; Zenke & Vogels, 2021;
Shrestha & Orchard, 2018)

¢ (u) = as > 0. (18)

Cyi=Hu:¢'(u) >~} =1[-44], o(y)=—,/——1. (19)
whose peak is A = 1/7. Setting the gradient floor to r = fA = f/x yields the corridor half-width

sy = = X1 (20)

ma \ f
In practice, we initialize « = 2 and f = 0.2 (thus r ~ 0.0637), then adapt f per layer using
mini-batch membrane statistics so that the corridor covers a target score p of the observed U — ¢/
distribution: with &, the running standard deviation and z, the normal quantile for score p, we set
0(fe) = 2p0y, 1.6 (Zenke & Vogels, 2021; Wang et al., 2023; Che et al., 2022; Lian et al., 2023).

1
= — 21
f@ 1+ (Zpae)g (2D

This keeps most samples within the high-gradient band while avoiding an overly narrow corridor.

39

Under review as a conference paper at ICLR 2026

Remark 1 (Mapping to implementation). For the common parameterization ¢' (u) = e EEmEE

one has A = o /7 and § = «. For the SpikingJelly ATan ¢' (u) = % one has A = /2 and
2
B = wa/2 (Fang et al., 2023). Both are instances of equation 16, so equation 17 applies verbatim.

D.3 FAULT MODELING
We consider synaptic faults that perturb parameters and/or inputs:

w— w+ Aw, T+ Ax, (22)

where Aw, Az may be sparse (e.g., SAO/SALI at a subset of synapses) or dense (e.g., analog drift).
The post-fault pre-activation is

Y= (wH+Aw) (z+Az)+b = 2+ Az, Az = Aw'z +w Az+Aw' Az, (23)
—_—— ——— Y——

param fault input fault higher-order

By the Cauchy—Schwarz inequality,

Az < lzflz |Awlls + [lwllz [|Azlls + [|Aw]] | Az]2. (24)

SAQ on an input line j is modeled by (Ax); = —z;; SA1 by (Az),; = ¢ — z; for a fixed logic level
c. Bit/weight stuck faults are included in Aw.

D.4 FROM FAULTS TO SATURATION

At time ¢, the only instantaneous change from a synaptic fault is z; — 2z; + Az, hence

‘/;/ = aV},l + (Zt + Azt) — 19th1 = ‘/t + Azt, = V/ Y = (19) + Azt (25)

Lemma 1 (Corridor escape: sufficient conditions). Let a;:=V; — ¢ and suppose |a;| < & (pre-fault
state inside the corridor).

1. (Sign-aligned escape) If a;Az; > 0 and |Azi| > 6 — |ay|, then |a; + Azi| > 8, hence
o' (V/ —9) = 0 at time t.

2. (Sign-agnostic escape) Regardless of the sign of Az, i las+Azi| > 0.

Proof. (1) If a; Az > 0 then |a; + Az | = ||as| + [Az|| > 6 when |Az| > 6 — |a|. (2) By the
reverse triangle inequality, |a; + Az;| > |[Az| — |ag|| > 6.

D.5 EXPECTED GRADIENT BOUND FOR A SINGLE NEURON

Let g; := 0L/0S; and suppose 0 < o’(u) < Cy1{|u| < é}. Then,

Taking expectations and using the Cauchy—Schwarz inequality yields the model-free bound

T
D) < Co > llgell el 1{| VY = 9] < 6} (26)

1/2
55| < o Z ool 1) - B(V7 = 91 < 672, @)

Under a mild independence/mixing assumption between || g:||||z¢| and the corridor event, one may
write the simpler scaling

T
H H Co S E[lael leel] oo pe = BV, — 9] <). 28)
t=1

40

Under review as a conference paper at ICLR 2026

D.6 DEPTH- AND TIME-WISE COMPOUNDING

For a parameter in layer ¢, a generic backpropagation path contains factors o’ (Vt(j) 9) forj < ¥
and relevant ¢. Bounding ¢’ by indicators,

mf < c¥ I v -9l <8y, Na=Y e (29)
Jitivs,e=1 jrt

Taking expectations gives (II denotes the product of all gradient factors along a single backpropagation
path leading to a given parameter.)

En < oynpl () {vY -9 <6} (30)

gyt vj,e=1

A conservative bound is

EIl < O min pis. pjs :=IP’(|V}”—19| gé). 31)

gty e=

If corridor events are approximately independent (or satisfy a weak-mixing condition), then

Ej < ey [pie < CYen)N, pr= SUp P, (32)
Jitryj,e=1 I

exhibiting exponential attenuation as Ny grows.
D.7 FIRST-LAYER SENSITIVITY IN MLP

For the first layer (vector form) with z() = W)z 4- () and perturbations (AW ()| Az),

Az < JAWD flop llz]l2 + 1W D lop [Alz + [[AWD o) [|Az]2, (33)

50 sizeable input/weight faults directly shift z(!) without any preceding contraction, shrinking corridor
occupancy in deeper layers via equation 30—equation 32.

D.8 SUFFICIENT CONDITION FOR GRADIENT COLLAPSE

Define p; ; as above and let G be the multiset of “corridor gates” along dominant backpropagation
paths with size N,. If a fraction p € (0, 1] of gates satisfy p; ; < ¢ < 1, then

CN+¢PN- " under independence/mixing,
Em < (34)

CN-¢, (conservative, no independence).

Either case shows attenuation; the independent/mixing case yields exponential decay in depth x time.

D.9 EFFECTIVE BIAS INTERPRETATION FOR SAO/SA1 OF SAFs
For SA1 on a subset 7 of input lines with logic level c,
Az = w Az = ij(c—mj) = cij — ijxj7 (35)
JjeET JjeT JjeET

acting as an additive bias shift plus removal of signal terms. Persistent shifts displace V; away from
) across time steps, driving down corridor occupancy p; ¢ and compounding the bottleneck via
equation 32.

41

Under review as a conference paper at ICLR 2026

D.10 SUMMARY

Synaptic faults induce a pre-activation shift Az decomposed in equation 23 and bounded in equa-
tion 24. When |Az| is large relative to the corridor width ¢, Lemma 1 ensures |V; — ¥| > § so
o’ (Vi — 1) = 0. The expected gradient is then attenuated proportionally to (at least) /Pj.t per time
step equation 27; under independence/mixing, it scales with p; ; equation 28. Across layers and time
steps, this attenuation multiplies equation 32, producing the bottleneck problem, with the first layer of
MLP especially vulnerable by equation 33.

E NEAR-OPTIMALITY OF THE PROPOSED MECHANISM

We show why our solution is the near-optimal solution to improve the fault tolerance of SNNs in this
section.

E.1 SETUP AND NOTATION

We consider inputs z € R™ and a fixed number of stripes (1D profiles in Section 5) 7' € N. Indices
arei € {1,...,n} and stripes are t € {1,...,T}. A stripe partition is represented by binary masks
M, (i) € {0,1} that satisfy Zle M, (i) = 1 for every ¢, and contiguity is taken with respect to a
one—dimensional scan order of the indices induced by an angle 6 in a finite set © C [0, 7). Given
any nonnegative vector s € R’} the load of stripe ¢ is the linear functional S;(s) =), s; M (i); we
also write the total mass U(s) =), s;, the per—stripe mean 1.(s) = U(s)/T, and the element-wise
maximum m(s) = max; s;. For vectors a,b € R", the inner product is (a,b) = >, a;b; and ||v||,
denotes the £, norm; the Hadamard product is a © b.

n n

Si(s) == Zsth(i), U(s) = Zsi, u(s) == T m(s) 1= Max s;. (36)

=1 i=1

Given trained weights w € R™ and a fault/perturbation Aw, we set @ := w + Aw and restrict the
input to stripe ¢ by z; := © M;. The (stripe) pre-activation is
2t = (W, xy), Ty =1 O M;, W= w+ Aw. (37)

We denote by z* > 0 the corridor threshold, i.e., the largest value for which the chosen surrogate
derivative ¢'(z) remains in its effective (non—vanishing) regime for all |z| < z*. To construct stripes,
we employ an implementable importance map / € R’} and assume a two—sided calibration with
respect to the ideal per—index load u; := |w;| |x;|: there exist constants 0 < ¢ < 1 < ¢4 such that

e |wil || < I < ey |wi]|x, i=1,...,n. (38)

When I = u one has c_ = ¢y = 1. The quantile (greedy) stripes used in the paper are obtained by
scanning indices in the chosen order and inserting a cut whenever the cumulative load with respect to
I first exceeds integer multiples of u(7), producing T' contiguous fragments.

E.2 FAULT MODELS AND A BASIC UPPER BOUND

We consider the following three fault models, mentioned in Section 2.

SAFs: Some synapses are permanently stuck at G i, or Gax SO the implemented weight becomes
wj (e.g., SAO/SAI). Let Aw; := w} — w; and assume ||Aw||c < egap. Then for any stripe ¢ (Boyd
& Vandenberghe, 2004),

e = [(w + Aw,zy)] < Y |wil i My(i) + esar Y [ail Mo(i) = Se(u) + esar Si(lz]).

Si(u) Si(l=])
(39)

42

Under review as a conference paper at ICLR 2026

RWFs: Each coordinate experiences an independent, mean-zero, bounded (or sub-Gaussian) pertur-
bation Aw;. If |Aw;| < b and the Aw; are independent, then for any 7 > 0 and stripe ¢,

72)
Pr(|[{Aw,z¢)| > 7) < 2exp| —=—+5 |, (40)
(esw.2 >7) < 200~ g
so equalizing S¢(|x|) = ||x¢||1 across ¢ uniformly tightens the tail bound (sub-Gaussian and Hoeffd-

ing) (Hoeffding, 1963).

CEFs: Wiring errors apply a linear transformation to the input so that z; = w' (Ax;). This is
equivalent to using the effective weight v’ := AT w, i.e., Aw(® = (AT — Dw. If | Aw?|| o, <
€CEF, then

l2e| = [(w + Aw'? 2)| < Sy(u) + ecer Si(|z]). (41)

A permutation fault A = P is a special case; taking ecpr = ||(P T — I)w| s yields the same bound
(Boyd & Vandenberghe, 2004).

E.3 CALIBRATION: ALIGNING THE IMPORTANCE MAP WITH THE EFFECTIVE PER-INDEX LOAD

We formalize the requirement that the implementable importance I should approximate v within
stripe-wise sums.

Assumption 1 (Two-sided calibration.). There exist constants 0 < c_ < 1 < c4 such that for all
indices 1,
c_uy < I; < cpuy. 42)

Lemma 2 (Calibration). Under the assumption (Two-sided calibration), for any stripe partition,

Se(u) < 2=Su(I), plw) < Fud), mlu) < Em(D). (43)

Cc_
Proof. From u; < I;/c_, sum over 4 in stripe ¢. Similar for totals and maxima.

E.4 QUANTILE STRIPES ARE ADDITIVELY NEAR—OPTIMAL (CONTIGUOUS CASE)

Fix a nonnegative sequence a, . .., a, obtained by scanning the image along any 1D order (e.g.,
the #-scan used in the main text). Let U(a) =), a; and target mean i(a) = U(a)/T. Define the
quantile (greedy) contiguous partition in Subsections 5.2 and 5.3 by sweeping from left to right and
cutting whenever the cumulative sum first exceeds multiples of p(a), producing T contiguous stripes.

Lemma 3 (Additive bound for greedy quantiles). Let m(a) := max; a;. Then the greedy quantile
partition satisfies

max Sifa) < pu(a) +m(a). (44)

Moreover, any contiguous partition must have max; S;(a) > p(a); hence, the greedy partition is a
-+m(a)-additive approximation to the optimal contiguous partition.

Proof. Each of the first T' — 1 stripes stops at the first index that causes the running sum to exceed
w(a). The overshoot over u(a) is therefore at most the last included element, i.e., < m(a). Hence
every one of the first T — 1 stripes has load in (p(a), p(a)+m(a)]. The final stripe has the remaining
mass U(a) — ZtT;ll Si(a) < p(a). Thus, the maximum stripe load is at most p(a) + m(a). The
lower bound > y(a) holds by a pigeonhole argument.

Theorem 1 (Near—optimality for v via quantiles on). Construct stripes by greedy quantiles on the
calibrated importance I. Under Assumption 1:

C

max Sy (u) < = (u(l) +m(I)). (45)

43

Under review as a conference paper at ICLR 2026

If I = u(soc_ = cy = 1), the greedy partition achieves max; Si(u) < p(u) + m(u), i.e., a
+m(u) additive approximation to the optimal contiguous value. For a calibrated I with Assumption
1, we have max; Sy(u) < - (u(I) +m(I)). Translating this bound to the u—optimum introduces

a calibration-dependent drift via p(I) € [c—p(u), cyu(u)], so the additive gap to the optimal
contiguous value is at most —m(I) + (2= — 1)u(u). The baseline p(u) is at most = pu(I).

Proof. Apply Lemma 3 with a = I to obtain max; Si(I) < p(I) + m(I). Then use Lemma 2:
Se(u) < S¢(I)/c—.

Remark 2 (Direct partitioning condition). (i) If one directly partitions using a = u, then c_ =1
and the bound gives max; S¢(u) < p(u) + m(uw). (ii) The proof does not assume the particular 1D

order beyond contiguity, the order may be induced by any scan (e.g., the 0-parameterization used to
define stripes).

E.5 CORRIDOR PRESERVATION: SUFFICIENT CONDITIONS

Under SAFs and CEFs, combining the bounds with Theorem 1 yields a closed-form uniform bound
on |z:

2] < 2= () +m(I) + & Si(lzl). (46)
N ———
from 1 fault term
The stripes are constructed by greedy quantiles on I (not on |z|). Let Xax = max<r St(|z]),

computed on the same I-quantile partition. A simple sufficient condition for staying within the
corridor is then

1
—{p@)+m(I)} + & Xmax < 2%, KXmax 1= m% St(|x]) (computed on the same I-quantile partition).
c_ te
(47)

Remark 3 (Optional (co-monotone scan)). If along the 1D scan used to build the I-quantile
partition the sequences I and |x| are approximately co-monotone—so that applying Lemma 3 to |z|
is justified—then

Xmax < pl[]) +m(|z]). (48)

In this case, a convenient sufficient condition is
1 x
—{u)+m(D} + e (p(la]) +m(a)) < 2% (49)

Under RWFs, Hoeffding’s tail (and a union bound) implies that with probability at least 1 —
2T exp{—72/(2b? max; ||x,||3)}, all stripes satisfy |(Aw, z,)| < 7 (Hoeffding, 1963). Thus, the
(random) bound analogous to the above holds with the deterministic term & S¢(|z|) replaced by T,
chosen at the desired confidence level.

E.6 ON THE GINI OBJECTIVE (PRIMARY SURROGATE FOR MIN-MAX LOAD)

We treat minimizing the Gini coefficient of the 1D projection of I as a primary surrogate for
suppressing the worst-case stripe load. Recall that G(S) equals one-half of the relative mean absolute
difference and is equivalent to the Lorenz-based definition. Hence, it directly reduces pairwise
dispersion. The next proposition turns this dispersion control into a deviation bound that is linear in
G(S) (Yitzhaki & Schechtman, 2013).

Proposition 1 (Gini = deviation bound). Let S € RE with mean p and Gini coefficient G(S). Then

1
max | Sy — | < TZ|si—sj| = 2T nG(9).

4,3

44

Under review as a conference paper at ICLR 2026

Proof. By 3 ,(S; — S;) = T(S; — p) and the triangle inequality, |S; — u| = | >, (S; — S;)| <
+ >_; |t — S;|. Summing over ¢ and taking the maximum yields max; [S; — p| < - > i 1Si =S5l

Since Y, ; |Si — Sj| = 2T°pG(S), the claim follows.

Combine Proposition 1 with the additive near-optimality bound for contiguous quantile stripes
(Lemma/Theorem: max; S; < p -+ m for the greedy split). Minimizing G(S) tightens max; |S; — |
and thus reduces max; S; under the same partition, making the corridor constraint strictly easier to
satisfy. In short: Gini |= pairwise dispersion |=- deviation /= min—-max load |.

E.7 COMPUTING THE SCAN/STRIPES

Let © C [0,) denote a finite set of scan angles (or any family of 1D orders). For a fixed order, the
greedy quantile partition runs in linear time. If one wishes to search over ©, evaluate the objective
max; St (I) for each order and pick the best; since the objective only changes at permutation “event
points”, coarse uniform sampling of © is typically sufficient in practice. When an exact optimum
over contiguous partitions is desired for a fixed order, classical Dynamic Programming (DP) or
feasibility—check with binary search finds minconie maxy Si(I) in polynomial time; our greedy rule
is the simple additive-approximate alternative used in the paper (Skiena, 2008).

E.8 SUMMARY

For any calibrated I, greedy quantile stripes achieve the near—optimality bound above; if I = u,
the achieved maximum load is within +m(u) of the contiguous optimum for w. Under the SAFs
and CEFs, the closed-form sufficient condition ensures |z;| < z* for all stripes, preventing gradient
collapse; under RWFs, the analogous high-probability statement follows from the sub-Gaussian tail
bound. The constants involved are the calibration c_, the fault radius € (or (b, 7) in the probabilistic
model), and the observable statistics u(-) and m(-).

F FAULT-TOLERANCE CAPACITY PREDICTION OF OUR MECHANISM

In this section, we analyze the fault-tolerance capacity of our mechanism under the SAF, RWF, and
CEF injection using arctangent as a surrogate gradient function. The boundary of synaptic weights is
[-1,1] (Le Gallo et al., 2023; Lammie et al., 2022).

F.1 SETUP AND NOTATION

Letw € [—1,1]" be the clean weight vector, K := ||w]|2, and let a fraction p € [0, 1] of synapses be
faulty. All results below are per layer and can be applied layer-wise. Please refer to the derivation
of the surrogate gradient (arctangent) corridor in Subsection C.2 while reading our paragraphs on
capacity calculation.

With dynamic fragmentation and per-fragment RMS normalization to ||Z¢||2 = «p,
ue| = [0 F +0 =] < |[@lzan+m, m:= b9l (50)

Hence it suffices that ||1]|2 < B, where

6(y) —m

5 (requires d(y) > m). (1)

F.2 CAPACITY UNDER SAFS

Under SAO, we replace faulty entries by —1; under SA1 by +1. In either case |[@;| = 1 on faulty
indices, so

)3 = [lwl|3 = > wi +pN-1 < K>+ pN, (52)
el

45

Under review as a conference paper at ICLR 2026

where the inequality is the deterministic worst-case (we drop the nonnegative subtraction term).
Therefore, a sufficient condition to remain inside the corridor is

B2 _ K2
N
If faulty indices are drawn uniformly at random (independent of w), then IE[YicF w?] = pK? and

K’ +pN < B> = pias worst = (clipped to [0, 1]). (53)

Elldf3 = (1 —p)K?+pN-1=K*+p(N - K?), (54)
whence the in-expectation capacity is

B? - K?

PSAL, cap = N K2 (clipped to [0, 1]). (55)

F.3 CAPACITY UNDER RWFs

On faulty indices, 1; = w; + &; with E[g;] = 0 and Var(g;) = o2 . Independence yields E| @[3 =
K? + pNo2,so

B2_K?
PRWF, cap = NoZ (clipped to [0, 1]). (56)

A high-probability version follows from sub-Gaussian concentration by replacing No2 with an
upper-tail bound.
F.4 CAPACITY UNDER CEFs

(b—a)?
12

A fraction p of entries are replaced by i.i.d. U|a, b] and then frozen. Let py = atb and 0]2c =

2
so that E[w7] = pi} + o%. If faulty indices are random (independent of w),

B? - K?
N(H?&'+0’?)—K2

Ell@]3 = (1 —p)K?+ pN (i} +0%7) = PCEF, cop = (clipped to [0, 1]).

(57)
For the common symmetric case U[—1,1], uy = 0, o']% = 1/3 and thus
N B? - K? .
PCEF, exp = N/3 K2 (Chpped) (58)

If a deterministic worst-case guarantee is required (independent of the draw), note that |w;| < 1
almost surely, so the same bound as SAO/SA1 applies:

. B2 - K?
PCEF, worst — T (Chpped to [07 1}) (59)

F.5 SUMMARY

Here, we explain how to calculate the capacity of the proposed mechanism. Choose a gradient
floor v (e.g., f% of the arctangent peak so v = f - o /), compute d(vy) and B via equation 51,
measure K = ||w||2, and then plug into the formula for the fault model of interest. If p < p*, our
mechanism keeps |u:| < d(7) for all steps (deterministic case) or in expectation (stochastic case),
thereby ensuring ¢’ (u;) > 7.

G CONVERGENCE ANALYSIS WITH THE PROPOSED MECHANISM

We present that Stochastic Gradient Descent (SGD) and Gradient Descent (GD) optimizers derive
gradients of fault-injected SNN models and induce the models to update weights when we adopt our
mechanism to the SNN models.

46

Under review as a conference paper at ICLR 2026

G.1 SETUP AND NOTATION

We denote a data sample by (x,y), and the SNN by fy/(-) with parameters W. We include the
(possibly stochastic) fragment+RMS transform 7" and analyze the expected objective L(W) =
E,y), 7 [¢(fw (T(z)),y)]. Atstep t, with mini-batch estimator g; and step size 1, the update is

++1 = Wy — nrge. For spiking neurons, we write the pre-activation as u; := z; — ¥/ and use a
surrogate derivative ¢'(u). Throughout, we assume the gradient-corridor condition ¢’ (u;) > ~ holds
along the iterates, which is enforced by the fragment RMS bound and the per-layer effective weight
norms || ||y < B referring to Appendix E. Symbols L, o2, i1 are in Appendix C, D, and E,
referenced only when required by a lemma or theorem.

G.2 BAND CONDITION ENFORCED BY OUR MECHANISM

With dynamic fragmentation and per-fragment RMS normalization ||Z||s = «,, each step satisfies

lut| = }wTi‘t—Fb—ﬁ‘ < |2 o + m, m:=|b—1|. (60)
Defining
B = (5(fy())67—m (requires d(y) > m), (61)

One obtains the following corridor-invariance lemma.

Lemma 4 (Corridor invariance). If ||w]|2 < B, then |u.| < §(7) for all fragments t, hence ¢' (uz) > 7.
Proof. Combine equation 60 with equation 61 and the definition of §(~) in equation 17.

G.3 OPTIMIZATION OBJECTIVE AND ASSUMPTIONS

Let L(W) := E (e, 7 [(fw (T (2)),y)], where T denotes the (possibly stochastic, data/model-
aware) transformation induced by our mechanism (e.g., masks and RMS scaling). Assume:

Assumption 2 (L-smoothness). VL is L-Lipschitz.

Assumption 3 (Unbiased mini-batch gradients, bounded variance). E[g, | W;] = VL(W;) and
E[lge - VLW W] < 02

Assumption 4 (Corridor stability). For each layer, capacity constraints on the fault ratio ensure
w® | < B, so Lemma holds layer-wise and QS/(UEZ)) > 7 during training.

G.4 DESCENT LEMMA AND MASTER INEQUALITY

By L-smoothness and W; 11 = Wy — n.g4,

. - ~ L
EWi) < £V = n(VEW). 1) + 2 g2 ()

Taking expectation and using Assumption 2 with E||g;||> = ||V£~(T/Vt)||2 +Ellg: — VLW, <
|VL(W)||? + o2 gives(Nesterov, 2014)

2

BIEW)] < BIEO)] - n(1- 55) BIVEOVIP) + 0% @

Theorem 2 (SGD convergence to stationarity). If n; = n € (0,1/L], summing equation 63 over
t=0,...,T — 1yields

Z VL)) < 2LW0) ~ L) Lno?. (64)
P nT

47

Under review as a conference paper at ICLR 2026

With a Robbins-Monro ~schedule (Y ,m; = oo, ».,ni < oo) we obtain

limy_, o ming<7 E|VL(W;)||> = 0. Role of Assumption 3: By preventing artificial satura-
tion (¢'(u) = 0), the corridor ensures that gradient signals remain informative until genuine
stationarity (Bottou et al., 2018).

Theorem 3 (Monotone decrease for full-batch GD). In the deterministic case (o = 0) withn €
(0,1/L],

L(Wer) € LOW) = TIVEW)|P, (65)

50 3, IVL(Wy)||? < oo and every limit point of {W} is stationary.
Corollary 1 (Linear rate under PL). If L satisfies the Polyak-Lojasiewicz (PL) inequality

%HVLE(VV)H2 > ,u(E(W) - E*) for some p > 0 on the corridor-stable region, then for GD
withn € (0,1/L] (Karimi et al., 2020),

LWy =L < (1—nu)* (L(Wo) — £7). (66)

G.5 SUMMARY

Our mechanism enforces equation 17—equation 61 so that surrogate gradients do not vanish spuri-
ously; Under standard smoothness/stochasticity assumptions, SGD converges to stationarity, and
GD decreases monotonically, with linear rates under PL. Capacity bounds on the fault ratio provide
concrete regimes where the corridor assumption holds layer-wise (Neftci et al., 2019).

48

	Introduction
	Backgrounds
	Spiking neural networks
	Synaptic faults

	State of the arts
	Analysis about faults in neuromorphic devices
	Mechanisms to improve fault tolerance of hardware-implemented SNNs

	Motivation study
	Overview
	Pre-activation magnitude increase by faults
	Gradient collapse by abnormal pre-activation magnitude
	Learning ability degradation by gradient collapse
	Pre-activation sensitivity of layers in MLP
	Similarity to flow control in computer networks

	Proposed Mechanism
	Overview
	Sensitivity score definition and calculation
	Gini coefficient calculation with a 1D profile
	Fragment generation based on equal sensitivity score and in/out for SNNs

	Experiments
	Experimental settings
	Classification accuracy comparison
	MLP models
	VGG models
	ResNet models

	Conclusion
	Appendix Index
	Discussion
	Additional experimental results on classification accuracy
	Additional datasets beyond MNIST, FMNIST, CIFAR-10, and CIFAR-100
	Sequential dataset
	Large image dataset

	Changing the number of time steps
	4 time steps
	8 time steps

	Under the different types of synaptic faults
	RWFs
	CEFs

	Ablation study on the combination of our mechanism
	MLP model (MNIST, FMNIST)
	VGG-7 and ResNet-18 models (CIFAR-10 and CIFAR-100)

	Various hyperparameter settings with our mechanism
	MLP model (MNIST and FMNIST)
	VGG-7 and ResNet-18 models (CIFAR-10 and CIFAR-100)

	Using Deep Neural Networks (DNNs)
	Using SNNs with unsupervised learning
	Evaluations with real FPGA hardware

	Efficiency analysis based on time/spatial complexity and time/energy consumption
	Complexity analysis
	Time complexity
	Spatial complexity

	Training time
	Energy consumption on the real FPGA device

	Detailed mathematical explanation of the motivation study
	Setup and notation
	Surrogate gradient corridor
	Fault modeling
	From faults to saturation
	Expected gradient bound for a single neuron
	Depth- and time-wise compounding
	First-layer sensitivity in MLP
	Sufficient condition for gradient collapse
	Effective bias interpretation for SA0/SA1 of SAFs
	Summary

	Near-Optimality of the proposed mechanism
	Setup and notation
	Fault models and a basic upper bound
	Calibration: aligning the importance map with the effective per-index load
	Quantile stripes are additively near–optimal (contiguous case)
	Corridor preservation: sufficient conditions
	On the Gini objective (primary surrogate for min–max load)
	Computing the scan/stripes
	Summary

	Fault-tolerance capacity prediction of our mechanism
	Setup and notation
	Capacity under SAFs
	Capacity under RWFs
	Capacity under CEFs
	Summary

	Convergence analysis with the proposed mechanism
	Setup and notation
	Band condition enforced by our mechanism
	Optimization objective and assumptions
	Descent lemma and master inequality
	Summary

