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ABSTRACT

Spiking Neural Networks (SNNs) attract researchers due to their energy-efficient
operations in neuromorphic devices. Despite their energy efficiency, SNNs are
vulnerable to hardware faults, which impair the functionality of learnable parame-
ters (e.g., Stuck-At-Faults (SAFs) in synaptic weights). This impairment reduces
the capacity to absorb information. When input data contains information exceed-
ing the capacity, SNNs may not absorb information correctly, referred to as the
bottleneck problem. Existing approaches have relied on complex algorithms or
direct modification to most synaptic weights in SNNs, limiting their practicality
in neuromorphic devices. This paper proposes a simple yet effective input control
mechanism to address the problem, grounded in a thorough motivation study. Our
mechanism divides the input samples into small fragments, following the best frag-
mentation strategy, derived by analyzing the characteristics of the input samples
and diagnosing the current influence of faults. Experimental results demonstrate
that our mechanism significantly enhances fault tolerance over existing methods,
achieving these gains without complex algorithms or direct weight modification in
various SNN models. Additionally, our mechanism improves the fault tolerance of
SNN models implemented in a Field-Programmable Gate Array (FPGA) device.

1 INTRODUCTION

Spiking Neural Networks (SNNs) attract researchers to develop neuromorphic devices that are
necessary to implement Artificial Intelligence (AI) in low-end devices (Garaffa et al., 2021; Jeong
et al., 2025). SNNs are third-generation neural networks that use spikes to process data. They are
well-suited for neuromorphic devices with limited power sources and biological operations because
SNNs consume less energy than other neural networks and have high bio-plausibility (Schuman et al.,
2022; Pfeiffer & Pfeil, 2018). Although SNNs are essential for neuromorphic devices, they remain
highly vulnerable to permanent hardware faults, which frequently occur in the electrical components
of neuromorphic devices and significantly impair SNNs’ learning performance (Spyrou et al., 2021;
Lee & Lim, 2023). Their fault vulnerability stems from the instability of neuromorphic devices’
hardware components and the fault sensitivity of SNNs’ neuron models (Garaffa et al., 2021).

Previous approaches to improve SNNs’ tolerance against hardware faults rely on complex algorithms
to regulate abnormal neuronal activities or demand hardware reconfigurability to manage electric
components directly in neuromorphic devices (Vu et al., 2019; Putra et al., 2022). Although these
approaches have improved SNNs’ fault tolerance, they exhibit the following problems, which reduce
their practicality in implementation.

1. Algorithmic complexity in conventional mechanisms: The previous approaches require complex
algorithms that are impractical for hardware implementation (Vu et al., 2019; Yang et al., 2022; Han
et al., 2023). These approaches cannot work properly in neuromorphic devices demanding low-power
operations and prevent neuromorphic devices from operating stably (Basu et al., 2018). This is
because the complex algorithms frequently malfunction due to unexpected events such as wrong
input values and hardware faults (Liu et al., 2017).
2. Difficulties for direct modifications to synapses: Modifying synaptic weights directly is essential
for the previous approaches to improve SNNs’ fault tolerance, such as synapse pruning and weight
bounding. These approaches forcibly adjust whole synaptic weights and configurations in neuromor-
phic devices (Putra et al., 2022; Chen & Chakrabarty, 2021). However, external methods enabling
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direct modification demand additional costs to design reconfigurable hardware (Garaffa et al., 2021;
Takano & Amano, 2022; Putra et al., 2023).

Pragmatic approaches to meeting these two problems are necessary to improve SNN’s fault tolerance
in the real world. To address these limitations, we identify a critical issue that significantly degrades
SNN performance in faulty neuromorphic devices through a detailed motivation study. We name this
issue the bottleneck problem, severely damaging SNNs’ usable learning capacity. Here, we explain
how the bottleneck problem occurs. When faults appear in SNNs’ synapses, the weights of the faulty
synapses become fixed during training. This means that the capacity is reduced because the faulty
synapses, which do not change their weight during training, cannot be used for memorizing data.
Furthermore, the pre-activation value (linear combination) of spiking neurons lies in an abnormal
point of the surrogate gradient function, causing a serious gradient vanishing problem, which results
in the capacity gradation. With the low usable capacity of faulty SNNs, they cannot memorize input
data properly when the data contains information exceeding the learning capacity.

Motivated by flow control methods used in computer networks (Kurose & Ross, 2012), we first
propose a practical mechanism based on simple input control to solve the bottleneck problem based
on data fragmentation. Our mechanism enhances the fault tolerance of SNNs by dividing input data
samples into small fragments. Our control scheme addresses the constraint of SNNs’ usable learning
capacity in faulty neuromorphic devices by exploiting an effective fragmentation strategy for fault
mitigation based on analysis of input images’ characteristics and the influence of faults. The novelty
of our mechanism is as follows. Unlike the previous approaches, our mechanism does not require
complex algorithms to control neuronal activities and hardware reconfigurability for modifying
synapses directly. This novelty is derived from the following features of our mechanism.

1. Data sample division into small fragments: Our algorithm fragments input data samples to
decrease the input samples’ size and shrink information in the input samples, leading the faulty SNN
models to memorize the information despite their degraded usable learning capacity due to faults.
2. Fragmentation method to minimize the adverse effect from faults: To ensure that our mechanism
provides the fragments that models can handle, we develop a fragmentation strategy that adapts
fragment geometry (i.e., the cut angle) to mitigate fault-induced damage during the forward pass.

We develop our mechanism through a thorough motivation study with faulty SNN models. With our
mechanism, various SNN models achieve significantly higher classification accuracy than models
using previous approaches for fault mitigation under fault-injected conditions, while consuming less
energy due to our simple approach. We additionally conduct experiments with real hardware SNNs
built in a Field-Programmable Gate Array (FPGA) device. Our work has the following contributions.

• We develop a practical mechanism to enhance SNNs’ fault tolerance without complex
algorithms and direct synapse modifications, which easily malfunction and demand high
hardware reconfigurability.

• We present a concrete theoretical basis for our mechanism by mathematically and experimen-
tally investigating how synaptic faults degrade the usable learning capacity of SNN models
in our motivation study. Due to our detailed motivation study, we propose a theoretically
sound fragmentation mechanism.

• We provide a rich set of evaluation results in various scenarios, including Hardware SNNs
based on an FPGA device. The evaluation results demonstrate that our mechanism exhibits
better fault mitigation ability than previous approaches by using simple methods to enhance
the fault tolerance of SNNs.

2 BACKGROUNDS

2.1 SPIKING NEURAL NETWORKS

SNNs are third-generation neural networks motivated by the learning mechanisms of the human
brain (Yao et al., 2023). In SNNs, spiking neurons fire and emit output spikes at every time interval,
corresponding to each time step. Here, the time step is a unit of time for spike occurrence. The spiking
neurons generate spikes only when the membrane potential of the neurons reaches a threshold.
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Researchers use various neuron models to build SNN models. Among them, the Integrate-and-Fire
(IF) model and Leaky Integrate-and-Fire (LIF) model, which have leakage in membrane potential
unlike IF, are widely used (Moitra et al., 2023). Synaptic weights determine how significantly input
spikes from pre-synaptic neurons of the previous layer affect the post-synaptic neurons (Venkatesha
et al., 2021). SNNs update the synaptic weights with the two approaches: supervised and unsupervised
learning rules. Supervised learning rules calculate gradients of spiking neurons to update weights
using surrogate gradient functions. Unsupervised learning rules utilize the time difference between
pre-synaptic and post-synaptic activity to update weights.

SNNs are necessary to implement neuromorphic devices. They exhibit less energy consumption
than conventional neural networks for the following reasons. First, spiking neurons fire and update
synaptic weights only when a specific event occurs (Lee & Lim, 2024). The SNN’s infrequent spike
generation is associated with sporadic data processing, resulting in low power consumption. Second,
SNNs replace complex Multiply-ACcumulate (MAC) operations with simple ACcumulate (AC)
operations, eliminating weight multiplication to input data while accumulating input information.

2.2 SYNAPTIC FAULTS

Synaptic faults are persistent or transient defects in the synaptic weights of a connection. They distort
pre-activations and inject biased or structured noise, which disrupts the learning process of SNN
models. A representative case of them is the Stuck-At Faults (SAFs), where a weight is fixed to
the highest (SA1) and lowest (SA0) synaptic weight, ignoring updates and introducing systematic
bias (Vatajelu et al., 2019). Note that SA0 and SA1 do not mean the weights are stuck at the exact
values 0 and 1. Another common case is Random Weight Faults (RWFs), transiently removing
intended synaptic connections or creating unintended connections due to thermal noise (Vatajelu
et al., 2019). Additionally, Connectivity Error Faults (CEFs) permanently change the connections
between synapses, ruining synaptic connections. These faults shift the pre-activation away from
useful operating regions, shrink the effective gradient signal, and reduce usable learning capacity.

3 STATE OF THE ARTS

3.1 ANALYSIS ABOUT FAULTS IN NEUROMORPHIC DEVICES

Researchers have deeply investigated how faults affect neuromorphic devices. They inject faults into
synapses and neurons of SNNs in neuromorphic devices, and how these faults ruin the classification
performance of SNNs (Vatajelu et al., 2019). They build a memristive neuromorphic simulator and
analyze how faults disturb data classification (Lee & Lim, 2023). In this study, researchers prove
that the faults occurring in synapses correlated with important features of data samples influence the
devices more severely. Researchers also apply various fault types in neuromorphic devices and study
how spiking neurons act in detail (Ali El Sayed, 2021; Garaffa et al., 2021). However, these analysis
studies overlook the excessive updates caused by hardware faults in neuromorphic devices.

3.2 MECHANISMS TO IMPROVE FAULT TOLERANCE OF SNNS

The conventional methods to improve the fault tolerance of SNNs are based on dropping faulty
elements in SNNs and applying additional architectures for fault mitigation. Researchers utilize the
error correction ability of binary codes in output decoding to enhance the fault tolerance of neural
networks (Liu et al., 2019; Yu et al., 2023). They also induce spikes to avoid faults in SNNs to reduce
the bad effects caused by faults (Vu et al., 2019; Yang et al., 2022). They build a fault map to select
spiking neurons severely affected by faults and shrink these neurons’ influences (Putra et al., 2022;
Wicaksana Putra et al., 2021; Yang et al., 2022). Additionally, they mask faulty elements by setting
affected pre-trained weights to zero, then retrain with per-layer threshold (Siddique & Hoque, 2023).
Researchers also employ self-recovering mechanisms from astrocytes that recover sick neurons in the
human brain to neuromorphic devices. With the self-recovering ability of astrocytes, neuromorphic
devices’ fault tolerance improves (Han et al., 2023; Varshika et al., 2023). Enhancing the astrocyte-
based approaches, they augment SNNs with an astrocyte-inspired leaky integrator, stabilizing spiking
dynamics and markedly improving fault tolerance (Yunusoglu et al., 2025). Despite their enhancement
of fault tolerance, they require complex architectures based on complicated algorithms and neglect
the reconfigurability of electric components in hardware neuromorphic devices.
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4 MOTIVATION STUDY

4.1 OVERVIEW

We discovered that the faults cause the bottleneck problem with the following procedures.

1. Synaptic faults increase the pre-activation magnitude |z|. The pre-activation is a linear combination
of inputs: in fully-connected layers: z = Wx + b (component-wise zj =

∑
i wjixi + bj); in

convolution layers: zo(u, v) =
∑

c

∑
∆u,∆v wo,c,∆u,∆v xc(u + ∆u, v + ∆v) + bo. When faults

perturb the weights to W +∆W (or w +∆w), the pre-activation changes significantly.

2. As |z| grows and moves away from the (spiking) threshold of spiking neurons, the surrogate
gradient near the threshold collapses toward zero, so the learning signal cannot propagate backward.

3. The faulty weights are fixed to abnormal values, and the non-faulty weights barely change due to
near-zero gradients. This problem significantly reduces SNNs’ usable learning capacity, creating a
bottleneck that prevents the model from fitting the data it should learn.

We mathematically explain how faults fail the learning process of SNN models in Appendix C.

4.2 PRE-ACTIVATION MAGNITUDE INCREASE BY FAULTS

To demonstrate that the synaptic faults cause the pre-activation magnitude to increase, we inject
the SAFs (SA0 : SA1 = 1.75 : 9.04) (Chen et al., 2017) and RWFs (representative permanent
and transient faults) into 50% of synapses in a spiking Multi-Layered Perceptron (MLP) with 4
layers, VGG-7, and ResNet-18 with MNIST, CIFAR-10, and CIFAR-100, observing the change
in pre-activation magnitude of all neurons in the SNN models according to faults after training
with an Adam optimizer and Root-Mean-Square Error (RMSE) as a loss function. We obtain the
experimental results by repeating experiments 10 times and present the pre-activation magnitude as a
95% confidence interval.

Table 1: Pre-activation magnitude of MLP, VGG-7, and ResNet-18 SNN models under fault injection.

MLP(MNIST) VGG-7(CIFAR-10) RESNET-18(CIFAR-100)

NOMINAL 2.7 ± 0.13 8.75 ± 2.08 14.54 ± 3.56
SAFS 393.42 ± 10.89 273.66 ± 13.69 140.03 ± 15.77
RWFS 8.08 ± 1.75 205.73 ± 10.27 103.41 ± 11.8

Table 1 compares the summation of the pre-activation magnitude of all spiking neurons in the MLP
(LIF), VGG-7 (LIF), and ResNet-18 (IF) SNN models with and without SAF and RWF injection. Our
experimental results show that SAFs and RWFs significantly increase the pre-activation magnitude
around all neurons with fault-injected synapses.

4.3 GRADIENT COLLAPSE BY ABNORMAL PRE-ACTIVATION MAGNITUDE

Figure 1: The value (average on the layers of the model) of surrogate gradient ϕ′(z − ϑ) (arctangent) when we
inject SAFs into the synapses of the MLP model.

We call the region where the surrogate derivative is non-negligible the surrogate gradient corridor
and denote its half-width by δ (or threshold-aligned bound z⋆); outside this corridor, ϕ′(z − ϑ) ≈ 0.
As the pre-activation magnitude increases, the pre-activation value moves away from the corridor.
This alignment error, due to an abnormal pre-activation magnitude, makes the surrogate gradient
values nearly zero.

Figure 1 depicts the surrogate gradient function (arctangent) of an LIF neuron model and the position
of pre-activation of the SAF-injected neurons in the MLP model. The surrogate gradient ϕ′(z− ϑ) of
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the SAF-injected neurons is near zero, and the gradient of these neurons vanishes. This is because the
following equation calculates the gradient: δ(l) =

(
∇a(l)L

)
⊙ ϕ′(z(l) − ϑ

)
(L is a loss function

and l is the index of a layer).

4.4 LEARNING ABILITY DEGRADATION BY GRADIENT COLLAPSE

We demonstrate that gradient vanishing due to faults causes degradation in the SNNs’ learning ability.
Table 2: The gradients’ L1 norm in 95% confidence interval upon all neurons and classification accuracy of
MLP, VGG-7, and ResNet-18 SNN models under fault injection with 50% fault ratio.

MLP(MNIST) VGG-7(CIFAR-10) RESNET-18(CIFAR-100)

NOMINAL (L1 NORM) 11.67 ± 1.71 25.68 ± 2.89 7.76 ± 1.92
NOMINAL (ACCURACY) 97.57 ± 0.38% 56.63 ± 0.91% 25.59 ± 1.24%
SAFS (L1 NORM) 0.01 ± 0.00026 1.83 ± 0.16 1.36 ± 0.25
SAFS (ACCURACY) 11.35 ± 0.01% 9.99 ± 0.08% 5.04 ± 1.07%
RWFS (L1 NORM) 65.86 ± 10.57 2.18 ± 0.45 0.49 ± 0.07
RWFS (ACCURACY) 79.8 ± 8.74% 22.28 ± 5.34% 1.5 ± 0.51%

Table 2 shows the gradients’ L1 norm upon all neurons in the SNN models during training and
the classification accuracy of the models with the various datasets after testing. The classification
accuracy is proportional to the L1 norm of the gradient under fault injection with 50% fault ratio. This
point demonstrates that vanishing surrogate gradients stall weight updates, preventing the network
from making new decision boundaries and thus directly reducing its learning capacity (occurrence
of the bottleneck problem). Interestingly, the MLP model does not accurately classify MNIST data
samples despite a large gradient L1 norm when the model is under RWF injection. This occurs
because RWFs induce random changes in synaptic weights, which transiently perturb the loss and
cause a temporary increase in the gradient (Foret et al., 2021). Since the MLP model has limited
learning ability, it cannot effectively compensate for such perturbations.

4.5 PRE-ACTIVATION SENSITIVITY OF LAYERS IN MLP

Our motivation study outlines an interesting finding: in MLP, the gradients of neurons in the previous
layers are more sensitive to abnormal changes in pre-activation by faults than the later layers.
Table 3: The gradients’ L1 norm in 95% confidence interval upon all neurons in each layer of the MLP model
under fault injection.

Layer 1 Layer 2 Layer 3 Layer 4

MNIST (SAFs) (3.18± 1.13)× 10−6 (3.31± 1.64)× 10−3 (1.15± 0.93)× 10−3 (2.67± 0.65)× 10−3

MNIST (RWFs) (5.61± 1.46)× 10−5 (5.19± 1.52)× 10−5 (1.37± 0.58)× 10−4 (1.39± 0.29)× 10−3

FMNIST (SAFs) (3.45± 0.91)× 10−15 (1.01± 0.37)× 10−12 (1.6± 0.69)× 10−7 (1.02± 0.36)× 10−2

FMNIST (RWFs) (4.91± 1.55)× 10−5 (5.11± 1.71)× 10−5 (1.46± 0.62)× 10−4 (1.76± 0.82)× 10−3

Table 3 shows the gradients’ L1 norm of all neurons in each layer of the MLP model. The error signal
that reaches layer ℓ is obtained by repeatedly applying the Jacobians of all higher layers in MLP. Under
faults, pre-activations drift away from the operating threshold, so the surrogate derivatives ϕ′(z − ϑ)
on affected layers become very small. During gradient calculation, gradients are multiplicatively
contracted by a chain of small factors. Because earlier layers (smaller ℓ) accumulate more of
these factors, they suffer disproportionately severe gradient vanishing, explaining the front-loaded
degradation we observe under faults.

4.6 SIMILARITY TO FLOW CONTROL IN COMPUTER NETWORKS

Data flow control mitigates the congestion problem in computer networks (Kurose & Ross, 2012;
Wigren & Karaki, 2018). The information of input samples in SNNs is related to the data in the
packets of computer networks, and the surrogate gradient corridor is related to the data capacity
that a receiver can handle in computer networks. The bottleneck problem in neural networks is also
similar to that of the receiver, which prevents the receiver from processing the large data packet
simultaneously. The object of flow control, adjusting the size of data in a packet to satisfy the
receiver’s data capacity, is similar to the object of enhancing fault tolerance: changing the size of
information in the input samples to keep the pre-activation in the surrogate gradient corridor.
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5 PROPOSED MECHANISM

Our motivation study demonstrates that synaptic faults can inflate pre-activations beyond the surrogate
gradient corridor, causing the gradient collapse. To prevent the gradients from vanishing, we design
an adaptive input fragmentation mechanism to avoid drift in pre-activation magnitude by shrinking
the probability of cases where input data samples enter faulty synapses, which have abnormal weights
that cause the pre-activation magnitude to increase significantly. We mathematically prove why our
mechanism is nearly-optimal in Appendix D.

5.1 SENSITIVITY SCORE DEFINITION AND CALCULATION

Key point 1: The sensitivity score represents which pixel changes the pre-activation the most
significantly under faults.

Figure 2: Sensitivity score calculation with an MNIST image.

Figure 2 depicts the sensitivity score of an MNIST image. To measure how input data samples are
affected by synaptic faults and explore the best fragment shape that prevents a significant increase in
pre-activation magnitude, we define the sensitivity score of input samples, consisting of an image
sample’s complexity and the influence measurement from faults.

I(x) = PN
(
(LoG(x) + Sobel(x) + Var(x))⊙

(
1 + λs SP(x) + λw WP(x)

))
. (1)

where LoG(x), Sobel(x), and Var(x) are information about edges, blobs, and texture contrast of
images. We adopt them to calculate the complexity of an image sample and design our algorithm
to minimize each fragment’s complexity (Lowe, 2004). This is because an image with high com-
plexity significantly changes the pre-activation since its norm is large. SP(x) is a saliency map
∝ ∥∂L/∂x∥2,channel and WP(x) is the absolute first layer’s weight projection to input resolution.
They convert the pixel-derived map into a fault-influence field on the weights of the first layer. We
apply it to our mechanism to minimize the increase in pre-activation by reducing the probability that
pixel values enter many faulty synapses at once. PN is a percentile normalization, which normalizes
the values of the fault influence map in the range of 0 to 1. I(x) ∈ [0, 1]H×W . For batch stability
and fast operation, we measure the sensitivity score of the averaged image sample of a batch.

5.2 GINI COEFFICIENT CALCULATION WITH A 1D PROFILE

Key point 2: The Gini coefficient indicates the equality of the sensitivity score. It should be
minimized to increase the equality of the sensitivity score upon the fragments and prevent the
pre-activation from falling outside of the surrogate gradient corridor.

Figure 3: 1D projection and Gini coefficient calculation changing the projection angle.

As depicted in figure 3, changing the angle θ of the 1D profile by 1◦ and projecting the pixels on the
profile with the equation s = xsin(θ) + ycos(θ), we calculate the Gini coefficient with equation 2
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Gini(pθ) =
1

2L p̄θ

L−1∑
i=0

L−1∑
j=0

∣∣ pθ[i]− pθ[j]
∣∣. (2)

where, pθ ∈ RL
≥0 is the 1D importance profile obtained by projecting along angle θ (range of

[0◦, 360◦]). pθ[i] is the value of bin i (i = 0, . . . , L − 1). L is the number of bins and p̄θ =
1
L

∑L−1
k=0 pθ[k] is the mean. | · | denotes absolute value. The factor (2Lp̄θ)−1 normalizes the sum of

pairwise absolute differences, so the index is 0 for a uniform profile and grows with inequality.

We explore the angle θ which makes the 1D profile have the minimum Gini coefficient. This is
because the Gini coefficient is a strictly Schur-convex function, ensuring the Gini coefficient strictly
increases under majorization: if x ≻ y (i.e., x is more unequal), then Gini(x) > Gini(y), with
equality only for permutations (Sandor, 2007). By minimizing the Gini coefficient, the fragment’s
equality of sensitivity score is maximized. We design our mechanism to maximize equality and
prevent the pre-activation from leaving the corridor. This is because as a fragment’s sensitivity score
becomes more equal by minimizing Gini coefficient, the maximum of each fragment’s energy ∥xt∥2
decreases, so the upper bounds |w⊤xt| ≤ ∥w∥2∥xt∥2 and |ut| = |w⊤xt + m|, (m = b − ϑ) are
pushed below δ, keeping the pre-activation fixed inside the corridor (b is a bias in SNNs’ layers.).

5.3 FRAGMENT GENERATION BASED ON EQUAL SENSITIVITY SCORE AND IN/OUT FOR SNNS

Key point 3: The fragmentation line is set by the 1D profile cutting to make the 1D bins have an
equal cumulative sum of the sensitivity score.

Figure 4: Dividing an image sample based on the cumulative sum of the sensitivity score.

After finding the angle that ensures the minimum Gini coefficient, we calculate the cumulative sum
of the sensitivity score. As depicted in figure 4, the division line for fragmentation (dashed line in
the figure) indicates the position to cut the 1D profile into bins B1, . . . , BT , making the bins have
equal sensitivity score. We generate fragments F1, . . . , FT ∈ {0, 1}H×W with the pixels correlated
to the points in bins B1, . . . , BT and feed the SNN models the fragments F1, . . . , FT over time steps
t = 1..T . We zero-pad the generated fragment to align the input dimension of fragments with the
input dimension of the original samples because the input dimension of SNNs is not changeable
during training and testing. We apply the same division angle to all data samples in the same batch.

To ensure that pre-activation zt of fragment Ft positions in the corridor, keeping the scale of active
pixels in each fragment to a target Root-Mean-Square (RMS) is also important. Therefore, we adopt
RMS normalization to the input fragments with the equation 3.

x̃t = gtxt, ∥x̃t∥2 = α ⇒ |zt| ≤ ∥ŵ∥2 α. (3)

where α is the non-zero pixels in the fragment for the input of time step t. ∥ŵ∥2α ≤ z⋆ places zt
inside the surrogate-derivative corridor.

We also adopt an entropy-based output decoding technique to aggregate the outputs (logits) from
SNNs across all time steps accurately.

ℓ̄ =

T∑
t=1

et ℓt, et ∝ exp{−τ H(softmax(ℓt))}. (4)

where ℓt ∈ RC is an output vector from SNNs at time t (with C classes) and T is the number of
steps. Letting pt = softmax(ℓt), the Shannon entropy is H(pt) = −

∑C
c=1 pt,c log pt,c and τ ≥ 0

controls how strongly low-entropy (confident) steps are emphasized. The scale factor et to represent
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the entropy is et ∝ exp{−τH(pt)} (where ∝ denotes proportionality and the et is normalized so∑T
t=1 et = 1), and the entropy-weighted aggregate logit is ℓ̄ =

∑T
t=1 wt ℓt for final decoding.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTINGS

We conduct various experiments with MLP (LIF neurons), VGG-7/11/15 (LIF neurons), and ResNet-
18/34 (IF neurons) SNN models based on SpikingJelly, widely used for SNN implementation, by
classifying samples in MNIST/FMNIST/UCI-HAR (MLP), CIFAR-10/100 (VGG and ResNet), and
Tiny-ImageNet (ResNet) (Fang et al., 2023). We select these SNN models and datasets because
current SNN technologies do not appropriately train large and deep models with complicated datasets
(Fang et al., 2023; Schuman et al., 2022). We measure the classification accuracy of the SNN models
using the proposed mechanism and benchmarks under SAFs, setting the ratio of SA1 and SA0 to
SA0 : SA1 = 1.75 : 9.04 (Chen et al., 2017) and the weight boundary to [−1, 1] (Le Gallo et al.,
2023; Lammie et al., 2022). Additionally, we inject RWFs and CEFs into the synapses of these
models. We use ECOC (Liu et al., 2019), SoftSNN (Putra et al., 2022), Routing (Vu et al., 2019),
Astrocyte (Han et al., 2023), FalVolt (Siddique & Hoque, 2023), and LIFA (Yunusoglu et al., 2025) for
our benchmarks1. The SNN models without any fault mitigation mechanism are the baseline. We use
RMSE as a loss function and Adam as the optimizer for SNN models (Fang et al., 2023). The batch
size is 100, and the learning rate is 0.001 for MLP/VGG and 0.01 for ResNet. We set the number of
time steps (fragments) to 2, 4, and 8. We use 50 epochs for training. We set λs, λw to 0.1, and τ to 2.0
by tuning these parameters through experimental repetition with the proposed mechanism. We repeat
all experiments 10 times with different random seeds and present the experimental results in a 95%
confidence interval. We inject faults into the synapses sporadically in a uniform distribution, resulting
in the uniform position of synaptic faults. Note that the additional results from the additional datasets
(UCI-HAR and Tiny-ImageNet), different time steps (4 and 8 steps), other fault types (RWFs and
CEFs), the ablation study with the combination of our mechanism, various hyperparameter (λs and
λw) settings, and evaluations with an actual FPGA device, are presented in Appendix A. Additionally,
we show the results with DNN models in Appendix A.

6.2 CLASSIFICATION ACCURACY COMPARISON

Figure 5: Average classification accuracy of various SNN models with the baseline, benchmarks, and proposed
mechanism under SAFs using 2 time steps. The x-axis is the fault ratio (%) and the y-axis is the accuracy (%).

Figure 5 illustrates the classification accuracy of SNN models compared to the baseline, benchmarks,
and proposed mechanism under SAFs with 2 time steps. Under SAFs, the SNN models with our
mechanism exhibit the best classification accuracy across all datasets and models in most cases.

1We briefly explain how these benchmarks enhance the fault tolerance in Section 3.
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6.2.1 MLP MODELS

In the MLP model, the classification accuracy drops dramatically as the fault ratio increases. This
is because the faulty weights are directly multiplied by the input values, and the pre-activation
magnitude increases significantly, allowing it to easily escape from the surrogate gradient corridor.
Our mechanism definitely outperforms the baseline and benchmarks, since it utilizes the input saliency
and weight projection map of the first layer in Gini-based equal fragmentation. The MLP model is
vulnerable to faults in the first layer, as mentioned in Subsection 4.1. By adopting the saliency and
weight projection map (fault influence map) of the first layer, we suppress its pre-activation, which
decides the surrogate gradient, from increasing significantly and escaping from the corridor. Thus,
the pre-activation does not lie far from the corridor, preserving the power of the first layer’s gradient.

6.2.2 VGG MODELS

While VGG models with the benchmarks using CIFAR-10 maintain proper classification perfor-
mance only up to a fault ratio of 30–40%, the models with the proposed mechanism sustain correct
classification even at fault ratios as high as 50%. This is because our mechanism targets to make
the pre-activation lie at the point in the surrogate gradient corridor with Gini-based equal mass
fragmentation, despite the large amount of faults. Contrarily, the benchmarks do not consider the
relations between pre-activation, corridor, and surrogate gradient, failing to bound the pre-activation
in the corridor. Therefore, the classification accuracy of the model using the benchmarks degrades
sharply with fewer faults. We also observe that the classification accuracy declines as the model
gets deeper. This occurs because surrogate gradients in deep SNNs cannot reliably approximate the
hypothetical gradients of LIF neurons (Guo et al., 2024). When we use CIFAR-100, the models do
not classify the data samples accurately due to their low learning ability. However, the models with
our mechanism exhibit the highest classification accuracy under SAFs in most cases.

6.2.3 RESNET MODELS

Different from VGG models, ResNet models integrated with the benchmarks and proposed mechanism
maintain the classification accuracy up to a fault ratio of 80-90% when we use CIFAR-10. This is
because ResNet models have internal mechanisms to compensate for errors in gradient calculations,
such as residual blocks. They also classify CIFAR-100 samples more accurately than VGG models
under faults, since they have a more powerful learning ability than VGG models. ResNet-18 using
CIFAR-100 maintains its classification ability up to the ratio of 60-70% only with our mechanism,
and the ResNet-34 with CIFAR-100 maintains the classification ability up to the ratio of 30-40% only
with our mechanism. These results demonstrate that our mechanism successfully enhances the fault
tolerance with complicated datasets and models. We observe that the astrocyte-based approaches
(Astrocyte and LIFA) do not improve the deep ResNet models’ fault tolerance at all. This problem
derives from the fact that they only mimic biological mechanisms of neuronal activity in brains,
which enhances the fault tolerance of shallow and highly bio-plausible models such as Diehl & Cook
2015, using a bio-plausible unsupervised learning rule (Han et al., 2023; Yunusoglu et al., 2025).
However, our mechanism successfully strengthens the models’ fault tolerance in most cases since
we tackle a fundamental problem of faulty SNN models regardless of the types of SNN models, and
develop a solution to mitigate the problem.

7 CONCLUSION

This paper introduces a simple yet effective fault mitigation mechanism for SNNs that does not require
complicated architectures or direct weight modifications based on input data control. Our mechanism
improves fault tolerance more effectively than conventional approaches in various SNN models
and datasets. Experimental results exhibited improvement in the fault tolerance of our mechanism
over benchmarks in various network models and datasets, including real hardware environments.
We emphasize that this improvement is primarily achieved through an effective input data control
mechanism based on detailed observation of how synaptic faults ruin the learning capability of SNNs.
Our mechanism allows SNNs to maintain reliable operation and high fault tolerance in a practical
and hardware-compatible manner, enabling more sustainable and reliable edge AI computing.
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A ADDITIONAL EXPERIMENTAL RESULTS ON CLASSIFICATION ACCURACY

We present additional experimental results that support the proposed mechanism in this section. The
additional results demonstrate that our mechanism enhances the neural networks’ fault tolerance
more effectively than the existing methods in various environments and scenarios, including real
hardware. Furthermore, we discuss the changes in the proposed mechanism’s fault mitigation ability
by adopting various settings to our mechanism.

A.1 ADDITIONAL DATASETS BEYOND MNIST, FMNIST, CIFAR-10, AND CIFAR-100

We use UCI-HAR and Tiny-ImageNet to evaluate the fault mitigation ability of our mechanism on a
sequential and large-scale dataset.

A.1.1 SEQUENTIAL DATASET

To demonstrate that our mechanism works well with the models using sequential datasets, we conduct
experiments with UCI-HAR, which comprises six types of human activities collected by electric
sensors, and a dataset consisting of verbal sounds of digits (Reyes-Ortiz et al., 2013).
Table 4: The small MLP models’ classification accuracy in a 95% confidence interval using UCI-HAR under
SAFs with 2 time steps.

FAULT RATIO(%) BASELINE ECOC SOFTSNN ROUTING ASTROCYTE FALVOLT LIFA PROPOSED

0 64.14± 4.91 69.86 ± 4.73 63.41± 4.78 65.17± 4.65 64.78± 4.39 65.76± 4.55 64.69± 4.81 63.14± 4.8
10 20.19± 2.95 23.01± 4.28 22.21± 4.63 23.1± 4.58 21.25± 3.56 23.24± 4.01 16.93± 4.52 50.31±4.68
20 19.66± 2.54 17.1± 0 20.52± 3.85 17.1± 0 20.59± 2.81 22.34± 3.68 17.1± 0 49.24 ± 4.59
30 17.1± 0 17.1± 0 19.9± 2.26 17.1± 0 17.1± 0 19.85± 2.92 17.1± 0 47.31 ± 4.36
40 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.21 ± 0.09
50 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.1± 0
60 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.1± 0
70 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.1± 0
80 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.1± 0
90 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.1± 0

Table 4 shows the classification accuracy of the MLP model using UCI-HAR. Using the MLP model
with a sequential dataset, the model with the proposed mechanism exhibits better fault tolerance
than the baseline and benchmarks, classifying data samples more accurately than the models with
the baseline and benchmarks. This result shows that our mechanism works well with the sequential
dataset.

A.1.2 LARGE IMAGE DATASET

We use the ResNet-34 model to classify data samples in Tiny-ImageNet, which is a small version
of the ImageNet dataset, consisting of 64 × 64 pixel images with 200 classes. We measure the
classification accuracy of the model with Tiny-ImageNet under SAFs.
Table 5: The ResNet-34 models’ classification accuracy in a 95% confidence interval using Tiny-ImageNet
under SAFs with 2 time steps.

FAULT RATIO(%) BASELINE ECOC SOFTSNN ROUTING ASTROCYTE FALVOLT LIFA PROPOSED

0 3.38± 2.11 3.61± 2.24 3.27± 2.08 3.24± 2.16 0.65± 0.15 3.47± 1.98 0.59± 0.09 3.96 ± 2.39
10 0.65± 0.12 0.69± 0.15 0.68± 0.13 0.71± 0.19 0.5± 0 0.72± 0.16 0.5± 0 1.17±0.28
20 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.63 ± 0.12
30 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.56 ± 0.06
40 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0
50 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0
60 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0
70 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0
80 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0
90 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0 0.5± 0

Table 5 presents the average classification accuracy of the ResNet-34 model with the baseline,
benchmarks, and proposed mechanism using Tiny-ImageNet. The classification accuracy of the
model degrades because the dataset is complex, and SNN models have lower learning capabilities
compared to DNN models. Despite the low classification accuracy, the model with our mechanism
classifies data samples in Tiny-ImageNet with the highest accuracy. Moreover, the model with our
mechanism exhibits higher accuracy than others in the clean scenario (without SAFs). This is because
our mechanism leads the models to emit the output precisely through entropy-based decoding.
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A.2 CHANGING THE NUMBER OF TIME STEPS

We change the number of time steps to 4 and 8, observing the accuracy trend of all SNN models in
the number of time steps. We obtain the experiment results with 4 and 8 time steps by repeating the
experiments 10 times.

A.2.1 4 TIME STEPS

Figure 6: Average classification accuracy of various SNN models with the baseline, benchmarks, and proposed
mechanism under SAFs using 4 time steps. The x-axis is the fault ratio (%) and the y-axis is the accuracy (%).

Figure 6 illustrates the classification accuracy of SNN models compared to the baseline, benchmarks,
and proposed mechanism under SAFs with 4 time steps. The models with our mechanism exhibit the
best fault tolerance to faults in most cases, like the experimental results with 2 time steps. We observe
that the classification accuracy of all models overall improves as the number of time steps increases,
because the large number of time steps improves the performance of SNNs (Li et al., 2024b).
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A.2.2 8 TIME STEPS

Figure 7: Average classification accuracy of various SNN models with the baseline, benchmarks, and proposed
mechanism under SAFs using 8 time steps. The x-axis is the fault ratio (%) and the y-axis is the accuracy (%).

Figure 7 depicts the classification accuracy of SNN models compared to the baseline, benchmarks,
and proposed mechanism under SAFs with 8 time steps. As demonstrated in the experimental results
with 2 and 4 time steps, the models with our mechanism classify data samples most accurately. The
models’ accuracy is also higher than when using 2 and 4 time steps. Interestingly, the fault mitigation
ability of our mechanism degrades only in the experiment with MNIST samples. This is because the
MNIST samples contain fewer pixels than FMNIST, CIFAR-10, and CIFAR-100. However, they are
divided into too small fragments, and these fragments do not have sufficient information for the MLP
model to learn. Thus, the fault tolerance of the model with our mechanism weakens, although it is
more fault-robust than models with the benchmarks.
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A.3 UNDER THE DIFFERENT TYPES OF SYNAPTIC FAULTS

We inject RWFs and CEFs into the synapses of the SNN models and measure the fault mitigation
ability of the benchmarks and the proposed mechanism. The models with our mechanism classify
data samples most accurately under RWFs and CEFs.

A.3.1 RWFS

We use a Gaussian distribution to model RWFs, setting the standard deviation of the distribution to
0.5 (Garaffa et al., 2021; Spyrou et al., 2021; Vatajelu et al., 2019). We

Figure 8: Average classification accuracy of various SNN models with the baseline, benchmarks, and proposed
mechanism under RWFs using 2 time steps. The x-axis is the fault ratio (%) and the y-axis is the accuracy (%).

Figure 8 depicts the classification accuracy of SNN models with the baseline, benchmarks, and
proposed mechanism under RWFs. The models with our mechanism exhibit the highest accuracy
in classifying MNIST, FMNIST, CIFAR-10, and CIFAR-100. This is because our mechanism suc-
cessfully prevents the pre-activation magnitude from increasing excessively by RWFs. Interestingly,
ECOC presents high fault mitigation ability under RWFs. This is because ECOC uses error correcting
codes, which are robust against Gaussian noise in channels to compensate for errors caused by faults
in the last layer (Liu et al., 2019).
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A.3.2 CEFS

CEFs change the connections between spiking neurons randomly, ruining the learned information of
SNN models (Vatajelu et al., 2019).

Figure 9: Average classification accuracy of various SNN models with the baseline, benchmarks, and proposed
mechanism under CEFs using 2 time steps. The x-axis is the fault ratio (%) and the y-axis is the accuracy (%).

Figure 9 illustrates the classification accuracy of SNN models with the baseline, benchmarks, and
proposed mechanism under CEFs. Our mechanism also presents the best fault mitigation ability. The
classification accuracy of SNN models under CEFs is higher than that of the models under SAFs and
RWFs. This is because the weights of faulty synapses are uniform under CEFs, and the pre-activation
magnitude does not increase significantly. Thus, the pre-activation does not lie in a value that is far
from the surrogate gradient corridor.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.4 ABLATION STUDY ON THE COMBINATION OF OUR MECHANISM

We conduct ablation studies by changing the settings of our mechanism (horizontally-fixed vs Gini-
based and only complexity-based sensitivity score vs complexity and influence combined sensitivity
score).

A.4.1 MLP MODEL (MNIST, FMNIST)

Table 6: The MLP model’s classification accuracy in a 95% confidence interval with different settings of our
mechanism under SAFs.

FAULT RATIO(%) BASELINE HORIZONTAL GINI(COMPLEXITY ONLY) GINI(PROPOSED)

ACCURACY (%) WITH MLP (MNIST)

0 97.35± 0.46 86.68± 3.51 97.37± 0.44 97.44 ± 0.39
10 96.94± 1.01 75.77± 4.96 96.76± 0.95 97.25 ± 0.98
20 11.35± 0 71.13± 4.81 93.64± 1.44 93.84 ± 1.37
30 10.82± 0 65.78± 5.39 91.56± 2.61 93.55 ± 1.94
40 10.82± 0 11.35± 0 11.35± 0 86.71 ± 4.68
50 9.8± 0 9.8± 0 9.8± 0 26.91 ± 7.53
60 9.8± 0 9.8± 0 9.8± 0 9.8± 0
70 9.8± 0 9.8± 0 9.8± 0 9.8± 0
80 9.8± 0 9.8± 0 9.8± 0 9.8± 0
90 9.8± 0 9.8± 0 9.8± 0 9.8± 0

ACCURACY (%) WITH MLP (FMNIST)

0 83.99± 0.86 78.09± 1.03 86.29± 0.94 86.8 ± 0.89
10 83.74± 1.79 76.78± 1.9 85.49± 1.43 85.6 ± 1.23
20 10± 0 74.22± 2.54 80.41± 2.19 85.33 ± 1.45
30 10± 0 70.65± 6.17 79.6± 3.72 83.53 ± 2.69
40 10± 0 17.16± 8.84 21.93± 7.63 54.55 ± 6.76
50 10± 0 10± 0 10± 0 10± 0
60 10± 0 10± 0 10± 0 10± 0
70 10± 0 10± 0 10± 0 10± 0
80 10± 0 10± 0 10± 0 10± 0
90 10± 0 10± 0 10± 0 10± 0

Table 6 presents the classification accuracy of the baseline, horizontally-fixed fragmentation, Gini-
based fragmentation using image complexity for the sensitivity score, and Gini-based fragmentation
using image complexity and fault influence of the first layer for the sensitivity score (proposed)
when using MNIST models to classify MNIST and FMNIST data samples. The proposed version
significantly enhances the fault tolerance of the MLP model, as demonstrated by its performance
on MNIST and FMNIST, compared to other settings. This is because the MLP model is vulnerable
to faults in the first layer, as mentioned in Section 4. Thus, using fault influence for the sensitivity
score enhances our mechanism’s fault mitigation ability since it induces the mechanism to minimize
the pre-activation magnitude. We also observe that the wrong fragmentation strategy degrades
classification performance because it damages the information of data samples.
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A.4.2 VGG-7 AND RESNET-18 MODELS (CIFAR-10 AND CIFAR-100)

Table 7: The VGG-7 and ResNet-18 models’ classification accuracy in a 95% confidence interval with different
settings of our mechanism under SAFs.

FAULT RATIO(%) BASELINE HORIZONTAL GINI(COMPLEXITY ONLY) GINI(PROPOSED)

ACCURACY (%) WITH VGG-7 (CIFAR-10)

0 56.26± 1.28 55.75± 1.33 56.68± 1.28 56.86 ± 1.63
10 40.09± 3.34 48.8± 2.67 49.13± 2.32 50.38 ± 2.07
20 31.78± 4.97 42.69± 3.83 45.39± 3.44 45.58 ± 3.76
30 11.74± 4.81 36.55± 4.64 38.23± 4.91 40.26 ± 5.04
40 10.79± 3.56 29.09± 5.72 31.18± 5.52 32.07 ± 5.15
50 10± 0 10± 0 10± 0 17.08 ± 5.74
60 10± 0 10± 0 10± 0 10± 0
70 10± 0 10± 0 10± 0 10± 0
80 10± 0 10± 0 10± 0 10± 0
90 10± 0 10± 0 10± 0 10± 0

ACCURACY (%) WITH RESNET-18 (CIFAR-100)

0 23.77± 4.56 24.12± 4.69 25.11± 4.74 27.96 ± 4.83
10 10.64± 3.82 23.98± 4.41 24.15± 4.32 25.5 ± 4.79
20 6.1± 2.65 19.86± 5.52 21.92± 5.48 24.41 ± 5.38
30 1.98± 0.93 16.62± 4.63 18.43± 5.01 19.72 ± 5.23
40 1.03± 0.82 13.53± 4.29 14.26± 4.57 16.8 ± 4.72
50 0.97± 0.79 11.89± 4.17 12.34± 4.48 13.13 ± 4.52
60 1.01± 0.86 4.68± 2.1 5.12± 2.96 6.25 ± 3.26
70 1± 0 2.25± 1.12 3.9± 1.44 4.27 ± 1.56
80 1± 0 1± 0 1± 0 1.24 ± 0.81
90 1± 0 1± 0 1± 0 1± 0

Table 7 exhibits our ablation study with VGG-7 and ResNet-18 models using CIFAR-10 and CIFAR-
100. Although the proposed mechanism outperforms other settings, the improvement in fault
mitigation ability is not as large as in the cases with the MLP models. This is because VGG-7 and
ResNet-18 models are not as vulnerable to faults in the first layer as the MLP model since they have
additional features to compensate for errors during gradient calculations. Therefore, containing the
fault influence in the sensitivity score does not significantly enhance the fault mitigation ability of our
mechanism.
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A.5 VARIOUS HYPERPARAMETER SETTINGS WITH OUR MECHANISM

We change (λs, λw) to (0.5, 0.5), (0.5, 0.1), and (0.1, 0.5) to show the influence of hyperparameters
on our mechanism.

A.5.1 MLP MODEL (MNIST AND FMNIST)

Table 8: The MLP models’ classification accuracy in a 95% confidence interval with different settings of the
hyperparameter (λs, λw) under SAFs.

FAULT RATIO(%) (0.5, 0.5) (0.5, 0.1) (0.1, 0.5) (0.1, 0.1) (DEFAULT)

ACCURACY (%) WITH MLP (MNIST)

0 97.28± 0.53 97.35± 0.54 97.29± 0.51 97.44 ± 0.39
10 96.34± 1.25 96.58± 1.38 96.05± 1.19 97.25 ± 0.98
20 95.29± 1.67 93.3± 1.63 95.43± 1.58 95.84 ± 1.37
30 91.59± 2.82 92.15± 2.97 86.93± 2.86 93.55 ± 1.94
40 9.8± 0 14.28± 5.47 10.48± 1.39 86.71 ± 4.68
50 9.8± 0 12.6± 5.61 9.8± 0 26.91 ± 7.53
60 9.8± 0 9.8± 0 9.8± 0 9.8± 0
70 9.8± 0 9.8± 0 9.8± 0 9.8± 0
80 9.8± 0 9.8± 0 9.8± 0 9.8± 0
90 9.8± 0 9.8± 0 9.8± 0 9.8± 0

ACCURACY (%) WITH MLP (FMNIST)

0 85.53± 1.05 85.56± 1.14 85.29± 0.99 86.8 ± 0.89
10 85.46± 1.46 85.52± 1.31 85.23± 1.36 85.6 ± 1.23
20 80.89± 3.48 83.57± 2.12 84.41± 2.29 85.33 ± 1.45
30 80.23± 3.8 31.58± 7.03 75.39± 5.45 83.53 ± 2.69
40 33.54± 6.15 18.84± 7.65 10± 0 54.55 ± 6.76
50 10± 0 10± 0 10± 0 10± 0
60 10± 0 10± 0 10± 0 10± 0
70 10± 0 10± 0 10± 0 10± 0
80 10± 0 10± 0 10± 0 10± 0
90 10± 0 10± 0 10± 0 10± 0

Table 8 exhibits the MLP model’s classification accuracy by changing (λs and λw) under SAFs.
The hyperparameter settings predominantly affect the classification accuracy of the MLP model, as
they adjust how the mechanism mitigates the adverse influence of synaptic faults in the first layer,
which damages the model the most severely. We observe that increasing the hyperparameters and
strengthening the effects of the fault influence map do not always leverage the MLP model’s fault
tolerance. This is because the excessive effects of the fault influence map prevent our mechanism
from setting the angle accurately by reflecting the complexity of the input samples and the fault
influence in a balanced way. In addition, we observe that the weight projection map affects our
mechanism more predominantly than the saliency map, since the weight projection map is more
sensitive to changes in weights due to synaptic faults.
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A.5.2 VGG-7 AND RESNET-18 MODELS (CIFAR-10 AND CIFAR-100)

Table 9: The VGG-7 and ResNet-18 models’ classification accuracy in a 95% confidence interval with different
settings of the hyperparameter (λs, λw) under SAFs.

FAULT RATIO(%) (0.5, 0.5) (0.5, 0.1) (0.1, 0.5) (0.1, 0.1) (DEFAULT)

ACCURACY (%) WITH VGG-7 (CIFAR-10)

0 56.48± 1.84 56.06± 1.73 56.03± 1.89 56.86 ± 1.63
10 48.12± 3.04 48.88± 2.85 49.34± 2.16 50.38 ± 2.07
20 44.68± 3.69 44.56± 3.66 45.3± 3.59 45.58 ± 3.76
30 39.42± 5.25 39.22± 5.59 39.92± 5.23 40.26 ± 5.04
40 29.62± 5.38 29.52± 5.04 30.21± 5.4 32.07 ± 5.15
50 15.09± 4.76 15.28± 5.17 15.31± 4.98 17.08 ± 5.74
60 10± 0 10± 0 10± 0 10± 0
70 10± 0 10± 0 10± 0 10± 0
80 10± 0 10± 0 10± 0 10± 0
90 10± 0 10± 0 10± 0 10± 0

ACCURACY (%) WITH RESNET-18 (CIFAR-100)

0 26.96± 5.08 26.02± 4.93 25.71± 5.86 27.96 ± 4.83
10 24.26± 4.29 24.76± 4.38 21.75± 4.71 25.5 ± 4.79
20 20.09± 5.66 21.23± 5.96 19.03± 5.09 24.41 ± 5.38
30 16.88± 5.48 17.7± 5.48 15.89± 5.42 19.72 ± 5.23
40 13.25± 5.24 13.68± 5.05 13.25± 4.93 16.8 ± 4.71
50 12.04± 4.93 12.55± 4.34 9.14± 4.69 13.13 ± 4.5
60 4.46± 3.52 4.77± 3.15 4.86± 2.96 6.25 ± 3.26
70 3.61± 1.95 2.89± 1.7 3.05± 1.78 4.27 ± 1.56
80 1± 0 1± 0 1± 0 1.24 ± 0.81
90 1± 0 1± 0 1± 0 1± 0

Table 9 presents the VGG and ResNet Models’ classification accuracy by changing (λs and λw)
under SAFs. Since the significance of the faults in the first layer of the VGG and ResNet Models is
weaker than that of the MLP model, the sensitivity to hyperparameter setting is smaller than that of
the MLP model. Despite the low significance of tuning hyperparameters when using the VGG and
ResNet Models, setting the hyperparameters to the proper value is still important to ensure the best
fault mitigation ability of our mechanism.
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A.6 USING DEEP NEURAL NETWORKS

We inject SAFs into synapses of Deep Neural Networks (DNNs) version of the SNN models,
measuring their classification accuracy with the baseline, benchmarks, and proposed mechanism. We
use Cross-Entropy (CE) as a loss function and Rectified Linear Unit (ReLU) as an activation function.
We set the range of weights to [-100, 100] for MLP and [-500, 500] for CNNs (VGG and ResNet)
since current DNN accelerator devices have a large weight range (Liu et al., 2019; Chen et al., 2017).
Other settings are the same as the SNN models. We exclude Astrocyte, FalVolt, and LIFA from the
benchmarks since they necessarily require bio-plausible spiking neuron models for operation. We use
2 fragments for our mechanism.
Table 10: The DNN models’ classification accuracy in a 95% confidence interval using MNIST, FMNIST,
CIFAR-10, and CIFAR-100 under SAFs.

FAULT RATIO(%) BASELINE ECOC SOFTSNN (TUNED FOR DNN) ROUTING PROPOSED

ACCURACY(%) WITH MLP (MNIST)

0 98.48± 0.19 98.6 ± 0.26 98.49± 0.23 98.45± 0.31 98.54± 0.25
10 97.32± 0.86 97.28± 0.81 97.48± 0.96 97.28± 0.89 97.56 ± 0.74
20 96.62± 1.55 9.8± 0 97.02± 1.32 96.76± 1.47 96.85 ± 1.38
30 96.58± 1.93 9.8± 0 96.3± 1.89 96.64± 1.69 96.72 ± 1.71
40 96.35± 1.81 9.8± 0 96.02± 1.76 96.43± 1.74 96.48 ± 1.85
50 93.3± 3.52 9.8± 0 93.47± 3.62 93.54± 4.02 93.58 ± 3.91
60 77.36± 9.15 9.8± 0 78.03± 8.99 79.89± 8.56 82.62 ± 8.8
70 65.9± 10.49 9.8± 0 68.39± 10.05 67.79± 9.95 74.8 ± 9.72
80 39.64± 8.77 9.8± 0 41.31± 9.12 18.71± 8.89 55.43 ± 8.73
90 8.92± 0 9.8± 0 9.8± 0 15.5± 5.7 19.07 ± 6.21

ACCURACY(%) WITH MLP (FMNIST)

0 90.05± 1.22 91.24 ± 1.3 90.08± 1.24 90.12± 1.13 90.51± 1.19
10 84.38± 2.73 10± 0 84.72± 2.86 86.03± 2.69 86.83 ± 2.71
20 71.67± 3.49 10± 0 72.07± 3.35 74.51± 3.48 79.66 ± 3.48
30 68.01± 5.05 10± 0 70.75± 4.94 73.54± 4.75 74.63 ± 4.79
40 64.93± 5.91 10± 0 63.5± 6.04 64.06± 5.97 65.23 ± 6.25
50 58.63± 6.27 10± 0 62.78± 6.38 60.92± 6.09 64.8 ± 6.31
60 53.57± 7.86 10± 0 57.01± 8.11 54.51± 9.23 58.68 ± 8.77
70 38.01± 9.91 10± 0 39.48± 10.26 35.12± 9.84 41.62 ± 10.34
80 23.5± 8.44 10± 0 26.45± 8.79 25.41± 7.98 33.21 ± 8.59
90 10± 0 10± 0 10± 0 10± 0 11.02 ± 1.02

ACCURACY(%) WITH VGG-7 (CIFAR-10)

0 83.21± 2.76 83.36± 2.58 83.58± 2.53 83.73± 2.47 84.29 ± 2.63
0.01 10± 0 10± 0 52.97± 4.84 67.78± 5.04 70.36 ± 4.81
0.025 10± 0 10± 0 10± 0 10± 0 10± 0
0.05 10± 0 10± 0 10± 0 10± 0 10± 0
0.075 10± 0 10± 0 10± 0 10± 0 10± 0

ACCURACY(%) WITH RESNET-18 (CIFAR-100)

0 53.09± 1.02 40.96± 1.56 53.51± 1.16 53.6± 1.24 53.82 ± 1.19
0.01 46.17± 1.35 37.87± 1.53 47.26± 1.58 46.99± 1.56 48.49 ± 1.47
0.025 43.32± 1.68 34.05± 1.79 43.76± 1.73 44.07± 1.79 45.09 ± 1.66
0.05 41.14± 1.54 32.28± 2.01 42.23± 1.69 42.51± 1.55 42.78 ± 1.48
0.075 39.05± 1.82 31.64± 1.98 40.64± 1.91 39.89± 2.05 41.32 ± 1.85

Table 10 presents the classification accuracy of DNN models with the baseline, benchmarks, and
proposed mechanism. The models with ours exhibit the highest fault robustness among the DNN
models since our mechanism prevents the pre-activation from increasing excessively, and gradients do
not explode severely during training. The MLP DNN model presents higher fault tolerance than the
SNN model regardless of the datasets. This is because the gradient vanishing caused by pre-activation
magnitude growth does not occur severely, since gradients are active when the pre-activation is larger
than 0 in ReLU. Conversely, the fault tolerance of the complicated CNN models (VGG and ResNet)
degrades seriously. This situation appears because these models use lots of batch normalization layers.
The normalization layers normalize the whole channels in the same scale calculated with the batch
samples, causing the amplification of inputs that enter faulty synapses. However, the SNN VGG
and ResNet models are more tolerant of faults than the DNN versions. This is because the spiking
neurons block the perturbation from faults through their internal activation mechanism: only firing
and emitting spikes when their membrane potential reaches the threshold (Liang et al., 2023).
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A.7 EVALUATIONS WITH REAL FPGA HARDWARE

We implement the MLP SNN model on a real FPGA device (AMD Virtex UltraScale+ HBM VU47P
of Amazon F2 instance) with SpikerPlus, which is a powerful library to convert Python scripts
for SNNs to VHSIC Hardware Description Language (VHDL) (Carpegna et al., 2024). Due to
circuit-level limitations, current neuromorphic devices do not support on-chip training. Thus, we
train the fault-injected SNN model in a software environment with a Graphics Processing Unit (GPU),
saving the trained weights, and convert the Python script of the software-based models to the VHDL
script. Then, we synthesize the FPGA circuit with Xilinx Vivado and Amazon FPGA Image (AFI),
which is widely used for handling FPGAs on Amazon F2 instances. We set the floating-point for the
membrane potential (neuron in the SpikerPlus paper) and bit width for the synaptic weights of the
FPGA device to 16 and 8/6, referring to the settings of real hardware (BrainChipInc, 2025). Other
settings are the same as the settings in Subsection 6.1.
Table 11: The FPGA-based MLP SNNs’ classification accuracy in a 95% confidence interval using MNIST,
FMNIST, and UCI-HAR with 2 time steps under SAFs.

FAULT RATIO(%) BASELINE ECOC SOFTSNN ROUTING ASTROCYTE FALVOLT LIFA PROPOSED

HARDWARE-BASED MLP’S ACCURACY (%) WITH MNIST

0 94.36± 0.52 93.86± 0.66 94.56± 0.63 94.34± 0.71 94.06± 0.68 93.92± 0.79 93.98± 0.85 94.59 ± 0.65
10 93.18± 1.29 90.94± 2.35 93.29± 1.56 93.58± 1.9 93.26± 1.44 92.69± 1.62 92.59± 1.74 94.01 ± 1.41
20 11.35± 0 88.11± 2.74 9.8± 0 9.8± 0 10.1± 1.05 89.97± 2.69 15.92± 5.31 91.14 ± 2.03
30 10.82± 0 11.35± 0 9.8± 0 9.8± 0 10.82± 0 9.8± 0 9.8± 0 90.57 ± 3.16
40 9.8± 0 9.8± 0 9.8± 0 11.35± 0 9.8± 0 9.8± 0 9.8± 0 80.49 ± 6.65
50 9.8± 0 9.8± 0 9.8± 0 11.35± 0 9.8± 0 9.8± 0 9.8± 0 21.46 ± 4.72
60 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0
70 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0
80 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0
90 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0 9.8± 0

HARDWARE-BASED MLP’S ACCURACY (%) WITH FMNIST

0 84.21± 1.79 83.58± 1.91 83.65± 2.13 84.19± 1.82 83.9± 1.75 83.97± 1.68 84.1± 1.58 87.01 ± 1.45
10 82.16± 2.28 82.75± 2.46 80.74± 2.67 83.58± 2.33 82.86± 2.09 83.11± 2.53 82.46± 2.38 86.14 ± 2.84
20 79.6± 3.05 10± 0 10± 0 10± 0 10± 0 82.54± 3.18 17.26± 5.98 83.98 ± 3.27
30 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 81.71 ± 3.7
40 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 52.75 ± 4.89
50 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
60 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
70 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
80 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0
90 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0 10± 0

HARDWARE-BASED MLP’S ACCURACY (%) WITH UCI-HAR

0 60.14± 3.87 65.27 ± 3.56 60.48± 3.81 61.15± 3.69 61.78± 3.48 61.83± 3.45 61.52± 3.62 60.08± 3.24
10 17.1± 0 17.1± 0 15.21± 0 17.1± 0 15.21± 0 18.34± 0 16.93± 0 47.01±5.17
20 18.52± 0 17.1± 0 18.52± 0 17.1± 0 18.52± 0 18.34± 0 17.1± 0 45.85 ± 5.39
30 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 18.34± 0 17.1± 0 44.86 ± 4.91
40 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.1± 0
50 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.1± 0
60 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.1± 0
70 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.1± 0
80 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.1± 0
90 17.1± 0 17.1± 0 17.1± 0 17.1± 0 17.1± 0 16.93± 0 17.1± 0 17.1± 0

Table 11 presents the classification accuracy of the MLP model, along with the baseline, benchmarks,
and our mechanism, under SAFs, using the MNIST, FMNIST, and UCI-HAR datasets. The model
with our mechanism classifies MNIST and FMNIST data samples more accurately than the model
with the baseline and benchmarks, as shown in Section 6. We observe that the overall classification
accuracy of the model decreases. This is because the precision for neurons’ membrane potential
and synaptic weights degrades due to low floating-point and bit width in the FPGA device, which
damages the data stored in trained synaptic weights and neuronal activities.
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B EFFICIENCY ANALYSIS BASED ON TIME/SPATIAL COMPLEXITY AND
TIME/ENERGY CONSUMPTION

To demonstrate that our mechanism enhances the fault tolerance of SNN models without requiring
complex algorithms, we measure the computational and spatial complexity of our mechanism and
compare it to that of the benchmarks. Additionally, we measure the energy consumption of our
mechanisms on the FPGA device since energy consumption is a significant advantage of SNNs that
makes them suitable for neuromorphic device implementation.

B.1 COMPLEXITY ANALYSIS

We calculate the time and spatial complexities of the benchmarks and the proposed mechanism
through experimental evidence that demonstrates the time and energy consumption of them in real
devices.

B.1.1 TIME COMPLEXITY

We measure the time complexity of the benchmarks and the proposed mechanism. The following
items present the time complexity of the benchmarks and the proposed mechanism.

1. ECOC: TECOC = Θ
(
EP 2n + NBCL

)
.

2. SoftSNN: TSoftSNN = Θ
(
NW

)
.

3. Routing: Troute = Θ

(∑L
ℓ=1 C

(ℓ)
outC

(ℓ)
in k2ℓ + δswap

∑L
ℓ=1 Kℓ logKℓ

)
.

4. Astrocyte: TAstro = Θ
(
P +N P

)
.

5. FalVolt: TFalVolt = Θ
(
M + N (M + fW )

)
.

6. LIFA: TLIFA = Θ
(
P +NP

)
.

7. Proposed: Tproposed, mlp = Θ
(
N S [B +A+ T +BTD ]

)
+ O

(
Nsal F

MLP
model

)
,

Tproposed, conv = Θ
(
N S [B +A+ T +BTD ]

)
.

Notations of time complexity equations

1. ECOC. B: batch size; N : number of training/inference steps (batches processed); C:
number of classes; E: number of extension code blocks; m: Hamming-code parameter;
n = 2m − 1: per code block length; L = E n: code length; P : candidate-pool size used
in code book construction.

2. Soft SNN. W =
∑M

i=1 Pi: total number of trainable weights over the M layers; Pi: number
of weights in layer i; Pmax = maxi Pi: size of the largest layer.

3. Routing. Llayers: number of routed layers; C
(ℓ)
in , C(ℓ)

out: input/output channels of layer
ℓ; kℓ: kernel size of layer ℓ (so k2ℓ = 1 for MLP/Linear); Kℓ = min{C(ℓ)

in , C
(ℓ)
out}:

effective channel count for top-K matching; δswap ∈ {0, 1}: flag indicating whether
sorting + channel-swap is enabled; W : total number of trainable weights across routed
layers.

4. Astrocyte. N : number of batch iterations in an epoch; P : total number of trainable
parameters over hooked layers; χ: output-channel chunk size used in the backward pass;
pmax
out : maximum number of parameters associated with a single output channel (e.g., 9Cin

for a 3×3 conv).

5. FalVolt. N : number of batch iterations in an epoch; W : total number of weights subject
to potential fault mapping; M : number of spiking/protected modules whose thresholds or
states are managed; f ∈ [0, 1]: fraction of weights affected by faults (worst case f = 1);
Wmask: number of stored fault-mask entries.
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6. LIFA. N : number of batch iterations in an epoch; P : total number of trainable parameters
across protected layers (for conv: P =

∑
ℓ C

(ℓ)
outC

(ℓ)
in k2ℓ ; for linear: k2ℓ = 1); C =∑

ℓ C
(ℓ)
out: total output-channel count across protected layers.

7. Proposed. N : number of batch iterations in an epoch; S = H × W : spatial size
(pixels) per sample; B: batch size; D: input channels; T : number of time steps
(fragments) per sample; A: number of orientation candidates; (optional only if the fault
influence map (saliency and weight projection) is used) Nsal: number of steps that compute
saliency/backprop; FMLP

model: per-step FLOPs of the MLP backbone under saliency.

With MNIST and FMNIST (S = 28× 28 = 784, D = 1), our fragmentation step scales as

Tproposed = Θ
(
S B T

)
= Θ

(
784B T

)
, (5)

while all weight-scanning benchmarks (Astrocyte and LIFA) based on astrocytes scale with the
number of parameters:

Tscan = Θ(W ), TFalVolt = Θ(M + fW ) ≍ Θ(fW ) (for non-vanishing f), (6)

where W is the total trainable weights, M the number of spiking/protected modules, and f ∈ [0, 1]
the fraction of weights affected by faults. Hence, the decisive ratios are

Tproposed

Tscan
≍ 784B T

W
,

Tproposed

TFalVolt
≍ 784B T

f W
. (7)

For the CNNs in our setting (VGG-7/11/15, ResNet-18), W is in the multi-million range even on
MNIST/FMNIST; with common batches/fragments (B∈ [64, 128], T ∈ [2, 4]) one has W ≫784B T ,
so strictly Tproposed<Tscanning. The same conclusion holds against FalVolt for any fixed, non-negligible
f (e.g., f ≥ 0.05), since then fW ≫ 784B T in these networks, yielding Tours < TFalVolt as well.
ECOC differs in that its per-step cost is TECOC = Θ(BC L), giving

Tproposed

TECOC
≍ S T D

C L
=

784T

C L
, (8)

which is typically of the same order for C=10 and L∈ [64, 256], while ECOC still incurs a one-off
build of Θ(E P 2n). In summary, without the fault influence, our mechanism has strictly smaller
per-step time complexity than all weight-scanning benchmarks under the MLP/VGG/ResNet models.
It is competitive with (or smaller than) ECOC while avoiding the heavy one-time construction of
ECOC. As shown in Appendix A.1 and A.2, our mechanism is not significantly dependent on the
fault influence with CIFAR-10 and CIFAR-100 under VGG and ResNet models, indicating that our
mechanism saves time by using only the complexity to make fragments under VGG and ResNet
models with CIFAR-10 and CIFAR-100.

B.1.2 SPATIAL COMPLEXITY

We measure the spatial complexity of the benchmarks and the proposed mechanism.

1. ECOC: SECOC = Θ
(
P 2 + CL + BC

)
.

2. SoftSNN: SSoftSNN = Θ
(
W
)
.

3. Routing: Sroute = Θ(W ).

4. Astrocyte: SAstro = Θ
(
P + χpmax

out

)
.

5. FalVolt: SFalVolt = Θ
(
M + Wmask

)
.

6. LIFA: SLIFA = Θ
(
P + C

)
.

7. Proposed: Sproposed = Θ
(
S [BTD +A ]

)
.
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Notations of spatial complexity equations

1. ECOC. C: number of classes; E: number of extension code blocks; m: Hamming pa-
rameter; n = 2m − 1: code block length; L = E n: code length (size of the stored code
book is C L); B: batch size (per-step logits buffer BC); P : candidate-pool size (build-time
pairwise matrix P 2 gives peak memory).

2. SoftSNN. W =
∑M

i=1 Pi: total number of trainable weights over the M layers; Pmax =

maxi Pi: size of the largest layer (often dictates per-layer peak); C =
∑M

i=1 Cout,i: total
number of output channels if per-channel thresholds are stored.

3. Routing. W : total number of trainable weights across routed layers (in-place operations
keep the footprint parameter–scaled); C(ℓ)

in : input channels of layer ℓ (small per-layer
index/permutation buffers scale with C

(ℓ)
in but are absorbed by W in big-Θ terms).

4. Astrocyte. P : total number of trainable parameters over hooked layers (CPU-side caches
such as W0, inverse denominators, masks, q scale with P ); χ: output-channel chunk size
used on GPU during the backward pass; pmax

out : maximum number of parameters per output
channel (e.g., 9Cin for a 3×3 conv); the additional VRAM peak scales with χpmax

out .
5. FalVolt. W : total number of potentially fault-mapped weights (upper bound on parame-

ter–scaled storage); M : number of protected/spiking modules (small bookkeeping state);
Wmask: number of stored fault-mask entries (persistent); typically Wmask ≤ W .

6. LIFA. P : total number of trainable parameters across protected layers (dominant persistent
buffers: W0, inverse denominators, masks); C =

∑
ℓ C

(ℓ)
out: total number of output channels

(per-channel EMA/state vectors).
7. Proposed (fragmentation). S = H×W : per-sample spatial size (pixels); B: batch size; D:

input channels; T : number of fragments per sample (fragment tensor B T DS dominates);
A: number of orientation candidates (angle buffers AS).

With MNIST and FMNIST (S = 28 × 28 = 784, D = 1), the peak additional memory of the
proposed mechanism scales as (Note that saliency map S is not essential for VGG and ResNet
models.)

Sours = Θ
(
S [B T D +A ]

)
= Θ

(
784 [B T +A ]

)
. (9)

where B is the batch size, T the number of fragments, and A the number of angle candidates. In
contrast, weight–scan benchmarks that scan all parameters each step exhibit parameter–dominated
footprints:

SLIFA/Astro = Θ(W ) SSoftSNN = Θ(Pmax) (per–layer peak) ≲ Θ(W ). (10)

SRouting = Θ(W ) SFalVolt = Θ(M +Wmask) ≤ Θ(W ). (11)

where W is the total number of trainable weights, Pmax the size of the largest layer’s weight tensor,
M the number of protected/spiking modules, and Wmask the number of stored fault–mask entries.
Therefore, for typical MNIST/FMNIST settings (e.g., B∈ [64, 128], T ∈ [2, 4], A≤180) and CNN
backbones (VGG-7/11/15, ResNet-18) with W in the multi–million range,

Sproposed

SLIFA/Astro
≍ 784 [B T +A]

W
≪ 1,

Sproposed

SFalVolt
≍ 784 [B T +A]

M +Wmask
≪ 1. (12)

and similarly Sours ≪ SRouting and Sours ≲ SSoftSNN whenever Pmax is large (as in VGG/ResNet).
ECOC is different: per–step it stores only the code book and logits,

SECOC, step = Θ(C L+BC) (C=10 on MNIST/FMNIST, L = O(102)). (13)

which is often smaller than Sproposed on these datasets; however, ECOC incurs a one–time build peak of
Θ(P 2) (candidate–pair matrix) that can dominate transient memory. In summation, without the fault
influence map, our method achieves strictly smaller parameter space complexity than all weight–scan
benchmarks (LIFA, Astrocyte, Soft SNN, Routing, FalVolt), while remaining competitive with ECOC
apart from its negligible per–step footprint but heavy one–off construction of ECOC.
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B.2 TRAINING TIME

We measure the training time of the baseline, benchmarks, and the proposed mechanism using the
MLP (MNIST), VGG-7 (CIFAR-10), ResNet-18 (CIFAR-100), and ResNet-34 (Tiny-ImageNet)
models with 2 time steps. We train the models on a workstation with an Nvidia GeForce RTX 4080
GPU with Ubuntu 24.04.
Table 12: Various models’ training time (sec) in a 95% confidence interval with the baseline, benchmarks, and
proposed mechanism on a workstation under SAFs with a fault ratio of 0.5 and 2 time steps.

Baseline ECOC SoftSNN Routing Astrocyte FalVolt LIFA Proposed

MLP 193.84 ± 2.71 197.62± 2.85 196.51± 2.56 198.29± 3.05 288.75± 4.51 201.47± 3.21 293.86± 4.77 205.24± 4.23
VGG-7 291.16 ± 3.57 296.91± 3.8 294.34± 3.65 298.81± 4.01 351.82± 5.27 303.53± 4.26 356.74± 5.53 310.38± 5.18
ResNet-18 382.53 ± 4.12 385.61± 4.03 384.77± 4.53 396.54± 4.68 721.97± 6.28 408.9± 4.94 724.62± 6.09 413.32± 4.5
ResNet-34 4259.57 ± 18.62 4304.4± 20.11 4298.46± 21.39 4350.83± 25.75 8005.37± 36.21 4317.89± 26.04 8154.17± 32.83 4392.13± 26.51

Our mechanism consumes significantly less training time than weight-scanning approaches based on
astrocytes (Astrocyte and LIFA), as we demonstrate that our mechanism definitely consumes less
time than the astrocyte-based approaches due to their less complexity. Unlike these approaches, the
training time of the models with our mechanism does not increase significantly as the complexity of
the models and datasets increases. The model with ours also consumes comparable training time to
that of ECOC, SoftSNN, Routing, and FalVolt. This evaluation result shows that our mechanism does
not severely inflate the burden on training time.

B.3 ENERGY CONSUMPTION ON THE REAL FPGA DEVICE

We measure the energy consumption of the model with the baseline, benchmarks, and proposed
mechanism on the FPGA device during testing. Table 13 exhibits the energy consumption of the
model with MNIST and FMNIST on the FPGA device using 2 time steps.
Table 13: The MLP models’ energy consumption (mJ) in a 95% confidence interval with the baseline, bench-
marks, and proposed mechanism on the real FPGA hardware with two time steps.

Baseline ECOC SoftSNN Routing Astrocyte FalVolt LIFA Proposed

MNIST 85.31± 1.05 88.76± 1.27 86.23± 1.18 90.44± 1.31 150.72± 1.61 95.15± 1.23 165.69± 1.59 67.16 ± 0.82
FMNIST 87.19± 1.36 90.54± 1.57 88.68± 1.43 92.82± 1.51 156.08± 1.99 98.23± 1.72 168.33± 1.93 78.37 ± 0.95

The MLP model with our mechanism exhibits the least energy consumption among the MLP models
on the real FPGA device. This is because our mechanism shrinks the size of the data samples through
fragmentation, and the probability of spike occurrence declines since the number of non-zero pixels
decreases during fragmentation, as mentioned in Subsection 5.3. This effect enables the model with
our mechanism to consume less energy than the models with all benchmarks, despite our mechanism
having higher time complexity and consumption than some benchmarks. However, the benchmarks
increase the complexity of the decoding (ECOC), keep neurons’ activation frequent (SoftSNN and
Routing), utilize the astrocyte module to activate non-faulty synapses (Astrocyte and LIFA), and
incorporate additional learnable parameters to adjust neuronal activities (Falvolt). Therefore, the
MLP models with the benchmark require more energy than ours.
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C DETAILED MATHEMATICAL EXPLANATION OF THE MOTIVATION STUDY

We demonstrate how synaptic faults ruin the usable learning capacity of SNN models mathematically.

C.1 SETUP AND NOTATION

Consider a spiking neuron with membrane potential Vt ∈ R, threshold ϑ ∈ R, and spike output
Kt ∈ {0, 1}. During training, we replace the Heaviside step H by a surrogate σ : R→ [0, 1] so that
Kt ≈ σ(Vt − ϑ) and σ′ is used in backpropagation. Let the surrogate gradient corridor width be
δ > 0 such that σ′(u) ≈ 0 whenever |u| > δ. For a feedforward pre-activation at layer ℓ and time t,

z
(ℓ)
t = W (ℓ)K

(ℓ−1)
t + b(ℓ) (vector form), (14)

and for a single neuron with input x ∈ Rd and weights w ∈ Rd we write z = w⊤x+ b. For an LIF
neuron, we use

Vt = αVt−1 + zt − ϑKt−1, Kt ≈ σ(Vt − ϑ), α ∈ (0, 1). (15)

C.2 SURROGATE GRADIENT CORRIDOR

Let u := z − ϑ. Many arctangent surrogates used in SNNs have a backward derivative of the rational
form

ϕ′(u) =
A

1 + (βu)2
, A > 0, β > 0, (16)

which yields, for a target gradient floor γ ∈ (0, A), the corridor

Cγ := {u : ϕ′(u) ≥ γ } = [−δ(γ), δ(γ)], δ(γ) =
1

β

√
A

γ
− 1. (17)

Additionally, we derive the surrogate gradient corridor of the arctangent function, which is widely
used as a surrogate gradient function for LIF neurons.

Let u := z − ϑ and consider the arctangent surrogate derivative

ϕ′(u) =
αs

π
(
1 + (αsu)2

) , αs > 0. (18)

For a target gradient floor γ ∈ (0, αs/π), define the corridor(Li et al., 2024a; Zenke & Vogels, 2021;
Shrestha & Orchard, 2018)

Cγ := {u : ϕ′(u) ≥ γ } = [−δ, δ], δ(γ) =
1

αs

√
αs

πγ
− 1. (19)

whose peak is A = 1/π. Setting the gradient floor to r = fA = f/π yields the corridor half-width

δ(f) =
2

πα

√
1

f
− 1. (20)

In practice, we initialize α = 2 and f = 0.2 (thus r ≈ 0.0637), then adapt f per layer using
mini-batch membrane statistics so that the corridor covers a target score p of the observed U − ϑ
distribution: with σ̂ℓ the running standard deviation and zp the normal quantile for score p, we set
δ(fℓ) ≈ zpσ̂ℓ, i.e (Zenke & Vogels, 2021; Wang et al., 2023; Che et al., 2022; Lian et al., 2023).

fℓ =
1

1 +
(
πα
2 zpσ̂ℓ

)2 . (21)

This keeps most samples within the high-gradient band while avoiding an overly narrow corridor.
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Remark 1 (Mapping to implementation). For the common parameterization ϕ′(u) = αs

π(1+(αsu)2)
,

one has A = αs/π and β = αs. For the SpikingJelly ATan ϕ′(u) = α/2
1+(πα

2 u)2 , one has A = α/2 and
β = πα/2 (Fang et al., 2023). Both are instances of equation 16, so equation 17 applies verbatim.

C.3 FAULT MODELING

We consider synaptic faults that perturb parameters and/or inputs:

w 7→ w +∆w, x 7→ x+∆x, (22)

where ∆w,∆x may be sparse (e.g., stuck-at-0/1 (SA0/SA1) at a subset of synapses) or dense (e.g.,
analog drift). The post-fault pre-activation is

z′ = (w +∆w)⊤(x+∆x) + b = z +∆z, ∆z = ∆w⊤x︸ ︷︷ ︸
param fault

+w⊤∆x︸ ︷︷ ︸
input fault

+∆w⊤∆x︸ ︷︷ ︸
higher-order

. (23)

By Cauchy–Schwarz,

|∆z| ≤ ∥x∥2 ∥∆w∥2 + ∥w∥2 ∥∆x∥2 + ∥∆w∥2 ∥∆x∥2. (24)

SA0 on an input line j is modeled by (∆x)j = −xj ; SA1 by (∆x)j = c− xj for a fixed logic level
c. Bit/weight stuck faults are included in ∆w.

C.4 FROM FAULTS TO SATURATION

At time t, the only instantaneous change from a synaptic fault is zt 7→ zt +∆zt, hence

V ′
t = αVt−1 + (zt +∆zt)− ϑKt−1 = Vt +∆zt, ⇒ V ′

t − ϑ = (Vt − ϑ) + ∆zt. (25)

Lemma 1 (Corridor escape: sufficient conditions). Let at :=Vt − ϑ and suppose |at| ≤ δ (pre-fault
state inside the corridor).

1. (Sign-aligned escape) If at∆zt ≥ 0 and |∆zt| ≥ δ − |at|, then |at + ∆zt| ≥ δ, hence
σ′(V ′

t − ϑ) ≈ 0 at time t.

2. (Sign-agnostic escape) Regardless of the sign of ∆zt, if |∆zt| > δ+|at|, then |at+∆zt| > δ.

Proof. (1) If at∆zt ≥ 0 then |at +∆zt| = | |at| + |∆zt| | ≥ δ when |∆zt| ≥ δ − |at|. (2) By the
reverse triangle inequality, |at +∆zt| ≥

∣∣|∆zt| − |at|
∣∣ > δ.

C.5 EXPECTED GRADIENT BOUND FOR A SINGLE NEURON

Let gt := ∂L/∂St and suppose 0 ≤ σ′(u) ≤ Cσ1{|u| ≤ δ}. Then,∥∥∥∥∂L∂w
∥∥∥∥ =

∥∥∥∥∥
T∑

t=1

gt σ
′(V ′

t − ϑ)xt

∥∥∥∥∥ ≤ Cσ

T∑
t=1

∥gt∥ ∥xt∥1{|V ′
t − ϑ| ≤ δ}. (26)

Taking expectations and using Cauchy–Schwarz yields the model-free bound

E
∥∥∥∥∂L∂w

∥∥∥∥ ≤ Cσ

T∑
t=1

(
E
[
∥gt∥2∥xt∥2

])1/2
· P(|V ′

t − ϑ| ≤ δ)
1/2

. (27)

Under a mild independence/mixing assumption between ∥gt∥∥xt∥ and the corridor event, one may
write the simpler scaling

E
∥∥∥∥∂L∂w

∥∥∥∥ ≲ Cσ

T∑
t=1

E
[
∥gt∥ ∥xt∥

]
pt, pt := P(|V ′

t − ϑ| ≤ δ) . (28)
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C.6 DEPTH- AND TIME-WISE COMPOUNDING

For a parameter in layer ℓ, a generic backpropagation path contains factors σ′(V
(j)
t − ϑ) for j ≤ ℓ

and relevant t. Bounding σ′ by indicators,

|Π| ≤ CNΠ
σ

∏
j,t: γj,t=1

1{|V (j)
t − ϑ| ≤ δ}, NΠ =

∑
j,t

γj,t. (29)

Taking expectations gives

E |Π| ≤ CNΠ
σ P

 ⋂
j,t: γj,t=1

{|V (j)
t − ϑ| ≤ δ}

 . (30)

A conservative bound is

E |Π| ≤ CNΠ
σ min

j,t: γj,t=1
pj,t, pj,t := P

(
|V (j)

t − ϑ| ≤ δ
)
. (31)

If corridor events are approximately independent (or satisfy a weak-mixing condition), then

E |Π| ≤ CNΠ
σ

∏
j,t: γj,t=1

pj,t ≤ CNΠ
σ (p⋆)NΠ , p⋆ := sup

j,t
pj,t, (32)

exhibiting exponential attenuation as NΠ grows.

C.7 FIRST LAYER SENSITIVITY IN MLP

For the first layer (vector form) with z(1) = W (1)x+ b(1) and perturbations (∆W (1),∆x),

∥∥∆z(1)
∥∥ ≤ ∥∆W (1)∥op ∥x∥2 + ∥W (1)∥op ∥∆x∥2 + ∥∆W (1)∥op ∥∆x∥2, (33)

so sizeable input/weight faults directly shift z(1) without any preceding contraction, shrinking corridor
occupancy in deeper layers via equation 30–equation 32.

C.8 SUFFICIENT CONDITION FOR GRADIENT COLLAPSE

Define pj,t as above and let G be the multiset of “corridor gates” along dominant backpropagation
paths with size N∗. If a fraction ρ ∈ (0, 1] of gates satisfy pj,t ≤ ε ≪ 1, then

E |Π| ≤

{
CN∗

σ ε ρN∗ , under independence/mixing,

CN∗
σ ε, (conservative, no independence).

(34)

Either case shows attenuation; the independent/mixing case yields exponential decay in depth × time.

C.9 EFFECTIVE BIAS INTERPRETATION FOR SA0/SA1 OF SAFS

For SA1 on a subset J of input lines with logic level c,

∆z = w⊤∆x =
∑
j∈J

wj(c− xj) = c
∑
j∈J

wj −
∑
j∈J

wjxj , (35)

acting as an additive bias shift plus removal of signal terms. Persistent shifts displace Vt away from
ϑ across time steps, driving down corridor occupancy pj,t and compounding the bottleneck via
equation 32.
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C.10 SUMMARY

Synaptic faults induce a pre-activation shift ∆z decomposed in equation 23 and bounded in equa-
tion 24. When |∆z| is large relative to the corridor width δ, Lemma 1 ensures |Vt − ϑ| > δ so
σ′(Vt − ϑ) ≈ 0. The expected gradient is then attenuated proportionally to (at least) √pj,t per time
step equation 27; under independence/mixing, it scales with pj,t equation 28. Across layers and time
steps, this attenuation multiplies equation 32, producing the bottleneck problem, with the first layer of
MLP especially vulnerable by equation 33.

D NEAR-OPTIMALITY OF THE PROPOSED MECHANISM

We show why our solution is the near-optimal solution to improve the fault tolerance of SNNs in this
section.

D.1 SETUP AND NOTATION

We consider inputs x ∈ Rn and a fixed number of stripes (1D profiles in Section 5) T ∈ N. Indices
are i ∈ {1, . . . , n} and stripes are t ∈ {1, . . . , T}. A stripe partition is represented by binary masks
Mt(i) ∈ {0, 1} that satisfy

∑T
t=1 Mt(i) = 1 for every i, and contiguity is taken with respect to a

one–dimensional scan order of the indices induced by an angle θ in a finite set Θ ⊂ [0, π). Given
any nonnegative vector s ∈ Rn

+, the load of stripe t is the linear functional St(s) =
∑

i siMt(i); we
also write the total mass U(s) =

∑
i si, the per–stripe mean µ(s) = U(s)/T , and the element-wise

maximum m(s) = maxi si. For vectors a, b ∈ Rn, the inner product is ⟨a, b⟩ =
∑

i aibi and ∥v∥p
denotes the ℓp norm; the Hadamard product is a⊙ b.

St(s) :=

n∑
i=1

siMt(i), U(s) :=

n∑
i=1

si, µ(s) :=
U(s)

T
, m(s) := max

i
si. (36)

Given trained weights w ∈ Rn and a fault/perturbation ∆w, we set ŵ := w +∆w and restrict the
input to stripe t by xt := x⊙Mt. The (stripe) pre-activation is

zt := ⟨ŵ, xt⟩, xt := x⊙Mt, ŵ := w +∆w. (37)

We denote by z∗ > 0 the corridor threshold, i.e., the largest value for which the chosen surrogate
derivative ϕ′(z) remains in its effective (non–vanishing) regime for all |z| ≤ z∗. To construct stripes,
we employ an implementable importance map I ∈ Rn

+ and assume a two–sided calibration with
respect to the ideal per–index load ui := |wi| |xi|: there exist constants 0 < c− ≤ 1 ≤ c+ such that

c− |wi| |xi| ≤ Ii ≤ c+ |wi| |xi|, i = 1, . . . , n. (38)

When I = u one has c− = c+ = 1. The quantile (greedy) stripes used in the paper are obtained by
scanning indices in the chosen order and inserting a cut whenever the cumulative load with respect to
I first exceeds integer multiples of µ(I), producing T contiguous fragments.

D.2 FAULT MODELS AND A BASIC UPPER BOUND

We consider the following three fault models, mentioned in Section 2.

SAFs: Some synapses are permanently stuck at Gmin or Gmax so the implemented weight becomes
w′

i (e.g., SA0/SA1). Let ∆wi := w′
i − wi and assume ∥∆w∥∞ ≤ εSAF. Then for any stripe t (Boyd

& Vandenberghe, 2004),

|zt| = |⟨w +∆w, xt⟩| ≤
∑
i

|wi| |xi|Mt(i)︸ ︷︷ ︸
St(u)

+ εSAF

∑
i

|xi|Mt(i)︸ ︷︷ ︸
St(|x|)

= St(u) + εSAF St(|x|).

(39)
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RWFs: Each coordinate experiences an independent, mean-zero, bounded (or sub-Gaussian) pertur-
bation ∆wi. If |∆wi| ≤ b and the ∆wi are independent, then for any τ > 0 and stripe t,

Pr
(
|⟨∆w, xt⟩| > τ

)
≤ 2 exp

(
− τ2

2 b2 ∥xt∥22

)
, (40)

so equalizing St(|x|) = ∥xt∥1 across t uniformly tightens the tail bound (sub-Gaussian and Hoeffd-
ing) (Hoeffding, 1963).

CEFs: Wiring errors apply a linear transformation to the input so that zt = w⊤(Axt). This is
equivalent to using the effective weight w′ := A⊤w, i.e., ∆w(c) := (A⊤ − I)w. If ∥∆w(c)∥∞ ≤
εCEF, then

|zt| = |⟨w +∆w(c), xt⟩| ≤ St(u) + εCEF St(|x|). (41)

A permutation fault A = P is a special case; taking εCEF = ∥(P⊤ − I)w∥∞ yields the same bound
(Boyd & Vandenberghe, 2004).

D.3 CALIBRATION: ALIGNING THE IMPORTANCE MAP WITH THE EFFECTIVE PER-INDEX LOAD

We formalize the requirement that the implementable importance I should approximate u within
stripe-wise sums.

Assumption 1 (Two-sided calibration.). There exist constants 0 < c− ≤ 1 ≤ c+ such that for all
indices i,

c− ui ≤ Ii ≤ c+ ui. (42)

Lemma 2 (Calibration). Under the assumption (Two-sided calibration), for any stripe partition,

St(u) ≤ 1
c−

St(I), µ(u) ≤ 1
c−

µ(I), m(u) ≤ 1
c−

m(I). (43)

Proof. From ui ≤ Ii/c−, sum over i in stripe t. Similar for totals and maxima.

D.4 QUANTILE STRIPES ARE ADDITIVELY NEAR–OPTIMAL (CONTIGUOUS CASE)

Fix a nonnegative sequence a1, . . . , an obtained by scanning the image along any 1D order (e.g.,
the θ-scan used in the main text). Let U(a) =

∑
i ai and target mean µ(a) = U(a)/T . Define the

quantile (greedy) contiguous partition in Subsections 5.2 and 5.3 by sweeping from left to right and
cutting whenever the cumulative sum first exceeds multiples of µ(a), producing T contiguous stripes.

Lemma 3 (Additive bound for greedy quantiles). Let m(a) := maxi ai. Then the greedy quantile
partition satisfies

max
t≤T

St(a) ≤ µ(a) +m(a). (44)

Moreover, any contiguous partition must have maxt St(a) ≥ µ(a); hence, the greedy partition is a
+m(a)-additive approximation to the optimal contiguous partition.

Proof. Each of the first T − 1 stripes stops at the first index that causes the running sum to exceed
µ(a). The overshoot over µ(a) is therefore at most the last included element, i.e., ≤ m(a). Hence
every one of the first T −1 stripes has load in (µ(a), µ(a)+m(a)]. The final stripe has the remaining
mass U(a) −

∑T−1
t=1 St(a) ≤ µ(a). Thus, the maximum stripe load is at most µ(a) +m(a). The

lower bound ≥ µ(a) holds by a pigeonhole argument.

Theorem 1 (Near–optimality for u via quantiles on I). Construct stripes by greedy quantiles on the
calibrated importance I . Under Assumption 1:

max
t

St(u) ≤ 1
c−

(
µ(I) +m(I)

)
. (45)
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If I = u (so c− = c+ = 1), the greedy partition achieves maxt St(u) ≤ µ(u) + m(u), i.e., a
+m(u) additive approximation to the optimal contiguous value. For a calibrated I with Assumption
1, we have maxt St(u) ≤ 1

c−

(
µ(I) +m(I)

)
. Translating this bound to the u–optimum introduces

a calibration-dependent drift via µ(I) ∈ [c−µ(u), c+µ(u)], so the additive gap to the optimal
contiguous value is at most 1

c−
m(I) +

( c+
c−

− 1
)
µ(u). The baseline µ(u) is at most 1

c−
µ(I).

Proof. Apply Lemma 3 with a = I to obtain maxt St(I) ≤ µ(I) + m(I). Then use Lemma 2:
St(u) ≤ St(I)/c−.

Remark 2 (Direct partitioning condition). (i) If one directly partitions using a = u, then c− = 1
and the bound gives maxt St(u) ≤ µ(u) +m(u). (ii) The proof does not assume the particular 1D
order beyond contiguity; the order may be induced by any scan (e.g., the θ-parameterization used to
define stripes).

D.5 CORRIDOR PRESERVATION: SUFFICIENT CONDITIONS

Under SAFs and CEFs, combining the bounds with Theorem 1 yields a closed-form uniform bound
on |zt|:

|zt| ≤ 1
c−

(
µ(I) +m(I)

)︸ ︷︷ ︸
from u

+ ε St(|x|)︸ ︷︷ ︸
fault term

. (46)

The stripes are constructed by greedy quantiles on I (not on |x|). Let Xmax := maxt≤T St(|x|),
computed on the same I-quantile partition. A simple sufficient condition for staying within the
corridor is then

1

c−

{
µ(I)+m(I)

}
+ εXmax ≤ z⋆, Xmax := max

t∈[T ]
St(|x|) (computed on the same I-quantile partition).

(47)

Remark 3 (Optional (co-monotone scan)). If along the 1D scan used to build the I-quantile
partition the sequences I and |x| are approximately co-monotone—so that applying Lemma 3 to |x|
is justified—then

Xmax ≤ µ(|x|) +m(|x|). (48)

In this case, a convenient sufficient condition is

1

c−

{
µ(I) +m(I)

}
+ ε

(
µ(|x|) +m(|x|)

)
≤ z⋆. (49)

Under RWFs, Hoeffding’s tail (and a union bound) implies that with probability at least 1 −
2T exp{−τ2/(2b2 maxt ∥xt∥22)}, all stripes satisfy |⟨∆w, xt⟩| ≤ τ (Hoeffding, 1963). Thus, the
(random) bound analogous to the above holds with the deterministic term ε St(|x|) replaced by τ ,
chosen at the desired confidence level.

D.6 ON THE GINI OBJECTIVE (PRIMARY SURROGATE FOR MIN–MAX LOAD)

We treat minimizing the Gini coefficient of the 1D projection of I as a primary surrogate for
suppressing the worst-case stripe load. Recall that G(S) equals one-half of the relative mean absolute
difference and is equivalent to the Lorenz-based definition. Hence, it directly reduces pairwise
dispersion. The next proposition turns this dispersion control into a deviation bound that is linear in
G(S) (Yitzhaki & Schechtman, 2013).

Proposition 1 (Gini ⇒ deviation bound). Let S ∈ RT
+ with mean µ and Gini coefficient G(S). Then

max
t

|St − µ| ≤ 1

T

∑
i,j

|Si − Sj | = 2T µG(S).
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Proof. By
∑

j(St − Sj) = T (St − µ) and the triangle inequality, |St − µ| = 1
T

∣∣∑
j(St − Sj)

∣∣ ≤
1
T

∑
j |St−Sj |. Summing over t and taking the maximum yields maxt |St−µ| ≤ 1

T

∑
i,j |Si−Sj |.

Since
∑

i,j |Si − Sj | = 2T 2µG(S), the claim follows.

Combine Proposition 1 with the additive near-optimality bound for contiguous quantile stripes
(Lemma/Theorem: maxt St ≤ µ+m for the greedy split). Minimizing G(S) tightens maxt |St −µ|
and thus reduces maxt St under the same partition, making the corridor constraint strictly easier to
satisfy. In short: Gini ↓⇒ pairwise dispersion ↓⇒ deviation ↓⇒ min–max load ↓.

D.7 COMPUTING THE SCAN/STRIPES

Let Θ ⊂ [0, π) denote a finite set of scan angles (or any family of 1D orders). For a fixed order, the
greedy quantile partition runs in linear time. If one wishes to search over Θ, evaluate the objective
maxt St(I) for each order and pick the best; since the objective only changes at permutation “event
points”, coarse uniform sampling of Θ is typically sufficient in practice. When an exact optimum
over contiguous partitions is desired for a fixed order, classical Dynamic Programming (DP) or
feasibility–check with binary search finds mincontig maxt St(I) in polynomial time; our greedy rule
is the simple additive-approximate alternative used in the paper (Skiena, 2008).

D.8 SUMMARY

For any calibrated I , greedy quantile stripes achieve the near–optimality bound above; if I = u,
the achieved maximum load is within +m(u) of the contiguous optimum for u. Under the SAFs
and CEFs, the closed-form sufficient condition ensures |zt| ≤ z∗ for all stripes, preventing gradient
collapse; under RWFs, the analogous high-probability statement follows from the sub-Gaussian tail
bound. The constants involved are the calibration c−, the fault radius ε (or (b, τ) in the probabilistic
model), and the observable statistics µ(·) and m(·).

E FAULT-TOLERANCE CAPACITY PREDICTION OF OUR MECHANISM

In this section, we analyze the fault-tolerance capacity of our mechanism under the SAF, RWF, and
CEF injection using arctangent as a surrogate gradient function. The boundary of synaptic weights is
[-1,1] (Le Gallo et al., 2023; Lammie et al., 2022).

E.1 SETUP AND NOTATION

Let w ∈ [−1, 1]N be the clean weight vector, K := ∥w∥2, and let a fraction ρ ∈ [0, 1] of synapses be
faulty. All results below are per layer and can be applied layer-wise. Please refer to the derivation
of the surrogate gradient (arctangent) corridor in Subsection C.2 while reading our paragraphs on
capacity calculation.

With dynamic fragmentation and per-fragment RMS normalization to ∥x̃t∥2 = αn,

|ut| =
∣∣ŵ⊤x̃t + b− ϑ

∣∣ ≤ ∥ŵ∥2 αn +m, m := |b− ϑ|. (50)

Hence it suffices that ∥ŵ∥2 ≤ B, where

B :=
δ(γ)−m

αn
(requires δ(γ) > m). (51)

E.2 CAPACITY UNDER SAFS

Under SA0, we replace faulty entries by −1; under SA1 by +1. In either case |ŵi| = 1 on faulty
indices, so

∥ŵ∥22 = ∥w∥22 −
∑
i∈F

w2
i + ρN · 1 ≤ K2 + ρN, (52)
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where the inequality is the deterministic worst-case (we drop the nonnegative subtraction term).
Therefore, a sufficient condition to remain inside the corridor is

K2 + ρN ≤ B2 =⇒ ρ⋆SA±, worst =
B2 −K2

N
(clipped to [0, 1]). (53)

If faulty indices are drawn uniformly at random (independent of w), then E
[∑

i∈F w2
i

]
= ρK2 and

E∥ŵ∥22 = (1− ρ)K2 + ρN · 1 = K2 + ρ (N −K2), (54)

whence the in-expectation capacity is

ρ⋆SA±, exp =
B2 −K2

N −K2
(clipped to [0, 1]). (55)

E.3 CAPACITY UNDER RWFS

On faulty indices, ŵi = wi + εi with E[εi] = 0 and Var(εi) = σ2
w. Independence yields E∥ŵ∥22 =

K2 + ρNσ2
w, so

ρ⋆RWF, exp =
B2 −K2

N σ2
w

(clipped to [0, 1]). (56)

A high-probability version follows from sub-Gaussian concentration by replacing Nσ2
w with an

upper-tail bound.

E.4 CAPACITY UNDER CEFS

A fraction ρ of entries are replaced by i.i.d. U [a, b] and then frozen. Let µf = a+b
2 and σ2

f = (b−a)2

12

so that E[ŵ2
i ] = µ2

f + σ2
f . If faulty indices are random (independent of w),

E∥ŵ∥22 = (1− ρ)K2 + ρN(µ2
f + σ2

f ) ⇒ ρ⋆CEF, exp =
B2 −K2

N(µ2
f + σ2

f )−K2
(clipped to [0, 1]).

(57)
For the common symmetric case U [−1, 1], µf = 0, σ2

f = 1/3 and thus

ρ⋆CEF, exp =
B2 −K2

N/3−K2
(clipped). (58)

If a deterministic worst-case guarantee is required (independent of the draw), note that |ŵi| ≤ 1
almost surely, so the same bound as SA0/SA1 applies:

ρ⋆CEF, worst =
B2 −K2

N
(clipped to [0, 1]). (59)

E.5 SUMMARY

Here, we explain how to calculate the capacity of the proposed mechanism. Choose a gradient
floor γ (e.g., f% of the arctangent peak so γ = f · αs/π), compute δ(γ) and B via equation 51,
measure K = ∥w∥2, and then plug into the formula for the fault model of interest. If ρ ≤ ρ⋆, our
mechanism keeps |ut| ≤ δ(γ) for all steps (deterministic case) or in expectation (stochastic case),
thereby ensuring ϕ′(ut) ≥ γ.

F CONVERGENCE ANALYSIS WITH THE PROPOSED MECHANISM

We present that Stochastic Gradient Descent (SGD) and Gradient Descent (GD) optimizers derive
gradients of fault-injected SNN models and induce the models to update weights when we adopt our
mechanism to the SNN models.
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F.1 SETUP AND NOTATION

We denote a data sample by (x, y), and the SNN by fW (·) with parameters W . We include the
(possibly stochastic) fragment + RMS transform T and analyze the expected objective L̃(W ) =
E(x,y), T

[
ℓ(fW (T (x)), y)

]
. At step t, with mini-batch estimator gt and step size ηt, the update is

Wt+1 = Wt − ηtgt. For spiking neurons, we write the pre-activation as ut := zt − ϑ and use a
surrogate derivative ϕ′(u). Throughout, we assume the gradient-corridor condition ϕ′(ut) ≥ γ holds
along the iterates, which is enforced by the fragment RMS bound and the per-layer effective weight
norms ∥ŵ(ℓ)∥2 ≤ B(ℓ) referring to Appendix E. Symbols L, σ2, µ are in Appendix C, D, and E,
referenced only when required by a lemma or theorem.

F.2 BAND CONDITION ENFORCED BY OUR MECHANISM

With dynamic fragmentation and per-fragment RMS normalization ∥x̃t∥2 = αn, each step satisfies

|ut| =
∣∣ŵ⊤x̃t + b− ϑ

∣∣ ≤ ∥ŵ∥2 αn +m, m := |b− ϑ|. (60)

Defining

B :=
δ(γ)−m

αn
(requires δ(γ) > m), (61)

One obtains the following corridor-invariance lemma.

Lemma 4 (Corridor invariance). If ∥ŵ∥2 ≤ B, then |ut| ≤ δ(γ) for all fragments t, hence ϕ′(ut) ≥ γ.
Proof. Combine equation 60 with equation 61 and the definition of δ(γ) in equation 17.

F.3 OPTIMIZATION OBJECTIVE AND ASSUMPTIONS

Let L̃(W ) := E(x,y),T
[
ℓ
(
fW (T (x)), y

)]
, where T denotes the (possibly stochastic, data/model-

aware) transformation induced by our mechanism (e.g., masks and RMS scaling). Assume:

Assumption 2 (L-smoothness). ∇L̃ is L-Lipschitz.

Assumption 3 (Unbiased mini-batch gradients, bounded variance). E[gt |Wt] = ∇L̃(Wt) and

E
[
∥gt −∇L̃(Wt)∥2

∣∣Wt

]
≤ σ2.

Assumption 4 (Corridor stability). For each layer, capacity constraints on the fault ratio ensure
∥ŵ(ℓ)∥2 ≤ B(ℓ), so Lemma holds layer-wise and ϕ′(u

(ℓ)
t ) ≥ γ during training.

F.4 DESCENT LEMMA AND MASTER INEQUALITY

By L-smoothness and Wt+1 = Wt − ηtgt,

L̃(Wt+1) ≤ L̃(Wt) − ηt

〈
∇L̃(Wt), gt

〉
+

Lη2t
2

∥gt∥2. (62)

Taking expectation and using Assumption 2 with E∥gt∥2 = ∥∇L̃(Wt)∥2 + E∥gt −∇L̃(Wt)∥2 ≤
∥∇L̃(Wt)∥2 + σ2 gives(Nesterov, 2014)

E
[
L̃(Wt+1)

]
≤ E

[
L̃(Wt)

]
− ηt

(
1− Lηt

2

)
E
[
∥∇L̃(Wt)∥2

]
+

Lη2t
2

σ2. (63)

Theorem 2 (SGD convergence to stationarity). If ηt ≡ η ∈ (0, 1/L], summing equation 63 over
t = 0, . . . , T − 1 yields

1

T

T−1∑
t=0

E
[
∥∇L̃(Wt)∥2

]
≤

2
(
L̃(W0)− L̃⋆

)
η T

+ Lη σ2. (64)
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With a Robbins–Monro schedule (
∑

t ηt = ∞,
∑

t η
2
t < ∞) we obtain

limT→∞ mint<T E∥∇L̃(Wt)∥2 = 0. Role of Assumption 3: by preventing artificial satura-
tion (ϕ′(u) ≈ 0), the corridor ensures that gradient signals remain informative until genuine
stationarity (Bottou et al., 2018).

Theorem 3 (Monotone decrease for full-batch GD). In the deterministic case (σ = 0) with η ∈
(0, 1/L],

L̃(Wt+1) ≤ L̃(Wt) − η

2
∥∇L̃(Wt)∥2, (65)

so
∑

t ∥∇L̃(Wt)∥2 < ∞ and every limit point of {Wt} is stationary.

Corollary 1 (Linear rate under PL). If L̃ satisfies the Polyak-Łojasiewicz (PL) inequality
1
2∥∇L̃(W )∥2 ≥ µ

(
L̃(W ) − L̃⋆

)
for some µ > 0 on the corridor-stable region, then for GD

with η ∈ (0, 1/L] (Karimi et al., 2020),

L̃(Wt)− L̃⋆ ≤ (1− ηµ)t
(
L̃(W0)− L̃⋆

)
. (66)

F.5 SUMMARY

Our mechanism enforces equation 17–equation 61 so that surrogate gradients do not vanish spu-
riously; Under standard smoothness/stochasticity assumptions, SGD converges to stationarity and
GD decreases monotonically, with linear rates under PL. Capacity bounds on the fault ratio provide
concrete regimes where the corridor assumption holds layer-wise (Neftci et al., 2019).
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