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ABSTRACT

Neural machine translation (NMT) systems have received massive attention from
academia and industry. Despite a rich set of work focusing on improving NMT
systems’ accuracy, the less explored topic of efficiency is also important to NMT
systems because of the real-time demand of translation applications. In this paper,
we observe an inherent property of NMT system, that is, NMT systems’ efficiency
is related to the output length instead of the input length. Such property results in
a new attack surface of NMT system—an adversary can slightly changing inputs
to incur significant amount of redundant computations in NMT systems. Such
abuse of NMT systems’ computational resources is analogous to the denial-of-
service attacks. Abuse of NMT systems’ computing resources will affect the ser-
vice quality (e.g., prolong response to users’ translation requests) and even make
the translation service unavailable (e.g., running out resource such as batteries of
mobile devices). To further the understanding on such efficiency-oriented threats
and raise community’s concern on the efficiency robustness of NMT systems, we
propose a new attack approach, TranSlowDown, to test the efficiency robustness
of NMT systems. To demonstrate the effectiveness of TranSlowDown, we con-
duct a systematic evaluation on three public-available NMT systems: Google T5,
Facebook Fairseq, and Helsinki-NLP translators. The experimental results show
that TranSlowDown can increase NMT systems’ response latency up to 1232%
and 1056% on Intel CPU and Nvidia GPU respectively by inserting only three
characters into existing input sentences. Our results also show that the adversarial
examples generated by TranSlowDown can consume more than 30 times battery
power than the original benign example. Such results suggest that further research
is required for protecting NMT systems against efficiency-oriented threats.

1 INTRODUCTION

Recently, Neural Machine Translation (NMT) systems have received massive attention from
academia and industry (Bahdanau et al., 2015; Kalchbrenner et al., 2016; Vaswani et al., 2017;
Belinkov & Bisk, 2018). NMT systems overcome many weaknesses of traditional phrase-based
translation models and can capture long dependencies in sentences; thus, they are widely used in
commercial translation systems. For example, Microsoft has deployed the NMT systems in many
commercial products since 2016 (Hassan Awadalla et al., 2017; 2018a;b; Gu et al., 2018); Google
Translate claims to have translated over 100 billion words daily in 109 languages (Turovsky, 2016;
Caswell & Liang, 2020; Pitman, 2021).

For NMT systems, efficiency is critical because of translation applications’ real-time demand (Tu
et al., 2017; Guo et al., 2019; Xia et al., 2019). However, it is unknown whether NMT systems are
robust against efficiency-oriented adversarial pressure. Despite a rich set of works (Cheng et al.,
2020; Jin et al., 2020; Belinkov & Bisk, 2017; Cheng et al., 2019; Wu et al., 2018; Yang et al.,
2017) evaluate NMT systems’ accuracy robustness through maximizing the errors, understanding
the NMT systems’ efficiency robustness has not received much attention.

In order to study NMT systems’ efficiency robustness, we first need to figure out what factors will
affect NMT’s efficiency. In this paper, we observe a natural property of NMT systems, i.e.,, NMT’s
computational consumption is volatile for different inputs because NMT systems invoke the under-
lying decoder with non-deterministic numbers of iterations to generate output tokens (Vaswani et al.,
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2017; Liu et al., 2020). This property exposes a new vulnerability of NMT systems, an adversary can
design specific inputs to cause enormous computation overhead in NMT systems, thus wasting the
computational resources of NMT systems. Based on such observation, in this paper, we investigate:
Can adversary make slight modification on textual inputs to increase NMT systems’ computational
consumption and decrease NMT systems’ efficiency? If so, how severe the efficiency degradation
can be?

New Vulnerability. We consider a new attack surface of NMT models, analogous to the vulner-
abilities leading to the denial of service (DoS) attacks (Zhang et al., 2015; Qin et al., 2018) that
have plagued the security committee for decades. Specifically, the adversary’s goal is to decrease
the victim NMT system’s efficiency (i.e., response latency, energy consumption) with unnoticeable
perturbations on the inputs to the system. This attack will result in devastating consequences for
many real-world applications. For example, abusing computational resources on commercial ma-
chine translation service providers (e.g., Huggingface (Wolf et al., 2020)). An efficiency attack will
cause enormous redundant computational resources and affect the service quality of benign users.
Furthermore, abusing computational resources on mobile devices or IoT devices might shorten the
battery charge cycle and result in the unavailability of the devices.

New Attack. In this paper, we evaluate NMT systems’ efficiency robustness by generating adver-
sarial inputs that consume much greater amount of computation resources than normal inputs on
NMT systems. Specifically, we propose TranSlowDown, which is based on the observation that
the source of vulnerability is that NMT systems’ efficiency is related to the output length instead of
the input length. Specifically, NMT systems iteratively compute the output token until the systems
generate the particular end of sentence (EOS) token. Thus, we design a novel algorithm to search for
a minimal perturbation to delay the appearance of EOS. Specifically, TranSlowDown can generate
both token-level and character-level perturbations. After applying the minimal perturbation on the
benign sentences, the probability of EOS of output token will decrease, resulting longer output that
costs NMT systems more computational resources.

Evaluation. To evaluate the effectiveness of TranSlowDown, we use TranSlowDown to attack
three public-available NMT systems (i.e., Google T5 (Raffel et al., 2019), Facebook FairSeq (Liu
et al., 2020), and Helsinki-NLP), and compare TranSlowDown against two accuracy-based attack
algorithms. We first measure the floating-point operations (FLOPs) and response latency of the vic-
tim NMT systems when translating benign and adversarial examples. Then, we apply I-FLOPs and
I-Latency (defined in Equation 4) to quantify the severity of efficiency degradation caused by gener-
ated adversarial examples. The evaluation results show: for the token-level attack, TranSlowDown
generate adversarial examples increase victim NMT systems’ FLOPs, CPU latency, GPU latency
up to 2131.92%, 2403.21%, and 2054.83% respectively with only perturbing two tokens in sen-
tences; for the character-level attack, TranSlowDown generated adversarial examples increase
victim NMT systems’ FLOPs, CPU latency, GPU latency up to 1102.86%, 1232.71%, and 1056.88%
respectively with only inserting three characters in sentences. We also form a real-world case study
to demonstrate the negative impact of the efficiency threat. Specifically, we deploy Google’s T5 on
a mobile device and investigate how adversarial examples affect the mobile device’s battery power
consumption. The results show that by inserting only one character into the benign sentence, the ad-
versarial examples generated by TranSlowDown can consume more than 30 times battery power
than the original benign example. Our results suggest that further research is required for protecting
NMT systems against this emerging security threat.

2 BACKGROUND & RELATED WORK

2.1 NEURAL MACHINE TRANSLATION SYSTEMS

Neural machine translation (NMT) (Vaswani et al., 2017; Liu et al., 2020) systems apply neural
networks to approximate the conditional probability P (Y |X), where X = [x1, x2, · · · , xm] is the
source token sequences and Y = [y1, y2, · · · , yn] is the target token sequences. As shown in Fig-
ure 1, a typical NMT system consists of an encoder fen(·) and a decoder fde(·). The encoder
encodes the source input X into hidden representation H , then the decoder starts from a special
token (SOS), and iteratively accesses H for an auto-regressive generation of each token yi until the
end of sequence token (EOS) is reached. An important observation from the NMT working mecha-
nisms is that NMT will iteratively running the decoder fde to generate a output token until EOS is
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reached. Thus, if the generated output sequence is longer, the NMT will consume more computa-
tional resources and becomes less efficient. In our example, the NMT system run the decoder four
times to generate the output.

2.2 DNN’S EFFICIENCY

Encoder Decoder

Input

H

SOS

I Like Reading

I Like Reading

EOSOutput 

1 2 3 4

Figure 1: Working mechanism of NMT systems

Recently, the efficiency of deep neural net-
works (DNNs) has raised a huge concern because
of their substantial inference-time computational
costs. To reduce DNN’ inference-time compu-
tational costs and make it feasible to applying
DNNs for real-time applications, many existing
work has been proposed. There are two main
techniques: The first type (Howard et al. (2017);
Zhang et al. (2018)) of the techniques prune the
DNNs offline to identify important neurons and
remove the unimportant neurons. After pruning, the smaller size DNNs could achieve competi-
tive accuracy with the original DNNs but require less computational costs. Another type of tech-
niques Wang et al. (2018); Graves (2016); Figurnov et al. (2017), called input-adaptive techniques,
this type of technique dynamically skip a certain part of the DNNs to reduce the number of com-
putations in the inference time. By skipping some parts of the DNNs, the input-adaptive DNNs
can balance the accuracy and computational costs. However, recent studies (Haque et al., 2020;
Hong et al., 2020) show input-adaptive DNNs are not robustness against the adversary attack, which
implies the input-adaptive will not save computational costs under attacks.

2.3 ADVERSARIAL ATTACKS

Existing work on adversarial machine learning has shown that even the state-of-the-art DNNs can
be fooled by adversarial examples (Carlini & Wagner, 2017; Athalye et al., 2018). Adversarial
examples are the elaborately crafted samples that apply human-unnoticeable perturbations on benign
samples to maximize the target DNNs’ errors. Based on prior knowledge about victim DNNs, the
generation of adversarial examples could be categorized into white-box and black-box attacks. In
the white-box settings (Goodfellow et al., 2014; Moosavi-Dezfooli et al., 2016; Kurakin et al., 2016;
Carlini & Wagner, 2017; Jang et al., 2017; Madry et al., 2017; Chen et al., 2018; Rony et al., 2019),
the adversary know the victim DNNs’ architecture and parameters and can compute gradients to
generate adversarial examples. In the black-box settings (Brendel et al., 2017; Chen et al., 2020;
Brendel et al., 2019), the adversary can also exploit a surrogate model for launching the attack.

3 ATTACK METHODOLOGY

3.1 THREAT MODEL

We consider an adversary who aims to decrease the efficacy of a victim NMT system. The attacker
perturbs a benign sentence with unnoticeable perturbations to craft adversarial examples and feeds
adversarial examples to the victim NMT. The perturbed adversarial examples will consume more
computational resources of the victim NMT systems, thus impairing the translation service or make
the service unavailable.

Adversary’s Capabilities. The attacker is able to modify the victim’s input samples to apply the
perturbations, e.g.,, By publishing some documents contain adversarial examples on the Internet. We
follow existing work (Cheng et al., 2020; Belinkov & Bisk, 2017; Li et al., 2018; Jin et al., 2020) and
consider two types of perturbations: (i) token-level perturbation and (ii) character-level perturbation.
To ensure imperceptibility, we limit the perturbation size ε that the adversary can perturb the benign
inputs. In Section 4, we evaluate how different ε will affect the effectiveness of proposed attack.

Adversary’s Knowledge. To assess the security vulnerability of existing NMT systems, we study
white-box scenarios, i.e., the attackers know the victim NMT systems architecture, parameters and
the tokenizer that tokenize the word. In Section 4.4, we study more practical black-box scenarios,
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i.e.,, the attacker leverage the transferability to generate adversarial examples and attack a victim
NMT system without any prior knowledge about the victim.

Adversary’s Goals. The adversary’s goal is to decrease the efficacy of a victim NMT system. As
we discussed in Section 2, NMT system’s efficacy is related to its’ output length. A longer output
length indicates the NMT system costs more computational resources and becomes less efficacy.
Thus, the adversary can achieve their goal through increasing the NMT system’s output length.

∆ = argmaxδ Len(F(x+ δ)) s.t. ||δ|| ≤ ε (1)

Finally, we formulate our problem of generating efficiency adversarial examples as an optimization
problem. As shown in equation 1, where x is the benign input, F is the target NMT system, ε is the
maximum adversarial perturbation, and Len(·) measure the length of a output sequence. Our attack
TranSlowDown tries to search a perturbation ∆ that maximize the output length (decrease target
NMT system F effiency) while smaller than the allowed perturbation (unnoticeable).

3.2 TRANSLOWDOWN ATTACK

Algorithm 1 TranSlowDown Attack
Input: Benign input x, victim NMT system F(·),
maximum perturbation ε
Output: Adversarial examples x′

1: x′ ⇐ x Initialize x′ with x
2: while ||x′ − x|| ≤ ε do
3: for each tki ∈ x′ do
4: Compute gi according to equation 2
5: end for
6: TK⇐ Sort(tk1, tk2, · · · , tkm) according to gi
7: L = GeneratePerturbation(TK, x′,F(·))
8: [tk,∆] = SelectBestPerturbation(L, x′,F(·))
9: x′ ⇐ replace tk with ∆ in x′

10: end while
11: return x′

Our attack algorithm is shown in Algo-
rithm 1, which iteratively performs the fol-
lowing three main steps: (i) find important
tokens, (ii) generate possible perturbation,
and (iii) select optimal perturbation, until
the generated adversarial examples reach
the maximum perturbation.

Find Important Tokens (line 3 to 6):

Given a benign input x = [tk1, · · · , tkm],
the first step is to find each tokens im-
portance to NMT systems’ efficiency. As
we discussed in Section 2, NMT systems’
efficiency is related to its’ output length,
and the output length is determined by
the probability of EOS tokens. Then our
objective is to decrease the probability
of the EOS token to reduce NMT’s effi-
ciency. Formally, let NMT system’s out-
put probability be a sequence of vectors,
i.e., F(x) = [p1, p2, · · · , pn]. Then the
probability of EOS tokens are [peos1 , peos2 , · · · , peosn ]. We seek to find the importance of each token
tki in x to this probability sequence. We also observe that the output token sequence will affect
EOS’s probability. Thus, we define the importance score of token tki as gi, shown in equation 2.

oi = argmax(pi) f(x) =
1

n

n∑
i

(peosi + poii ) gi =
∑
j

∂f(x)

∂tkji
(2)

Where [o1, o2, · · · , on] is the current output token, f(x) is the probability we seek to minimize, tkji
is the jth dimension of tk’s embeddings, and gi is the derivative of f(x) to ith token’s embedding.

Adversarial Perturbation Generation (line 7): After identifying important tokens, the next step
is to mutate the important token with unnoticeable perturbations. In this step, we get a set of pertur-
bation candidate L after we perturbing the most important tokens in the original input. Following
existing work, we consider two kinds of perturbations, i.e.,, token-level perturbation and character-
level perturbation. Table 1 shows some example of token-level and character-level perturbation
under different perturbation size ε, we color the perturbation with color red.

Isrc,tgt =
∑
j

(E(tgt)− E(src))× ∂f(x)

∂tkji
δ = argmaxtgt Itk,tgt; (3)
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For token-level perturbation, we consider replacing the original token tk with another token δ. To
compute the target token δ, we define token replace increment Isrc,tgt to measure the efficiency
degradation of replacing token src to tgt. As shown in equation 3, E(·) is the function to get
corresponding token’s embedding, E(tgt) − E(src) is the vector increment in embedding space.
Because ∂f(x)

∂tkji
indicate the sensitive of output length to each embedding dimension, Isrc,tgt repre-

sent the total benefits of replacing token src with tgt. We search the target token δ in the vocabulary
to maximize the token replace increment with the source token tk.

Table 1: Examples of token-level and character-
level perturbation under different size

Original ε Do you know who Rie Miyazawa is?

1 Do I know who Rie Miyazawa is?
Token-Level 2 Do I know who Hill Miyazawa is?

3 How I know who Hill Miyazawa is?

1 Do you know who Rie Miya-zawa is?
Character-Level 2 Do you know whoo Rie Miya-zawa is?

3 Do you knoiw whoo Rie Miya-zawa is?

For character-level perturbation, we consider
character insert perturbation. Specifically, we
insert one character c into token tk to get an-
other token δ. The character-inset perturba-
tion is common in the real world when typing
quickly and is unnoticeable without careful ex-
amination. Because character insertion is likely
to result in out-of-vocabulary (OOV), thus it
is challenging to compute the token replace in-
crement as token-level. Instead, we enumerate
possible δ after character insertion to get candidate set L. Specifically, we consider all letters and
digits as the possible character c because humans can type these tokens through the keyboard, and we
consider all positions the possible insertion position. Then for token tk, which contains l characters,
there are (l + 1)× ||C|| perturbation candidates, where ||C|| is the size of all possible characters.

Select Best Perturbation (line 8 to 9): After collecting candidate perturbations L, we select an
optimal perturbation from the collected candidate sets. As our objective is searching adversarial
perturbation that will produce longer output length, thus, we try all adversarial perturbation and
select the optimal perturbation that produce the maximum output length.

4 EVALUATION

4.1 EXPERIMENTAL SETUP

Models and Datasets. As shown in Table 2, we consider the following three public NMT systems
as our victim models: Google’s T5 (Raffel et al., 2019), Facebook’s Fairseq Transformer (Ng et al.,
2019), and Helsinki-NLP’s H-NLP Translator (Jörg et al., 2020). For each model, we choose a
specific testing dataset: (i). T5 is released by Google, it’s first pre-trained with multiple language
problems, then fine-tuned on the English-German translation task. We apply English sentences from
dataset ZH19 as benign examples to generate adversarial examples; (ii). Fairseq is one of the NMT
models that Facebook FAIR submitted to the WMT19 shared news translation task, and it’s based
on the FFN transformer architecture (Vaswani et al., 2017). We select Fairseq’s en-de model as our
victim model, which is designed for the English-German translation task. We apply WMT19 test data
as benign examples to generate adversarial examples; (iii). H-NLP is a seq2seq translation model,
the source language is English and the target language is Chinese. We apply the sentences from
Tatoeba-test.eng.zho as benign examples to generate adversarial samples.

Table 2: The victim models in our experiments
Model Vocab Size Source Target URL

T5 ZH19 En De https://huggingface.co/t5-small
FAIR WMT19 En De https://huggingface.co/facebook/wmt19-en-de
H-NLP Tatoeba En Zh https://huggingface.co/Helsinki-NLP/opus-mt-en-de

Metrics. We apply floating-point operations (FLOPs) and response latency to measure victim NMT
systems’ efficiency. FLOPs is a hardware-independent metric and is widely used to measure DNNs’
computational complexity. Higher FLOPs mean that the DNN requires more computations to handle
an input, which represents less efficiency (Howard et al., 2017; Zhang et al., 2018). Response latency
is a hardware-dependent metric, which can measure the victim model’s efficiency on benign and
adversarial examples. High response latency indicates that the victim NMT system needs to spend
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Figure 2: The distribution of FLOPs and latency before and after token-level attacks

more computational resources. The higher the response latency, the worse the real-time translation
quality. We measure the latency on two hardware platforms: Intel Xeon E5-2660v3 CPU and Nvidia
1080Ti GPU.

To evaluate the effectiveness of TranSlowDown, we measure the FLOPs and latency on benign
and adversarial examples respectively. Specifically, we first compute the probability density func-
tion (PDF) and cumulative distribution function (CDF) of FLOPs and latency. Then, we define two
metrics: I-FLOPs and I-Latency, to evaluate how the adversarial samples affect the victim NMT
systems. The formal definition of I-FLOPs and I-Latency shows in equation 4, where x denotes
the benign example and x′ represents the adversarial example after perturbing x, FLOPs(·) and
Latency(·) are the functions to calculate the average FLOPs and latency per input character. Higher
I-FLOPs and I-Latency indicate a more severe slowdown caused by the adversarial example.

I-FLOPs =
FLOPs(x′)− FLOPs(x)

FLOPs(x)
× 100% I-Latency =

Latency(x′)− Latency(x)

Latency(x)
× 100%

(4)

Comparison Baseline. To the best of our knowledge, we are the first to study the attack efficiency of
NMT systems, therefore no existing efficiency attack framework can be applied as the baseline. To
show existing accuracy-based attacks can not be applied for evaluating NMT’s efficient robustness,
we compare TranSlowDown against two accuracy-based attacks. We choose Seq2Sick (Cheng
et al., 2020) as the token-level baseline. Seq2Sick can replace the tokens in benign inputs to produce
adversarial translation outputs that are entirely different from benign outputs. Because Seq2Sick
only works under token-level, we choose SyntheticError (Belinkov & Bisk, 2017) as the character-
level baseline. SyntheticError minimizes the NMT system’s accuracy (BLUE score) by introducing
synthetic noise. Specifically, SyntheticError introduces four character-level perturbation: Swap,
Middle Random, Fully Random, and Keyboard Typo to perturb benign examples to decrease the
NMT system’s BLUE scores.

4.2 TOKEN-LEVEL PERTURBATION RESULTS

Effectiveness of Token-level Attack. Figure 2 shows the distribution of H-NLP’s efficiency met-
rics under token-level (more results for T5 and Fairseq can be found in Appendix A.2). The first
and second rows show the PDF and CDF 1 results respectively. In each plot, the blue area denotes
the distribution of benign examples, green and red areas represent the distribution of adversarial
examples generated from the comparison baseline Seq2Sick and TranSlowDown respectively. It
can be clearly observed from Figure 2 that adversarial examples generated by TranSlowDown
significantly change the distribution of the victim NMT system’s FLOPs and latency. In contrast,
the adversarial examples from baseline have very little effect on NMT’s efficiency. The results for
the other two NMT systems in the Appendix show similar trends with Figure 2. From the results,
we conclude that: existing accuracy-based attacks can not be applied to evaluate the efficiency ro-
bustness of NMT systems. In contrast, our proposed attack, TranSlowDown, effectively generates

1For better presentation, we plot the CDF from one to zero.
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Figure 3: The distribution of FLOPs and latency before and after character-level attacks

adversarial examples to slow down NMT systems. Thus, TranSlowDown is effective in evaluating
the efficiency robustness of NMT systems.

Table 3: The severity of token-level adversarial attacks

NMT Perturbation
I-FLOPs I-Latency (CPU) I-Latency (GPU)

Baseline Ours Baseline Ours Baseline Ours

H-NLP

1 4.18 1318.72 4.51 1485.64 2.55 1269.53
2 6.03 2131.92 6.33 2403.21 3.05 2054.83
3 12.94 2336.88 13.83 2636.51 11.10 2296.09
4 17.57 2360.94 19.40 2664.46 15.68 2314.23
5 23.56 2366.09 25.38 2669.82 23.89 2321.93

FairSeq

1 -0.05 23.46 0.15 24.85 3.50 29.62
2 -0.19 36.80 0.61 38.97 1.17 40.59
3 -2.22 47.27 -0.73 51.21 -1.40 54.44
4 -5.78 57.60 -4.17 63.35 -4.09 63.57
5 -8.20 80.75 -6.85 89.73 -1.76 85.74

T5

1 10.09 335.41 9.66 383.38 7.87 352.88
2 6.80 343.69 5.44 393.20 4.06 362.45
3 1.47 343.69 1.64 393.20 -1.54 362.45
4 -11.66 343.69 -9.62 393.20 -8.28 362.45
5 -25.18 343.69 -24.29 393.20 -8.59 362.45

Severity of Token-level Attack. To quantify the severity of the proposed efficiency attack, we
measure I-FLOPs and I-Latency under different perturbation sizes. From the results in Table 3,
we have the following observations: (i) For all experimental subjects, the adversarial examples
generated by TranSlowDown slow down the victim NMT systems by a large margin compared
to the baseline method. For H-NLP, TranSlowDown adversarial examples increase the FLOPs,
CPU latency, GPU latency up to 2366.09%, 2669.82%, 2321.93% respectively. (ii) As perturbation
size increases, the adversarial examples generated by TranSlowDown can make the victim NMT
system slower. However, this observation does not hold for the baseline method. This is because
the baseline method is designed to decrease victim NMT’s accuracy, increasing adversarial pertur-
bation may decrease NMT accuracy but does not imply to consume more computational resources.
(iii) The adversarial examples generated by the baseline method can not always ensure increasing
FLOPs and latency, while TranSlowDown adversarial examples increase FLOPs and latency on
all settings. This result is consistent with the second observation and indicates that the baseline
method is not suitable to evaluate NMT’s computational consumption robustness.

4.3 CHARACTER PERTURBATION

Effectiveness of Character-level Attack. Figure 3 shows the distribution of H-NLP’s efficiency
metrics under character-level (more results for T5 and Fairseq can be found in Appendix A.2). For
character-level attack, compared with baseline, adversarial examples generated by TranSlowDown
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significantly change the distribution of the victim NMT system’s FLOPs and latency as well. The
results for the other two NMT systems in the Appendix show similar trends with Figure 3. From
the results, we obtain a similar conclusion with the token-level attack, i.e.,, our proposed attack,
TranSlowDown, effectively generates adversarial examples to slow down NMT systems. In con-
trast, the accuracy-based attack can not achieve this goal.

Table 4: The severity of character-level adversarial attacks

NMT Perturbation
I-FLOPs I-Latency (CPU) I-Latency (GPU)

Baseline Ours Baseline Ours Baseline Ours

H-NLP

1 20.09 389.36 21.27 431.72 11.84 368.08
2 20.09 879.16 21.29 978.47 12.07 840.47
3 20.09 1102.86 21.29 1232.71 12.07 1056.88
4 20.09 1189.48 21.29 1328.29 12.07 1136.70
5 20.09 1224.91 21.29 1366.22 12.07 1174.57

FairSeq

1 0.28 36.23 0.71 38.59 3.15 40.13
2 0.28 87.92 0.71 97.37 3.17 94.31
3 0.28 145.60 0.71 164.90 3.17 155.43
4 0.28 190.43 0.71 217.94 3.17 204.02
5 0.28 223.07 0.71 255.42 3.17 235.93

T5

1 5.60 217.46 6.39 249.44 5.71 229.70
2 5.56 249.88 6.37 286.81 5.69 258.35
3 5.56 267.58 6.37 307.57 5.69 273.41
4 5.56 276.33 6.37 318.40 5.69 283.37
5 5.56 280.10 6.37 323.67 5.69 286.84

Severity of Character-level Attack. Similar to Section 4.2, Table 4 presents the severity of
character-level adversarial examples. The results show consistency with the token-level attack.
For the character-level attack, the adversarial examples generated by TranSlowDown also sig-
nificantly slow down the victim NMT systems compared to the baseline method. For H-NLP,
TranSlowDown adversarial examples increase the FLOPs, CPU latency, GPU latency up to
1224.91%, 2669.82%, 1174.57% respectively. As perturbation size increases, the adversarial exam-
ples generated by TranSlowDown can make the victim NMT system slower, which is not reflected
in the baseline results. This is consistent with the token-level attack.

4.4 THE TRANSFERABILITY OF ADVERSARIAL EXAMPLES

In this section, we study the transferability of efficacy adversarial examples. Even though white-
box attacks are important to expose the vulnerability, black-box attacks are more practical in the
real world because they require less information about the NMT systems. We investigate whether
TranSlowDown is transferable under black-box settings.

Table 5: The maximum I-FLOPs of blackbox token-level attack
Source Target 1 2 3 4 5

H-NLP
FairSeq 185.71 57.14 68.75 57.14 42.86

T5 1600.00 1600.00 1600.00 1600.00 1600.00

FairSeq
H-NLP 6566.67 6566.67 6566.67 6566.67 6566.67

T5 1600.00 1600.00 1600.00 1600.00 1600.00

T5
H-NLP 3733.33 3733.33 3733.33 3733.33 3733.33
FairSeq 858.33 1816.67 1816.67 945.45 945.45

Specifically, we treat one NMT system as a target and apply another NMT system as the source to
generate adversarial examples. We then feed the adversarial examples to the target NMT systems
and measure the maximum I-FLOPs. Maximum I-FLOPs indicate the efficiency degradation under
the worst scenario, which is important to measure the vulnerability of NMT systems. Notice the
source and the target NMT systems in our experiment adopts different model architectures and are
trained with different datasets. Thus, if the adversarial examples can increase the FLOPs of the
target NMT system, it proves that transferability exists in our attack. The results for token-level
attacks are shown in Table 5 (more results in Appendix A.3). From the results, we observe that for
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all experimental settings, TranSlowDown generates adversarial examples that increase the target
NMT system’s computational FLOPs to a large extend. The results imply that under the worst
scenarios, the attackers can generate efficient adversarial examples even without prior knowledge
about the victim NMT systems.
5 REAL WORLD CASE STUDY
We conduct a case study to evaluate TranSlowDown’s ability to attack real world mobile devices’
battery power.

Table 6: Sentences for energy attack on mobile devices

Benign
Death comes often to the soldiers and marines who are
fighting in anbar province, which is roughly the size of
louisiana and is the most intractable region in iraq.

Adversarial
Death comes often to the soldiers and marines who are
fighting in anbar province, which is roughly the (size of
of louisiana and is the most intractable region in iraq.

Experiment Settings. We select Google’s
T5 as our victim NMT model. We first de-
ploy the model on Samsung Galaxy S9+,
which has 6GB RAM and a battery ca-
pacity of 3500 mAh. After that, we se-
lect one sentence from the dataset ZH19
as our testing example; We then apply
TranSlowDown to perturb the benign
example with character-level perturbation and obtain the corresponding adversarial example. The
benign sentence and the adversarial sentence are shown in Table 6 (More results in Appendix sec-
tion A.4), we color the perturbation with the color red. Notice the adversarial example insert only
one character in the benign sentence. This one-character perturbation is very common in the real
world because of the user’s typos. Finally, we feed the benign and adversarial examples to the
deployed NMT system and measure the NMT’s energy consumption of translating benign and ad-
versarial examples.

Adversarail
Benign

En
er

gy
 (%

)

70

80

90

100

Iteration Number
0 100 200 300

Figure 4: Remaining battery power of the
mobile device after T5 translating benign and
adversarial sentence

Experiment Results. The mobile’s battery power
change is shown in Figure 4. The red line is for ad-
versarial example, and the blue line is for benign ex-
ample. The results show that the adversarial exam-
ple increases the mobile device’s battery power sig-
nificantly more significant than the benign example.
Specifically, after 300 iterations, the adversarial ex-
ample consumes 30% of the battery power, while the
benign example only consumes less than 1%. The
results show the vulnerability of the efficiency attack
for IoT and mobile devices. Recall that the adversar-
ial example used in our experiment only inserts one
character in the benign sentence. This minimal per-
turbation can result from benign user typos instead
of from the adversary. Thus, the results suggest the criticality and the necessity of increasing NMT
systems’ efficiency robustness.
6 DISCUSSION
Although there are many accuracy-based defense mechanisms to protect DNNs. However, accuracy-
oriented defense mechanisms are not applicable for protecting NMT systems’ efficiency robustness
because of two reasons: (i) Many existing accuracy defense mechanisms require running the model
with the input and use the hidden states of the model to make decision. However, running the input
would defeat the purpose of an energy defense as the computation resource is already consumed.
(ii) Our results in section 4 show that accuracy-based adversarial examples and efficiency-based
adversarial examples belong to different distribution, thus, running accuracy-based detector can not
detect efficiency-based adversarial examples successfully.

7 CONCLUSIONS

In this work, we study the robustness of NMT systems against adversarial efficiency attacks. Specif-
ically, we propose TranSlowDown, an attack that introduces imperceptible adversarial perturba-
tions to benign inputs to increase NMT’s computational complexity. We evaluate TranSlowDown
on three public available NMT systems, the results show TranSlowDown generates adversarial
examples decrease NMT systems’ efficiency. Our study suggests that efficiency attacks are a vul-
nerable, yet under-appreciated, threat against NMT systems.
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A APPENDIX

A.1 TOKEN-LEVEL RESULTS

Figure 5 and Figure 6 show the distribution of T5 and Fairseq’s efficiency metrics under token-level
respectively. Similar to Section 4.2, adversarial examples generated by TranSlowDown signifi-
cantly change the distribution of the victim NMT system’s FLOPs and latency while the adversarial
examples from baseline have minor effect on NMT’s efficiency.

A.2 CHARACTER-LEVEL RESULTS

Figure 7 and Figure 8 show the distribution of T5 and Fairseq’s efficiency metrics under character-
level respectively. Similar to Section 4.3, compared with the baseline, the adversarial samples gen-
erated by TranSlowDown still achieved higher FLOPs and latency.

A.3 TRANSFERABILITY RESULTS

As we mentioned in Section 4.4, we investigate whether TranSlowDown is transferable under
black-box settings. The results for character-level attacks are shown in Table 7, which is consistent
with the result obtained in the token-level experiment. The results further prove that the attacker
can generate effective adversarial examples even without prior knowledge about the victim NMT
system.
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Figure 5: The efficiency metric of T5 before and after token-level attacks
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Figure 6: The efficiency metric of FairSeq before and after token-level attacks
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Figure 7: The efficiency metric of T5 before and after character-level attacks
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Figure 8: The efficiency metric of FairSeq before and after character-level attacks

Table 7: The maximum I-FLOPs of blackbox character-level attack
Source Target 1 2 3 4 5

H-NLP
FairSeq 900.00 273.08 2400.00 573.08 2400.00

T5 1700.00 1700.00 1700.00 1700.00 1700.00

FairSeq
H-NLP 250.00 325.00 400.00 400.00 433.33

T5 1400.00 1400.00 1400.00 1400.00 1400.00

T5
H-NLP 3733.33 3733.33 3733.33 3733.33 3733.33
FairSeq 1177.78 1337.50 1542.86 1337.50 1337.50
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