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Abstract
In this work, we give a new technique for ana-
lyzing individualized privacy accounting via the
following simple observation: if an algorithm is
one-sided add-DP, then its subsampled variant sat-
isfies two-sided DP. From this, we obtain several
improved algorithms for private combinatorial op-
timization problems, including decomposable sub-
modular maximization and set cover. Our error
guarantees are asymptotically tight and our algo-
rithm satisfies pure-DP while previously known
algorithms (Gupta et al., 2010; Chaturvedi et al.,
2021) are approximate-DP. We also show an ap-
plication of our technique beyond combinatorial
optimization by giving a pure-DP algorithm for
the shifting heavy hitter problem in a stream; pre-
viously, only an approximate-DP algorithm was
known (Kaplan et al., 2021; Cohen & Lyu, 2023).

1. Introduction
In combinatorial optimization, we typically wish to select a
discrete object to minimize or maximize certain objective
functions subject to certain constraints. In several settings,
such objective functions or constraints may depend on sen-
sitive information of users. For example, clustering and
facility location tasks may involve taking users’ location
information as part of the objectives or constraints. Simi-
larly, data summarization may require user-produced exam-
ples as part of the objective (Mirzasoleiman et al., 2016).
Due to this, several works have considered studying com-
binatorial optimization problems under differential privacy
(DP) (Dwork et al., 2006b;a)—a widely-used and rigorous
notion to quantify privacy properties of an algorithm. To
state the definition, we use X to denote the domain of each
user’s data. Two datasets D,D′ ⊆ X ∗ are said to be add-
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remove neighbors if D is a result of adding an element to
D′ or removing an element from D′.

Definition 1.1 (Add-remove DP, Dwork et al. (2006b)). A
randomized algorithmM : X ∗ → O is (ε, δ)-DP if, for
every add-remove neighboring datasets D,D′ and every set
S ⊆ O of outcomes, we have

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S] + δ.

When δ > 0, we say that the algorithm satisfies approximate-
DP; when δ = 0, we say that the algorithm satisfies pure-DP.
The latter is preferable as it provides stronger privacy pro-
tection; more specifically, it does not allow for “catastrophic
failure” where the sensitive input data is leaked in the clear.

Submodular Maximization. In submodular maximization,
we are given a submodular1 set function F : 2[m] → R,
where [m] = {1, . . . ,m} is the universe. The goal is to find
a subset T ⊆ [m] that maximizes F (T ) under certain con-
straints. In this work, we consider two types of constraints:

• Cardinality Constraint: Here we want |T | = k.
• Matroid Constraint: Given a rank-k matroid M =
([m], I), we want T to be an independent set of the
matroid (i.e., T ∈ I). Note that this generalizes the car-
dinality constraint (when M is the uniform matroid).

Submodular maximization is among the most well-studied
problems in combinatorial optimization; several algorithms
date back to the 70’s (Nemhauser et al., 1978) and many
variants continue to be studied to this day (e.g., Duetting
et al. (2023); Banihashem et al. (2023)).

In this work, we consider the 1-decomposable2 monotone
submodular maximization problem3. Here each x ∈ X
is associated with a monotone submodular function fx :
2[m] → [0, 1] and the goal is to maximize FD :=

∑
x∈D fx.

For DP submodular maximization under cardinality con-

1A set function F is submodular if, for every S ⊆ T ⊆ [m]
and v ∈ [m], we have F (S∪{v})−F (S) ≥ F (T∪{v})−F (T ).

2More generally, λ-decomposable refers to the same definition
but with fx : 2[m] → [0, λ]. All results discussed in this paper
applied to λ-decomposable functions as well by appropriately
scaling the functions.

3Aka the Combinatorial Public Project problem (Papadimitriou
et al., 2008).
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straint, Gupta et al. (2010) gave a polynomial-time (ε, δ)-
DP algorithm that achieves4

(
1− 1

e

)
-approximation and

O
(

k logm log(1/δ)
ε

)
-error. They also show a lower bound

of Ω
(

k logm
ε

)
on the error. Since

(
1− 1

e + o(1)
)
-

approximation is NP-hard (Feige, 1998), Gupta et al.’s re-
sult is tight up to the O(log(1/δ)) factor in the error. The
matroid constraint case was first studied by Mitrovic et al.
(2017), who gave an efficient (ε, δ)-DP 1

2 -approximation
and the same error bound. Recently, Chaturvedi et al. (2021)
improved the approximation ratio to

(
1− 1

e − η
)

for any
constant η > 0 while retaining the same error bound. Again,
this is tight up to a factor of O (log(1/δ)) in the error.

Set Cover. In the Set Cover problem, we are given a set
system (U ,S = (S1, . . . , Sm)). The goal is to output as
few sets as possible that cover the universe, i.e., Si1 , . . . , Sik

such that Si1 ∪ · · · ∪ Sik = U . We use SetCov(U ,S) to
denote the optimal size of the set cover. Set Cover can be
viewed as a “dual” version of submodular maximization
under cardinality constraint, since the coverage function5

F (I) = |
⋃

i∈I Si| is submodular. Set Cover is a classic
combinatorial optimization problem, being one of the 21
original NP-complete problems (Karp, 1972).

For private Set Cover, DP is w.r.t. adding or removing an
item from the universe (and all the sets)6. Unfortunately,
Gupta et al. (2010) show that no non-trivial approxima-
tion is possible for the setting where we output the indices
i1, . . . , ik directly. Instead, they proposed what is now some-
times referred to as the open set setting, where we instead
output a permutation π : [m]→ [m]. Each element x ∈ U
then chooses the first set containing it in the sequence (i.e.,
min{i | x ∈ Sπ(i)}). The cost is then defined as the number
of sets that are chosen; we use CostSetCovU,S(π) to denote
the cost of π. We work in this model throughout the paper.
Under this model, they provide an (ε, δ)-DP algorithm with
an expected approximation ratio O

(
lnn+ lnm log(1/δ)

ε

)
for the problem where n denotes the size of the input dataset
|U|. This is nearly tight as it is NP-hard to achieve an
o(lnn)-approximation (Dinur & Steurer, 2014; Moshkovitz,
2015), and Gupta et al. (2010) show that no ε-DP algorithm
can achieve an o

(
lnm
ε

)
-approximation.

Metric k-Means and k-Median. In the metric (k, q)-
clustering problem, there is a metric space ([m], d) whose

4An output T ∗ is said to achieve α-approximation and κ-error
if F (T ∗) ≥ α ·OPT− κ, where OPT is the optimum.

5Maximizing the coverage function among k-size I is known
as the max k-Coverage problem, which is a special case of sub-
modular maximization with cardinality constraint and is also well
studied in the literature.

6More precisely, we can define X = {0, 1}m, where x ∈ X
belongs to all Si such that xi = 1.

diameter7 is at most one, each user input is a point in this
metric space (i.e., X = [m]), and the goal is to output a
subset S ⊆ [m] of size k that minimizes costq(S;D) :=∑

x∈D minc∈S d(c, x)q. When q = 1 and q = 2, this prob-
lem is referred to as metric k-median and metric k-means re-
spectively. In the non-private setting, even though constant-
factor approximation algorithms for these problems have
long been known (Charikar et al., 1999), tight (hardness of)
approximation ratios are not yet known and this remains a
challenging and active area of research (see, e.g., Anand &
Lee (2024) and the references therein).

For private k-median, Gupta et al. (2010) gave an ε-DP
algorithm with approximation ratio8 (5+η) for any constant
η > 0 with error9 O

(
k2 log2(mn)

ε

)
. On the lower bound

front, they showed that any ε-DP algorithm must incur error
at least Ω(k log n). Later, the error bound was improved by
Jones et al. (2021) to O

(
k log(mn) log(1/δ)

ε

)
, albeit with an

(ε, δ)-DP algorithm. The approximation ratio of Jones et al.
(2021) is a constant, but for simplicity is not explicit.

Shifting Heavy Hitters. Our framework will also apply to
the ostensibly unrelated shifting heavy hitters problem (Ka-
plan et al., 2021). Here, each user i’s data xi is a stream
(xi,1, . . . , xi,T ) ∈ YT where xi,t is the “bucket” that the
user contributes to at time t. For τ ≥ 0, t ∈ [T ], a τ -heavy
hitter at time t is an element y ∈ Y that appears at least τ
times, i.e., wt(y) ≥ τ where wt(y) := |{i ∈ [n] | xi,t =
y}|. Following Kaplan et al. (2021), an algorithm is said to
have error τ with probability (w.p.) 1− β if the following
holds w.p. 1− β for all t ∈ [T ]:

• Every reported element x satisfies wt(x) > 0.
• Every τ -heavy hitter is reported.

Without any additional assumption, the best error one can
achieve with (ε, δ)-DP is Õ(

√
T log(1/δ)). The main result

of Kaplan et al. (2021) is that, under the assumption that
each user contributes to at most k heavy hitters, the error
can be reduced to Õ(

√
k · log(1/δ) log T ).

All state-of-the-art algorithms we have discussed so far are
approximate-DP. Meanwhile, known pure-DP algorithms
have significantly worse error guarantees; in fact, for some
problems such as private set cover and shifting heavy hitters,
no non-trivial pure-DP algorithms are known. This leads
us to the main question of this work: Are there pure-DP
algorithms that achieve similar (or even better) bounds?

7The diameter is defined as maxa,b∈[m] d(a, b).
8They only claim an approx. ratio of 6 but it is straightforward

to see that this can be extended to any approx. ratio greater than 5.
9We note that in both (Gupta et al., 2010) and (Jones et al.,

2021), it was assumed that n ≤ m.
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1.1. Our Results

We answer the above question positively by giving pure-DP
algorithms for all above problems via a unified framework.
As explained below, our error bounds are all nearly tight. In
fact, for the optimization problems, we even improve on the
error bounds from previous approximate-DP algorithms.

We note that all of our algorithms run in polynomial time
and we will not state this explicitly below for brevity.

Monotone Submodular Maximization. For monotone
submodular maximization with a cardinality constraint, we
can get an approximation ratio arbitrarily close to 1 − 1

e

while having an error O
(

k logm
ε

)
, as stated more precisely

below. The former matches (Gupta et al., 2010) where the
latter improves on their bound by a factor of O(log(1/δ))

and is tight due to their Ω
(

k logm
ε

)
lower bound.

Theorem 1.2. For any 0 < ε, β, η < 1, there is an
ε-DP algorithm for monotone submodular maximization
under a cardinality constraint that achieves

(
1− 1

e − η
)
-

approximation and O
(

k log(m/β)
ηε

)
-error w.p. 1− β.

For a matroid constraint, we get almost the same bound
except for a slightly worse dependency on the parameter η:

Theorem 1.3. For any 0 < ε, β, η < 1, there is an ε-DP al-
gorithm for monotone submodular maximization under ma-
troid submodular maximization that achieves

(
1− 1

e − η
)
-

approximation and O

(
k log( m

ηβ )
ηε

)
-error w.p. 1− β.

Set Cover. For the private set cover problem, we give a
pure-DP algorithm that improves the approximation ratio
from Gupta et al. (2010) by a factor of O(log(1/δ)). This
is tight due to the aforementioned Ω

(
logm

ε

)
from Gupta

et al. (2010) and the NP-hardness of factor Ω(log n) (Dinur
& Steurer, 2014; Moshkovitz, 2015).

Theorem 1.4. For any 0 < ε, β < 1, there is an ε-DP al-
gorithm for Set Cover that achieves O

(
log n+ log(m/β)

ε

)
-

approximation w.p. 1− β.

Metric k-Means and k-Median For private metric k-
means and k-median, we provide a pure-DP algorithm with
approximation ratio O(1) and error O

(
k log(mn)

ε

)
, as stated

below. The error bound improves upon the approximate-DP
algorithm of Jones et al. (2021) by a factor of O(log(1/δ)).
For n ≤ mO(1), our error bound is tight due to the aforemen-
tioned lower bound Ω

(
k logm

ε

)
from Gupta et al. (2010).

Similar to (Jones et al., 2021), we choose to keep our analy-
sis simple, and thus we do not compute the approximation
ratio explicitly. As we mentioned earlier, the tight approxi-
mation ratio is not known even in the non-private setting.

Theorem 1.5. For any 0 < ε, β < 1, there is an ε-DP al-
gorithm for metric k-median and k-means that achieves an
O(1)-approximation and O

(
k log(mn/β)

ε

)
-error w.p. 1−β.

Shifting Heavy Hitters. We provide a pure-DP algorithm
for the problem, which is stated informally below; for a
formal version, see Theorem 5.6.

Theorem 1.6 (Informal). Assuming that each user con-
tributes to≤ k heavy hitters, there is an ε-DP shifting heavy
hitter algorithm with error O

(
k log(T |Y|/β)

ε

)
w.p. 1− β.

In comparison, the error bound of Kaplan et al. (2021) is
Õ
(√

k log(1/δ) log(T |Y|/β)
ε

)
, which can be smaller for large

k. However, their algorithm is approximate-DP and it can
be easily seen (via a packing lower bound) that our bound
is the best possible for pure-DP; see Appendix B.

1.2. Technical Overview

There are two slightly different settings to which our tech-
niques apply: repeated exponential mechanism and repeated
above threshold. In this overview, we will focus on the re-
peated exponential mechanism and only briefly mention the
repeated above threshold mechanism at the end.

Repeated Exponential Mechanism. Gupta et al. (2010)
proposed the following algorithm for Set Cover: repeatedly
use the ε0-DP exponential mechanism (McSherry & Talwar,
2007)10 to find the next set that covers the maximum number
of (uncovered) element. Since the exponential mechanism is
applied m times here, if we were to apply a composition the-
orem, the error would grow polynomially in m (either m for
basic composition or

√
m for advanced composition (Dwork

et al., 2010)). Perhaps surprisingly, they instead show that
this algorithm is (ε, δ)-DP for ε = O(ε0 · log(1/δ)), i.e.,
independent of m.

The intuition behind this is roughly that an element “causes”
only a single set to be picked: the first one in the permuta-
tion that contains it. The sets picked before this set have
their scores (of the exponential mechanism) completely in-
dependent from the element. On the other hand, for the sets
picked after this set, the element is already covered and does
not factor into the scores at all. Thus, we should be able to
“charge the privacy budget” only once when this particular
set is picked. While Gupta et al. (2010) show that such an
individualized privacy accounting works for approximate-
DP, it unfortunately fails for pure-DP: this mechanism is not
ε-DP for any ε = o(mε0). (See Appendix C.)

One-Sided DP. This is a notion of DP where the “neigh-
boring relationship” can be asymmetric (Kotsogiannis et al.,
2020). (See also (Takagi et al., 2022), who call this asym-

10See Section 2 for more detail.
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metric DP.) In particular, we consider the following notion
of one-sided DP with respect to adding an element11.

Definition 1.7 (One-Sided DP, Kotsogiannis et al. (2020)).
A mechanismM is said to be ε-add-DP iff, for every pair
D,D′ of datasets such that D results from adding an item
to D′ and every possible subset S of outputs, we have
Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S].

To emphasize the differences, we will refer to add-remove
DP (Definition 1.1) as “two-sided DP”.

It turns out that, while it fails for two-sided DP, the above
intuition does apply to one-sided DP: the repeated exponen-
tial mechanism is ε0-add-DP. The proof of this fact is also
relatively straightforward (see Section 4).

From One-Sided to Two-Sided DP. While the above ob-
servation is nice, we have not accomplished our goal yet,
since we wish to design a two-sided DP mechanism, not
a one-sided DP one. This brings us to our second obser-
vation: we can turn any one-sided DP mechanism into a
two-sided one by subsampling with probability p = 1−e−ε

(see Lemma 3.1). With these two ingredients, we arrive
at our result by just using the subsampled version of the
existing—e.g., Gupta et al. (2010)’s—algorithm!

Repeated Above Threshold. Our technique also applies
to a slightly different setting where we consider a stream
and wish to detect if a query is above a certain threshold
at each time step. Again, we achieve an “individualized
privacy accounting”, where the amount of noise required to
achieve one-sided DP scales only with the number of times
an individual contributes to above threshold results. The
subsampled version of this then satisfies two-sided DP and
provides our algorithm for the shifting heavy hitter problem.

Lastly, we note that, while we use the repeated exponen-
tial mechanism for submodular maximization results, we
actually do not use it for Set Cover. This is due to a tech-
nical barrier that only allows us to get O(log n logm/ε)
via this approach. (See Appendix F for more details.) For
Theorem 1.4, we actually use the repeated above threshold
mechanism applied to a (non-private) streaming approxima-
tion algorithm for Set Cover (Kumar et al., 2015).

2. Preliminaries
Subsampling. Subsampling is a standard technique in
DP (Balle et al., 2018; Wang et al., 2020). We will use the
so-called Poisson subsampling where each user is kept with
probability p. More precisely, we write Sp : X ∗ → X ∗

as a subsampling operator, i.e., Sp(D) outputs a random
subset of D such that each user is kept independently with

11Kotsogiannis et al. (2020) actually define one-sided DP with
respect to replacing a sensitive record. However, we are defining
it with respect to adding an element.

probability p. For any mechanism M, we write MSp to
denote the mechanism D 7→ M(Sp(D)).

Concentration Inequalities. It will be convenient to use a
version of the Chernoff bound that includes both multiplica-
tive and additive terms, as stated below.
Theorem 2.1 (Chernoff bound; Corollary 2.11 of
Chaturvedi et al. 2020)). Let Z1, . . . , Zm be i.i.d. random
variables such that Zi ∈ [0, 1] and let µ = E[Z1+· · ·+Zm].
Then, for α ∈ [0, 1] and ζ ≥ 0, we have

Pr[Z1 + · · ·+ Zm < (1− α)µ− ζ] ≤ exp (−αζ) ,
Pr[Z1 + · · ·+ Zm > (1 + α)µ+ ζ] ≤ exp (−αζ/3) .

Exponential Mechanism. Given a candidate set C and a
scoring function q : C × X ∗ → R, the exponential mech-
anism EXPMECHε(C, q;D) outputs each candidate c ∈ C
with probability proportional to exp (ε · q(c;D)). Its guar-
antee is as follows:
Theorem 2.2 (McSherry & Talwar (2007)). If q has sensitiv-
ity at most ∆ (w.r.t. D), then the exponential mechanism is
(2ε∆)-DP. Furthermore, w.p. 1− β, the output c∗ satisfies
q(c∗;D) ≥ maxc∈C q(c;D)−O(log(|C|/β)/ε).

3. One-Sided DP and Subsampling
We start by proving our main observation that subsampling a
one-sided DP mechanism makes it two-sided DP. We remark
that, while there is a large literature on privacy amplification
by subsampling, we are not aware of such a connection
between one-sided and two-sided DP before.
Lemma 3.1. For any p ∈ [0, 1) and ε0 > 0, if M is
an ε0-add-DP mechanism, then MSp is ε-DP for ε =

ln
(
max

{
1

1−p , 1 + p(eε0 − 1)
})

.

Proof. Consider any datasets D,D′ such that D = D′ ∪
{x}, and any possible output o. On the one hand, we have

Pr[MSp(D) = o]

=
∑

Ds⊆D

Pr[M(Ds) = o] · Pr[Sp(D) = Ds]

≥
∑

Ds⊆D′

Pr[M(Ds) = o] · Pr[Sp(D) = Ds]

(⋆)
=

∑
Ds⊆D′

Pr[M(Ds) = o] · (1− p) Pr[Sp(D′) = Ds]

= (1− p) · Pr[MSp(D′) = o],

where (⋆) uses the fact that Sp(D) is the same as Sp(D′)
when conditioned on x not being selected.

On the other hand, we have12

Pr[MSp(D) = o]

12The following sequence of inequalities is standard in
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=
∑

Ds⊆D′

(
Pr[M(Ds) = o] · Pr[Sp(D) = Ds]

+ Pr[M(Ds ∪ {x}) = o] · Pr[Sp(D) = Ds ∪ {x}]
)

(⋆)

≤
∑

Ds⊆D′

(
Pr[M(Ds) = o] · Pr[Sp(D) = Ds]

+ eε0 · Pr[M(Ds) = o] · Pr[Sp(D) = Ds ∪ {x}]
)

(♦)
=

∑
Ds⊆D′

(
Pr[M(Ds) = o] · (1− p) · Pr[Sp(D′) = Ds]

+ eε0 · Pr[M(Ds) = o] · p · Pr[Sp(D′) = Ds]

)
= (1 + p(eε0 − 1)) · Pr[MSp(D′) = o],

where ⋆ follows from the ε0-add-DP property ofM and ♦
follows from the fact that x is included in Ds with probabil-
ity p independently of other items.

Thus, the algorithm is ε-DP as claimed.

We note that Lemma 3.1 can be extended to approximate-
DP or Rényi-DP by replacing the second half of the proof
by the corresponding amplification-by-subsampling proofs.

The following corollary, which is an immediate consequence
of plugging in ε0 = ln(2) and p = 1− e−ε into Lemma 3.1,
will be more convenient to work with throughout the remain-
der of the paper. It is useful to note that p = Θ(ε) for ε ≤ 1
while ε0 = ln(2) is independent of ε.

Corollary 3.2. For any ε > 0, ifM is ln(2)-add-DP, then
MSp is ε-DP for p = 1− e−ε.

4. Algorithm I: Repeated EM
In the first setting, the interaction proceeds in L rounds.
In round i, the algorithm is given a candidate set Ci and
a scoring function qi : Ci × X ∗ → R (which can depend
on the output of previous rounds). The goal is to output
c∗i ∈ Ci which achieves an approximately maximum score
qi(c;D). The algorithm we use (Algorithm 1)—originally
from Gupta et al. (2010)—simply applies the exponential
mechanism at each step.

To analyze the algorithm, we need a couple of assumptions.

Assumption 4.1 (Monotonicity). For every i, c, adding an
element to D does not decrease qi(c;D).

Assumption 4.2 (Bounded Realized Sensitivity). For ev-
ery add-remove neighbors D,D′ and every possible output
(c∗1, . . . , c

∗
L),
∑

i∈[L] |qi(c∗i ;D)− qi(c
∗
i ;D

′)| ≤ ∆.

amplification-by-subsampling literature (e.g., (Li et al., 2012));
we only include it here for completeness.

Algorithm 1 REPEATED-EMε0,A (Gupta et al., 2010)
Parameters: ε0 > 0, an algorithm A for selecting a candi-

date set and a scoring function
Input: Dataset D ∈ X ∗

for i = 1, . . . , L do
(Ci, qi)← A(c∗1, . . . , c∗i−1)
c∗i ← EXPMECH ε0

∆
(Ci, qi;D)

return (c∗1, . . . , c
∗
L)

Under these assumptions, the algorithm is add-DP:
Theorem 4.3. Under Assumptions 4.1 and 4.2, REPEATED-
EMε0 (Algorithm 1) is ε0-add-DP.

Proof. Consider any D,D′ such that D = D′ ∪ {x} for
some x, and any output o = (o1, . . . , oL). We will writeM
as a shorthand for REPEATED-EMε0,A. We have

Pr[M(D) = o]

Pr[M(D′) = o]
=
∏
i∈[L]

Pr[EXPMECH ε0
∆
(Ci, qi;D) = oi]

Pr[EXPMECH ε0
∆
(Ci, qi;D′) = oi]

=
∏
i∈[L]

exp( ε0
∆ ·qi(oi;D))∑

c∈Ci
exp( ε0

∆ ·qi(c;D))

exp( ε0
∆ ·qi(oi;D′))∑

c∈Ci
exp( ε0

∆ ·qi(c;D′))

.

Assumption 4.1 implies that
∑

c∈Ci
exp

(
ε0
∆ · qi(c;D)

)
≥∑

c∈Ci
exp

(
ε0
∆ · qi(c;D

′)
)
. Thus, we have

Pr[M(D) = o]

Pr[M(D′) = o]
≤ exp

ε0
∆
·
∑
i∈[L]

(qi(oi;D)− qi(oi;D
′))


≤ exp(ε0),

where the second inequality follows from Assumption 4.2.

As a result,M is ε0-add-DP, concluding our proof.

By applying Corollary 3.2, we immediately have that its
subsampled variant is ε-DP:
Theorem 4.4. Under Assumptions 4.1 and 4.2,
REPEATED-EMSp

ln(2),A is ε-DP for p = 1− e−ε.

4.1. Applications

4.1.1. MONOTONE SUBMODULAR MAXIMIZATION
UNDER CARDINALITY CONSTRAINT

The algorithm in Gupta et al. (2010) for monotone
submodular maximization under cardinality constraint
is based on the classic greedy algorithm that runs in
k rounds, each round finding an element that maxi-
mizes the marginal gain. More precisely, the algorithm—
which we call DPSUBMODGREEDYε0,FD

—is exactly
REPEATED-EMε0,A where L = k and the candidate sets
and scoring functions are as follows:
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• Ci is the set of remaining elements [m] ∖
{c∗1, . . . , c∗i−1}

• qi(c;D) is the marginal gain FD({c∗1, . . . , c∗i−1, c})−
FD({c∗1, . . . , c∗i−1})

They proved the following utility guarantee:

Theorem 4.5 (Gupta et al. 2010). For any ε0, β > 0,
DPSUBMODGREEDYε0 achieves (1− 1/e)-approximation

and O
(

k log(m/β)
ε0

)
-error with probability 1− β.

Proof of Theorem 1.2. We simply run the subsampled ver-
sion of Algorithm 1. More precisely, we use the algorithm
DPSUBMODGREEDY

Sp

ln(2),FD
where p = 1 − e−ε. The

privacy analysis follows from the straightforward observa-
tion that Ci, qi in DPSUBMODGREEDY satisfies Assump-
tions 4.1 and 4.2 and Theorem 4.4.

For the utility, let Ds ∼ Sp(D) denote the subsampled
dataset that is fed as an input to DPSUBMODGREEDYln(2)

and let T ∗ := {c∗1, . . . , c∗k} denote the output set. From
Theorem 4.5, w.p. 1− β/2, we have

FDs
(T ∗) ≥

(
1− 1

e

)
· max
T⊆S,|T |=k

FDs
(T )

−O

(
k log

(
m

β

))
. (1)

Furthermore, applying the Chernoff bound (Theorem 2.1)
with Zx := fx(T ) · 1[x ∈ Ds], µ = p · FD(T ), α =

0.01η, ζ = 2000k log(m/β)
η and a union bound over all sets

T ∈
( U
≤k

)
, we can conclude that the following hold simulta-

neously for all T ∈
( U
≤k

)
w.p. at least 1− β/2:

FDs(T ) ≥ (1− α)p · FD(T )− ζ, (2)
FDs(T ) ≤ (1 + α)p · FD(T ) + ζ. (3)

When (1), (2), and (3) all hold, we have

FD(T ∗)

(3)
≥ 1

(1 + α)p
FDs(T

∗)− ζ/p

(1)
≥ 1

(1 + α)p
·
(
1− 1

e

)
· max
T⊆S,|T |=k

FDs
(T )

−O

(
k log(m/β)

p

)
− ζ/p

(2)
≥ 1− α

1 + α
·
(
1− 1

e

)
· max
T⊆S,|T |=k

FD(T )

−O

(
k log(m/β)

p

)
− 2ζ/p

≥
(
1− 1

e
− η

)
· max
T⊆S,|T |=k

FD(T )−O

(
k log(m/β)

ηε

)
,

which concludes our proof.

4.1.2. MONOTONE SUBMODULAR MAXIMIZATION
UNDER MATROID CONSTRAINT

For maximization over a matroid, the greedy algorithm is
not known to achieve 1− 1/e approximation ratio. Instead,
one has to resort to the so-called continuous greedy algo-
rithm of Călinescu et al. (2011) (which is in turn based on
an earlier algorithmic idea by Vondrák (2008)). Chaturvedi
et al. (2021) followed this route and privatized the continu-
ous greedy algorithm, albeit only achieving approximate-DP.
Similarly to the above, we show that this algorithm in fact
satisfies one-sided DP and, using the subsampled version
of it, we prove Theorem 1.3. Due to space constraints, we
defer the full proof to Appendix D.

4.1.3. METRIC k-MEANS AND k-MEDIAN

For metric k-means/median, we first use the repeated ex-
ponential mechanism to select O(k log n) points that form
a bicriteria O(1)-approximate solution (where “bicriteria”
refers to the fact that the set has size larger than k). To turn
a bicriteria solution to an actual solution, we use a standard
technique in private clustering (Jones et al., 2021; Ghazi
et al., 2020): we snap each input point to the closest point in
the bicriteria solution and add noise to the counts to create
“private synthetic data”. We can then run any non-private
approximation algorithm on this synthetic data to get our
ultimate solution. As described, this algorithm only satisfies
one-sided DP. To achieve two-sided DP, we again use the
subsampled version of it, similar to Theorem 1.2. The full
proof is deferred to Appendix G.

5. Algorithm II: Repeated Above Threshold
Again, the interaction proceeds in L rounds. In round i, the
algorithm is given a function hi : X ∗ → R together with
a threshold τi (which can depend on the outputs from the
previous rounds). The goal is to decide whether hi(D) ≥ τi.
The algorithm we consider is one that repeatedly applies
a variant of the AboveThreshold algorithm (Dwork et al.,
2009)13, where we only add noise to the function (but not
to the threshold as in (Dwork et al., 2009)) and the noise
is drawn from the exponential distribution14 (rather than
the Laplace distribution); see Algorithm 2. We remark that
our algorithm is also different from both previous works
of Kaplan et al. (2021) (who need add another noise term to
make their analysis work) and of Cohen & Lyu (2023) (who
simply use the Laplace mechanism in each round).

We analyze the DP guarantee of Algorithm 2 under the
following assumptions (similar to the ones in Section 4).

Assumption 5.1 (Monotonicity). For every i, adding an
element to D does not decrease hi(D).

13See also Algorithm 1 in Dwork & Roth (2014).
14Recall that Exp(λ) has CDF 1− e−λx for x ∈ [0,∞).
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Assumption 5.2 (Bounded Realized Sensitivity). For ev-
ery add-remove neighbors D,D′ and all possible se-
quences (h1, . . . , hL) of functions and outputs (o1, . . . , oL),∑

i∈[L]
oi=⊤

|hi(D)− hi(D
′)| ≤ ∆.

Algorithm 2 REPEATED-ATε0,A

Parameters: ε0 > 0, an algorithm A for selecting candi-
date and scoring functions

Input: Dataset D ∈ X ∗

for i = 1, . . . , L do
(hi, τi)← A(c∗1, . . . , c∗i−1)
θi ∼ Exp(ε0/∆)
if hi(D) + θi > τi then
c∗i = ⊤

else
c∗i =⊥

return (c∗1, . . . , c
∗
L)

Theorem 5.3. Under Assumptions 5.1 and 5.2,
REPEATED-ATε0,A (Algorithm 2) is ε0-add-DP.

Proof. Consider any D,D′ such that D = D′ ∪ {x} for
some x, and any output o = (o1, . . . , oL). We will writeM
as a shorthand for REPEATED-ATε0,A. Let I⊤ := {i ∈ L |
oi = ⊤} and I⊥ := {i ∈ L | oi = ⊥}. We have

Pr[M(D) = o]

Pr[M(D′) = o]
=
∏
i∈I⊤

Pr[hi(D) + θi > τi]

Pr[hi(D′) + θi > τi]

·
∏
i∈I⊥

Pr[hi(D) + θi ≤ τi]

Pr[hi(D′) + θi ≤ τi]
.

Since hi(D
′) ≤ hi(D) (Assumption 5.1), we have

Pr[hi(D)+θi≤τi]
Pr[hi(D′)+θi≤τi]

≤ 1. Meanwhile, from the def-

inition of Exp
(
ε0
∆

)
, we have Pr[hi(D)+θi≤τi]

Pr[hi(D′)+θi≤τi]
≤

exp
(
ε0
∆ · (hi(D)− hi(D

′))
)
. Thus, we have

Pr[M(D) = o]

Pr[M(D′) = o]
≤ exp

(
ε0
∆
·
∑
i∈I⊤

(hi(D)− hi(D
′))

)
≤ exp(ε0),

where the second inequality is from Assumption 5.2.

By applying Corollary 3.2, we immediately have that its
subsampled variant is ε-DP:
Theorem 5.4. Under Assumptions 5.1 and 5.2,
REPEATED-ATSp

ln(2),A is ε-DP for p = 1− e−ε.

5.1. Applications

5.1.1. SHIFTING HEAVY HITTERS

To formalize our result, we need to first formalize the
assumption that “each user contributes to at most k

heavy hitters”. To do this, let us first define τ∗(k) :=
4000k log(T |Y|/β)

ε to be (half of) our target error. The as-
sumption we work with is the following, which is the same
as that of Kaplan et al. (2021) (but with different τ∗(k)).

Assumption 5.5. For every user i ∈ [n], we have
|{t ∈ [T ] | wt(xi) > τ∗(k)}| ≤ k.

Our theorem can now be formalized as follows.

Theorem 5.6. For any 0 < ε ≤ 1, under Assumption 5.5 for
τ∗(k) = 1000k log(T |Y|/β)

ε , there is a shifting heavy hitters
algorithm with error 2τ∗(k) w.p. 1− β.

Note that Assumption 5.5 is required only for utility; privacy
guarantee holds for all input datasets, as is standard in DP.

Our THRESHMONITORε0,τ,k algorithm (which is a simpli-
fication of the algorithm from Kaplan et al. (2021)) is pre-
sented in Algorithm 3. Here, we keep the counter Ci for
the number of times the user i has contributed to the heavy
hitters. When this hits k, we simply drop this user and never
include this user in the counts in the subsequent rounds.

Algorithm 3 THRESHMONITORε0,τ,k

Parameters: ε0 > 0, τ the desired heavy hitter threshold,
k ∈ N limit on the number of contributions

Input: Input data stream D ∈ (YT )n

I ← [n]
for i = 1, . . . , n do
Ci ← 0

for t = 1, . . . , T do
for y ∈ Y do
wI

t (y;D)← |{i ∈ I | xi,t = y}|
θt,y ∼ Exp(ε0/k)
if wI

t (y;D) + θt,y > τi then
Report y for time step t
for i ∈ I such that xi,t = y do
Ci ← Ci + 1
if Ci = k then
I ← I ∖ {i}

We are now ready to prove Theorem 5.6.

Proof of Theorem 5.6. We use the subsampled version of
THRESHMONITOR, i.e., THRESHMONITOR

Sp

ln(2),τ,k for
p = 1 − e−ε and τ = 1.5p · τ∗(k). It is not hard to see
that THRESHMONITOR is an instantiation of Algorithm 2
with hI

t,x(D) := wI
t (x) that satisfies Assumption 5.1 and

Assumption 5.2 with ∆ = k. Thus, Theorem 5.4 implies
that THRESHMONITOR

Sp

ln(2),τ,k is ε-DP as desired.

To see the utility guarantee, let Ds denote the subsam-
pled dataset used as the input to THRESHMONITORln(2),τ,k.
Note also that τ∗(k)·p ≥ 0.5τ∗(k)·ε = 2000k ln(T |Y|/β).
We first apply the Chernoff bound (Theorem 2.1) with

7
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Zi := 1 [i ∈ Ds] · 1[xi,t = y], µ = p · wt(y;D), α =
0.1, ζ = 100 · ln(2T |Y|/β) ≤ 0.1p · τ∗(k) together with a
union bound over all t ∈ [T ], y ∈ Y , we can conclude that
the following hold simultaneously for all t ∈ [T ], y ∈ Y
with probability at least 1− β/2:

wt(y;Ds) ≥ 0.9p · wt(y;D)− 0.1p · τ∗(k), (4)
wt(y;Ds) ≤ 1.1p · wt(y;D) + 0.1p · τ∗(k). (5)

Furthermore, by tail bounds for exponential noise, the fol-
lowing holds for all t ∈ [T ], x ∈ X with probability 1−β/2:

θt,y ≤ k log(2T |Y|/β) ≤ 0.01τ∗(k). (6)

We will continue the remainder of the analysis assuming
that (4), (5), and (6) hold for all t ∈ [T ], y ∈ Y; by a union
bound, this occurs with probability at least 1− β.

By (5) and (6), if y is reported at time t, then we must have

wt(y;D) ≥ τ − 0.1p · τ∗(k)
1.1p

> τ∗(k).

This satisfies the first part of the accuracy requirement. Fur-
thermore, this and Assumption 5.5 imply that each data
record i in Ds contributes to at most k reported heavy hit-
ters. Thus, I remains the entire dataset for the entire run.
As a result, for each (2τ∗(k))-heavy hitter y at time step t,

wI
t (y;D)

(4)
≥ 0.9p · 2τ∗(k)− 0.1p · τ∗(k) > τ.

Since θt,y ≥ 0, this implies that y is reported at time t. Thus,
the algorithm satisfies the claimed accuracy bounds.

5.1.2. SET COVER

We use the so-called greedy scaling algorithm from Kumar
et al. (2015). Their algorithm works in O(log n) rounds. In
each round, we iteratively keep all sets that cover at least
a certain number of elements; this threshold is geometri-
cally decreased across different rounds until every element
is covered. We adapt this algorithm to the DP setting using
our REPEATED-AT algorithm (Algorithm 2) to find the sets
to be picked in each round. Note that we also resample
the dataset Ds in each round to avoid having to do a union
bound over too large a number of events. This requires us
to carefully split the privacy budget in each round (which
we assigns in geometrically increasing manners). The com-
plete description is presented in Algorithm 4. Due to space
constraints, we defer the full proof to Appendix E.

6. Conclusion and Open Questions
In this work, we make a simple observation that subsampling
a one-sided DP mechanism makes it two-sided DP. Applying

Algorithm 4 DPGREEDYSCALINGε

Parameters: ε > 0
Input: Input universe D ∈ X ∗, subsets S1, . . . , Sm ⊆ D
I ← [m]
nmin ← 100 logm
ñ← max {n+ Lap(0.5/ε), nmin}
j ← 1
R← ⌊log(ñ/nmin)⌋
for r = 1, . . . , R do
τr ← 1000 · ñ

2r

εr ← ε
4·2R−r

pr ← 1− e−εr

Ds,r ∼ Spr (D)
for i ∈ I do
θr,i ∼ Exp(ln(2))

if
∣∣∣(Si ∩Ds,r)∖

(⋃
j′<j Sπ(j′)

)∣∣∣ + θr,i > pr · τr
then

π(j)← i
I ← I ∖ {i}
j ← j + 1

for i ∈ I do
π(j)← i
j ← j + 1

return (π(1), . . . , π(m))

this observation to the repeated exponential mechanism and
the repeated above threshold mechanism, we obtain novel
pure-DP algorithms for several combinatorial optimization
problems and for the shifting heavy hitters problem. It
remains interesting to explore the applications of this frame-
work further. One clear barrier of the current approach is that
it requires monotonicity (Assumptions 4.1 and 5.1). This
prevents us from applying this to the non-monotone sub-
modular maximization problems; meanwhile (Chaturvedi
et al., 2021) show that a Gupta et al.-like analysis still works
for approximate-DP. In particular, they achieve

(
1
e − η

)
-

approximation and O

(
k log( m

ηβ ) log(1/δ)
ηε

)
-error for non-

monotone submodular maximization under matroid con-
straint. A concrete question here is whether we can achieve
a similar guarantee under pure-DP.

Impact Statement

This work advances the area of optimization and data ana-
lytics with privacy. There might be potential societal con-
sequences of our work, none which we feel is significant
enough to be highlighted.
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A. Additional Related Work
Below we provide additional discussion on related work.

AboveThreshold with Individualized Privacy Loss. As stated earlier, Kaplan et al. (2021) provide a modification of
the sparse vector technique (SVT) (Dwork et al., 2009) that can be used for individualized privacy loss. Their algorithm is
similar to Algorithm 2 presented in our work except that (i) they use Laplace noise (since they want two-sided DP), (ii)
they add noise to the threshold (similar to standard SVT) and (iii) they also add another “noise of noise” term to the query
value. The last one is to help with the analysis but results in an increase of O(log(log(1/δ)/ε)) in their error bound. Very
recently, Cohen & Lyu (2023) gave a different algorithm for the task that gets rid of this bound. Their algorithm is essentially
the same as our Algorithm 2 with the exception that they use Laplace noise instead of Exponential noise. The framework of
Cohen & Lyu (2023) is extremely generic and individualized privacy loss accounting is only one of the applications of their
framework. However, their results only apply for approximate-DP. It remains interesting to see if our framework can be used
for any of the applications in their paper.

Private Submodular Maximization. Although our paper assumes that the function is decomposable, DP submodular
maximization has also been studied under other assumptions. For example, Mitrovic et al. (2017) also study the setting where
the function FD is only assumed to have low-sensitivity, i.e., |FD(S)− FD′(S)| ≤ ∆ for all neighboring datasets D,D′.
This is a more relaxed assumption than decomposability. Our techniques do not seem to apply here, both because (i) it is not
clear how to related the subsampled function value to the function value on the entire dataset and (ii) the individualized
privacy accounting is not known to be applicable here even for approximate-DP. It remains an interesting question whether
one can get improved bound under this weaker assumption. Note that, for 1-sensitive monotone submodular functions,
the best ε-DP algorithm under cardinality constraint is still from (Mitrovic et al., 2017) and achieves approximation ratio(
1− 1

e

)
and error O

(
k2 logn

ε

)
. For matroid constraint, the best algorithm is that of Rafiey & Yoshida (2020), which

achieves the same approximation ratio but with error O
(

k7 logn
ε3

)
.

Another related work on the topic is by Sadeghi & Fazel (2021), who gave an improved approximation algorithm if the
total curvature of the function is smaller than one and also proposed an algorithm for the online setting. A recent work
of Chaturvedi et al. (2023) also studied private submodular maximization in the streaming setting. Finally, we note that the
aforementioned work also considered other settings including non-monotone functions. Our techniques do not apply in this
case; we provide more discussion regarding this in Section 6.

Partial Set Cover. Li et al. (2023) initiated a study of private partial set cover, where it suffices to cover a fraction (not all)
of the elements, and apply it as a subroutine to the DP k-supplier with outlier problem. Since they also use Gupta et al.’s
algorithm, our technique can be applied to their setting to achieve improved bounds as well.

Private Clustering. We remark that in (Gupta et al., 2010; Jones et al., 2021), the metric k-median problem is defined in
so that each point in the metric can appear in the dataset only once. This implies n ≤ m and their bound thus only depends
on m. We choose to state the more general formulation and bounds here, which is why we also have the dependency on n.

While we focus our attention on discrete finite metric, DP clusterings have also been studied in other infinite metrics, such
as the ℓp-metric (Blum et al., 2005; Feldman et al., 2009; Nissim & Stemmer, 2018; Stemmer & Kaplan, 2018; Ghazi et al.,
2020; Jones et al., 2021; Nguyen et al., 2021; Chang et al., 2021). Some of these works, e.g., (Jones et al., 2021; Nguyen
et al., 2021), uses the repeated exponential mechanism as a subroutine. Therefore, our techniques can be applied to reduce
the errors in these bounds.

Amplification by Subsampling. There is, by now, a large body of literature on DP amplification by subsampling (e.g., (Li
et al., 2012; Balle et al., 2018; Wang et al., 2020; Abadi et al., 2016)). However, we are not aware of any result that allows
us to goes from an approximate-DP guarantee to a pure-DP guarantee, which is what Theorem 4.4 achieves (albeit with a
one-sided DP requirement). It remains an intriguing question to further explore the power of amplification by subsampling.

11
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B. Lower Bound for Shifting Heavy Hitters
We prove the following lower bound for the shifting heavy hitters problem, which shows that the bound on τ∗(k) we
achieved in Theorem 5.6 is essentially tight.

Theorem B.1. For any sufficiently large k, T ∈ N such that T ≥ k, ε ∈ (0, 1) and |Y| ≥ 5, there is no ε-DP algorithm that

can achieve 2τ∗(k) error w.p. 0.5 under Assumption 5.5 for τ∗(k) = 0.001k log
(

|Y|T
k

)
.

Proof. Assume w.l.o.g. that Y = [r+3] for r ∈ N. Suppose for the sake of contradiction that there exists an ε-DP algorithm
M that achieve 2τ∗(k) error w.p. 0.5 under Assumption 5.5 for τ∗(k) = 0.001k log

(
|Y|T
k

)
. Let X ′ denote the set of all

vectors in {0, . . . , r}T whose Hamming weight is at most k. For each x = (x1, . . . , xT ) ∈ X ′, let Dx denote dataset where
there are n = 2τ∗(k) + 1 users and, for each i ∈ [n], user i’s input xi = (xi,1, . . . , xi,T ) is defined as follows:

xi,t =

{
xt if xt ̸= 0

r + 1 + ⌈3(i− 1)/n⌉ otherwise.

for all t ∈ [T ]. Notice here that r + 1, r + 2, r + 3 are never τ∗(k)-heavy hitters. Thus, since the Hamming norm of x is at
most k, Assumption 5.5 is satisfied.

Now, let Ox be the set of outcomes where xt is reported at time t for all t ∈ [T ] such that xt ̸= 0 and no element
in [r] ∖ {xt} is reported. From the utility guarantee of M, we have Pr[M(Dx) ∈ Ox] ≥ 1/2. From ε-DP, we have
Pr[M(∅) ∈ Ox] ≥ e−ε·n/2. Meanwhile, since Ox are disjoint for all x ∈ X ′, we have

1 ≥
∑
x∈X ′

Pr[M(∅) ∈ Ox]

≥ |X ′| · e−ε·n/2

≥ r⌈0.1k⌉
(

T

⌈0.1k⌉

)
e−ε·n

2

≥
(
rT

k

)0.01k
e−ε·n

2

> 1,

where the last inequality follows from our choice of n = 2τ∗(k) + 1. This completes our proof.

C. Counterexample for Pure-DP without Subsampling
Recall that, if we apply the (basic) composition theorem to the L calls of exponential mechanisms in REPEATED-EMε,A
(Algorithm 1), we get that the algorithm is 2Lε-DP. (Note that this is two-sided DP.) The lemma below shows that we cannot
hope to do much better than this bound. This lemma also gives a justification to our subsampling framework since we can
achieve ε-DP with subsampling (Theorem 4.4).

Lemma C.1. There exists A that satisfies Assumption 4.1 and Assumption 4.2 but that REPEATED-EMε,A is not ε′-DP for
any ε′ < Lε.

Proof. In fact, we will use the instantiation for 1-decomposable submodular function as in Section 4.1.1. Let m =⌈
1 + (eε−1)L

eε−eε′/L

⌉
, D′ = ∅, and D = {x}, where fx is defined as fx(S) = min{1, |S ∩ [m − L]|} for S ⊆ [m]. LetM

denote the mechanism DPSUBMODGREEDYε,FD
from Section 4.1.1 (which is an instantiation of REPEATED-EMε,A).

Now, consider the output o = (m− L+ 1, . . . ,m). Then, we have

Pr[M(D′) = o]

Pr[M(D) = o]
=
∏
i∈[L]

Pr[EXPMECH ε0
∆
(Ci, qi;D′) = oi]

Pr[EXPMECH ε0
∆
(Ci, qi;D) = oi]

=
∏
i∈[L]

1
m−i+1

1
eε(m−L)+L−i+1

12
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<
∏
i∈[L]

eε
′/L

= eε
′
,

where the inequality is due to our choice of parameter m. Thus, the algorithm is not ε′-DP.

D. Monotone Submodular Maximization over Matroid Constraint
As mentioned earlier, we will use the private version of the continuous greedy algorithm due to Chaturvedi et al. (2021). To
describe the algorithm, we need several additional definitions.

Definition D.1 (Multilinear Extension). For a given set function F : 2[m] → R, its multilinear extension Fmult : [0, 1]m →
R defined by

Fmult(y) =
∑

S⊆[m]

F (S)
∏
i∈S

yi
∏

i∈([m]∖S)

(1− yi).

For a given matroid M = ([m], I), we write P(M) to denote the matroid polytope, which is the convex hull of all
characteristics of all independent sets inM. The continuous greedy algorithm finds a vector inP(M) with a large multilinear
extension value. Since computing the multilinear extension directly is inefficient, it is only computed approximately.
In (Chaturvedi et al., 2021), this was done by randomly sampling z1, . . . , zs uniformly and independently from [0, 1]m, and
then computing

Gz(y) :=
1

s

∑
j∈[s]

F ({u ∈ [m] | zju < yu}),

and using it as a proxy for the multilinear extension. The full algorithm is presented in Algorithm 5.

Algorithm 5 PrivContGreedyε0,η,s (Chaturvedi et al., 2021)
Parameters: ε0 > 0, step size η, number of draws s
Input: Dataset D ∈ X ∗

T ← ⌈1/η⌉
k ← rank(M)
z1, . . . , zs ∼ [0, 1]m

for t = 1, . . . , T do
Bt,0 ← ∅
for i = 1, . . . , k do
Ct,i ← {u ∈ [m]∖Bt,i−1 | Bt,i−1 ∪ {u} ∈ I}
if Ct,i = ∅ then

yt,i ← yt,i−1

else
qt,i(u;D)← Gz

D(yt,i−1 + η · 1u)−Gz
D(yt,i−1) for all u ∈ Ct,i

ut,i ← EXPMECHε0(Ct,i, qt,i;D)
yt,i ← yt,i−1 + η · 1ut,i

Bt,i ← Bt,i−1 ∪ {ut,i}
yt+1,0 ← yt,k

return yT,k

Let gzx := 1
s

∑
j∈[s] fx({u ∈ [m] | zju < yu}). Notice that Gz

D =
∑

x∈D gzx. The utility guarantee of Algorithm 5 was
shown in (Chaturvedi et al., 2021); we state this below.

Theorem D.2 (Chaturvedi et al. 2021). For any β > 0, let s = 6k2T 4 · log(m/β), then with probability 1− β, the output
y = yT,k satisfies

Fmult
D (y) ≥

(
1− 1

e
− η

)
max
S∈I
{FD(S)} −O

(
k

ηε
log

m

ηβ

)
.

13
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It is simple to see that qt,i is monotone. Moreover, as observed in (Chaturvedi et al., 2021), the realized marginal sensitivity
of the score Gz

D is bounded:
Observation D.3 (Chaturvedi et al. 2021). For any z1, . . . , zs ∈ [0, 1]m, any neighboring datasets D′ and D = D′ ∪ {x}
and any selection of (ut,i)t∈[T ],i∈[k], we have∑

t∈[T ]

∑
i∈[k]

∣∣qt,i(ut,i;D)− qt,i(ut,i;D′)
∣∣

=
∑
t∈[T ]

∑
i∈[k]

[(
Gz

D(yt,i)−Gz
D(yt,i−1)

)
−
(
Gz

D′(yt,i)−Gz
D′(yt,i−1)

)]
=
∑
t∈[T ]

∑
i∈[k]

(
gzx(y

t,i)− gzx(y
t,i−1)

)
= gzx(y

T,k)− gzx(y
1,0) ≤ 1.

Combining these observations together with Theorem 4.3 immediately yields the following:

Lemma D.4. For any 0 < ε, η, β < 1, there is an ε-add-DP algorithm that for matroid submodular maximization that with
probability 1− β outputs y such that

Fmult
D (y) ≥

(
1− 1

e
− η

)
max
S∈I
{FD(S)} −O

(
k

ηε
log

m

ηβ

)
.

Rounding. To get from a fractional solution to an integral solution (i.e., a set), we recall the following rounding algorithm
due to Chekuri et al. (2010). It should be noted that this rounding algorithm only depends on y (and the matroidM) and
does not depend on the function F .

Definition D.5 (Chekuri et al. 2010). LetM = ([m], I) be any matroid. There exists a randomized rounding algorithm
SwapRound that takes in y ∈ P(M) and output a set S ∈ I such that, for any submodular function F and any y ∈ [0, 1]m,
we have

ES∼SwapRound(y)[F (S)] ≥ Fmult(y).

We use a slightly different rounding procedure compared to (Chaturvedi et al., 2021): while they apply SwapRound once,
we apply it multiple times and use the exponential mechanism to pick the best of them. This allows us to get high probability
bound (compared to expected bound) on the approximation ratio and error. This is summarized below.

Lemma D.6. For any 0 < ε, η, β < 1, there is an ε-add-DP algorithm that for matroid submodular maximization that with
probability 1− β outputs S∗ ∈ I such that

FD(S∗) ≥
(
1− 1

e
− η

)
max
S∈I
{FD(S)} −O

(
k

ηε
log

m

ηβ

)
.

Proof. The algorithm works as follows:

• Run the algorithm from Lemma D.4 with parameters ε/2, η/2, β/3 to get y ∈ P(M).
• Run SwapRound(y) h = ⌈10 log(3/β)/η⌉ times to arrive at sets S∗

1 , . . . , S
∗
h.

• Use (ε/2)-DP exponential mechanism based on the score q(S∗
i ;D) := FD(S∗

i ) to select S∗ from S∗
1 , . . . , S

∗
h to

(approximately) maximize FD(S∗).

Since the second step is just a post-processing of the result from the first step, we can apply composition across the two
add-DP mechanisms in the first and last steps to conclude that this is ε-add-DP.

As for the utility, recall from Lemma D.4 that with probability 1− β/3, we have

Fmult
D (y) ≥

(
1− 1

e
− η

2

)
max
S∈I
{FD(S)} −O

(
k

ηε
log

m

ηβ

)
. (7)
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For fixed y, let θ := Fmult
D (y) and OPT := maxS∈I FD(S). Since ES∼SwapRound(y)[FD(S)] = Fmult

D (y) = θ and
FD(S) ≤ OPT for all S ∈ I, Markov inequality implies that

Pr
S∼SwapRound(y)

[FD(S) ≥ θ − η ·OPT/2] = 1− Pr
S∼SwapRound(y)

[OPT− FD(S) > OPT+ η ·OPT/2− θ]

≥ 1− OPT− θ

OPT+ η ·OPT/2− θ

=
η ·OPT/2

OPT + η ·OPT/2− θ

≥ η/4.

Thus, by our choice of h, the following holds with probability at least 1− β/3:

max{FD(S∗
1 ), . . . , FD(S∗

h)} ≥ Fmult
D (y)− η ·OPT/2. (8)

Finally, by the utility of the exponential mechanism (Theorem 2.2), with probability at least 1− β/3, the following holds:

FD(S∗) ≥ max{FD(S∗
1 ), . . . , FD(S∗

h)} −O

(
log(h/β)

ε

)
. (9)

When (7),(8), and (9) all hold (which happens with probability at least 1− β due to the union bound), we have

FD(S∗) ≥
(
1− 1

e
− η

)
max
S∈I

FD(S)−O

(
k

ηε
log

m

ηβ

)
,

which concludes our proof.

We are now ready to prove the main theorem here (Theorem 1.3) by appealing to concentration bounds (similar to the proof
of Theorem 1.2).

Proof of Theorem 1.3. Let Aε,η,β denote the algorithm from Lemma D.6. We simply run the subsampled version of this
algorithm. More precisely, we use the algorithm ASp

ln(2),η/2,β/2 where p = 1 − e−ε. The privacy guarantee immediately
follows from Theorem 4.3.

To analyze the utility, let Ds ∼ Sp(D) denote the subsampled dataset that is fed as an input to Aln(2),η/2,β/2 and let S∗

denote the output set. By the utility guarantee of A (Lemma D.6), with probability 1− β/2, we have

FDs(S
∗) ≥

(
1− 1

e
− η

2

)
·max
S⊆I

FDs(S)−O

(
k

η
log

m

ηβ

)
. (10)

Furthermore, applying the Chernoff bound (Theorem 2.1) with Zx := fx(S) · 1[x ∈ Ds], µ = p · FD(S), α = 0.1η, ζ =
100k log(m/β)

η together with a union bound over all sets S ∈
( U
≤k

)
, we can conclude that the following holds simultaneously

for all S ∈
( U
≤k

)
with probability at least 1− β/2:

FDs
(S) ≥ (1− α)p · FD(S)− ζ, (11)

FDs
(S) ≤ (1 + α)p · FD(S) + ζ. (12)

When (10), (11), and (12) all hold, we have

FD(S∗)
(12)
≥ 1

(1 + α)p
FDs

(S∗)− ζ/p

(10)
≥ 1

(1 + α)p
·
(
1− 1

e
− η

2

)
·max
S∈I

FDs
(S)−O

k log
(

m
ηβ

)
ηp

− ζ/p

(11)
≥ 1− α

1 + α
·
(
1− 1

e
− η

2

)
·max
S∈I

FD(S)−O

k log
(

m
ηβ

)
ηp

− 2ζ/p
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≥
(
1− 1

e
− η

)
·max
S∈I

FD(S)−O

k log
(

m
ηβ

)
ηε

 ,

where the last inequality follows from our choice of parameters.

E. Set Cover: Proof of Theorem 1.4
Proof of Theorem 1.4. We use DPGREEDYSCALINGε0 . To see the privacy guarantee of the algorithm, note that the
computation of ñ is 0.5ε-DP. Meanwhile, the rth round is (a post-processing of) an instantiation of REPEATED-ATSpr

ln(2),A

with hr,i(D) =
∣∣∣(Si ∩D)∖

(⋃
j′<j Sπ(j′)

)∣∣∣. It is simple to verify that this satisfies Assumptions 5.1 and 5.2. Thus,
Theorem 5.4 implies that the rth round is εr-DP. Applying (basic) composition theorem, we get that the entire algorithm is
ε′-DP for

ε′ = 0.5ε+
∑
r∈N

εr ≤ ε,

as desired.

Next, we analyze the approximation guarantee. If n ≤ 1000 log(m/β)
ε , then any output will yield an approximation ratio at

most n ≤ O
(

log(m/β)
ε

)
. Hence, we may assume w.l.o.g. that n > 1000 log(m/β)

ε . In this case, standard tail bounds for
Laplace noise shows that with probability 1− β/3, we have

0.5ñ ≤ n ≤ 2ñ. (13)

We will condition on this event happening for the remainder of the analysis.

We write Sπ(<j) as a shorthand for
⋃

j′<j Sπ(j′). For all r = {0, . . . , R}, let βr = β/2R−r and let jr denote the value of j
at the end of round r. Furthermore, let q = 100 · SetCov(C,S).

Let us fix r ∈ [R]. By tail bounds for exponential noise, the following holds for all i ∈ I with probability 1− βr/6:

θr,i ≤ log(6m/βr). (14)

Furthermore, applying the Chernoff bound (Theorem 2.1) with Zx := 1
[
x ∈ (D ∖ ST∪π(<jr−1))

]
· 1[x ∈ Ds,r], µ =

p · |D ∖ ST∪π(<jr−1)|, α = 0.3, ζr = 10 · ln(12mq/βr) together with a union bound over all sets T ∈
(
[m]
≤q

)
, we can

conclude that the following hold simultaneously for all T ∈
(
[m]
≤q

)
with probability at least 1− βr/6:

|Ds,r ∖ ST∪π(<jr−1)| ≥ 0.7pr|D ∖ ST∪π(<jr−1)| − ζr, (15)

|Ds,r ∖ ST∪π(<jr−1)| ≤ 1.3pr|D ∖ ST∪π(<jr−1)|+ ζr. (16)

Note that, by a union bound, the probability that (13) holds and (14), (15), and (16) hold for all r ∈ [R] is at least

1− β

3
−
∑
r∈[R]

2βr

6
≥ 1− β.

For the remainder of the analysis, we will assume that (13) holds and (14), (15), and (16) hold for all r ∈ [R]. A crucial
claim used to bound the approximation ratio is stated below.
Claim E.1. For all r ∈ [R], we have

jr − jr−1 ≤ q, (17)

and

|D ∖ Sπ(<jr)| ≤
0.1q · τr

pr
. (18)
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Before we prove Claim E.1, let us show how to use this to finish the proof of the approximation guarantee. The number of
total sets chosen is at most

jR + |D ∖ Sπ(<jR)| ≤ R · q + 0.1q · τR
pR

≤ O

((
log n+

logm

ε

))
· SetCov(C,S),

where the first inequality is due to Claim E.1 and the second inequality is due to our choice of parameters. Thus, we can
conclude that the approximation ratio is O

(
log n+ logm

ε

)
as desired.

We now prove Claim E.1.

Proof of Claim E.1. Before we proceed, let us state a few inequalities that will be subsequently useful. First, note that
τr = ñ

2r ≥ nmin · 2R−r. From this, we can derive

θr,i
(14)
≤ log(6m/βr) = log(m/β) + (R− r + 3) ≤ 0.005τr, (19)

and

ζr = 10 · ln(12mq/βr) ≤ 10q ln(m/βr) ≤ 0.05qτr. (20)

For brevity, we call the two statements in the claim P (r). We will prove P (r) by induction. For convenience, we also define
P (0) where we let j−1 = j0, τ0 = ñ, ε0 = ε

4·2R and p0 = 1− e−ε0 .

Base case. For r = 0, (17) trivially holds. Meanwhile, (18) follows immediately from (13).

Inductive Step. Suppose that P (r − 1) holds for some r ∈ N. To see that (17) holds, note that (18) from P (r − 1) and
(16) with T = ∅ implies that

|Ds,r ∖ Sπ(<jr−1)|
(16)
≤ 1.3pr|D ∖ Sπ(<jr−1)|+ ζr

(18)
≤ 1.3pr ·

0.1qτr−1

pr−1
+ ζr.

Note that pr

pr−1
= 1−e−εr

1−e−εr/2 = 1 + e−εr/2 ≤ 2 and that τr−1 = 2τr. Plugging these together with (20) into the above, we
get

|Ds,r ∖ Sπ(<jr−1)| ≤ 0.52qτr + 0.05qτr ≤ 0.6τr.

From (19), every set chosen in round r covers at least 0.995τr additional uncovered elements in Ds,r. As a result, the
number of sets chosen in round r (which is equal to jr − jr−1) is at most

|Ds,r ∖ Sπ(<jr−1)|
0.995τr

≤ 0.6qτr
0.995τr

< q,

proving (17).

Next, we will prove (18). First, observe that at the end of the rounds, since θr,i are all non-negatives, the remaining
sets i /∈ I must satisfy |Ds,r ∩ Si| < τr. This implies that the number of remaining elements |Ds,r ∩ Sπ(<jr)| is
at most τr · SetCov(C,S) = 0.01τr · q. From (17), we have jr − jr−1 ≤ q. Thus, we may apply (15) with T =
{π(jr−1), . . . , π(jr − 1)} to arrive at

|D ∖ Sπ(<jr)| <
|Ds,r ∖ Sπ(<jr)|+ ζr

0.7pr
≤ 0.01τr · q + 0.05qτr

0.7pr
<

0.1q · τr
pr

,

proving (18).

Thus, P (r) holds for all r ∈ [R]. This completes our proof.
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F. On Set Cover via Subsampled Repeated EM
The algorithm of Gupta et al. (2010) for Set Cover is exactly the same as their algorithm for submodular maximization
(DPSUBMODGREEDYε0) except with k = m and F SetCov

D (T ) := |
⋃

i∈T Si|. Finally, the output permutation is just
π = (c∗1, . . . , c

∗
m). Similar to Section 4.1.1, it is possible to use the subsampled version of this algorithm for Set Cover.

Unfortunately, here we can only show an approximation ratio of O
(

logn logm
ε

)
instead of the optimal O

(
log n+ logm

ε

)
that we presented in Section 5.1.2:

Theorem F.1. For any 0 < ε, β, η ≤ 1, DPSUBMODGREEDY
Sp

ln(2),FSetCov
D

where p = 1− e−ε is a polynomial-time ε-DP

algorithm for Set Cover that achieves O
(

logn log(m/β)
ε

)
-approximation with probability 1− β.

We state the utility guarantee of DPSUBMODGREEDY from (Gupta et al., 2010) in a fine-grained fashion below.
Theorem F.2 (Gupta et al. 2010). With probability 1− β, the output π from DPSUBMODGREEDYε0,FSetCov

D
satisfies the

following: there exists r = O(SetCov(U ,S) · log n) such that
∣∣∣Si ∖

(⋃
j∈[r] Sπ(j)|

)∣∣∣ ≤ O
(

log(m/β)
ε0

)
for all i ∈ [m].

Proof of Theorem F.1. The privacy guarantee follows in a similar manner as in the proof of Theorem 1.2.

To analyze the utility, let Ds ∼ Sp(D) denote the subsampled dataset that is fed as an input to
DPSUBMODGREEDYln(2),FSetCov

D
; note that we view Ds as the universe U and let S′

i := Ds ∩ Si for all i ∈ [m]. Further-

more, let us abbreviate
(⋃

j∈T Sj

)
as ST ,

(⋃
j∈T S′

j

)
as S′

T ; furthermore, we abbreviate S{π(1),...,π(r)} as Sπ(≤r) and
similarly define S′

π(≤r).By the utility guarantee of DPSUBMODGREEDY (Theorem F.2), with probability 1− β/2, there
exists r = O(SetCov(Ds,S ′) · log n) ≤ O(SetCov(D,S) · log n) where

|S′
i ∖ S′

π(≤r)| ≤ O(log(m/β)) ∀i ∈ [m]. (21)

This means that each S′
i can cover at most O(log(m/β)) elements from Ds ∖ S′

π(≤r), which implies

Ω

(
|Ds ∖ S′

π(≤r)|
log(m/β)

)
≤ SetCov(Ds,S ′) ≤ SetCov(D,S). (22)

Furthermore, applying the Chernoff bound (Theorem 2.1) with Zx := 1 [x ∈ (D ∖ ST )] ·1[x ∈ Ds], µ = p · |D∖ST |, α =
0.1, ζ = 2000r log(m/β) together with a union bound over all sets T ∈

( U
≤r

)
, we can conclude that the following holds

simultaneously for all T ∈
( U
≤r

)
with probability at least 1− β/2:

|Ds ∖ S′
T | ≥ (1− α)p|D ∖ ST | − ζ. (23)

When (22) and (23) both hold, we have

|D ∖ Sπ(≤r)|
(23)
≤ 1

(1− α)p

(
ζ + |Ds ∖ S′

π(≤r)|
)

(22)
≤ 1

(1− α)p
(ζ + log(m/β) · SetCov(D,S))

≤ O

(
log n log(m/β)

ε
· SetCov(D,S)

)
,

where the last inequality follows from our choice of r, p, α.

Finally, observe that the number of sets that are chosen after r is at most |D ∖ Sπ(≤r)|. Thus, in total the number of sets

chosen is at most r + |D ∖ Sπ(≤r)| ≤ O
(

logn log(m/β)
ε · SetCov(D,S)

)
.

G. Metric k-Means and k-Median
We write OPTq

k(D) to denote minS⊆[m]
|S|=k

costq(S;D). Furthermore, for notational convenience, we let costq(∅;D) = n

(i.e., we think of minc∈S d(c, x)q as being 1 when S is empty).

18
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G.1. One-Sided DP Algorithms

G.1.1. BICRITERIA APPROXIMATION

It will be more convenient to start from a one-sided DP algorithm. In fact, we will first give a bicriteria approximation
algorithm where the output set size is O(k log n), as stated below. Note that the algorithm is fairly similar to that of Jones
et al. (2021). However, ours is simpler since we can apply the repeated exponential mechanism (Algorithm 1) directly, while
their algorithm uses maximum k-coverage algorithm as a black-box (and thus they have to handle different distance scales
explicitly).

Theorem G.1. For any 0 < ε, β < 1, there is an ε-add-DP algorithm that, with probability 1− β, outputs a set T ⊆ [m] of

size at most O(k log n) such that costq(T ;D) ≤ OPTq
k(D) +O

(
k·log(m/β)

ε

)
.

Proof. If 2k lnn ≥ m, then the bound is trivial by outputting T = [m]. Otherwise, we use the REPEATED-EMε,A algorithm
with L = ⌈2k lnn⌉ and the candidate sets and scoring functions selected as follows:

• Ci is the set of remaining elements [m]∖ {c∗1, . . . , c∗i−1}
• qi(c;D) is the reduction in the cost after adding c, i.e., costq({c∗1, . . . , c∗i−1};D)− costq({c∗1, . . . , c∗i−1, c};D).

It is simple to see that Assumption 4.1 and Assumption 4.2 are satisfied and thus the algorithm is ε-add-DP by Theorem 4.3.

To analyze its utility, let Ti = {c∗1, . . . , c∗i } denote the solution set maintained by the algorithm at time step i. Invoking
Theorem 2.2 together with a union bound, we can conclude that, with probability 1− β, the following holds for all i ∈ [L].

(costq(Ti;D)− costq(Ti+1;D)) ≥ max
c∈Ci

(costq(Ti;D)− costq(Ti ∪ {c};D))− κ · log(m/β)

ε
, (24)

where κ > 0 is a constant. For the remainder of the proof, we will assume that this event holds.

Let Ψi = costq(Ti; d)−OPTq
k(D) denote the difference between the cost of the solution at the ith step and the optimal

solution (among k-size subsets). Let S∗ denote the optimal solution, i.e., |S∗| = k such that costq(S∗;D) = OPTq
k(D).

If Ψi ≥ 0, then it is simple to see that
∑

c∈S∗ (costq(Ti;D)− costq(Ti ∪ {c};D)) ≥ Ψi. This implies that

maxc∈Ci
(costq(Ti;D)− costq(Ti ∪ {c};D)) ≥ Ψi

k . Thus, if Ψi ≥ k ·
(
2κ · log(m/β)

ε

)
, then we can apply (24) to

conclude that (costq(Ti;D)− costq(Ti+1;D)) ≥ Ψi

2k . Rearranging, this gives

Ψi+1 ≤
(
1− 1

2k

)
Ψi, (25)

Thus, either we have Ψi < k ·
(
2κ · log(m/β)

ε

)
for some i ∈ [L] which immediately satisfies the desired accuracy bound, or

we can repeatedly apply (25) to arrive at

ΨL ≤
(
1− 1

2k

)L

Ψ0 ≤ e−0.5L/k · n ≤ 1,

where the last inequality is due to our choice of L. As such, the accuracy guarantee also holds in this case.

G.1.2. FROM BICRITERIA TO TRUE APPROXIMATION

We can then go from bicriteria approximation to true approximation (i.e., output set size k) via standard techniques.

Theorem G.2. For any 0 < ε, β < 1, there is an ε-add-DP algorithm for metric k-median and metric k-means that achieves
O(1)-approximation and O

(
k log(mn/β)

ε

)
-error w.p. 1− β.

Proof. The algorithm works as follows.

• Run the ε/2-add-DP algorithm from Theorem G.1 to obtain T ⊆ [m] of size O(k log n).
• Create a histogram (h̃t)t∈T as follows. First, let ĥt = |{x ∈ D | t = argmint′∈T d(t′, x)}| (where ties are broken

arbitrarily in argmin). Then, sample θt ∼ Exp(ε/2) independently and let h̃t = ĥt + θt.
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• Let D̃ be the dataset that, for each t ∈ T , contains h̃t copies of t. Run any (non-private) O(1)-approximation algorithm
(e.g., (Arya et al., 2004) for k-median and (Kanungo et al., 2004) for k-means) on D̃ to produce a solution S. Then,
output S.

Since the second step is an application of the exponential-noise mechanism, it satisfies (ε/2)-add-DP. As a result, by
applying the basic composition theorem and viewing the last step as a post-processing, we can conclude that the entire
algorithm is ε-add-DP.

By Theorem G.1, with probability 1− β/2, we have

costq(T ;D) ≤ OPTq
k(D) +O

(
k · log(m/β)

ε

)
(26)

Furthermore, by standard concentration of sum of exponential random variables (see e.g., (Brown, 2011)), the following
holds with probability 1− β/2: ∑

t∈T

θt ≤ O

(
k log(n/β)

ε

)
. (27)

Henceforth, we will assume that (26) and (27) hold.

Let S∗ denote the optimal solution in the original dataset D, i.e., |S∗| = k such that costq(S∗;D) = OPTq
k(D).

Furthermore, let D̂ be the dataset that, for each t ∈ T , contains ĥt copies of t. By the guarantee of the non-private
approximation algorithm, we have

costq(S; D̃) ≤ O(1) ·OPTq(D̃)

≤ O(1) · costq(S∗; D̃)

(27)
≤ O(1) · costq(S∗; D̂) +O

(
k log(n/β)

ε

)
(♣)

≤ O(1) · (costq(S∗;D) + costq(T ;D)) +O

(
k log(n/β)

ε

)
(26)
≤ O(1) ·OPTq

k(D) +O

(
k log(mn/β)

ε

)
, (28)

where (♣) follows from the qth power triangle inequality, i.e., d(u, v)q ≤ 2q(d(u,w)q + d(w, v)q) for all u, v, w ∈ [m].

Finally, we have

costq(S;D)
(♠)

≤ O(1) ·
(
costq(S; D̂) + costq(T ;D)

)
(27),(26)
≤ O(1) ·

(
costq(S; D̃) +

k log(mn/β)

ε

)
(28)
≤ O(1) ·

(
OPTq

k(D) +
k log(mn/β)

ε

)
,

where (♠) again follows from the qth power triangle inequality.

G.2. From One-Sided to Two-Sided DP

Finally, we go from one-sided to two-sided DP using Theorem 4.4 similar to the previous analyses.

Proof of Theorem 1.5. Let A denote a ln(2)-add-DP algorithm from Theorem G.2. We use the algorithm subsampled
version of this algorithm, i.e., ASp for p = 1− e−ε. Theorem 4.4 immediately implies that this algorithm is ε-DP as desired.

For the utility, let Ds ∼ Sp(D) denote the subsampled dataset that is fed as an input to A and let T ∗ denote the output set.
From Theorem G.2, w.p. 1− β/2, we have

costq(T ∗;Ds) ≤ O(1) ·OPTq
k(Ds) +O

(
k log

(
mn

β

))
. (29)
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Furthermore, applying the Chernoff bound (Theorem 2.1) with Zx := (minc∈T d(c, x)q) · 1[x ∈ Ds], µ = p ·
costq(T ;D), α = 0.1, ζ = 20000k log(m/β) together with a union bound over all sets T ∈

(
[m]
≤k

)
, we can conclude

that the following hold simultaneously for all T ∈
(
[m]
≤k

)
with probability at least 1− β/2:

costq(T ;Ds) ≥ (1− α)p · costq(T ;D)− ζ, (30)
costq(T ;Ds) ≤ (1 + α)p · costq(T ;D) + ζ. (31)

When (29), (30), and (31) all hold, we have

costq(T ∗;D)
(30)
≤ 1

(1− α)p
costq(T ∗;Ds) +

ζ

(1− α)p

(29)
≤ O

(
1

(1− α)p

)
·OPTq

k(Ds) +O

k log
(

mn
β

)
p(1− α)

+
ζ

(1− α)p

(31)
≤ O

(
1 + α

1− α

)
·OPTq

k(D) +O

k log
(

mn
β

)
p(1− α)

+O

(
ζ

(1− α)p

)

≤ O (1) ·OPTq
k(D) +O

k log
(

mn
β

)
ε

 ,

which concludes our proof.

21


