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ABSTRACT

We present Amos, a stochastic gradient-based optimizer designed for training
deep neural networks. It can be viewed as an Adam optimizer with theoretically
supported, adaptive learning-rate decay and weight decay. A key insight behind
Amos is that it leverages model-specific information to determine the initial learning-
rate and decaying schedules. When used for pre-training BERT variants and T5,
Amos consistently converges faster than the state-of-the-art settings of AdamW,
achieving better validation loss within ≤ 70% training steps and time, while
requiring ≤ 51% memory for slot variables. Our code is open-sourced at: https:
//anonymous-url.

1 INTRODUCTION

The Adam (Kingma & Ba, 2015) optimizer is widely used for training deep neural networks,
demonstrating fast convergence especially in the early stages of training. Although previous works
have found issues regarding the theoretical convergence of Adam as the training proceeds (Reddi et al.,
2018), in practice it is remedied by various learning-rate schedules and weight decay (Loshchilov &
Hutter, 2019). Specifically, Adam with linear learning-rate decay and constant weight decay is the
standard setting for pre-training large language models such as BERT (Devlin et al., 2019). However,
these decay settings are usually ad-hoc, increase the number of hyper-parameters, and may introduce
additional complexities in usage. For example, the linearly decaying learning-rate schedule requires
knowing the number of training steps in advance, which makes it nontrivial to continuously train a
model after the learning-rate decays to 0.

In this work, we present Amos, a new optimizer with a theoretically supported and adaptive schedule
for learning-rate and weight decay, which can significantly outperform the state-of-the-art AdamW
settings for pre-training language models, provide guidance for hyper-parameter tuning, reduce the
memory usage, and train continuously without having to specify the number of training steps a priori.

A key insight behind Amos is a hyper-parameter η̃ to be provided by the model architecture, which
indicates the expected scale of the trainable weights θ̃ of the model (§ 2), i.e., theoretically we assume
that an optimal point θ̃∗ exists within the |θ̃∗| ≤ η̃ diameter. Deep neural networks are likely to
satisfy such a constraint without degrading performance, because there exist many good local minima;
and we show that an appropriate η̃ for Amos can improve generalization and accelerate convergence
(§ 5.2). In this work, η̃ is calculated in a consistent way from the input/output scale of neural network
components, which is hinted by the model design (§A.4). Given η̃, Amos decides a learning-rate per
variable, and its L2 regularization will lead the trained weights to the specified scale. The decay of
the learning-rate is then determined by the L2 regularizer. Thus, Amos performs better because it
can utilize the model-oriented information η̃ efficiently; the name Amos stands for “Adaptive weight
decay towards Model-Oriented Scale”.

Empirically, we focus on the Transformer architecture (Vaswani et al., 2017) since it is pre-dominant
in pre-trained language models (Bommasani et al., 2021), but add additional experiments on LSTM
(Gers et al., 2000) and ResNet (He et al., 2016). We apply Amos to the pre-training of 4 models:
BERT (Devlin et al., 2019), two Transformer variants with relative position representations (Su
et al., 2021; Shaw et al., 2018), and the T5 model (Raffel et al., 2020); some with various model
sizes and batch sizes. In all experiments, Amos consistently outperforms the state-of-the-art setting,
achieving better validation loss within ≤ 70% training steps and time (§ 5.1). Compared to AdamW,
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the memory usage for slot variables is reduced to ≤ 51% in Amos (§A.8). In addition, Amos does
not calculate learning-rate from a maximum number of training steps, so one can seamlessly continue
training from any checkpoints, which is not trivial for AdamW with linear learning-rate decay (§ 5.1).

2 THE ALGORITHM

For notation, we denote model weights by θ̃, and an online learning algorithm recursively calculates
a sequence of weights, θ̃1, θ̃2, . . ., from initial weights θ̃0 and training examples zt at each step
t = 0, 1, . . . . An optimizer uses the gradient g̃t = ∇`(zt; θ̃t) to compute a weight update θ̃t+1 ←
θ̃t − δ̃t, in order to minimize the loss function `(z; θ̃). In neural network models, the model weights
θ̃ is an array of trainable tensors (i.e. variables) collected from all model components; we view a
variable and its slices as subsets of the model weights (e.g. θ ⊆ θ̃ is a variable slice that functions in
part of the model). We use a bold letter to denote an array (e.g. θt, θ̃t), and the same normal letter to
denote a scalar element of that array (e.g. θt) for describing element-wise operations. We use tilde
for information of the whole model (e.g. θ̃t), and drop tilde to indicate subsets (e.g. θt).

To start, we recall the update rule of the RMSProp optimizer (Tieleman & Hinton, 2012), which
computes the weight update by δt ← α√

vt
gt, where α is a scalar learning-rate and vt a running

average of the squared gradients g2t . Based on this, Adam (Kingma & Ba, 2015) replaces gt with
its running average mt (i.e. momentum), and adopts bias correction m̂t, v̂t for running averages.
Further, AdamW (Loshchilov & Hutter, 2019) allows a schedule for learning-rate αt (depending on
the step t) and adds a weight decay: δt ← αt

(
1√
v̂t
m̂t + γθt

)
, where γ is a constant hyper-parameter.

For pre-training Transformer variants, the learning-rate schedule αt is set to linearly decay to 0 after
warm-up. Therefore, a maximum number of training steps before the learning-rate decays to 0 has to
be set as a hyper-parameter. Amos, with a similar construction, has the following update rule:

δt ← dt

( ξη√
v̂t
gt +

1

2
γtθt

)
where γt ← ct

ξ2

v̂t
M2(gt)

2. (1)

Here, M2(a) :=
√

1
k

∑k
i=1 a

2
i denotes the quadratic mean of entries of an array a ∈ Rk. The update

rule consists of a gradient descent part (the term containing gt) and an L2 regularization part (the
term containing θt)1, similar to AdamW. The full Amos is shown in Algorithm 1. We explain several
novel aspects below.

Model-oriented scale: For each variable a ⊆ θ̃ in the model weights, we specify the scale η(a)
we expect a to converge to, i.e. M2(a

∗) ≈ η for an optimal θ̃∗ ⊇ a∗. Different variables may
have different scale η’s. For a common case of a linear transformation, y = xW + u (W ,u ⊆
θ̃, W ∈ Rm×n, x ∈ Rm), we calculate η(W ) by assuming that x is random Gaussian with standard
deviation σx, and y random Gaussian with standard deviation σy; so we have η(W ) = σy/(σx

√
m)

in order to satisfy the input/output standard deviation (assuming entries ofW to be Gaussian as well).
Additionally, we set η(u) = σy/2 to ensure that u has a slightly smaller magnitude than xW . The
input/output standard deviation can be hinted by other layers in the model; for example, the activation
function GELU (Hendrycks & Gimpel, 2016) usually expects the inputs to have standard deviation
≈ 1, because its non-linearity mostly lies within that range; also the output standard deviation of
LayerNormalization (Ba et al., 2016) is expected to be 1. For Transformer variants, we will discuss
the input/output standard deviation of all types of non-linear layers and derive η̃ in §A.4.

Factored initial learning-rate: In Amos, we use ξη as the initial learning-rate, where η is the model-
oriented scale specified for each variable, and ξ is a global learning-rate shared across all variables.
For online optimizers, the learning-rate is generally affected by both data and model; by factoring the
initial learning-rate into ξ and η, we disentangle the two to some extent: While ξ is tuned and may
depend on the data, η̃ is calculated from the model architecture.

1Following Loshchilov & Hutter (2019), we decouple the gradient of an L2 regularization term (taking the
form of a weight decay) apart from the adaptive gradient normalization factor 1√

v̂t
. When an adaptive optimizer

is used, Loshchilov & Hutter (2019) point out that the decoupled weight decay is not equivalent to the L2
regularization without explicit decoupling, and the former is more appropriate. In this work, we always treat L2
regularization as decoupled weight decay, and use the two terms interchangeably.
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Adaptive L2 regularization: Unlike AdamW which uses a constant γ for weight decay, the Amos
weight decay γ̃t is intended to control the scale of trained variables, rather than regularize the loss
function; so γt decays to 0 at t→∞ to be less biased, and it is adaptive in the sense that γ̃t depends
on g̃t so that the variables not getting gradient updates are not regularized. Thus, the L2 regularization
is robust to sparse gradients, and it does not introduce any additional hyper-parameter. We will give a
heuristic derivation of the form of γt in § 4.

Decay factors: d̃t, c̃t are per-parameter decay factors such that d0 = c0 = 1 and dt, ct monotonically
decrease to 0 at t → ∞. We provide a theoretical derivation of the asymptotic behavior of these
factors in §A.2, together with a default form that works well empirically in all our experiments.
The decay factors do not depend on a maximum number of training steps, thus enabling arbitrary
continuous training.

Memory Reduction: Most previous optimizers operate element-wise, so the slot variables (e.g. the
running average ṽt, m̃t in Adam) have the same shape as θ̃, which can be memory consuming. In
Amos, two slot variables (ṽt, b̃t in Algorithm 1) are shared by certain slices in the model weights,
reducing the memory usage of these slot variables. For example, if Rm×n 3 W ⊆ θ̃ is a linear
transformation, the corresponding vt ∈ R1×n is shared by the input dimension ofW , reducing the
memory usage by m times. As a result, in Equation 1 and Algorithm 1, vt, bt, ct and dt are reduced
and become scalars, to be used and updated by vector-valued gt and θt. In this work, we reduce
the input dimension of linear transformations, the embed dimension of embedding matrix, and all
dimensions for other variables by default. An ablative study with different settings is found in §A.8.

Algorithm 1 The Amos optimizer at step t.

Input g̃t = ∇`(zt; θ̃t): The gradient of loss ` on a random example zt.
Input θ̃t: Trainable model weights at step t.
Input ṽt−1, b̃t: Slot variables of shape broadcastable to θ̃, initialized to 0.
Input (Optional) m̃t: Slot variable of the same shape as θ̃, initialized to 0 for momentum.
Hyper-parameter ξ: Global learning-rate.
Hyper-parameter η̃: Expected scale for model weights θ̃.

Hyper-parameter c̃t: Decay factor for L2 regularization. Defaults to ct =
(
1 + 1

4

√
ξbt
)− 1

2 .
Hyper-parameter d̃t: Decay factor for learning-rate. Defaults to dt =

(
1 + 1

4

√
ξηbt

)−1
.

Hyper-parameter β ∈ [0, 1): Exponential decay rate for running average ṽt.

1: (Optional) gt ←
χ

max(χ, |gt|)
gt . Gradient clipping with hyper-parameter χ > 0.

2: vt ← βvt−1 + (1− β)M2(gt)
2 . Running average of squared gradients.

3: v̂t ← vt/(1− βt) . Bias correction.

4: γt ← ct
ξ2

v̂t
M2(gt)

2 . Adaptive L2 regularization strength.

5: δt ← dt

( ξη√
v̂t
gt +

1

2
γtθt

)
. Amos update rule.

6: bt+1 ← bt + γt(1 + bt) . Decay factor update.

7: (Optional) δt ← mt+1 ← µmt + (1− µ)δt . Momentum with hyper-parameter µ ∈ [0, 1).
Output: Updated model weights θt+1 ← θt − δt.
Output: Updated slot variables r̃t, b̃t+1 and optional m̃t+1.

Hyper-parameter Tuning The running average vt in Amos is a low-cost estimator for E[M2(gt)
2],

where the expectation is taken over the example zt randomly drawn from the training data. It is
similar to vt in Adam except that the mean square M2(gt)

2 is used instead of element-wise g2t , due
to the memory reduction. Thus, the hyper-parameter β behaves similarly to β2 in Adam: Since the
estimator mostly depends on the previous 1/(1− β) steps, β should be close enough to 1 to make the
estimator accurate, but not too large that the model weights in the previous 1/(1− β) steps differ too
much from the current step. We set β = 0.999 by default (the same as β2 in Adam), and it is found
that β should be smaller with larger batch size (Shazeer & Stern, 2018; Liu et al., 2019).
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The global learning-rate ξ can depend on the step t to follow a warm-up schedule at the beginning
of training, but a schedule with learning-rate decay is not necessary, since the decay factor d̃t is
already included in Algorithm 1; most of the time ξ remains a constant. While this constant is the
major hyper-parameter to be tuned, a good rule of thumb is to set ξ to the same order of magnitude as
1/
√
N , where N is the number of independent batches in the training set (see § 4 for a justification).

This value is usually larger than the typical learning-rates used for Adam. It also implies that ξ should
be in proportion to the square-root of the batch size, which we observe in practice as well (§A.5).

In addition, Algorithm 1 includes optional gradient clipping and momentum. Momentum in Amos is
applied after the main update rule (unlike Adam which applies it before). It can improve performance
for pre-training Transformer variants, but consume memory because the slot variable m̃t must have
the same shape as θ̃. When momentum is applied, its decay rate µ is typically set to 0.9.

3 RELATED WORK

Besides RMSProp (Tieleman & Hinton, 2012), Adam (Kingma & Ba, 2015) and AdamW (Loshchilov
& Hutter, 2019), the number of previous works on optimization is vast, so we focus on some directly
related alternatives below. Also, we note that Amos is a stochastic first-order optimizer, in contrast to
recent progress in the second-order optimization methods (Gupta et al., 2018). The convergence of
stochastic optimizers has been studied in terms of stochastic approximation (Bottou, 1998), regret
(Hazan, 2019), or nonconvex stochastic programming (Ghadimi & Lan, 2013). In particular, Reddi
et al. (2018) observed cases of non-convergence of Adam (with constant learning-rate) and proposed
a fix. In our work, we analyze the behavior of Amos in an intuitive and heuristic manner, but leave a
rigorous convergence proof (e.g. based on regret) to future work.

AdaGrad: The update rule of AdaGrad (Duchi et al., 2011) is δt ← α√
bt
gt, where bt+1 ← bt + g2t

is similar to the bt in Algorithm 1, in the sense that both AdaGrad and Amos use a (weighted) sum
of squared gradients to decay learning-rates. Such decay is “adaptive” because the learning-rate
will decay more for parameters getting more updates, which is suitable for sparse gradients. On the
other hand, conventional wisdom is that the learning-rate in AdaGrad might decay “too fast” in some
cases, which makes the convergence slow, and Adam mitigates this issue by using a running average
of squared gradients instead of the decay factor. However, the AdamW setting suggests that the
normalization factor by running average of squared gradients is not a replacement for learning-rate
decay; one still needs a linearly decaying learning-rate schedule for better convergence. Thus, Amos
integrates both the Adam-style gradient normalization and the AdaGrad-style learning-rate decay;
with gradient normalization, the learning-rate can actually decay faster and it converges faster.

SGD with L2 Regularization: For the classic Stochastic Gradient Descent (SGD) algorithm, it
is recommended to decay the learning-rate by the factor 1

λt , where λ is the smallest eigen-value
of the Hessian (Murata, 1998). Although λ is generally unknown, adopting an L2 regularizer of
strength λ′ guarantees that λ ≥ λ′, so one can set the learning-rate to 1

λ′t (Bottou, 2012). In Amos,
we adopt a similar idea to heuristically derive the learning-rate decay (see §A.3 for more detailed
discussion), by connecting the decaying speed with the strength of L2 regularization (i.e., the L2
strength γt in Algorithm 1 also appears in the update of bt). Unlike SGD, both the learning-rate and
L2 regularization in Amos decay adaptively. The adaptive L2 regularization, in particular, is a novel
component unseen in previous optimizers.

LAMB: The LAMB optimizer (You et al., 2020) and its origin LARS (You et al., 2017) share
several similar aspects with Amos. The idea of layer-wise learning-rate in LAMB and LARS is
similar to the per-variable learning-rate η̃ in Amos; they all normalize the gradients in some way; and
they all imply scaling up the learning-rate as the batch size increases. In our experiments, scaling the
global learning-rate of Amos in proportion to the square-root of the batch size indeed works (§A.5),
although we leave a systematic study of scaling-up to extremely large batch sizes and comparing with
LAMB and LARS to future work.

AdaFactor: In Adam, the slot variable ṽt for maintaining running average of squared gradients
requires the same amount of memory as the model weights θ̃. In order to reduce the memory usage,
AdaFactor (Shazeer & Stern, 2018) proposes to use nonnegative matrix factorization to decompose
any matrix into two vectors. In contrast, Amos reduces memory usage by simply reducing some axes
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of the slot variables and broadcasting to the shape of model weights. This reduction is more efficient
than AdaFactor, and our experiments suggest that it will not degrade performance (§A.8).

4 DERIVATION OF AMOS

In this section, we heuristically derive the Amos update rule (Equation 1). We start from a general
form of the weight update for a given variable θ,

θt+1 = θt − αtgt where g̃t = ∇`(zt; θ̃t), (2)

and gradually pin down to the specific form of Equation 1. Here, the step size αt > 0 is a scalar (due
to our memory reduction mechanism in § 2) and is shared across the elements of the vector-valued
gt,θt ∈ Rk. We are focusing on a subset of model parameters, but furthermore note that αt may
differ for different variables.

Then, the following Descent Lemma (Murata, 1998) provides a sanity check for a wide range of
possible forms of αt, while also suggests some constraints. Its proof can be found in §A.1.

Lemma 4.1 (Descent Lemma). If αt does not depend on zt, then there exists εt > 0 such that

Et[Et+1[`(zt+1; θ̃t+1)]] ≤ Et[`(zt; θ̃t)] for any αt < εt,

where Et[•] denotes the expectation taken over the random example zt drawn from the training data
at step t, while conditioned on zt−1, . . . , z0 of the previous steps.

In light of Lemma 4.1, we require (I) αt does not depend on zt (but may differ for different variables),
and (II) αt decays to 0 at t→∞, so the step-size can be sufficiently small that the Descent Lemma
applies and Equation 2 will always make progress on average.

In the Amos update rule, αt = dt
ξη√
v̂t

and v̂t depends on zt, which seems to violate requirement (I)
above. However, v̂t should be regarded as an approximation of E[M2(gt)

2], where E[•] denotes the
expectation taken over examples randomly drawn from the training data, which is zt independent.

Next, we add an L2-regularization term to Equation 2:

θt+1 = θt − (αtgt + ρtθt) (3)

where ρt ≥ 0 can depend on gt (hence “adaptive”), but we require (III) E[ρt] does not depend on gt.
The intuition behind is that an L2-regularization should have the same strength across all variables,
rather than be affected by the typical gradient magnitude on each variable. It is the same intuition that
motivates the weight decay decoupled from gradient adaptive factors (Loshchilov & Hutter, 2019).

The first challenge for Amos is to keep a balance between αt and ρt, so that M2(θt) will converge
to the pre-specified, per-variable hyper-parameter η. In order to achieve this, we will declare some
intuitions on the largeness of gt, E[gt] and ρtθt, as a guide for our heuristic derivation. For deep
neural networks, gt’s upon different zt’s appear to be randomly noisy, so they will cancel out when
being averaged to E[gt]; which means that M2(E[gt]) is usually much smaller than M2(gt). On the
other hand, θt does not depend on zt, and it changes slowly between different steps, so the update by
ρtθt is easier to accumulate than αtgt. This means that the magnitude of ρtθt can be kept smaller
than αtgt while still compete with αtE[gt]. In Amos, ρt = dt

1
2ct

ξ2

v̂t
M2(gt)

2 decays to 0 faster than
αt (due to the extra decay factor ct), which we assume will make ρtθt small enough compared to
αtgt, when t is large.

Quantitatively, we consider the error ε̃t = θ̃t − θ̃∗, where θ̃∗ is a local minimum. Equation 3 implies

M2(εt+1)
2 = M2(εt)

2 − 2

k
(αtgt + ρtθt) · εt +M2(αtgt + ρtθt)

2

≈ M2(εt)
2 − 2

k
(αtgt + ρtθt) · εt + α2

t M2(gt)
2, (4)

where we investigate a time point t large enough that the model nearly converges. At this point, ρtθt
is small compared to αtgt, so it can be approximately omitted in the third term. And we should have
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E[gt] ≈ 0 and M2(θt) ≈ η if the trained weights converge to scale η. So taking E[•] of Equation 4,
we should get

E[M2(εt+1)
2] ≈ M2(εt)

2 − 2

k
E[ρt]θt · εt + α2

tE[M2(gt)
2].

Furthermore, in order for the model to converge, we should have E[M2(εt+1)
2] ≤ M2(εt)

2 from the
above. Hence, we should have

α2
tE[M2(gt)

2] ≤ 2

k
E[ρt]θt · εt ≤ 2E[ρt]M2(θt)M2(εt) ≈ 2E[ρt]ηM2(εt)

as a necessary condition for the trained weights to converge to scale η. By setting ρt to the smallest
possible, we get

2ρtηM2(εt) = α2
t M2(gt)

2, (5)

which is an important relation connecting ρt to αt. We require (IV) Equation 5 to be satisfied
throughout the course of training, and use it ubiquitously in our derivation. It is out of the scope of
this work to prove whether Equation 5 actually makes M2(θt) converge to η; but the requirements so
far already determine a basic form of the Amos update rule (as shown in Lemma 4.2 below), and our
experiments suggest that Amos indeed brings the trained weights to the specific scale (§ 5.2).
Lemma 4.2 (Basic Form of Amos). Assume Equation 5, requiring that αt does not depend on zt
and E[ρt] does not depend on gt. Then, we have

αt ∝
1√

E[M2(gt)2]
and ρt ∝

M2(gt)
2

E[M2(gt)2]
.

The proof is found in §A.1. It is noteworthy that the Adam-style gradient normalization naturally
occurs in αt. Based on Lemma 4.2, Amos is derived by specifying the initial learning-rate and decay
schedule. For that, we need the following assumption to quantify the largeness of gt and E[gt].

Assumption 1. A scalar ξ > 0 exists such that
M2(E[gt])√
E[M2(gt)2]

≥ ξ for all t and across all variables.

This assumption formalizes two intuitions, i.e. randomly noisy gt will cancel out when being averaged
to E[gt] (so ξ has a small value), and as the training proceeds, M2(gt) will decrease2 along with
M2(E[gt]) (so the ratio remains larger than a constant ξ > 0). Assumption 1 is verified by our
experiments (§A.6).

The value of ξ is related to the global learning-rate in Amos (as shown in Lemma 4.3 below), which
is tuned as a hyper-parameter in practice. However, we also provide an intuitive estimation of ξ,
which is usually a good start for hyper-parameter tuning. The intuition is to view the canceling out of
gt averaged to E[gt] as similar to the average of N i.i.d. samples drawn from a distribution of mean
0. According to the Law of Large Numbers, the variance of the average (i.e. M2(E[gt])2) is about
1/N of the variance of the distribution (i.e. E[M2(gt)

2]), so ξ ≈ 1√
N

. In reality, the gradients of deep
neural networks, computed over mini-batches, appear to be highly random. So N is usually of the
same order of magnitude as the number of independent batches in the training data.

Now, we can derive the optimal initial learning-rate as below, under an ideal condition that g0 points
to the same direction as ε0. The proof is found in §A.1.

Lemma 4.3 (Initial Learning-rate). Assume Equation 2, Assumption 1, α0 = α/
√

E[M2(g0)2] and
that g0 points to the same direction as ε0. Then,

E[M2(ε1)
2] ≤ M2(ε0)

2 − 2αξM2(ε0) + α2

and the RHS achieves minimum at α = ξM2(ε0) ≈ ξη.

2As the training proceeds, E[gt] will converge to ≈ 0, so Assumption 1 is related to the observation that, for
highly expressive models, g̃t = ∇`(zt; θ̃∗) can get close to 0 for every zt in the training data (Ma et al., 2018).
However, Assumption 1 only requires that M2(gt) decreases as fast as E[gt], which is empirically verified
(§A.6). Whether M2(gt) actually converges to 0 is not guaranteed (because the training may stop early, or E[gt]
not get to exactly 0 due to L2-regularization, etc.) and not used in our theory. On the other hand, M2(gt) is
always large compared to E[gt], because ξ is a small value.
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Lemma 4.3 suggests the initial learning-rate α0 = ξη√
E[M2(g0)2]

. Then, we get ρ0 = 1
2ξ

2 M2(g0)
2

E[M2(g0)2]

from Equation 5. By adding the decay factors, we reveal the Amos update rule (Equation 1):

δt ← αtgt + ρtθt, where αt = dt
ξη√

E[M2(gt)2]
and ρt = dt

1

2
γt = dt

1

2
ctξ

2 M2(gt)
2

E[M2(gt)2]
. (6)

Here, dt and ct monotonically decrease to 0 and d0 = c0 = 1. In particular, ct decaying to 0 ensures
that ρt decays to 0 faster than αt, so ρtθt can be sufficiently small compared to αtgt for large t, which
justifies the approximation of Equation 4. In §A.2, we will further derive that ct = (1 + pbt)

− 1
2

and dt = (1 + qbt)
−1, where p, q are constants, together with the update rule of bt. The specific

p = 1
4

√
ξ and q = 1

4

√
ξη are found through experiments and work well in practice.

5 EXPERIMENTS

We focus on the Transformer model (Vaswani et al., 2017), and pre-train several variants as below.

BERT: A Transformer Encoder model with learned position embeddings (Devlin et al., 2019). We
experiment with the base (12-layer 768-hidden) and large (24-layer 1024-hidden) model sizes.

RoPE: A Transformer Encoder variant with the Rotary Position Encoding (Su et al., 2021). RoPE
is integrated in some recent large-scale language models (Chowdhery et al., 2022). It encodes relative
positions but the encoding is not learned. We experiment with the base (12-layer 768-hidden) and
large (24-layer 1024-hidden) model sizes.

Relative Position Embeddings (RPE): A Transformer Encoder variant with learned relative po-
sition embeddings (Shaw et al., 2018). It achieves better performance but the pre-training is more
costly on TPU (Tian et al., 2021). We experiment with the base (12-layer 768-hidden) model size.

T5 Encoder-Decoder (T5): A Transformer Encoder-Decoder model implemented by Raffel et al.
(2020). We experiment with the large (24-layer 1024-hidden) model size.

For encoder only models, we pre-train with the Masked Language Modeling loss (Devlin et al., 2019)
on Wikipedia3 and the Books Corpus (Zhu et al., 2015). Following Liu et al. (2019), we use batch
size 1024 for base-sized models, and pre-train 200k or 300k steps. For BERT-large, we use batch size
4096 and pre-train 250k steps. For RoPE-large, due to memory limitations we have to use batch size
1024 and pre-train 1M steps. For T5, the batch size is 4096 and we pre-train with the Span Corruption
loss on the C4 corpus (Raffel et al., 2020), for 250k steps. More detailed settings are found in §A.5.

As an additional evaluation, we also applied Amos to the ResNet model (He et al., 2016) on the
ImageNet (Deng et al., 2009) dataset. The experiment settings and results are shown in §A.9.

(b)  RoPE-base (c)  RPE

AdamW-200k

AdamW-300k

Amos

AdamW-200k

AdamW-300k

Amos

Amos-*Scale

(a)  BERT-base

AdamW-200k

AdamW-300k

Amos

AdamW-Cont.

AdamW-rsqrt

Figure 1: Pre-training 3 models of the base (12-layer 768-hidden) size: (a) BERT, (b) RoPE and (c)
RPE. We show training loss on the top and validation loss on the bottom.

3https://en.wikipedia.org/wiki/Main_Page
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(b)  RoPE-large (c)  T5-large(a)  BERT-large

AdamW

Amos
AdamW

Amos

Amos-*Scale

AdamW

Amos

AdaFactor

Figure 2: Pre-training 3 models of the large (24-layer 1024-hidden) size: (a) BERT, (b) RoPE and (c)
T5. We show training loss on the top and validation loss on the bottom. For T5, the training loss is
different from the cross-entropy loss due to an extra regularization term. See §A.5 for details.

5.1 LEARNING CURVE OF PRE-TRAINING TRANSFORMER VARIANTS

In Figure 1 and Figure 2, we show training and validation loss of pre-training the Transformer variants.
In all experiments, across different model architectures, model sizes, batch sizes, datasets and loss
functions, Amos (pink curve) outperforms the state-of-the-art AdamW setting, with the loss always
significantly lower beyond 30% of the training procedure4, and the validation loss achieving the final
value of AdamW-300k within < 70% training steps or time5. For BERT-base (Figure 1a), Amos
achieves the same within only 145k steps (< 50%), and the Amos checkpoint at 150k outperforms
the final checkpoint of AdamW-300k in fine-tuning on MNLI (Williams et al., 2018) as well (§A.7).

In Figure 1a, we also tried starting from the final checkpoint of AdamW-200k and resetting the
learning-rate as if it is linearly decaying to max training step 300k (AdamW-Cont.). The loss spikes
higher and does not go further lower than the value at 200k, suggesting that the hyper-parameter
of max training steps has to be set a priori, and continuous training is not trivial with AdamW. In
addition, we tried a learning-rate schedule (AdamW-rsqrt) that takes the same value at step 10k but
adopts a decay in proportion to t−1/2 (where t is the step) beyond. Although this setting does not
require max training steps, it converges slower than both AdamW-200k and AdamW-300k.

For the RPE model (Figure 1c), we tried setting η of the relative position embeddings to a smaller
value (Amos-*Scale, see §A.4 for more details), and found significant impact especially on the
validation loss. Similar results are observed when we change η for a certain type of layers in
the BERT-large model (Figure 2a, Amos-*Scale, see §A.4). It suggests that the model-specific

(a)  BERT-base
Scale of TokenEmbed

(b)  BERT-base
Scale of Layer4/MLP/Dense1/Bias

√1/d

(c)  RPE
Scale of Layer7/RelPosEmbed

AdamW-200k

AdamW-300k

Amos

Amos-*Scale

AdamW-200k

AdamW-300k

Amos

Figure 3: Plots of the quadratic mean of entries of variables over pre-trained steps.

4We have tried different learning-rates in preliminary experiments and the best was chosen. A learning-rate
search for BERT-base is presented in §A.5.

5In our JAX (Bradbury et al., 2018) implementation, the running time per training step for all optimizers
(AdamW, Amos and AdaFactor) are almost the same.
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AdamW

Adam

Amos

(a)  Train Loss (b)  Validation Perplexity (c)  Scale of Kernel

Figure 4: Training a single layer LSTM on the PTB corpus.

information η̃ indeed contributes to the performance of Amos, which according to previous work
(Kaplan et al., 2020) is unlikely achieved by tuning the learning-rate schedule alone.

5.2 SCALES OF TRAINED VARIABLES

In Figure 3 we show how the scale of entries of some variables evolve as the training proceeds. With
AdamW, both the token embeddings and the bias converge to similar scales (Figure 3ab); while with
Amos the token embeddings converge to ≈

√
1/d (where d is the hidden size) and the bias to ≈ 0.5,

as specified by the hyper-parameter η̃. It shows that the algorithm of Amos can lead variables to
converge to drastically different scales, which is unlikely with AdamW. In Figure 3c, comparing Amos
and Amos-*Scale, the relative position embeddings in a typical layer of the RPE model converge to
different scales, which shows that the scale is indeed controlled by the hyper-parameter η̃. Recall
that Figure 1c shows this has impact on the performance.

In order to further illustrate the relation among the optimizer, validation performance and the scale of
variables, we train a single layer LSTM on the Penn Tree Bank (PTB) corpus (Marcus et al., 1993).
The model size is 256 for hidden states and 1024 for memory. We set dropout rate 0.55 for hidden
states (which is important for training on PTB) and 0.1 for memory. Sequence length and batch size
are set to 64. We compare Amos, AdamW, and Adam (without weight decay). For Amos, the global
learning-rate is set to 0.01 and η for the LSTM kernel is set to 1√

32
(calculated from input scale 1

4 ,
input dimension 512 and output scale 1). For AdamW and Adam, the learning-rate is set to 0.0015
(about the same as Amos for the LSTM kernel), and the weight decay is set to 0.01 for AdamW.

The results are shown in Figure 4. Without weight decay, the scale of the LSTM kernel trained by
Adam can keep increasing; so Adam is better than AdamW on training loss but worse on validation
perplexity (i.e. the model trained by Adam generalizes worse). On the other hand, Amos achieves the
same training loss as Adam, while keeping the scale of the kernel as specified. It results in a much
better validation perplexity which matches the state-of-the-art6. Overall, we conclude that controlling
the scale of trained variables can help the generalization performance of deep neural networks, and
the model-specific information from η̃ enables Amos to do this.

6 CONCLUSION

We have presented the Amos optimizer, which uses an adaptive L2 regularizer to control learning-rate
decay and guides trained weights towards a specified model-oriented scale. It demonstrates faster
convergence than the state-of-the-art in pre-training language models, where the training process is
long and decaying schedule is crucial. On the other hand, its ability to control the scale of trained
weights also brings better generalization to small models such as a single layer LSTM.

Besides pre-training, we expect Amos to have advantages in fine-tuning as well, especially for
multi-modal models that combine heterogeneous components of varied scales and/or pre-trained with
different recipes. Hopefully, the model-specific information η̃ can help us fine-tune such models that
were previously difficult with other optimizers (Liang et al., 2022; Kumar et al., 2022).

6See Melis et al. (2020) for a setting that achieves the state-of-the-art performance for a single layer LSTM on
PTB. It uses RMSProp and dynamically decays the learning-rate by watching the performance on the validation
set. To our knowledge, no previous work has been able to achieve the state-of-the-art with a straightforward
setting of the optimizer as we do with Amos.
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Ethics Statement This work includes pre-training language models, which have the potential risk
of inherited bias from the training data. Our empirical contribution is on accelerating the pre-training
process and thus does not focus on addressing such risk. For fair comparison, the pre-training data
we have used are the same as previous works, and consequently the models we trained to evaluate
our approach are similar to those already open-sourced. We refer to Bommasani et al. (2021) for a
discussion of the risks of pre-trained language models.

Reproducibility Statement Proof of lemmas in § 4 is given in §A.1. Following the derivation of
the Amos update rule, a heuristic derivation of the asymptotic behavior of the Amos decay factors is
found in §A.2, and its connection with SGD is discussed in §A.3. Assumption 1 in our derivation
is verified by experiments in §A.6. We explain the calculation of η̃ for the Transformer models in
§A.4. For the pre-training experiments in § 5.1, we describe detailed settings in §A.5, and present a
learning-rate search for BERT-base as well. Fine-tuning experiments on MNLI are shown in §A.7.
Furthermore, an ablation test for the memory reduction settings of Amos is found in §A.8. Additional
experiment settings and results of training the ResNet50 model on ImageNet are found in §A.9. Our
code is open-sourced at: https://anonymous-url.
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A APPENDIX

A.1 PROOF OF LEMMAS

Proof of Lemma 4.1. We have

Et+1[`(zt+1; θ̃t+1)] = Et+1[`(zt+1; θ̃t − α̃t � g̃t)]
= Et+1[`(zt+1; θ̃t)− (α̃t � g̃t) · ∇`(zt+1; θ̃t)] + o(α̃t),

where � denotes element-wise multiplication, o(α̃t)/‖α̃t‖ → 0 at ‖α̃t‖ → 0, and arrays are
flattened to vectors for the dot-product. Since zt+1 and zt are drawn from the same distribution, we
have Et+1[`(zt+1; θ̃t)] = Et[`(zt; θ̃t)] and Et+1[(α̃t�g̃t)·∇`(zt+1; θ̃t)] = (α̃t�g̃t)·Et[∇`(zt; θ̃t)].
Moreover, because α̃t does not depend on zt, we have Et[α̃t � g̃t] = α̃t � Et[g̃t]. Thus,

Et[Et+1[`(zt+1; θ̃t+1)]] = Et[`(zt; θ̃t)]− (α̃t � Et[g̃t]) · Et[∇`(zt; θ̃t)] + o(α̃t).

Now Et[g̃t] = Et[∇`(zt; θ̃t)] by definition, so (α̃t � Et[g̃t]) · Et[∇`(zt; θ̃t)] > 0, and the lemma
follows by taking α̃t small enough so that o(α̃t) can be omitted.
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Proof of Lemma 4.2. In the LHS of Equation 5, only ρt can depend on zt; while in the RHS, M2(gt)
2

depends on zt but αt does not. In order to satisfy Equation 5 on every zt, it is necessary that ρt has a
M2(gt)

2 factor: ρt ∝ M2(gt)
2. Moreover, we require that E[ρt] does not depend on gt, so ρt should

be normalized by E[M2(gt)
2]: ρt ∝ M2(gt)

2

E[M2(gt)2]
. This, substituted back into Equation 5, implies that

αt ∝ 1√
E[M2(gt)2]

.

Proof of Lemma 4.3. Equation 2 implies ε1 = ε0 − α0g0. Taking E[M2(•)] of this equation, we
have

E[M2(ε1)
2] = M2(ε0)

2 − 2

k
αtE[g0] · ε0 + α2

0E[M2(g0)
2]

= M2(ε0)
2 − 2

k
α

E[g0] · ε0√
E[M2(g0)2]

+ α2.

Since g0 and ε0 point to the same direction, we have 1
kE[g0] · ε0 = M2(E[g0])M2(ε0). By

Assumption 1 we have M2(E[g0])/
√
E[M2(g0)2] ≥ ξ. Hence,

E[M2(ε1)
2] ≤ M2(ε0)

2 − 2αξM2(ε0) + α2.

The RHS above is a quadratic function of α, which achieves minimum at α = ξM2(ε0). Finally,
since (usually) θ0 is initialized close to 0, and M2(θ

∗) ≈ η, we have M2(ε0) ≈ η.

A.2 HEURISTIC DERIVATION OF DECAY FACTORS

Substituting Equation 6 into Equation 5, we get the following equivalent of Equation 5:

ctM2(εt) = dtη. (7)

Without knowing any specific relation among gt, θt and εt, we found it difficult to theoretically
decide an optimal ct. Given that ct decreases to 0, we set ct to decrease according to M2(εt) in Amos,
i.e. ct ∼ rM2(εt), where r is a constant and ∼ denotes asymptotically equal at t → ∞. Thus, by
Equation 7 we have dt ∼ r

η M2(εt)
2. We will analyze the evolution of M2(εt)

2 to derive ct and dt.

Taking E[•] of Equation 4, and applying Equation 6 and Equation 7, we get

E[M2(εt+1)
2] ≈ M2(εt)

2 − 2

k

(
ctξM2(εt)

E[gt]√
E[M2(gt)2]

+
dt
2
E[γt]θt

)
·εt + c2t ξ

2 M2(εt)
2. (8)

As in the derivation of the initial learning-rate, we make an optimistic estimation that E[gt] and εt
have the same direction. Then, applying Assumption 1 we have

1

k

E[gt]√
E[M2(gt)2]

· εt =
M2(E[gt])√
E[M2(gt)2]

M2(εt) ≥ ξM2(εt),

and Equation 8 implies

E[M2(εt+1)
2] ≤ M2(εt)

2 − 2ctξ
2 M2(εt)

2 − dt
k
E[γt]θt · εt + c2t ξ

2 M2(εt)
2

≤ M2(εt)
2 − ctξ2 M2(εt)

2 − dt
k
E[γt]θt · εt (9)

where in the last equation we have used the fact that ct ≤ 1. Now, in order to estimate θt · εt, we
assume that θt will be evenly distributed on the hypersphere of radius M2(εt) around θ∗ as the
training proceeds. Then, if k ≥ 3, for most θt from the distribution we will have θ∗ · εt ≈ 0. In this
case, we have 1

kθt · εt =
1
k (εt + θ

∗) · εt ≈ M2(εt)
2, and “on average” it is safe to assume7 that

1
kθt · εt ≥ qM2(εt)

2 for some constant q > 0. Then, Equation 9 becomes

E[M2(εt+1)
2] ≤ M2(εt)

2 − E[γt](1 + dtq)M2(εt)
2 (10)

7It not useful in this work to provide a rigorous definition of “on average”. We only point out its deep
connection with Stein’s example (Stein, 1956) that if k ≥ 3, an estimator with L2 regularization can be better
than the maximum likelihood estimator without L2.
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where we have used the fact that E[γt] = ctξ
2. In light of Equation 10, we consider the following

asymptotic difference equation:

et+1 ∼ et − γt(1 + dtq)et (11)

where et is intended to follow the asymptotic behavior of M2(εt)
2. Since we have dt ∼ r

η M2(εt)
2,

it is natural to assume dt ∼ r
η et. Then, we transform Equation 11 as the following:

1

et+1
∼ 1

et
· 1

1− γt(1 + dtq)
∼ 1

et

(
1 + γt(1 + dtq)

)
∼ 1

et
+ γt(

1

et
+
qr

η
),

in which we have used the approximation 1/(1− x) ∼ 1 + x applied to x = γt(1 + dtq). Thus, the

update rule of bt in Algorithm 1 can be revealed by setting bt =
η

qr

1

et
:

bt+1 = bt + γt(bt + 1).

And dt ∼
r

η
et implies dt ∼

1

qbt
, so we set dt =

1

1 + qbt
to satisfy both the asymptotic behavior and

d0 = 1.

Similarly, since ct ∼ rM2(εt) we have ct ∼
1√
pbt

where p =
q

rη
. So we set ct =

1√
1 + pbt

to

satisfy the asymptotic behavior and c0 = 1.

A.3 CONNECTION TO SGD

The derivation of decay factors in Amos (§A.2) is largely inspired by SGD (Murata, 1998). In this
section, we recall the theory of learning-rate schedule of SGD and discuss its relation with Amos.

The update rule of SGD is simply δt ← αtgt, where αt is a scalar learning-rate. It is recommended to
set the learning-rate schedule to αt = α

1+αλt , where α is the initial learning-rate and λ is the smallest
eigen-value of the Hessian (Bottou, 2012). This is based on the following discussion.

Lemma A.1. Assume θ̃t is in a neighborhood of a local minimum θ̃∗, such that the gradient E[g̃t] is
approximated by Hε̃t via Taylor expansion. Here, H = E[∇2`(zt; θ̃

∗)] is the Hessian at θ̃∗. Let
0 < λ be the smallest eigen-value ofH . Then,

E[M2(ε̃t+1)
2] ≤ M2(ε̃t)

2 − 2λαtM2(ε̃t)
2 + α2

tE[M2(g̃t)
2] (12)

and the minimum of RHS of Equation 12 is achieved by

αt =
λM2(ε̃t)

2

E[M2(g̃t)2]
and E[M2(ε̃t+1)

2] ≤ M2(ε̃t)
2 − λ2 M2(ε̃t)

4

E[M2(g̃t)2]
. (13)

Proof. Since θ̃∗ is a local minimum, we have E[∇`(zt; θ̃∗)] = 0 and E[g̃t] ≈ Hε̃t, where H is
positive definite. Given λ the smallest eigen-value ofH , we have E[g̃t] · ε̃t ≥ λ‖ε̃t‖2. Applying this
to E[M2(•)] of Equation 2, we get Equation 12. Now the RHS is a quadratic function of αt, and it
takes minimum at Equation 13. So the lemma follows.

Note that both Amos and SGD analyze the evolution of M2(εt)
2 by estimating αtgt · εt. For SGD

this is achieved by approximating E[g̃t] with the Hessian. For Amos, on the other hand, we have
to make Assumption 1 due to the gradient normalization factor 1/

√
E[M2(gt)2]. In both cases, the

learning-rate decay is derived by setting αt in terms of M2(εt) so that M2(εt)
2 decreases fast, then

solve the asymptotic behavior of M2(εt).

Heuristic derivation of αt: We assume limt→∞ E[M2(g̃t)
2] = ν > 0. In light of Equation 13,

we consider the following asymptotic difference equation:

et+1 ∼ et −
λ2

ν
e2t (14)
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where et is intended to follow the asymptotic behavior of M2(ε̃t)
2. We transform Equation 14 as:

1

et+1
∼ 1

et
· 1

1− λ2

ν et
∼ 1

et
(1 +

λ2

ν
et) =

1

et
+
λ2

ν

so we have
1

et
∼ λ2

ν
t. Now, since αt =

λM2(ε̃t)
2

E[M2(g̃t)2]
we have αt ∼

λ

ν
et ∼

1

λt
. So αt =

α

1 + αλt
satisfies both the asymptotic behavior and α0 = α.

In the above derivation, the assumption limt→∞ E[M2(g̃t)
2] = ν > 0 states that E[M2(g̃t)

2] will
converge to some non-zero value and will not further decrease. This is often described intuitively as
“the stochastic noise of sampled gradients does not vanish”, a characteristic feature in the theory of
SGD. It is in drastic contrast with Assumption 1: We assume that E[M2(gt)

2] decreases along with
M2(E[gt]) in Amos. Ma et al. (2018) pointed out that the vanishing of E[M2(gt)

2] might lead to
faster convergence; but to our knowledge, Amos is the first work to use the vanishing of E[M2(gt)

2]
to actually develop an optimizer that empirically converges faster.

For SGD, the hyper-parameter λ is generally unknown; but if we adopt an L2 regularizer of strength
λ′, it is guaranteed that λ ≥ λ′, so one can safely set the learning-rate to α

1+αλ′t (Bottou, 2012). In
Amos, the strength of L2 regularization γ̃t takes a similar role in controlling the speed of learning-rate
decay. We expect this work to inspire more theoretical investigation into this principle.

A.4 THE CALCULATION OF η̃

As explained in § 2, for a linear transformation y = xW + u (W ,u ⊆ θ̃, W ∈ Rm×n, x ∈ Rm),
we set η(W ) = σy/(σx

√
m) and η(u) = σy/2, where σx is the standard deviation of entries of x

and σy the standard deviation of entries of y. The values of σx and σy are constrained by connected
layers, and non-linear layers usually expect entries of input/output tensors from some approximate
range. In Table 1, we show 3 types of non-linear layers that occur in Transformer, and specify their
input/output range (i.e. expected standard deviation) used for calculating η̃.

For activations, e.g. GELU (Hendrycks & Gimpel, 2016) in the Multi-Layer Perceptron (MLP) block,
the input range is set to 1 because the non-linearity of the activation function mostly lies within that
range; and the output range is set to

√
1/2 because the activation function, as similar to ReLU (Nair

& Hinton, 2010), will map negative values (which account for 1/2 of the input dimension) to close to
0 and approximately retain positive values.

For Softmax of n classes, the input range is set to 1 because the derivative of exp(x) is close to 1
within the |x| ≤ 1 range (so Softmax is most sensitive to values within this range); and the output
range is set to

√
1/n because the output is an n-dimension vector of L2 norm ≤ 1 (so the quadratic

mean of entries ≤
√
1/n).

For LayerNormalization (Ba et al., 2016), the input range is arbitrary because the input will be
normalized. The output range is expected to be 1.

We will discuss the calculation of η̃ for specific models in the next sub-sections.

A.4.1 BERT, ROPE AND RPE

For BERT, RoPE and RPE, the multi-headed attention layer receives the hidden state x, and the linear
transformations xQ (i.e. the query) and xK (i.e. the key) are expected to have standard deviation
1 so that the dot-product

√
1/h(xQ) · (xK) (i.e. attention score) has standard deviation 1 as well

Type of Non-linear Layer Input Range Ourtput Range

Activation in MLP 1
√

1/2

Softmax of n classes 1
√

1/n
LayerNormalization N/A 1

Table 1: The input/output range of non-linear layers we specify in this work for calculating η̃.
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Type of Variable η Remark

Bias in all Linears 0.5
LayerNormalization Scale 1
Input Embeddings

√
1/d d is the size of hidden states

MLP/Dense2/Kernel
√
2/m m is the size of intermediate activation in the MLP

Other Linear Kernels
√
1/d d is the size of hidden states

Relative Position Embeddings 0.5

Table 2: The η calculated for variables in BERT, RoPE and RPE. MLP/Dense2/Kernel is the linear
kernel for the output layer of the MLP block. Other linear kernels include e.g. query, key and value
kernels in the multi-headed attention layer.

(and this is why there is the scaling factor
√

1/h, where h is the size per-head), which is expected by
the Softmax for calculating the attention probability. Therefore, the output ranges ofQ andK are 1.
For RoPE, the dot-product is replaced by a bi-linear form which encodes relative positions, but this
does not change the scale because the bi-linear form is orthogonal.

For other linear transformations in the model, the outputs are either fed into the activation function of
an MLP (which requires input range 1), or serve as a summand in a Residual Connection where the
residual part comes from a LayerNormalization (which has range 1). So all the linear transformations
have output range 1 in these model architectures.

Thus, we set the η of bias in all linear transformations to 0.5, and the η for kernels is categorized by
the input range and dimension, as we show in Table 2.

The input embeddings (i.e. token embeddings, position embeddings and segment-type embeddings)
are inputs to LayerNormalization so their scales are not constrained there; but the token embeddings
are also used as the linear kernel for producing the logits of token generation, which expects input
range 1 (because it comes from LayerNormalization) and input dimension d (where d is the hidden
size), so η is set to

√
1/d.

For the linear kernel of the MLP output layer (MLP/Dense2/Kernel), the input range is
√
1/2 because

it comes from a non-linear activation, and input dimension m is the size of intermediate activation in
the MLP, so η is

√
2/m.

For all other linear kernels, the input range is 1 because it comes from LayerNormalization, and input
dimension is the hidden size d. So η is

√
1/d.

The relative position embeddings in the RPE model is used as input to the key and value transforma-
tions at each layer, similar to the hidden state. We set η to 0.5 so its scale is close to the hidden state
(which has scale 1) but will not dominate it.

Experiments with Amos-*Scale In § 5.1, we have experimented with pre-training RPE and BERT-
large with different η̃ (Amos-*Scale). For RPE (Figure 1c), we tried setting η of the relative

Type of Variables η Remark

LayerNormalization Scale 1
Query Kernel

√
1/(hd) h is the size per-head and d is the size of hidden states

Input Embeddings 1
MLP/wo/Kernel

√
2/m m is the size of intermediate activation in the MLP

Other Linear Kernels
√

1/d d is the size of hidden states
Relative Attention Bias 0.5

Table 3: The η calculated for variables in T5. MLP/wo/Kernel is the linear kernel for the output layer
of the MLP block.
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position embeddings to
√
1/d instead of 0.5. For BERT-large (Figure 2a), we tried setting η of

MLP/Dense2/Kernel to
√
1/d instead of

√
2/m. They both had impact on performance. Especially

for BERT-large,
√
1/d and

√
2/m only differ by a

√
2 factor (becausem = 4d), still the performance

gap is significant. It illustrates the importance of setting η̃ appropriately.

A.4.2 T5

For the T5 model, η is set as in Table 3. It is different from Table 2, due to several differences between
the T5 architecture and BERT, as discussed below.

1. Linear transformations do not have bias terms in T5.
2. Attention score is calculated by (xQ) · (xK) in T5, without the scaling factor. Instead,

the query kernel Q is initialized to a smaller scale
√

1/(hd), with an extra
√
1/h factor

compared toK. Thus, we accordingly set η of the query kernel to
√
1/(hd).

3. The token embeddings are no longer re-used for producing logits of token generation. So
we set η to 1, which is the same as the scale for initialization.

4. The MLP activation function (i.e. gated-GELU) used in T5 is different from BERT. Still, η
for the linear kernel of the MLP output (MLP/wo/Kernel) is set to the same.

5. We set η of the relative attention bias to 0.5 so its scale is close to the attention score (which
has scale 1) but will not dominate it.

A.5 DETAILED EXPERIMENT SETTINGS AND LEARNING-RATE SEARCH

In this section, we discuss detailed settings of the pre-training experiments in § 5.1. The hyper-
parameters and required computation resources are shown in Table 4. For pre-training BERT with
AdamW, we follow the settings of Liu et al. (2019). For RPE, pre-training on TPU is slow, so we
use a different configuration with more TPU cores to train the base-sized model. For T5, we found
that using β = 0.98 for Amos and AdamW causes training instability, so we decrease the value to
β = 0.95. The settings of AdaFactor follow Raffel et al. (2020) and Shazeer & Stern (2018).

For encoder-only models (i.e. BERT, RoPE and RPE) trained on the Wikipedia+Books corpus, we
use the Penn TreeBank corpus (Marcus et al., 1993) as the validation set. The training precision is
float32. Number of warm-up steps is set to 10k for AdamW and 20k for Amos.

For T5, the training loss is cross-entropy with an extra regularization term, (logZ)2 (where Z is the
normalization factor in Softmax), which makes the logits close to mean 0 and self-normalized. In

Batch Size Optimizer β Learning-rate #Steps Resource

BERT-base 1024 AdamW 0.98 2e-4 200k/300k
TPUv4 2x2x4
About 2 days

Amos 0.98 0.01 300k

RoPE-base 1024 AdamW 0.98 2e-4 200k/300k
Amos 0.98 0.01 300k

RPE 1024 AdamW 0.98 2e-4 200k/300k TPUv3 8x8
About 4 daysAmos 0.98 0.01 300k

BERT-large 4096 AdamW 0.98 2e-4 250k

TPUv4 4x4x4
About 4 days

Amos 0.98 0.01 250k

RoPE-large 1024 AdamW 0.99 1e-4 1M
Amos 0.99 5e-3 1M

T5-large 4096
AdamW 0.95 1e-3 250k
Amos 0.95 0.01 250k
AdaFactor 0.8 0.01 250k

Table 4: Hyper-parameter settings and required computational resources. The hyper-parameter β in
Amos is corresponding to β2 in AdamW and the (second moment) decay rate in AdaFactor.
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(a)  AdamW, Batch 1024 (b)  Amos, Batch 1024
AdamW-1e-4

AdamW-4e-4

AdamW-2e-4

Amos-0.01

(c)  Amos, Batch 256
AdamW-1e-4

Amos-0.002

Amos-0.01

Amos-0.005

Amos-0.005

Amos-0.02

Amos-0.01

Figure 5: Validation loss for pre-training BERT-base. We compare different learning-rates for (a)
AdamW with batch size 1024, (b) Amos with batch size 1024 and (c) Amos with batch size 256.

(c) Layer10/AttentionValue/Bias

Amos-0.01

Amos-0.02

(b) Layer10/AttentionValue/Kernel(a) Layer3/AttentionKey/Bias

Figure 6: Plot of the ratio M2(E[gt])√
E[M2(gt)2]

for variables in the BERT-base model, over pre-training steps.

Figure 2c, we plot cross-entropy for validation loss instead of the loss used for training. The training
precision of T5 is bfloat16. Possibly because linear transformations in T5 do not have bias terms, we
found the model easier to train than BERT, and Amos can be applied without warm-up of learning-rate.
The number of warm-up steps is set to 10k for both AdamW and AdaFactor. Learning-rate decay is
in proportion to t−1/2 (where t is the step) for AdaFactor and linear for AdamW.

For pre-training BERT-base, we present a learning-rate search in Figure 5. For AdamW (Figure 5a),
a smaller learning-rate significantly slows down the convergence, while a larger one results in a
bumpy validation loss but almost the same performance. On the other hand, both smaller or larger
learning-rate can degrade performance for Amos (Figure 5bc). Comparing Figure 5b and Figure 5c,
we also verify a theoretical prediction about the global learning-rate of Amos in § 4, i.e. the best
learning-rate for Amos is in proportion to the square-root of the batch size: Training with 4× the
batch size matches 2× the learning-rate.

A.6 VERIFICATION OF ASSUMPTION 1

In Assumption 1, we have assumed that M2(E[gt])√
E[M2(gt)2]

≥ ξ > 0 for all t and across all variables. E[gt]

and E[M2(gt)
2] can be estimated by taking the running average of gt and M2(gt)

2, respectively; so
in Figure 6 we track the pre-training of the BERT-base model, calculate the running averages with
exponential decay rate 0.98, and show some typical plots of the ratio. We note two characteristics of
the plots: (1) the ratios are increasing as the training proceeds, which suggests that taking a global
constant ξ to satisfy Assumption 1 is indeed possible; (2) starting points on the left of these plots are
similar across different learning rates, which suggests that it is detectable in the early stage of training
whether a learning-rate is too small or too large. In fact, in all plots for all variables we can see that
the ratio M2(E[gt])√

E[M2(gt)2]
≥ 0.01; the appropriate global learning-rate can be read from these plots.

A.7 FINE-TUNING RESULTS

In Table 5, we show fine-tuning results on the MNLI (Williams et al., 2018) dataset. We compare
checkpoints pre-trained for 150k and 300k steps with Amos, and the final checkpoints of AdamW-
200k and AdamW-300k. We fine-tune all checkpoints using the Adam optimizer with learning-rate
5e-6, batch size 16, and evaluate by the best accuracy on the MNLI dev set among every 1k of 200k
training steps. We run each experiment 3 times and report the mean and standard deviation. The
checkpoint pre-trained for 150k by Amos already outperforms the final checkpoint of AdamW-300k.
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MNLI-matched MNLI-mismatched

Amos@150k 84.15±.40 84.17±.37
Amos@300k 84.72±.15 84.44±.26

AdamW-200k 83.19±.37 83.45±.41
AdamW-300k 83.84±.14 83.88±.17

Table 5: Fine-tuned accuracy on MNLI dev set. We show the mean and standard deviation of 3 runs.

Thus, the faster convergence by Amos in pre-training indeed transfers to better performance in
fine-tuning; we can save 50% of the pre-training cost by using Amos instead of AdamW.

A.8 ABLATION OF MEMORY REDUCTION

In this section, we experiment with different settings of the memory reduction. We compare the
current setting of reducing the input dimension for linear transformations (Reduce 1Axis), to no
memory reduction at all (No Reduce), and the setting of reducing both axes for linear transformations
(Reduce Dense). For embedding matrices, no axis is reduced in the No Reduce setting, and the
embed dimension is reduced for both Reduce 1Axis and Reduce Dense. We have tried reducing both
axes for embedding matrices as well, but found the training unstable in this setting. The comparison
of memory usage for slot variables is shown below.

AdaFactor (No Momentum)� Reduce Dense < Reduce 1Axis� AdamW� No Reduce.

Without memory reduction, Amos (No Reduce) consumes more memory than AdamW because it
has more slot variables (ṽt, b̃t, m̃t vs. ṽt, m̃t). When memory reduction is applied, the memory
usage of ṽt, b̃t becomes negligible compared to the momentum m̃t, so Amos (Reduce 1Axis and
Reduce Dense) requires < 51% memory for slot variables than AdamW. The memory reduction
method used by Amos is more efficient than the matrix factorization used by AdaFactor, but in the
pre-training of T5 (Figure 2c), AdaFactor achieved favorable performance (although slightly worse
in the end than AdamW with linear learning-rate decay) without using momentum, reducing the
memory usage further. Whether Amos can achieve a similar performance without using momentum
is unclear yet.

No Reduce

Reduce Dense

Reduce 1Axis

Figure 7: Pre-training BERT-base using Amos with different memory reduction settings.

In Figure 7, we show the training and validation loss of pre-training BERT-base by Amos with
different memory reduction settings. Reduce Dense is slightly worse in training loss compared to
No Reduce, but not so much in validation loss. On the other hand, Reduce 1Axis is almost the same
as No Reduce in training loss, and generalizes even slightly better in validation loss than the other
two. So the current Reduce 1Axis setting for Amos is favorable.

A.9 TRAINING RESNET50 ON IMAGENET

In this section, we apply Amos to the training of ResNet50 (He et al., 2016) on the ImageNet dataset
(Deng et al., 2009). ResNet50 is a deep Convolutional Neural Network of 50 layers, with Batch
Normalization (Ioffe & Szegedy, 2015) and Residual Connection. ImageNet is a 1000-class image
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Type of Non-linear Layer Input Range Ourtput Range

ReLU Activation 1
√
1/2

BatchNormalization N/A 1
Max-pooling on patch size n 1 1/

√
2 lnn

Table 6: The input/output range of non-linear layers we use to calculate η̃ for ResNet.

classification task with 1.28M traning examples. We train with batch size 1024, on an 8-core TPU
machine. The settings for Amos is out-of-the-box: the hyper-parameter β is set to 0.95, warmup steps
5k, and the global learning rate ξ is set to 1√

N
= 0.028, where N = 1281167/1024 is the number of

batches in the traning data. We use the open-sourced init2wint8 codebase to run the experiments.

A.9.1 THE CALCULATION OF η̃ FOR RESNET

In order to calculate the hyper-parameter η̃ for ResNet, we specify the input/output range of 3 types
of non-linear layers in Table 6. This is similar to Transformers, with the only specialty that the output
range of a Max-pooling layer is set to 1/

√
2 lnn, where n is the patch size. This is because the

maximum of n normally distributed random variables9 has a standard deviation of about 1/
√
2 lnn.

The calculated η for different types of variables in ResNet is shown in Table 7.

BatchNormalization is treated the same as LayerNormalization in Transformer.

The projection kernel of the first residual block is scaled up by
√
2 lnn because of its previous

max-pooling layer of patch size n.

The 2nd and 3rd convolution kernels in each residual block is scaled up by
√
2 because their inputs

come from a ReLU activation.

The variables for bias and other linear kernels are treated the same as in Transformer.

Settings of Amos-*Scale We also tried an Amos-*Scale setting where the η for the projection
kernel of the first residual block is set to

√
1/d instead of

√
(2 lnn)/d (in ResNet50, n = 3×3 = 9).

A.9.2 RESULTS

In Figure 8a, we show the validation error rate of Amos and Amos-*Scale, where the error rate for
Amos (0.261 lowest) is slightly better than the Amos-*Scale setting (0.263 lowest). Furthermore,
it is known that a strong L2 regularization is beneficial for many popular image classification tasks
(Loshchilov & Hutter, 2019), but Amos does not have a hyper-parameter to adjust the strength of L2

Type of Variable η Remark

Bias 0.5
BatchNormalization scale 1
Projection kernel of the first

residual block

√
(2 lnn)/d n is the patch size of the previous max-pooling;

d is the input size
The 2nd and 3rd convolution

kernels in each residual block

√
2/d d is the input size

Other linear kernels
√

1/d d is the input size

Table 7: The η calculated for variables in ResNet. Other linear kernels include convolution kernels
and the final linear classification kernel.

8https://github.com/google/init2winit
9https://en.wikipedia.org/wiki/Fisher%E2%80%93Tippett%E2%80%93Gnedenko_

theorem#Gumbel_distribution
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Figure 8: Training ResNet50 on ImageNet. We plot error rate of the validation set.

regularization; so we tried an ad hoc setting Amos-Extra, where the Amos update rule (Equation 1) is
replaced by δt ← dt

(
ξη√
v̂t
gt + ( 12γt + 0.001)θt

)
with everything else kept the same (we also tried

other constants, but 0.001 was the best). As shown in Figure 8a, Amos-Extra (0.242 lowest error rate)
significantly improves the performance on ImageNet.

In Figure 8b, we compare the out-of-the-box Amos with Adam (no weight decay). The learning-rate
schedule of Adam is set to cosine decay with 5% warmup, and the number of training steps is set
to 140k. The base learning-rate is tuned by a random search of log scale between 1e-5 and 1e-2,
with 25 runs. Other hyper-parameters are set to the default (i.e. β1 = 0.9 and β2 = 0.999). Amos
outperforms all the 25 runs; the best 6 of the 25 are shown in Figure 8b. As alternative settings
for Amos, we have also tried β = 0.98, 0.999, or ξ = 0.02, or even changed the decay factors to

ct =
(
1 + 1

16

√
ξbt
)− 1

2 and dt =
(
1 + 1

16

√
ξηbt

)−1
. All the other settings converge to almost the

same validation error rate, sometimes with slightly slower convergence.

In Figure 8c, we compare Amos-Extra with the state-of-the-art settings of AdamW. The learning-rate
schedule of AdamW is set to cosine decay with 5% warmup, and the number of training steps is
set to 187k. The base learning-rate, weight decay strength, and label smoothing rate (defaults to
0.1 for other experiments) are tuned by random search, of log scale between 1e-4 and 1e-2, log
scale between 1e-2 and 1.0, and linear scale between 0.0 and 0.2, respectively, with 25 runs. Other
hyper-parameters are set to the default (i.e. β1 = 0.9 and β2 = 0.999). Among the 25 runs, 9 of them
outperform Amos-Extra, which are shown in Figure 8c. The best performing settings of AdamW
gain their advantage close to the end of training, which is probably due to the interaction between
weight decay and cosine learning-rate schedule. On the other hand, Amos-Extra demonstrates faster
and more stable convergence.

To conclude, when applied to ResNet50 on ImageNet, Amos can outperform Adam out-of-the-box,
and become comparable to the state-of-the-art AdamW settings by adding a small constant weight
decay term. However, the extra weight decay term is ad hoc, cannot be covered by our current theory
(because we have assumed that the L2 regularization is weak enough and decays to 0, not to bias the
loss function but only constrain the scale of trained variables), and probably is not the optimal way to
strengthen L2 regularization. It leaves the problem of searching for a more general working theory
that enables stronger L2 to future work.
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