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Abstract

Powerful machine learning (ML) models are now
readily available online, which creates exciting
possibilities for users who lack the deep techni-
cal expertise or substantial computing resources
needed to develop them. On the other hand, this
type of open ecosystem comes with many risks.
In this paper, we argue that the current ecosystem
for open ML models contains significant supply-
chain risks, some of which have been exploited
already in real attacks. These include an at-
tacker replacing a model with something mali-
cious (e.g., malware), or a model being trained
using a vulnerable version of a framework or
on restricted or poisoned data. We then explore
how Sigstore, a solution designed to bring trans-
parency to open-source software supply chains,
can be used to bring transparency to open ML
models, in terms of enabling model publishers to
sign their models and prove properties about the
datasets they use.

1. Introduction
In traditional software engineering, open-source code
repositories hosted on platforms like GitHub are invaluable
in enabling developers to build complex applications with-
out having to write every component themselves. In ma-
chine learning, a similar paradigm is emerging: general-
purpose (or foundation) models are trained and uploaded
to model hubs such as Hugging Face1 and Kaggle,2 which
users can then download and adapt for specific tasks. Cru-
cially, this latter step is significantly cheaper than the for-
mer, and thus can be performed by entities who lack the
resources needed to train a large foundation model.

1Google 2Google DeepMind. Correspondence to: Sarah Meik-
lejohn <s.meiklejohn@ucl.ac.uk>.
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https://huggingface.co/

2
https://www.kaggle.com/models

While the models uploaded to these hubs are versioned and
accompanied by model cards (Mitchell et al., 2019), this
information must be taken at face value as there is nothing
preventing the model publisher from lying about it. In other
words, these claims are not verifiable; i.e., they are not ac-
companied by any kind of proof that they are true. Fur-
thermore, while model cards typically do (or should) pro-
vide detailed information about aspects like intended us-
age, evaluation, and risks, they are often more vague about
the training data, preprocessing, and training hardware.

Attacks in other ecosystems have motivated the creation
and deployment of transparency solutions; e.g., the 2011
hack of the DigiNotar CA (Wolff, 2016) led to the creation
of Certificate Transparency (CT).3 CT was designed to
protect users from misissued X.509 certificates by storing
all issued certificates in globally accessible transparency
logs; i.e., logs that are append-only and can be inspected
by domain operators for potentially misissued certificates.
Likewise, the 2020 software supply chain attack on So-
larWinds (Newman, 2022) led to the creation of Sig-
store (Newman et al., 2022),4 a project designed to protect
users from vulnerable or malicious software libraries using
a similar approach to CT; i.e., having developers sign their
code and store the signing metadata in a transparency log.

In the ML ecosystem, similar attacks are emerging: users
of model hubs have been targeted with malware (Cohen,
2024; Wang et al., 2021), models trained to give misin-
formation on targeted prompts (Huynh & Hardouin, 2023;
Bagdasaryan & Shmatikov, 2022), and models impersonat-
ing those from prominent organizations (Kiani, 2024). Go-
ing beyond models uploaded to hubs with malicious intent,
there is also a clear need for model trainers to provide more
transparency (Bommasani et al., 2024) into the models they
create, as demonstrated by (proposed) regulation in both
the US (David, 2024; Biden, 2023) and EU (2024); a grow-
ing number of lawsuits brought against model creators over
their use of copyrighted work (Grynbaum & Mac, 2023;
Vincent, 2023; Ho, 2024); and the demonstrated ability
to poison training data in a way that biases the resulting
model (Carlini et al., 2024). While some of this scrutiny

3https://certificate.transparency.dev/
4https://www.sigstore.dev/
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focuses on transparency around access to the models and
what is and isn’t synthetic data (i.e., data generated by a
model), much of the focus is on the training data they use.

Our contributions. In this paper, we explore the topic
of model transparency through the lens of supply chain se-
curity. We use this broad term to consider both concerns
around training data provenance, which have been exten-
sively considered (Longpre et al., 2024), and the less stud-
ied problems of ensuring model integrity and addressing
other supply-chain risks.

Due to the urgency of deploying protections in this space,
we propose solutions in this work that are designed to be
performant and are built on simple and standardized cryp-
tographic techniques. Concretely, we propose two distinct
directions: first, in Section 5, we propose a simple but ef-
fective intervention, analogous to existing approaches like
CT and Sigstore, in which publishers sign the models they
upload to hubs. We have released this work as an open-
source library and are working to integrate it into existing
model hubs. Next, in Section 6 we propose applying ex-
isting verifiable data structures (e.g., Merkle trees) to the
problem of model transparency. Specifically, we focus on
how model trainers can commit to the data they use to train
their models in a way that allows them to later prove the
(non-)inclusion of specific data points in the set.

2. Alternative Views
Our view in this work is that the open ML model ecosystem
has significant supply-chain risks, and that these risks are
already being exploited; as such, we view this as a prob-
lem for which solutions urgently need to be designed and
deployed. The most reasonable view in opposition to ours
is that these are not the most urgent problems facing open
ML models, and that furthermore (1) deploying solutions
today would be premature given the relative instability of
the tooling and the ecosystem as a whole and (2) any viable
solutions are too costly to be considered practical. We hope
that the model signing solution we put forward in this work
helps to address this second concern, and argue that initial
interventions can (and should) be adopted by model hubs
rather than integrated into frameworks or other lower-level
tooling, thus addressing the first concern as well.

3. Model Transparency
As mentioned already, we use the broad term model trans-
parency when considering solutions addressing supply-
chain risks for ML models. We consider both the need
for interventions due to attacks that have already happened,
as well as proposed or deployed interventions that may be
effective in increasing transparency. We consider trans-

parency for supply chains themselves rather than for the
outputs of deployed models (Narayanan & Kapoor, 2023).

3.1. Data provenance

Model cards (Mitchell et al., 2019) allow publishers to self-
report information about their models, their intended uses,
and how they were produced. The Foundational Model
Transparency Index (Bommasani et al., 2024) provides a
numerical score for foundation models based on how much
data about the model and its components has been pub-
licly disclosed. Both of these mechanisms rely on self-
reported data, which cannot be assumed to be accurate
for malicious publishers. Furthermore, even honest pub-
lishers may not want to reveal all information about all
aspects of the model (e.g., the training data), so there is
still value in making verifiable, privacy-preserving claims
even with an accurate model card or other self-reported
data. Likewise, researchers have proposed multiple stan-
dards for documenting and maintaining information about
training datasets (Gebru et al., 2021; Luccioni et al., 2022;
Pushkarna et al., 2022; Akhtar et al., 2024). Again, these
works are complementary to our own in focusing on com-
munication and documentation but not verifiability.

Longpre et al. (2024) provide an extensive exploration of
the topic of data provenance, highlighting many problems
that stem from poor due diligence and transparency around
training data. Cen et al. (2023) argued that these harms
are exacerbated by the current state of ML supply chains,
in which the capabilities of models are not well specified
and different components (e.g., models or datasets) interact
with each other in unexpected and often unknown ways.
Indeed, researchers have demonstrated the ease with which
an attacker could poison training datasets (Carlini et al.,
2024) and the attacks that can be carried out with poisoned
training data (Gu et al., 2017) or pre-trained models (Gu
et al., 2017; Kurita et al., 2020; Jiang et al., 2023). Longpre
et al. also discuss many existing interventions for tracking
data provenance, including both ones that offer some no-
tion of verifiability and ones that do not.

In terms of verifiability, Choi, Shavit, and Duvenaud (2023)
propose proofs of training data, in which a model trainer
provides a training transcript to a verifier that is designed to
convince them that a given model was obtained by running
a specific training algorithm on a specific training dataset
and hyperparameters. A similar goal was considered for
stochastic gradient descent by Baluta et al. (2023), who de-
fined forgery for intermediate model checkpoints and the
conditions under which forgeries are (im)possible. Both of
these approaches, however, require providing information
such as the entire training dataset to the verifier. As such,
they are not well suited to applications in which the model
trainer would like to keep this information private.
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Figure 1. The different actors and phases in the software sup-
ply chain, along with the points at which malicious actions can
be taken. This image was taken from https://slsa.dev/
spec/v1.0/threats-overview.

A recent line of work has sought to overcome this limita-
tion by using zero-knowledge proofs to prove the correct-
ness of training without revealing the training data. Garg
et al. (2023) and Tan et al. (2025) provide proofs for lo-
gistic regression, Eisenhofer et al. (2025) use SNARKs to
provide proofs of training for both regression models and
neural networks, and Abbaszadeh et al. (2024) provide a
proof for deep neural networks. These protocols come with
strong cryptographic guarantees but high overhead in terms
of either large proof sizes or high prover runtime. There is
thus currently no proof system that has demonstrated the
ability to scale to large models while maintaining reason-
able proof sizes and prover and verifier runtimes.

3.2. Model integrity

As we can see, significant concerns have already been
raised by the community around issues of training data
provenance and transparency. A more overlooked area,
however, is model integrity, in terms of providing some as-
surance that the models published on model hubs are the
ones that the model owner intended to publish, and in par-
ticular have not been tampered with by the model hub or
some other malicious party. As we see below, the poten-
tial for such attacks in the current open model ecosystem
is high (and in some cases attacks have happened already)
due to the ease with which they can be carried out and the
lack of deployed protections.

To understand these threats systematically, we can consider
the software supply chain—as depicted in Figure 1—by
way of analogy. We can think of the training data as cor-
responding roughly to a subset of the dependencies that go
into producing a software artifact, the code for training as
corresponding to the source code, the training itself as cor-
responding to the build process, and the final trained model
as corresponding to a software artifact.

Several attacks of the types presented in Figure 1 have
been demonstrated for the ML model supply chain in re-
cent years. Researchers have observed the potential for
attacks to be carried out at training time (Bagdasaryan &
Shmatikov, 2021; Shumailov et al., 2021) (attack D), and
there is at least one documented case of a real training pro-
cess being compromised, with reporting in October 2024
indicating that ByteDance fired an intern for interfering
with training (Belanger, 2024).

The concerns discussed around using poisoned, unin-
tended, or otherwise harmful datasets and pre-trained mod-
els correspond to attack E (using a compromised depen-
dency), but other attacks fall into this category as well.
Several attacks have been demonstrated on PyTorch (The
PyTorch Team, 2022; Young, 2022; Stawinski, 2024) and
TensorFlow, two popular machine learning frameworks.
Some of these attacks compromised the direct dependen-
cies of the frameworks, while others exploited aspects of
their continuous integration (CI) pipelines in ways that al-
lowed for arbitrary code injection. The software supply
chain of these frameworks was also investigated in depth by
Tan et al. (2022), and Gao, Shumailov, and Fawaz (2025)
demonstrated that these frameworks are vulnerable to new
attacks due to their use in ML services, thus requiring an
ML-specific threat model. Recent “tool poisoning” attacks
on the Model Context Protocol (MCP) (Invariant Labs,
2025) demonstrated how unverified MCP tools can expose
users to malicious packages, in addition to other risks. Fi-
nally, Langford et al. (2025) discussed how architectural
backdoors—i.e., backdoors that rely solely on changing the
model architecture—can be carried out in a variety of ways,
ranging from poisoning training data or compromising the
framework (attack E) to modifying the architecture defini-
tion file directly (attack F).

Uploading a new version of a model (attack F) or com-
promising the model repository (attack G) could easily be
carried out by a malicious insider or model hub. In ad-
dition, because of the way models are deserialized, at-
tacks are possible against models produced by honest pub-
lishers but that have been serialized using unsafe formats
such as pickle (Milanov, 2024); moreover, attacks have
targeted services designed to help users convert to safer
formats (Hidden Layer, 2024). Researchers also discov-
ered 1,681 leaked API tokens for Hugging Face (Lanyado,
2023), creating the potential for attackers to access the ac-
counts of others and upload malicious models under their
name. As observed by Jiang et al. (2023), the impact of
this attack can vary significantly given that some maintain-
ers have access to hundreds of different models.

Finding ways for a model consumer to use a compromised
model (attack H) is even easier than compromising an ex-
isting model, as there are many ways for an attacker to con-
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vince users to download their model. For example, Kiani
reports namesquatting attacks on Hugging Face (2024),
in which attackers try to make it appear as though their
models are coming from a reputable organization, or are
themselves well known models (e.g., Llama). Researchers
have also uploaded models designed to provide misinfor-
mation on targeted topics (Huynh & Hardouin, 2023) and
found over a hundred instances of malware on Hugging
Face (Cohen, 2024), and Protect AI maintains a database
with dozens of examples of unsafe or suspicious models.5

While many articles and sources of documentation discuss
the potential for attacks in an ecosystem in which users
download and run arbitrary models (TensorFlow), there are
few specific protections in place and traditional anti-virus
solutions are often unable to catch these malicious mod-
els (McInerney, 2024).

4. Existing Solutions for (Model) Integrity
Preventing attacks on model integrity using technical solu-
tions is difficult, if not impossible, given that many of the
attacks are associated with longstanding problems that the
security community has been unable to solve (e.g., stop-
ping the spread of malware) or rely on social engineering
rather than technical means (e.g., the use of namesquatting
to convey trust, or finding leaked API tokens).

Instead, we can look to other domains for inspiration in
terms of solutions that aim for the detection of misbehavior
rather than its prevention. In particular, we consider Cer-
tificate Transparency (CT), a project that was created in re-
sponse to the similar threat of certificate authorities (CAs)
misissuing certificates for domains—either due to compro-
mise or just poor due diligence—thus enabling a man-in-
the-middle attack whereby an attacker could impersonate
the operator of that domain. CT relies on two components:
signatures created by CAs, which provide non-repudiable
evidence that they did issue a given certificate, and trans-
parency logs that contain all certificates that have been is-
sued (by any CA). Crucially, CT does not prevent misis-
suance by promising that a given certificate is “good” if it
appears in the log. Rather, it promises the ability for a do-
main operator to detect misissuance by inspecting the con-
tents of the log, and thus hold accountable the CA who is-
sued the certificate or otherwise act on this information. As
we see in the next section, Sigstore (Newman et al., 2022)
provides similar guarantees for open-source software, and
can be easily adapted to work for open models as well.

Hugging Face, a popular model hub, has a deployed solu-
tion called commit signing,6 wherein model publishers can
sign their commits using GPG keys. As shown by Jiang et

5
https://protectai.com/insights/models

6
https://huggingface.co/docs/hub/en/security-gpg

al. (2023) and Schorlemmer et al. (2024), however, this ap-
proach has been adopted by fewer than 2% of the models on
the hub. In software supply chains, PGP signatures are re-
quired for Java packages to be published in the Maven Cen-
tral package registry. On the other hand, a similar lack of
adoption as Hugging Face was observed when the Python
Package Index (PyPI) offered the option to upload PGP sig-
natures alongside artifacts, along with other issues such as a
significant portion of signatures being unverifiable. These
combined issues led PyPI maintainers to remove support
for PGP signatures (Stufft, 2023).

Besides Sigstore, there are several other modern solutions
for code signing and software supply chain transparency.
In Sigsum,7 users manage their own keys and record signa-
tures to a key-usage transparency log. The Notary Project,8

and more specifically the Notation CLI,9 offer signing and
verification of artifacts (primarily containers) in formats
compliant with specifications set by the Open Container
Initiative (OCI). Notary does not record signatures in a
transparency log and requires key management. SCITT10 is
a framework for software supply chain security and trans-
parency in which—like Sigstore—signatures are associated
with identities and stored in a transparency log. Unlike Sig-
store, however, SCITT mandates a specific format (CBOR
Object Signing and Encryption, or COSE) for signatures;
furthermore, their development is in an early stage and de-
scribed as not suitable for production. Thus, as compared
to these other solutions, we chose Sigstore due to its ma-
turity, transparency, and the flexibility it offers in terms of
formats and key management.

5. Integrity for ML Models
As a first step towards securing the open model ecosystem,
we propose storing signing metadata in the Rekor trans-
parency log; i.e., the log maintained by Sigstore. This
protection is analogous to the one offered by Certificate
Transparency and allows users to be sure that, when they
download a given version of a model, they are seeing the
canonical model at that version and not a targeted one; i.e.,
that they are seeing the same version as everyone else. If
model publishers are also monitoring the contents of the
log and making sure that all signing events for their models
were intentional on their part, this protects users from mod-
els that have been tampered with or were otherwise mali-
ciously crafted. This solution thus defends against attacks
analogous to attacks F and G from Figure 1.

7
https://www.sigsum.org/

8
https://notaryproject.dev/

9
https://github.com/notaryproject/notation

10
https://datatracker.ietf.org/group/scitt/about/
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5.1. Cryptographic notation

For a finite set S, |S| denotes its size and x
$←− S de-

notes uniformly sampling a member from S and assign-
ing it to x. For an ordered list L, L[i] denotes the i-th
entry. λ ∈ N denotes the security parameter and 1λ its
unary representation. For n ∈ N, [n] denotes {1, . . . , n}.
By y ← A(x1, . . . , xn) we denote running algorithm A
on inputs x1, . . . , xn and assigning its output to y, and by
y

$←− A(x1, . . . , xn) we denote running A(x1, . . . , xn;R)
for a uniformly random tape R. Our constructions in this
and the next section rely on the discrete logarithm as-
sumption, which says that it is hard to output x given gx

where g is a generator of a group G of prime order p and
x

$←− F∗
p, and the DDH (decisional Diffie-Hellman) as-

sumption, which says that it is hard to distinguish between
(g, ga, gb, gab) and (g, ga, gb, gc) for a, b, c $←− F∗

p.

5.2. How Sigstore works

Our model signing solution builds on Sigstore (Newman
et al., 2022), which was designed to provide transparency
for open-source software supply chains. In addition, and
in contrast to the commit signing solution from Hugging
Face, Sigstore was designed to avoid key management on
the part of developers.

Briefly, a typical usage of Sigstore is as follows. After
creating a new software artifact, a developer can gener-
ate an ephemeral keypair for a digital signature scheme.
They can then obtain a certificate from Sigstore’s certifi-
cate authority, Fulcio, that binds the ephemeral public key
to an OpenID Connect (OIDC) identity that the developer
has demonstrated they control (typically by authenticating
themselves to an approved identity provider, such as Mi-
crosoft or Google, and receiving an identity token in re-
turn that they can provide to Fulcio). To avoid the need
for certificate revocation, certificates are typically short-
lived; e.g., they are valid for only 10 minutes. After signing
some metadata for the software (such as its hash) with the
corresponding private key, the developer can then submit
the metadata, certificate, and signature to Sigstore’s trans-
parency log, Rekor. Crucially, at this point the developer no
longer needs to use the private signing key. Once accepted,
Rekor returns to the developer a proof containing, among
other objects, a Merkle inclusion proof of the entry; i.e., the
sibling hashes along the path from the new entry to the root
of the Merkle tree maintained in Rekor. The developer can
then make a bundle of evidence available alongside their
artifact so that users can verify both the signature and the
fact that the relevant information was appropriately logged
(and is thus available for inspection by external entities).

5.3. Model signing

We start by assuming that a model publisher has trained and
saved a new version M of a model mdl. This can be done
using any number of frameworks; our solution is agnostic
to the framework or the format of the final model.

We also assume that the publisher, with some identity id,
is authorized to publish new versions of the model. To
sign the model, the publisher follows the typical workflow
for Sigstore (Newman et al., 2022) (Algorithm 1), which
means: (1) obtaining an OIDC token tok; (2) forming an
ephemeral keypair (pk, sk)

$←− KeyGen(1λ) and a proof
of possession σpop

$←− Sign(sk, id); (3) obtaining a certifi-
cate cert by submitting tok, pk, and σpop to Fulcio; and (4)
running Sign(sk, cert,mdl,M) to obtain a bundle. At this
point the publisher can publish the bundle alongside M .

Upon encountering a model M with an associated bundle, a
model consumer can verify it using the regular Sigstore ver-
ification algorithm (Newman et al., 2022) (Algorithm 3).

In the open model ecosystem, publishers can upload bun-
dles to model hubs alongside their models; indeed, this can
be the default option when using the upload API for the
hub. If the hub acts as an OIDC provider, then this can
happen seamlessly as the model publisher needs to be au-
thenticated with the hub anyway. These bundles can first
be verified by the hub itself, who can optionally convey this
“verified” status to users, before also being made available
to users who may wish to perform verification themselves.

5.4. Implementation and evaluation

We implemented model signing in Python, on top of the
sigstore-python library.11 Our implementation is
4500 lines of code and available as an open-source li-
brary.12

Much of our code is devoted to serialization. In particular,
both the model publisher and consumer(s) need to form a
hash hmdl. If the model is a single file then this means
hashing that file, and if the model is a directory then we
hash its subdirectories and files (in alphabetical order, as
determined by the full path of the object). For models that
are saved as a single file, the signing metadata is stored in a
file <fname>.sig (where ‘fname’ is the filename of the
model). For models that are saved as a directory, it is stored
in a file model.sig in the top-level directory. The library
supports both SHA-256 and BLAKE2 as hash functions.

Moreover, the files for ML models can be large. Our code
contains the option to hash these files naı̈vely, but also an
optimized approach in which we break large files up into

11
https://github.com/sigstore/sigstore-python

12
https://github.com/sigstore/model-transparency/
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Figure 2. Averaged over five runs and plotted on a log-log scale,
the time, in seconds, required to hash a file of a size ranging from
1B to 1TB, on three different machines and using our two dif-
ferent approaches. The green dots represent the time to hash dif-
ferent large open models using the list-based approach on M3, as
summarized in Table 1.

smaller chunks C1, . . . , Cn, and then hash these chunks in
a list as H(H(C1)∥ . . . ∥H(Cn)). Our default chunk size is
1GB, but our code contains the option to treat chunk size
as a parameter.

We benchmarked our hashing code, using SHA-256 and
both the naı̈ve and list-based approaches, for file sizes rang-
ing from 1B to 1TB, on three machines: (1) M1 with
24 vCPUs running on AMD EPYC 7B12 at 2.25GHz and
96GB of RAM; (2) M2 with 64 vCPUs running on AMD
EPYC 7B13 at 2.45GHz and with 120GB of RAM; and
(3) M3 with 128 vCPUs running on AMD EPYC 7B13
CPUs at 2.45GHz and with 240GB of RAM. We also
benchmarked the full signing and verification workflows
using ECDSA P256 (the default signature in Sigstore). The
results are in Figure 2.

The naı̈ve approach is initially faster, due to the orchestra-
tion overhead of the list-based approach, but gets signifi-
cantly slower starting at 1MB. This indicates the point at
which disk performance becomes the main bottleneck. We
can also see a “plateau” for the list-based approach after
files become larger than 1GB, which represents the point
at which files start to get broken into smaller chunks. Fi-
nally, we see a sharp increase in the time required to hash
files larger than the machine’s available RAM. Prior to this
threshold, Linux’s disk cache allowed for portions of the
file to be read from RAM instead of disk. Hashing the
1TB file using the list-based approach takes 800 seconds
(13.3 minutes) on the most powerful machine (M3). Com-
pared to the cost of saving this file, which was 4,151 sec-
onds (69 minutes), this represents a 19% overhead.

Model Size (in GB) Time (in s)

Hash Total

gemma-2b 14.03 0.88 1.36
falcon-7b 26.89 1.06 1.58
Mistral-7B 27.47 0.97 1.45
Llama-3.1-8B 29.93 1.05 1.48
gemma-7b 47.74 1.73 2.23
Mixtral-8x22B 261.93 157.26 157.97
Llama-3.1-70B 262.86 167.36 168.26
falcon-180B 334.39 266.03 266.81
Llama-3.1-405B 2275.95 1940.62 1941.23

Table 1. Averaged across five runs, the time required to hash and
sign large open models using the list-based approach on M3.

We also summarize in Table 1 the costs associated with
hashing and signing a variety of large open models (as ob-
tained from Hugging Face); we chose these ones as they
are the largest open models available today. The reported
model sizes include all files in the repository. The hashing
costs are also depicted as green dots in Figure 2. As we can
see, the costs of hashing these models—which are saved
as directories—are entirely aligned with the costs of hash-
ing a single large file. Furthermore, the additional costs of
signing (which are dominated by the call to Rekor) range
from 478ms (35% overhead) to 602ms (0.03% overhead),
in line with the numbers reported for Sigstore (Newman
et al., 2022). We did not include the time to verify in the ta-
ble, but here the additional costs were consistently around
6ms; these costs are much lower than for signing because
verification happens entirely offline. We also measured
the memory usage of signing each of these large models
and found that peak memory usage ranged from 364.48 to
684.95MB of RAM.

Overall, we can see that the costs of signing and verifying
a model are dominated by the cost of hashing. Further-
more, the main bottleneck in hashing performance quickly
becomes disk performance, suggesting that we would see
similar performance using other hash functions.

6. Dataset Verifiability
Model signing is a useful first step in protecting users
against malicious models, in terms of committing model
publishers to their intent to publish a specific version of a
model. On its own, however, it tells the user no informa-
tion about what a model actually does or how it was pro-
duced; i.e., it does not address any concerns around data
provenance (Longpre et al., 2024). We investigate this lat-
ter question in this section, in terms of addressing attack D
from Figure 1.
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In particular, we consider the problem of committing to the
data that was used to train a model, in a way that allows a
model trainer to later prove that a queried data point was or
wasn’t included in the training data; this could, for exam-
ple, could be useful in allaying concerns about copyright
infringement (David, 2024). Crucially, a model trainer
must be able to prove these properties without revealing
any other information about the training data, which is typ-
ically considered highly sensitive for models produced by
large organizations. We leave open the potential for prov-
ing other interesting properties about the training data; e.g.,
that it does not counteract the guarantees of a differentially
private training algorithm (Shamsabadi et al., 2024).

6.1. Cryptographic primitives

6.1.1. ZERO-KNOWLEDGE PROOFS

A zero-knowledge proof of knowledge for a relation R con-
sists of two algorithms (and an optional algorithm Setup to
generate a reference string that is then input to the other
algorithms): π

$←− Prove(x,w) takes in an instance x and
a witness w and outputs a proof π that (x,w) ∈ R, and
0/1 ← Verify(x, π) takes in the instance and the proof
and outputs 1 if the proof verifies and 0 otherwise. The
proof satisfies zero knowledge if a (PPT) simulator without
knowledge of a witness can produce proofs that are indis-
tinguishable from honest ones, and knowledge soundness if
it is possible to extract (via a PPT extractor) a valid witness
from any proof that verifies.

6.1.2. VERIFIABLE RANDOM FUNCTIONS (VRFS)

A verifiable random function (VRF) is a keyed pseudo-
random function that enables efficiently verifiable proofs
of correct evaluation. Formally, a VRF is comprised of
four algorithms: (1) pk, sk

$←− KeyGen(1λ) outputs a
public verification key and a secret evaluation key; (2)
y

$←− Eval(sk, x) outputs the VRF evaluation of x under
the secret key sk; (3) π

$←− Prove(sk, x, y) proves that y
is the correct evaluation of x under sk; and (4) 0/1 ←
Verify(pk, x, y, π) checks the correctness of the evaluation
y of x with respect to the public key pk.

The security properties provided by a VRF are pseudo-
randomness, which says that even an adversary who picks
the input x should not be able to distinguish Eval(sk, x)
from random, and unique provability, which says that there
should not be two different evaluations and proofs that ver-
ify for the same input x.

We use the VRF proposed by Melara et al. (2015), which is
secure under the DDH assumption. This VRF operates in a
group G of prime order q, with generator g, and makes use
of two associated hash functions: H1 : {0, 1}∗ → G and
H2 : {0, 1}∗ → Fq . Within this context, the algorithms

are defined as follows: KeyGen(1λ) picks sk
$←− F∗

q , sets
pk ← gsk, and outputs pk, sk. Next, Eval(sk, x) outputs
y ← H1(x)

sk. Prove(sk, x, y) picks r
$←− F∗

q , computes
s ← H2(x, g

r, H1(x)
r) and t ← r − sk · s, and outputs

π ← (s, t). Finally, Verify(pk, x, y, π) outputs 1 if s =
H2(x, g

t · pks, H1(x)
t · ys) and 0 otherwise.

6.1.3. ACCUMULATORS

A cryptographic accumulator allows a (untrusted) prover
to provide a succinct commitment to a set of data, in a way
that allows it to later prove properties of the set against the
commitment. In particular, we consider accumulators for
which it is possible to prove that certain elements are or are
not included in the set.

Formally, an accumulator Acc is comprised of five al-
gorithms: (1) state, com

$←− Commit((Di)i) outputs a
commitment to an ordered list of elements (Di)i and
some internal state; (2) π

$←− ProveIncl(state, D) out-
puts a proof of inclusion of a given element; (3) 0/1 ←
VerIncl(com, D, π) verifies the inclusion proof against the
commitment com; (4) π $←− ProveNonIncl(state, D) out-
puts a proof of non-inclusion of a given element; and (5)
0/1 ← VerNonIncl(com, D, π) verifies the non-inclusion
proof against the commitment com. The main security
property provided by an accumulator is soundness, which
says that it should not be possible to provide a verifying in-
clusion proof for any elements not in the set, or a verifying
non-inclusion proof for any elements in the set.

6.1.4. ZERO-KNOWLEDGE SETS

Accumulators provide the ability to efficiently prove (non-
)inclusion against a commitment, but proofs may reveal in-
formation about the underlying set. A zero-knowledge set
(ZKS) provides this additional privacy guarantee, in addi-
tion to the soundness provided by an accumulator.

Formally, a zero-knowledge set ZKS = (Commit,Query,

Verify) is comprised of three algorithms: (1) state, com $←−
Commit((Di)i) outputs a commitment to an ordered list
of elements (Di)i and some internal state; (2) resp, π $←−
Query(state, D) outputs a response indicating whether or
not D is in the set and an associated proof of (non-
)inclusion; (3) 0/1 ← Verify(com, D, resp, π) verifies the
proof against the commitment according to the response
resp. In addition to soundness, the ZKS should provide L-
privacy (Chase et al., 2019), which says that proofs reveal
no information beyond a defined leakage function L.

6.2. Committing to training data

We represent training data as a series of elements
D1, . . . , Dn. Each element can represent either a sin-

7
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gle data point or a dataset (consisting of potentially many
points).

Cryptographically, our goal is to (1) provide a compact
commitment to these elements such that we can (2) effi-
ciently prove the (non-)inclusion of specific elements in a
way that (3) doesn’t reveal anything about the (other) el-
ements that were used. This third requirement means we
need to go beyond the standard properties of cryptographic
accumulators, which do not typically offer any hiding guar-
antees, and use a zero-knowledge set that supports non-
membership proofs. Once a commitment is formed, we
can imagine it being stored in an AIBOM (bill of mate-
rials) (Bennet et al., 2024) that is published alongside the
model.

Our construction follows the approach established by ver-
ifiable data structures built for the purpose of key trans-
parency, as is now deployed in WhatsApp (Lawlor & Lewi,
2023), and is particularly inspired by SEEMless (Chase
et al., 2019). Because we consider only a static accumula-
tor (i.e., the entire set to which we are committing is fixed in
advance), we can simplify their construction while achiev-
ing the same soundness and privacy guarantees, as well as
the same space efficiency.

This means we consider two underlying primitives: a veri-
fiable random function VRF and an accumulator Acc. Our
choice of VRF is presented in Section 6.1.2. Our accumula-
tor is a Merkle tree, with entries ordered lexicographically
to enable efficient proofs of non-inclusion. In more detail:

• Acc.Commit((Di)
n
i=1) orders the list (Di)i lexico-

graphically. It then forms a Patricia Merkle tree over
this list. Concretely, this means the i-th leaf hash is
formed as hi ← H(i∥Di), and the parent hash of two
children p.c0 and p.c1, where p denotes their common
prefix, is computed as H(p∥hp.c0∥hp.c1∥c0∥c1). It re-
turns state containing the structure of the tree (the po-
sition and hashes for all nodes, and the underlying (or-
dered) list (Di)i) and com← hroot.

• Acc.ProveIncl(state, D) provides the Merkle inclu-
sion proof for H(i∥D) (i.e., the data for siblings along
the path from this leaf to the root of the tree, which in-
cludes their hash, prefix, and children suffixes), where
i is the index of D in the list.

• Acc.VerIncl(com, D, π) verifies the Merkle inclusion
proof; i.e., it recomputes the root hash hroot given the
sibling hashes, prefixes, and suffixes, and verifies that
hroot = com.

• Acc.ProveNonIncl(state, D) finds the node z associ-
ated with the longest prefix p of D, and its children
p.c0 and p.c1. It outputs z, hz , p, c0, c1, hp.c0 , hp.c1 ,
and the Merkle inclusion proof πz for z.

• Acc.VerNonIncl(com, D, π) verifies the inclusion of
z in the tree using πz . It then checks that hz =
H(p∥hp.c0∥hp.c1∥c0∥c1), that p is a prefix of D, and
that p.c0 and p.c1 are not prefixes of D. If all these
checks pass then it outputs 1; otherwise, it outputs 0.

The soundness of this construction was proved by Chase
et al. (Chase et al., 2019). With the underlying building
blocks established, our zero-knowledge set construction
achieves privacy by making the following modifications.
First, entries in the accumulator are ordered lexicographi-
cally, which leaks information about what is or isn’t in the
set. Entries in the ZKS are instead ordered randomly, with
the VRF used to compute the index at which each entry
should be placed. Specifically, for entry D we compute
its new index j as H(VRF.Eval(sk, Di)). Second, proving
(non-)inclusion in the accumulator can require giving out
the data for neighboring leaf nodes, which leaks informa-
tion. Instead of storing a plain hash at each leaf, we thus
store a commitment to the entry and provide these com-
mitments (which leak no information about the underlying
entry) instead. Specifically, we store the value H(Di, ri)
for some random ri. The algorithm for forming this type of
commitment, ZKS.Commit, can be found in Figure 3.

6.3. Proving (non-)inclusion in training data

For a data element D, the model trainer can prove that D
was or was not part of the training data for their committed
model using the underlying accumulator. In particular, they
can identify the intended location d of the data point in the
data structure by computing the VRF, prove that this is the
right location (πVRF), and then prove the (non-)inclusion of
the point at that location using the appropriate algorithms
for the accumulator (πAcc). This is summarized in Figure 3
as ZKS.Query. The verifier can then verify this proof, us-
ing ZKS.Verify (in Figure 3), based on the underlying al-
gorithms for the VRF and the accumulator.

6.4. Ensuring the validity of a commitment

Thus far, we described how to prove the (non-)inclusion
of specific data points against a commitment provided by
a model trainer. This does not prove, however, that the
commitment accurately represents the data that was actu-
ally used in training the model. Thus, the proofs provided
against this commitment become meaningful only when we
can be sure the commitment was computed correctly.

As discussed in Section 3, a recent line of work has focused
on providing proofs of training data (Choi et al., 2023; Ba-
luta et al., 2023; Garg et al., 2023; Eisenhofer et al., 2025;
Abbaszadeh et al., 2024; Tan et al., 2025). This work could
be leveraged here by providing either a non-private proof
of training data to an entity who is trusted to see the data

8
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ZKS.Commit(D1, . . . , Dn)

pk, sk
$←− VRF.KeyGen(1λ)

L← ε⃗
for all i ∈ [n] :

di ← H(VRF.Eval(sk, Di))

ri
$←− {0, 1}λ

hi ← H(Di, ri)
L[di]← hi

stateAcc, com
$←− Acc.Commit(L)

state← (stateAcc, sk, (Di, ri)i)
return state, (pk, com)

ZKS.Query(state, D)
d← VRF.Eval(sk, D)

πVRF
$←− VRF.Prove(sk, D, d)

if (D ∈ (Di)i)
πAcc ← Acc.ProveIncl(d)
return 1, (d, πVRF, πAcc)

else
πAcc ← Acc.ProveNonIncl(d)
return 0, (d, πVRF, πAcc)

ZKS.Verify((pk, com), D, resp, (d, πVRF, πAcc)
bVRF ← (VRF.Verify(pk, D, d, πVRF) = 1)
if (resp = 0)

bAcc ← (Acc.VerIncl(com, d, πAcc) = 1)
else

bAcc ← (Acc.VerNonIncl(com, d, πAcc) = 1)
return bVRF ∧ bAcc

Figure 3. Algorithms for our zero-knowledge set, assuming an underlying accumulator Acc and VRF VRF.
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Figure 4. Averaged over ten runs and plotted on a log-log scale,
the time, in seconds, to commit to and prove and verify inclusion
in a data registry of a given size, ranging from 1000 to 100 million
entries.

but not collude with the model trainer (e.g., a regulator), or
publishing a zero-knowledge proof that anyone could ver-
ify. Another approach would be to train a model in an en-
vironment equipped with trusted execution environments
(TEEs), which could be used to form the commitment and
attest to its correctness. We leave the development of these
and other potential solutions as interesting future work.

6.5. Evaluation

To benchmark the costs associated with this type of train-
ing data commitment, we use the available Rust code for
the Parakeet verifiable registry (Malvai et al., 2023). We
measured the costs of computing a commitment and prov-
ing and verifying against it for datasets ranging from 1000
to 10 billion data points. The results are in Figure 4.

As expected, Commit is orders of magnitude more expen-
sive than proving or verifying (non-)inclusion: the time re-
quired for these operations is still on the order of tens of

microseconds even for data structures with 100 million en-
tries, whereas Commit requires 96 s to form a data structure
of this size. We could not scale further using an in-memory
data structure, but if we switch to using a persistent storage
layer it seems likely we could scale to billions or tens of
billions of entries (indeed, Parakeet was developed for use
within WhatsApp, which has two billion users).

We chose such a wide range because we believe it accu-
rately reflects the many potential use cases of this approach:
fine-tuning a foundation model to output images in a spe-
cific visual style, for example, might use only hundreds
of additional images. In these cases the party perform-
ing the fine-tuning could prove that they hadn’t introduced
any new copyrighted images and leave the scrutiny of the
(much larger) foundation model to other parties or pro-
cesses. On the other hand, smaller image models might be
trained on well known datasets like CIFAR-10 (which has
50K rows)13 or MNIST (60K rows),14 while larger datasets
like YouTube-Commons (400K rows)15 are used for fine-
tuning language models for Q&A tasks.

7. Conclusions and Future Work
In this work, we identify the risks posed by ML model
supply chains today and demonstrate two first steps in se-
curing these supply chains, in terms of signing models be-
fore they are published on hubs and committing to train-
ing data in such a way that the trainer can later prove the
(non-)inclusion of specific data points. Given the prelim-
inary nature of our work, there is a wide variety of future
work, including developing new approaches that ensure the
model trainer forms an accurate commitment to the train-
ing data and mapping out the supply-chain risks associated
with more complex agentic AI systems.

13
https://huggingface.co/datasets/cifar10

14
https://huggingface.co/datasets/mnist

15
https://huggingface.co/datasets/PleIAs/YouTube-

Commons
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Impact Statement
As outlined throughout, verifiable solutions for model in-
tegrity and data provenance have the potential to positively
impact the security and transparency of the open model
ecosystem. In particular, they have the potential to pro-
tect users who download and run models from hubs and
offer reassurance to interested parties (regulators, content
creators, etc.) about how their data is—or is not—being
used. We stress that the solutions offered in this paper do
not yet achieve this potential, and that achieving the full po-
tential will require careful consideration to ensure that fur-
ther solutions provide meaningful information rather than
becoming onerous or a check-box exercise that provides a
false sense of transparency.
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