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CLPO: CURRICULUM LEARNING MEETS POLICY OP-
TIMIZATION FOR LLM REASONING
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Figure 1: An overview of the Guided Self-Evolution paradigm in our proposed framework CLPO
(Curriculum-guided Learning for Policy Optimization). For each initial question, CLPO first as-
sesses its difficulty by evaluating N on-policy rollouts. The model (CLPO Actor) then acts as its
own teacher, restructuring identified medium problems for diversification and hard problems for
simplification. Restructured for effective learning, these new problems are then used for the final
policy update, forming a dynamic, self-improving learning loop.

ABSTRACT

Recently, online Reinforcement Learning with Verifiable Rewards (RLVR) has
become a key paradigm for enhancing the reasoning capabilities of Large Lan-
guage Models (LLMs). However, existing methods typically treat all training
samples uniformly, overlook the vast differences in problem difficulty relative
to the model’s current capabilities. This uniform training strategy leads to in-
efficient exploration of problems the model has already mastered, while lacking
effective guidance on the problems that are challenging its abilities the most, lim-
iting both learning efficiency and the performance upper-bound. To address this,
we propose CLPO (Curriculum-guided Learning for Policy Optimization),
a novel algorithm that creates a dynamic pedagogical feedback loop within the
policy optimization process. The core of CLPO is to leverage the model’s own
rollout performance to conduct real-time difficulty assessment, thereby construct-
ing an Online Curriculum. This curriculum then guides an Adaptive Problem
Restructuring mechanism, where the model acts as its own teacher: it diver-
sifies medium-difficulty problems to promote generalization and simplifies hard
problems to make them more accessible. Our approach transforms the static train-
ing procedure into a dynamic process that co-evolves with the model’s capabil-
ities. Experiments show that CLPO achieves state-of-the-art (SOTA) perfor-
mance across eight challenging mathematical and general reasoning benchmarks,
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with an average pass@1 improvement of 6.96% over ohter methods, demonstrat-
ing its potential for more efficiently training more capable reasoning models.

1 INTRODUCTION

The capabilities of Large Language Models (LLMs) (Brown et al., 2020; Touvron et al., 2023;
Achiam et al., 2023) have advanced substantially, demonstrating remarkable performance on a wide
range of natural language tasks. However, tasks demanding complex, multi-step reasoning—such
as advanced mathematical problem-solving, scientific inquiry, and code generation—continue to
pose a significant challenge. While traditional Supervised Fine-Tuning (SFT) (Ouyang et al., 2022)
plays a crucial role in aligning initial model capabilities, it relies on static datasets curated by ex-
perts, which is not only costly but also struggles to cover all possible reasoning paths. To overcome
these bottlenecks, Reinforcement Learning (RL) (Sutton et al., 1998) has emerged as a key post-
training paradigm (Ouyang et al., 2022). Unlike passively imitating static examples, RL enables
models to actively learn from their own generations through exploration and feedback (Guo et al.,
2025; Silver & Sutton, 2025). Within this paradigm, Reinforcement Learning with Verifiable Re-
wards (RLVR) (Wen et al., 2025) has become a particularly significant and efficient method. RLVR
leverages outcome supervision—generating reward signals directly based on the correctness of the
final answer—making it well-suited for domains like mathematics that have clear, verifiable solu-
tions (Shao et al., 2024).

However, when the RLVR algorithm (e.g., GRPO (Shao et al., 2024)) maximizes rewards, it of-
ten leads to a decline in policy diversity and policy entropy collapse (Yu et al., 2025), limiting the
model’s long-term improvement. To break this performance plateau, recent research has focused
on enhancing the model’s exploration capabilities during training. Some works improve the opti-
mization algorithm itself, aiming to sustain a higher policy entropy in the hope that the model will
continuously explore more diverse reasoning paths (Yu et al., 2025; Cheng et al., 2025; Cui et al.,
2025; Wang et al., 2025). A representative work in this direction, DAPO (Yu et al., 2025), introduces
its Clip-Higher mechanism to prevent premature policy entropy collapse and sustain exploration.
However, the primary goal of these methods is to increase the quantity of exploration or to maintain
a higher entropy. As recent work has pointed out in Critique-GRPO (Zhang et al., 2025), higher en-
tropy does not always guarantee efficient exploration; the quality of exploration can be more critical
than its quantity. To pursue higher-quality exploration, another powerful line of research involves in-
troducing external guidance. Representative works such as Critique-GRPO (Zhang et al., 2025) and
LUFFY (Yan et al., 2025) leverage powerful external critique models (e.g., GPT-4o) or offline expert
trajectories, respectively, to provide precise guidance signals, achieving powerful performance.

Despite significant progress, these approaches have not fully addressed a fundamental challenge
in RLVR training: how to achieve efficient and targeted endogenous learning without relying on
expensive external guidance (Schulman et al., 2017; Mnih et al., 2016).

To address this challenge, we propose CLPO (Curriculum-guided Learning for Policy Optimiza-
tion), a novel framework that actualizes a paradigm of Guided Self-Evolution (Silver et al., 2018).
The core innovation of CLPO is its elevation of rollout information from a mere reward calculation
signal to the central driver for constructing a dynamic curriculum. It employs Online Curricu-
lum Learning to assess problem difficulty in real-time, which in turn guides an Adaptive Problem
Restructuring mechanism to diversify medium problems and simplify hard ones. Furthermore,
we introduce Difficulty-aware Policy Optimization, which integrates the curriculum signal into the
optimization process via dynamic KL regularization. Through these mechanisms, CLPO trans-
forms the training process into a structured, adaptive curriculum that co-evolves with the model’s
capabilities, all without any external dependencies.

We validate the effectiveness of CLPO on the Qwen3-8B (Yang et al., 2025) base model.
Across eight mathematical and general reasoning benchmarks, including MATH-500 (Hendrycks
et al., 2021), Minerva-Math (Lewkowycz et al., 2022), Olympiad (He et al., 2024), AMC23,
AIME2024 (Li et al., 2024), TheoremQA (Chen et al., 2023), GPQA Diamond (Rein et al., 2024),
and MMLU Pro (Wang et al., 2024), CLPO achieves an average pass@1 performance improvement
of 6.96% over strong baselines. Our main contributions are as follows:
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• We propose a novel framework to explore the previously unaddressed problem of inefficient
learning arising from uniform data sampling in RLVR, effectively transforming unguided
exploration into structured, purposeful self-improvement.

• We design a Difficulty-aware Policy Optimization mechanism that deeply integrates the
curriculum signal with the policy optimization process via dynamic KL regularization to
balance exploration and exploitation.

• We achieve state-of-the-art (SOTA) pass@1 performance on the highly challenging
AIME2024 benchmark, yielding a 3.3% over the strongest baseline and validating the
effectiveness of our method.

• We will open-source all our code and training scripts, hoping to inspire the community to
further explore and utilize the rich information generated during the rollout phase.

2 RELATED WORK

2.1 ADAPTIVE METHODS IN ONLINE REINFORCEMENT LEARNING

Reinforcement Learning with Verifiable Rewards (RLVR) (Wen et al., 2025) has become a key tech-
nique for enhancing the reasoning abilities of LLMs. Foundational algorithms in this domain, such
as PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024), enable models to learn from their own
generated experiences via online sampling and policy gradient updates. To further improve learning
efficiency and exploration, a series of recent works have begun to explore more sophisticated uses
of online information, developing diverse adaptive strategies. For instance, DAPO (Yu et al., 2025)
and GFPO (Shrivastava et al., 2025) filter samples to focus on high-value data, while SVS (Liang
et al., 2025) augments the problem set to maintain exploration diversity. Other approaches refine the
optimization process itself; GSPO (Zheng et al., 2025) elevates rewards from the token to the se-
quence level, PKPO (Walder & Karkhanis, 2025) directly optimizes the pass@k metric to broaden
the solution space. Our CLPO introduces a deeper, pedagogically-motivated adaptive paradigm.
Through its Online Curriculum Learning mechanism, it ensures that every act of Adaptive Problem
Restructuring is purposeful (simplification or diversification), aiming for higher-quality exploration.

2.2 EXTERNAL GUIDANCE IN ONLINE LEARNING

Distinct from improving exploration through internal adaptive mechanisms, another line of research
enhances learning quality by introducing external guidance. Representative works in this area in-
clude LUFFY (Yan et al., 2025) and Critique-GRPO (Zhang et al., 2025). LUFFY incorporates an
imitation learning objective on high-quality offline expert trajectories into its RL objective. Critique-
GRPO leverages a powerful external critique model (e.g., GPT-4o) to generate fine-grained linguistic
feedback that guides the model’s refinement process online. Seeking even more granular feedback,
other approaches such as Process Supervision (Cobbe et al., 2021) train a reward model to evaluate
each intermediate step of the reasoning process, not just the final outcome. Our approach aligns with
the goal of guided learning but differs fundamentally in its implementation. CLPO requires no ex-
ternal teacher models or offline expert data; its guidance signal is derived entirely from introspection
on its own online performance, achieving a purely self-contained form of guidance.

2.3 CURRICULUM LEARNING FOR LARGE LANGUAGE MODELS

Curriculum Learning (CL) (Bengio et al., 2009) is a classic machine learning paradigm that mimics
human learning by presenting training samples in an easy-to-hard order to accelerate convergence
and improve final performance. In the field of natural language processing, applications of CL are
often static and pre-defined, unable to adapt to the model’s evolving capabilities during training.
Some efforts have aimed to create dynamic curricula; for instance, FASTCURL (Song et al., 2025)
employs a staged strategy that organizes the curriculum based on input prompt length while progres-
sively scaling the context window. Other approaches, such as Train Long, Think Short (Hammoud
et al., 2025), use a dynamically decaying token budget to guide length-controlled reasoning, en-
abling a smooth transition from exploring long trajectories to distilling concise solutions. Taking a
step further, AdaRFT (Shi et al., 2025) introduces a reward-driven approach, adaptively adjusting
the difficulty of training tasks based on the model’s recent performance signals to keep it within
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an optimal learning zone. Our CLPO brings the idea of curriculum learning into a new dimension,
being the first to deeply integrate dynamic, online curriculum learning with reinforcement learning
finetuning. It uses the model’s real-time performance during rollouts to dynamically construct the
curriculum, which in turn drives subsequent data restructuring and policy optimization, achieving
truly adaptive learning.

3 METHODOLOGY

3.1 PRELIMINARY: GROUP RELATIVE POLICY OPTIMIZATION

The central innovation of Group Relative Policy Optimization (GRPO) (Guo et al., 2025) lies in its
critic-free approach to advantage estimation. Specifically, for a given prompt, the algorithm normal-
izes the reward of each generated response against the mean and standard deviation of rewards from
a concurrently sampled group of its peers. The process involves sampling G responses {yi}Gi=1 for a
question q from an old policy πθold , and assigning a reward ri to each. The GRPO training objective
is formulated as:

J GRPO(θ) = E(q,a)∼D,{yi}G
i=1∼πθold (·|q)[

1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

(
min(ki,t(θ)Âi,t, clip(ki,t(θ), 1− ϵ, 1 + ϵ)Âi,t)− βDKL(πθ∥πref)

)]
(1)

where ki,t(θ) =
πθ(yi,t|q,yi,<t)
πθold (yi,t|q,yi,<t)

and Âi,t =
ri−mean({rj}G

j=1)

std({rj}G
j=1)

. The GRPO algorithm utilizes this
group-relative advantage within its clipped objective function to achieve stable and efficient policy
optimization.

3.2 CLPO: AN OVERVIEW

Figure 2: The overall workflow of CLPO. The framework consists of three main stages detailed in
the green and pink boxes: (1) Online Curriculum Learning, (2) Adaptive Problem Restructuring,
and (3) Value-Driven Filtering and Optimization.

While standard RLVR methods like GRPO operate on a static dataset, CLPO introduces a paradigm
of Guided Self-Evolution. As illustrated in Figure 2, at each training step, CLPO dynamically
reconstructs the training batch Bmix to create a valuable mixture of problems tailored to the model’s
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current ability. The optimization phase of CLPO then proceeds by maximizing our objective over
this dynamic batch. This objective estimates advantages using group-relative performance and is
regularized by a difficulty-aware KL penalty:

JCLPO(θ) = E(q,a)∼Bmix,{yi}G
i=1∼πθold (·|q)[

1∑G
i=1 |yi|

G∑
i=1

|yi|∑
t=1

{
min(ki,t(θ)Âi,t, clip(ki,t(θ), 1− ϵ, 1 + ϵ)Âi,t)− λdβ ·DKL(πθ∥πref)

}]
(2)

The effectiveness of CLPO stems from three core mechanisms, which we detail in the following sec-
tions: Online Curriculum Learning, Adaptive Problem Restructuring, and Difficulty-aware Policy
Optimization.

3.3 ONLINE CURRICULUM LEARNING

The foundational mechanism of CLPO is Online Curriculum Learning, which transforms the
rollout phase from a mere data collection step into a real-time diagnostic tool. In each training step,
for every problem q in the sampled batch Dbatch, we generate G responses {yi}Gi=1 using the current
policy πθ. We then compute the empirical accuracy Acc(q, πθ) using a Verifier:

Acc(q, πθ) =
1

G

G∑
i=1

I(Verifier(yi, a) = True) (3)

This accuracy score serves as a direct, online measure of the model’s current proficiency on the prob-
lem. Based on this, we utilize predefined difficulty thresholds (τhard, τmed) to dynamically partition
the batch into two key subsets for subsequent action:

Dhard
batch = {q ∈ Dbatch | Acc(q, πθ) ≤ τhard} (4)

Dmed
batch = {q ∈ Dbatch | τhard < Acc(q, πθ) ≤ τmed} (5)

These sets, the batch hard set and the batch medium set, provide the precise, real-time guidance
signal for the next stage of our framework.

3.4 ADAPTIVE PROBLEM RESTRUCTURING

To achieve high-quality, guided exploration, CLPO introduces Adaptive Problem Restructuring
(APR), a mechanism where the model acts as its own teacher to create more suitable learning materi-
als. This mechanism is implemented through a restructuring function fp(q, d), which leverages two
distinct Prompts (p) tailored to the problem’s difficulty d (see AppendixE for the specific prompts):

q′ = fp(q, d), where d ∈ {hard,medium} (6)

The restructuring strategy is guided by the online curriculum. For problems classified as medium
(d = medium), we employ a Diversification prompt. This prompt aims to enhance the model’s ro-
bustness by generating semantically equivalent but varied phrasings, encouraging it to grasp deeper
semantic commonalities. For problems classified as hard (d = hard), we utilize a Simplification
prompt. Its objective is to generate a restructured problem q′ that is easier for the model to compre-
hend, transforming an initially intractable problem into an effective and learnable training signal. In
both cases, the original answer a is strictly preserved.

3.5 VALUE-DRIVEN FILTERING AND DIFFICULTY-AWARE OPTIMIZATION

In order to ensure maximum training efficiency, CLPO employs a two-stage Value-Driven Filtering
process to construct the final training batch, followed by Difficulty-aware Policy Optimization.

First, we filter the original batch to form the base set Bbase, retaining only the problems within the
model’s learning area (i.e., accuracy 0 < Acc(q, πθ) < 1):

Bbase = {(q, a) | q ∈ Dbatch, 0 < Acc(q, πθ) < 1} (7)
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Second, the newly restructured problems q′ undergo the same filtering criterion, forming the Re-
structure set Brestructure:

Brestructure = {(q′, a) | q′ = fp(q, d), q ∈ Dhard
batch ∪ Dmed

batch, 0 < Acc(q′, πθ) < 1} (8)
The final training batch is the union Bmix = Bbase∪Brestructure. When optimizing on this high-quality
data, we employ Difficulty-aware Policy Optimization. This is achieved via a dynamic KL regular-
ization mechanism, where the scaling factor λd in Eq. equation 2 depends on the problem’s original
difficulty. By setting λhard < λnon-hard, we encourage greater policy exploration on difficult prob-
lems while enforcing stronger regularization on problems where the model already has a foothold,
thereby achieving a dynamic balance between exploration and exploitation.

3.6 ALGORITHM

We integrate the core mechanisms into the CLPO algorithm. At each training step, the algorithm
first performs an online evaluation on a sampled batch to determine the difficulty level of each prob-
lem. Specifically, it generates multiple candidate solutions using the current policy to calculate an
empirical accuracy score, which is then used to categorize problems as ”hard” or ”medium”. Subse-
quently, the algorithm applies adaptive problem restructuring to these identified problems, perform-
ing simplification and diversification, respectively. Finally, a rigorous value-driven filter is applied
to all original and restructured problems, and only the high-value samples with an accuracy strictly
between 0 and 1 are combined to form the final training batch, Bmix, for the policy update. The
complete pseudocode for this algorithm, alongside a deeper theoretical analysis and implementation
details for each mechanism, is provided in the Appendix 1.

4 EXPERIMENT

To systematically evaluate the effectiveness of our proposed CLPO algorithm, we conducted a
series of comprehensive experiments. Our evaluation begins by comparing the performance of
CLPO against current state-of-the-art finetuning methods on a wide range of mathematical rea-
soning benchmarks. Subsequently, we perform a series of detailed ablation studies to analyze the
contribution of each core component within CLPO. Finally, we analyze the computational scaling
properties of models trained with CLPO at test time.

4.1 EXPERIMENTAL SETUP

We select Qwen3-8B (Yang et al., 2025) as the base model for all experiments and conduct training
on the DAPO-Math-17k (Yu et al., 2025) dataset. To comprehensively evaluate model performance,
we employ a diverse evaluation suite comprising eight benchmarks, which can be categorized into
two main groups. The In-Domain test sets, which are stylistically and topically closer to the training
data, include MATH 500, Minerva MATH, Olympiad Bench, AMC23, and AIME24 (Hendrycks
et al., 2021; Lewkowycz et al., 2022; He et al., 2024; Li et al., 2024). The Out-of-Distribution
(OOD) test sets, used to assess the model’s generalization and reasoning capabilities in different
domains, include TheoremQA, GPQA Diamond, and MMLU Pro (Chen et al., 2023; Rein et al.,
2024; Wang et al., 2024).

All our experiments were conducted on 8x H20 GPUs. The models were trained for 200 steps on
the DAPO-Math-17k dataset, and the checkpoint with the best performance on a validation set was
selected for final evaluation. During training, the rollout number was set to n=4 for each prompt,
with a decoding temperature of 1.0 and a maximum response length of 8192 tokens. For CLPO, we
set the default difficulty thresholds to (0.3, 0.7) and the dynamic KL regularization scaling factors to
(λhard, λnon-hard) = (0.3, 1.0). We used a constant learning rate schedule with a learning rate of 1e-6.
For our main experiments, we report pass@1 as the primary evaluation metric. All ablation studies
were conducted on the AIME24 test set to analyze the impact of each component on challenging
problems.

4.2 MAIN RESULTS

We compared the performance of CLPO with all baseline methods across the in-domain and out-
of-distribution test sets, with detailed results presented in Table 1. The results clearly demonstrate
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Table 1: Performance of CLPO against state-of-the-art finetuning methods on Qwen3-8B. Our
method, CLPO, operating under the Guided Self-Evolution paradigm, demonstrates superior per-
formance across all benchmarks without relying on external guidance.

Method Optimization Policy
Math (In-Domain) General Reasoning (OOD)

AvgMATH 500 Minerva Olympiad AMC23 AIME24 MMLU Theorem GPQA

Math Bench Pro QA Diamond

All methods are finetuned on Qwen3-8B

Supervised Fine-Tuning (SFT)

RAFT Ranking-Based Imitation 76.20 35.58 36.86 50.00 26.67 65.93 43.50 36.76 46.44

Refinement FT Guided Refinement 83.20 47.58 40.71 70.00 33.33 67.84 41.29 34.47 52.30

Critique FT Learning to Critique 79.00 35.23 39.64 67.50 33.33 63.16 46.00 34.84 49.84

CITL-FT Mixed-Data SFT 76.40 37.20 38.57 62.50 30.00 66.13 44.25 36.36 48.93

Reinforcement Learning with Verifiable Rewards (RLVR)

GRPO Group-Based RL 89.20 51.47 57.40 82.50 43.33 69.86 54.75 47.80 62.04

DAPO Dynamic Sampling 91.20 53.31 63.80 87.50 46.67 70.01 55.00 48.48 64.50

LUFFY Off-Policy Imitation 89.40 52.94 58.80 85.00 40.00 70.34 58.25 49.49 63.03

Critique-GRPO (Simple) Critique-Driven RL 89.40 52.57 60.20 87.50 40.00 70.13 59.00 48.63 63.43

Critique-GRPO (CoT) Critique-Driven RL 91.20 61.50 63.80 90.00 46.67 70.98 59.50 50.50 66.77

CLPO (Ours) Guided Self-Evolution 89.60 76.10 77.50 90.00 50.00 72.39 71.63 62.63 73.73

that CLPO achieves state-of-the-art performance across most of eight benchmarks. It is particularly
noteworthy that even on the most challenging in-domain datasets (e.g., Olympiad Bench, AIME24)
and all OOD datasets, CLPO shows significant improvements over the powerful methods, such as
Critique-GRPO. This outcome strongly suggests that our proposed framework of online curriculum
learning and adaptive problem restructuring effectively enhances the model’s deep reasoning and
generalization capabilities, rather than merely memorizing patterns in the training data.

4.3 ABLATION STUDIES

To deeply investigate the effectiveness of each core design module within CLPO, we conducted a
series of detailed ablation studies on the challenging AIME24 dataset. All results from our ablation
studies are presented as Avg@32 to better evaluate the upper bound of the model’s capabilities and
the diversity of its exploration.

Figure 3: Ablation studies on Adaptive Problem Restructuring. Left: Comparison of restructuring
strategies. Right: Impact of difficulty ranges. All experiments sampled each problem 8 times.

Impact of Adaptive Problem Restructuring. We first analyze the impact of different strategies
and parameters within our Adaptive Problem Restructuring (APR) mechanism, with all exper-
iments conducted by sampling each problem 8 times and using a default medium difficulty range
of (0.25, 0.75]. The left panel of Figure 3 compares different restructuring strategies. We observe
that diversifying medium-difficulty problems only (medium only) yields better performance than
simplifying hard problems only (hard only). We attribute this to the fact that problems clas-
sified as medium lie at the edge of the model’s current cognitive learning zone, and diversifying

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

them is the most effective way to consolidate existing knowledge and generalize to new domains.
Nonetheless, the strategy of only restructuring hard problems still outperforms baselines like GRPO
and DAPO. This is thanks to our dynamic training set and the guided self-evolution the model un-
dergoes via simplification, which allows it to extract effective signals from previously intractable
problems. Ultimately, the results clearly show that the full CLPO strategy (both), which combines
both approaches, achieves the best performance. This demonstrates that our framework perfectly
synergizes two learning modes: it both expands generalization capabilities on moderately mastered
problems and enables effective learning through the simplification strategy on challenging ones,
leading to the most comprehensive capability improvement.

The right panel of Figure 3 investigates the choice of the difficulty range in Online Curriculum
Learning. We find that a moderately sized range is crucial. If the range is too wide (e.g., (0.125,
0.875]), some problems that are inherently very difficult for the model are misclassified as ”medium”
and subjected to diversification. This process is tantamount to turning one hard problem into another
equally difficult variation, leading to inefficient learning. At the same time, overly simple problems
may also be included for restructuring, causing the model to waste computational resources on
low-information-gain samples. Conversely, if the range is too narrow (e.g., (0.375, 0.625]), a large
number of valuable problems at the model’s capability frontier are excluded from the restructuring
process. This results in insufficient raw material for the curriculum, thereby limiting the algorithm’s
optimization potential. Therefore, a medium-sized range, such as (0.25, 0.75], most accurately filters
for the candidate problems that are most valuable for the model’s current stage, striking an optimal
balance between learning efficiency and full data utilization.

Figure 4: Performance comparison of dynamic KL regularization with different scaling factors (α)
against a static KL baseline.

Role of Difficulty-aware Policy Optimization. Finally, we analyze our Difficulty-aware Policy
Optimization mechanism, specifically the effectiveness of dynamic KL regularization (DCKL). In
Figure 4, we compare the performance of dckl with different scaling factors α (i.e., λhard) against a
static KL baseline (α = 1.0), where a lower α represents a weaker KL constraint on difficult prob-
lems. The experimental results clearly reveal the critical importance of striking a precise balance
between exploration and exploitation. We observe the worst performance when α is set to 0.5. We
infer that this value falls into a suboptimal exploration range: the policy constraint is strong enough
to hinder truly novel solution attempts, yet weak enough to disrupt policy stability. Interestingly, the
setting with a weak policy constraint (α = 0.1) and those with strong policy constraints (α = 0.8
and the static KL, α = 1.0) ultimately converge to a similar level of suboptimal performance. The
former’s convergence stability may be compromised by insufficient constraint, while the latter are
too restrictive to effectively learn new solutions for difficult problems. In contrast, setting α to
0.3 strikes the optimal balance between exploration freedom and policy stability, achieving the best
performance. CLPO, by precisely adjusting the policy constraint for difficult problems, provides
effective guidance for high-quality exploration and thus surpasses other static or suboptimal opti-
mization strategies.
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4.4 TEST-TIME SCALING ANALYSIS

Finally, we investigate the test-time scaling of the model trained with CLPO, specifically its pass@k
performance. This metric measures the probability of generating at least one correct answer in
k independent samples and is widely regarded as a key indicator of a model’s problem-solving
ceiling and its coverage of the valid solution space. We evaluate pass@k by generating k solutions
for each problem at test time, where k varies from 20 = 1 to 26 = 64. We compare CLPO against
the base model (Qwen3-8B), GRPO, and DAPO on the AIME2024 and AIME2025 test sets, with
the results plotted in Figure 5.

Figure 5: Test-time scaling performance (pass@k) on AIME2024 (left) and AIME2025 (right). The
pass rate is evaluated over k inference times, where k ranges from 1 to 64. CLPO outperforms the
baselines across all sampling counts.

Two phenomena can be observed from the plots. First, at all sample counts k, the pass rate (pass@k)
of CLPO is higher than all baseline methods. This demonstrates that the model trained with CLPO
not only has a higher single-sample success rate but also explores a broader valid solution space.
This suggests that the solutions generated by the CLPO-trained model are not only of higher indi-
vidual correctness but also richer in solution path diversity, allowing it to more efficiently cover
a correct answer through multiple samples.

5 CONCLUSION

In this paper, we proposed CLPO, a novel framework for guided self-evolution designed to ad-
dress the inefficient learning caused by the uniform training paradigm in existing RLVR methods.
The core innovation of this approach is its elevation of online performance signals from the roll-
out phase to become the central driver for constructing a dynamic curriculum. Through the syn-
ergy of three core mechanisms—Online Curriculum Learning, Adaptive Problem Restructuring,
and Difficulty-aware Policy Optimization—our framework transforms the training process into an
adaptive pedagogical loop that co-evolves with the model’s capabilities, all without any external de-
pendencies. Our extensive experiments on multiple challenging mathematical and general reason-
ing benchmarks demonstrate that this method significantly outperforms state-of-the-art finetuning
approaches, achieving SOTA performance.

Despite the encouraging results, there are several avenues for future exploration. First, our current
approach to assessing problem difficulty relies primarily on the final answer’s correctness; future
work could explore incorporating more fine-grained process signals to enable even more precise
curriculum construction. Second, while this work primarily validates our method in the domain
of mathematical reasoning, extending this dynamic learning paradigm to other complex reasoning
domains, such as code generation and scientific question-answering, presents a promising direction.
Finally, we believe that the adaptive learning capabilities championed by our framework will exhibit
even greater potential as training data and model parameter scales continue to grow, and we plan to
further validate its scalability on larger-scale models and datasets.
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REPRODUCIBILITY STATEMENT

We provide a comprehensive set of resources to ensure the reproducibility of our work. Our algo-
rithm, CLPO, is detailed in Appendix C and Algorithm 1. All hyperparameters for both the main
training process and our CLPO-specific components are listed in Appendix B. To facilitate full repli-
cation of our results, we have included our complete, anonymized source code and scripts as part
of the supplementary material. Furthermore, the appendix includes visualizations of the curricu-
lum dynamics (Appendix D), the exact prompts used for problem restructuring (Appendix E), and
detailed case studies (Appendix F) to provide deeper insights into our method’s behavior.

ETHICS STATEMENT

This research was conducted with full consideration of and adherence to the ICLR Code of Ethics
throughout its design, implementation, and reporting. Our work aims to advance the scientific un-
derstanding of how to enhance the reasoning capabilities of Large Language Models by proposing
a novel, adaptive learning algorithm (CLPO). This goal aligns with the principles of contributing to
society and upholding high standards of scientific excellence.

To ensure the transparency and reproducibility of our research, we have provided comprehensive
implementation details, hyperparameters, and the exact prompts used for problem restructuring in
the Appendix. Furthermore, our complete source code has been submitted as supplementary material
to facilitate verification and further research by the community.

All datasets used in this study (e.g., DAPO-Math-17k) are publicly available academic benchmarks
and do not involve any private or sensitive information, thus posing no privacy concerns. Our method
is a general-purpose learning algorithm, and we do not foresee any direct, predictable negative
societal impacts or potential harms arising from our work. We have also explicitly disclosed our
use of Large Language Models as writing assistants in the preparation of this manuscript in the
Appendix.
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APPENDIX

A USAGE OF LARGE LANGUAGE MODELS

During the preparation of this manuscript, we utilized Large Language Models (LLMs) as a writing
assistant. The usage of LLMs was strictly limited to improving the fluency, clarity, and grammatical
correctness of the language, such as rephrasing sentences or correcting grammatical errors. LLMs
were not involved in the core research ideation, experimental design, analysis of results, or the
formulation of conclusions presented in this paper.

B IMPLEMENTATION DETAILS

Table 2: Main hyperparameters for training, evaluation, and environment.

Name Value Description
Training
Base Model Qwen3-8B The base model used in experiments.
Dataset DAPO-Math-17k The dataset used for training.
training steps 200 Total number of training steps.
Optimizer AdamW The optimizer used.
lr 1e-6 (Constant) Learning rate.
batch size 64 Global batch size during training.
n rollouts (G) 4 Number of rollouts per prompt.
rewards 1 or -1 Scalar rewards for correct/incorrect responses.
kl loss coef (β) 0.001 Coefficient for KL divergence loss.
grad clip 1.0 Gradient clipping threshold.
train temp 1.0 Sampling temperature during training rollout.
top p 1.0 Top-p sampling parameter during training rollout.
max response length 8192 Maximum length of generated responses.

Evaluation
val temp 1.0 Sampling temperature during evaluation.

Environment
Hardware 8 × NVIDIA H20 Hardware used for experiments.
Software verl (Sheng et al., 2025) Software frameworks used.

Table 3: CLPO-specific hyperparameters.

Name Value Description
hard threshold (τhard) 0.3 Accuracy threshold for hard problems.
medium threshold (τmed) 0.7 Accuracy threshold for medium problems.
hard kl scaler (λhard) 0.3 KL scaling factor for hard problems.
non hard kl scaler (λnon-hard) 1.0 KL scaling factor for non-hard problems.

This section provides the detailed experimental setup to ensure the reproducibility of our work. All
our experiments were conducted using the vLLM inference framework (Kwon et al., 2023). Table 2
lists the main hyperparameters for our experiments, and Table 3 details the parameters specific to
CLPO.

C THEORETICAL COMPARISON BETWEEN CLPO AND GRPO

This section provides a more formal and detailed analysis of the key theoretical differences between
the learning paradigms of standard GRPO and our proposed CLPO.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

C.1 GRPO: A STATIC LEARNING PARADIGM

First, we recall the objective function of GRPO from Eq. (1):
JGRPO(θ) = E(q,a)∼D,{yi}G

i=1∼πθold
(·|q)[

1

G

G∑
i=1

1

|yi|

|yi|∑
t=1

(
min(ki,t(θ)Âi,t, clip(ki,t(θ), 1− ϵ, 1 + ϵ)Âi,t)− βDKL(πθ∥πref)

)]
(9)

The core of GRPO lies in its advantage estimation Âi,t, which is entirely dependent on the rewards
of responses {yi} generated for a given question q. The expectation E(q,a)∼D reveals that the op-
timization is performed over a static, policy-independent data distribution D. In each training
step, the sampling probability of a problem q, P (q), remains constant, typically following a uniform
distribution P (q) = 1/|D|.
This implies that the learning process of GRPO follows a static paradigm. Under this paradigm,
the model passively receives problems sampled fromD, and its only agency lies in optimizing its re-
sponse space π(y|q) to assign higher probabilities to ”good” responses. However, the model cannot
actively influence the problem space it is exposed to. This uniform sampling strategy presents two
main theoretical limitations. First, when the policy πθ has already achieved high proficiency on a
subset of D (e.g., easy problems), GRPO continues to allocate the same computational resources to
sampling and exploring these problems. This leads to sparse learning signals, as the rewards for all
responses on these mastered problems may be very similar, causing the advantage Âi,t to approach
zero and thus providing no effective gradient for policy updates. Second, for problems that are too
difficult for the current model, all responses may receive zero or negative rewards, which can also
lead to the advantage signal within a group collapsing to zero, trapping the model in a state of ”per-
sistent failure” without making progress. Both scenarios result in wasted computational resources
and the emergence of performance plateaus.

C.2 CLPO: A DYNAMIC LEARNING CURRICULUM

CLPO fundamentally alters this static learning paradigm by introducing a dynamic curriculum that
co-evolves with the model’s capabilities. We recall the CLPO objective from Eq. (2):
JCLPO(θ) = E(q,a)∼Bmix,{yi}G

i=1∼πθold
(·|q)[

1∑G
i=1 |yi|

G∑
i=1

|yi|∑
t=1

{
min(ki,t(θ)Âi,t, clip(ki,t(θ), 1− ϵ, 1 + ϵ)Âi,t)− λdβ ·DKL(πθ∥πref)

}]
(10)

The core improvements here are twofold: a dynamic training data distribution and a dynamic
regularization strength.

C.2.1 DYNAMIC TRAINING DATA DISTRIBUTION

This is the most central theoretical innovation of CLPO. The key difference lies in the expectation
E(q,a)∼Bmix

. The training batch Bmix is not directly sampled from the static distribution D, but is
dynamically constructed via a deterministic function g(·) that depends on the performance of the
current policy πθ:

Bmix = g(Dbatch, πθ) (11)
This function g corresponds to our Online Curriculum Learning and Adaptive Problem Restructuring
mechanisms. We can formalize this process in three steps.

Step 1: Online Curriculum Learning and Partitioning. The Online Curriculum Learning mech-
anism first partitions the original batch Dbatch into three disjoint subsets based on the online accu-
racy of πθ, Acc(q, πθ): the base training set Dbase, the restructuring candidates Dcandidates, and the
dropped set Ddrop.

Dbase = {(q, a) ∈ Dbatch | τmed < Acc(q, πθ) < 1} (12)
Dcandidates = {(q, a) ∈ Dbatch | 0 < Acc(q, πθ) ≤ τmed} (13)

Ddrop = {(q, a) ∈ Dbatch | Acc(q, πθ) ∈ {0, 1}} (14)
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Samples in Dbase are deemed suitably challenging and will directly be included in the final training
batch.

Step 2: Adaptive Problem Restructuring and Filtering. The Adaptive Problem Restructuring
mechanism, fp(q, d), is applied to each problem q in Dcandidates. For each candidate, its difficulty
level d (hard or medium) is determined, and its restructured version q′ is generated:

∀(q, a) ∈ Dcandidates, q′ = fp(q,GetDifficulty(Acc(q, πθ))) (15)

All generated problems {q′} form a temporary set D′
temp. This temporary set then undergoes a

second round of value filtering, where only the problems that remain within the model’s effec-
tive learning zone post-restructuring are retained. This forms the final restructured training set,
Drestructured.

Drestructured = {(q′, a) | (q, a) ∈ Dcandidates, q
′ = fp(q, d), 0 < Acc(q′, πθ) < 1} (16)

Step 3: Final Training Batch Construction. The final dynamic training batch Bmix is the union
of the base training set and the doubly-filtered restructured set:

Bmix = Dbase ∪ Drestructured (17)

This rigorous, policy-dependent procedure implies that the probability of a problem instance appear-
ing in the final training batch is no longer its intrinsic probability P (q), but a complex conditional
probability that depends on πθ. Therefore, the optimization in CLPO is effectively performed over
a dynamic, policy-dependent effective data distribution Peff(q

′|πθ).

C.2.2 DYNAMIC REGULARIZATION: FROM GLOBAL COMPROMISE TO SAMPLE-LEVEL
ADAPTIVE OPTIMIZATION

Beyond the dynamic data distribution, the second core theoretical advantage of CLPO lies in its
Difficulty-aware Policy Optimization, actualized through the dynamic KL regularization mecha-
nism. The GRPO objective contains a static, globally shared KL penalty coefficient β. This fixed
β must strike a global, suboptimal compromise between exploration (which requires a smaller β
to allow policy deviation) and exploitation (which requires a larger β to ensure stability). The same
policy constraint is applied to all samples throughout training, regardless of their difficulty, which is
theoretically inefficient.

CLPO transforms this fixed KL penalty into a dynamic, sample-level policy constraint by intro-
ducing the difficulty-aware scaling factor λd. We can define an effective KL coefficient, βeff :

βeff(q, πθ) = λd · β =

{
λhard · β if Acc(q, πθ) ≤ τhard
λnon−hard · β otherwise

(18)

where we set λhard < λnon−hard (e.g., 0.3 vs. 1.0). This design has two distinct effects on the
optimization process:

1. For Hard Problems (Acc(q) ≤ τhard): In this case, βeff is small. From a policy op-
timization perspective, this is equivalent to significantly widening the trust region for
this specific sample. For a difficult problem, the correct reasoning path may lie in a low-
probability region of the current policy’s distribution, far from the reference policy πref .
A smaller KL penalty, −λhardβDKL(πθ∥πref), allows for larger, more exploratory gradi-
ent steps during the policy update, increasing the likelihood that the model discovers these
novel, high-reward reasoning trajectories.

2. For Non-hard Problems: In this case, βeff is large. This is equivalent to tightening
the trust region for this sample. For problems that the model has partially mastered, the
goal is stable and fine-grained refinement rather than drastic policy shifts. A larger KL
penalty, −λnon−hardβDKL(πθ∥πref), constrains the policy update to stay in the vicinity
of the reference policy, effectively preventing catastrophic forgetting of already-learned
capabilities and ensuring the stability of the learning process.

In summary, this dual shift—from optimizing over a fixed distribution P (q) and a fixed regu-
larization to a dynamic distribution P (q′|πθ) and a dynamic regularization λd—constitutes the
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most fundamental theoretical advantage of CLPO over GRPO. It elevates the model from a passive
problem-solver to an active curriculum-designer, enabling it to continuously focus both its learning
resources and its exploration intensity on the frontier of its own capabilities, thereby breaking the
bottlenecks of static learning and achieving more efficient and sustained self-evolution.

C.3 ALGORITHM

Algorithm 1 Curriculum-guided Learning for Policy Optimization (CLPO)

1: Input: DataD, policy πθ, ref policy πref, thresholds (τhard, τmed), rewrite func. fp(·, d), samples
G.

2: for each training step do
3: Sample batch Dbatch ⊂ D; Initialize Bmix ← ∅, Dcandidates ← ∅.
4: for (q, a) ∈ Dbatch do
5: Acc(q)← EvaluateAccuracy(πθ, q, a,G).
6: if 0 < Acc(q) < 1 then
7: Bmix ← Bmix ∪ {(q, a)}.
8: if Acc(q) ≤ τmed then
9: Dcandidates ← Dcandidates ∪ {(q, a)}.

10: end if
11: end if
12: end for
13: for (q, a) ∈ Dcandidates do
14: d← GetDifficulty(Acc(q)); q′ ← fp(q, d).
15: Acc(q′)← EvaluateAccuracy(πθ, q

′, a,G).
16: if 0 < Acc(q′) < 1 then
17: Bmix ← Bmix ∪ {(q′, a)}.
18: end if
19: end for
20: if Bmix ̸= ∅ then
21: Update πθ on Bmix using Eq. equation 2.
22: end if
23: end for

D VISUALIZATION OF CURRICULUM DYNAMICS

To visually demonstrate that CLPO’s online curriculum learning mechanism accelerates the model’s
learning process more effectively than standard GRPO, we conducted a visual analysis of the prob-
lem difficulty distribution within the dynamically constructed training batches. As illustrated in
Figure 6, the two methods exhibit starkly different Learning Dynamics.

Figure 6: Comparison of the evolution of problem difficulty distribution during training for CLPO
(dark purple lines) vs. GRPO (blue-gray lines) over the first 200 training steps. From left to right:
Hard Ratio, Medium Ratio, and Easy Ratio.
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Hard Ratio (Left Panel). The proportion of hard problems for CLPO (dark purple line) shows
a sharp decline in the early stages of training, quickly converging to a lower level than GRPO. In
contrast, the decline for GRPO (blue-gray line) is significantly more gradual, indicating its lower
efficiency in tackling difficult problems compared to CLPO’s guided approach.

Medium Ratio (Middle Panel). The difference in dynamics for medium-difficulty problems is
the most revealing, visually demonstrating the different learning modes. CLPO’s ratio exhibits
strong oscillations around a much higher mean. This serves as direct visual evidence of the dy-
namic curriculum in action: CLPO continuously simplifies hard problems into learnable medium
ones, dynamically replenishing the supply of ”nutrients” at the edge of the model’s learning zone
and thus maintaining a high learning vitality. GRPO’s ratio, however, fluctuates within a lower
and flatter band, indicating its lack of a mechanism to actively generate medium-difficulty learning
opportunities.

Easy Ratio (Right Panel). Corresponding to the previous metrics, the proportion of
’Easy/Mastered’ problems for CLPO grows faster and reaches a higher stable level, directly re-
flecting its superior overall learning efficiency.

This series of comparisons provides compelling visual evidence that CLPO, through its dynamic
curriculum, significantly accelerates the model’s learning trajectory and enables a more thorough
mastery of the problem space.

E PROMPTS FOR ADAPTIVE PROBLEM RESTRUCTURING

This section provides the exact prompts used in our Adaptive Problem Restructuring (APR)
mechanism to guide the Large Language Model (LLM) in rewriting problems. These prompts are
designed to clearly communicate the goal of the restructuring while strictly constraining the model
to preserve the mathematical core and the answer of the original problem.

We employ two distinct prompts based on the problem difficulty identified during the Online Cur-
riculum Learning stage. For problems classified as ”medium” difficulty, we use the diversification
prompt shown in Figure 7, which aims to generate semantically equivalent but stylistically varied
versions to enhance the model’s generalization. For problems classified as ”hard,” we use the sim-
plification prompt shown in Figure 8, whose core objective is to reduce the cognitive complexity of
the problem and transform it into a more accessible and effective training signal.

F CASE STUDIES

To provide a concrete illustration of our Adaptive Problem Restructuring (APR) mechanism in ac-
tion, this section presents a case study on a medium-difficulty problem. We showcase the original
problem and the model’s response, followed by the restructured version generated by CLPO and the
corresponding improvement in the model’s reasoning process.

F.1 CASE STUDY: DIVERSIFICATION OF A MEDIUM-DIFFICULTY PROBLEM

Figure 9 displays a medium-difficulty problem defined using a compact, symbolic notation typical in
mathematical texts. The response generated by the base Qwen3-8B model, while ultimately correct,
exhibits a hesitant and circuitous reasoning path. The model frequently expresses self-doubt (e.g.,
”Wait, but let me check,” ”Wait a second”) and performs multiple, redundant verification steps. This
indicates that while the model possesses the necessary knowledge, the symbolic formulation of the
problem introduces ambiguity, leading to a less confident and inefficient solution process.

Figure 10 shows the same problem after being processed by CLPO’s diversification mechanism.
The algorithm restructured the problem by elaborating the compact, symbolic set-builder notation
into explicit, full-sentence natural language descriptions. This seemingly minor change had a pro-
found impact on the model’s response. The new reasoning path is linear, structured, and confident,
proceeding logically from step to step without the self-doubt and redundant checks seen previously.
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Figure 7: The prompt used for diversification restructuring of medium-difficulty problems.
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Figure 8: The prompt used for simplification restructuring of hard-difficulty problems.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 9: The original medium-difficulty problem presented in a symbolic style and the correspond-
ing hesitant response generated by the Qwen3-8B model.
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This case study vividly demonstrates the effectiveness of our APR mechanism. By transforming a
problem into a linguistic format that is more aligned with the model’s pre-training data, CLPO is
able to reduce ambiguity and significantly improve the robustness and efficiency of the reasoning
process itself, not just the final answer.

Figure 10: The restructured version of the problem, elaborated into natural language by CLPO, and
the resulting confident, linear reasoning path from the same model.
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