

CLPO: CURRICULUM LEARNING MEETS POLICY OPTIMIZATION FOR LLM REASONING

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

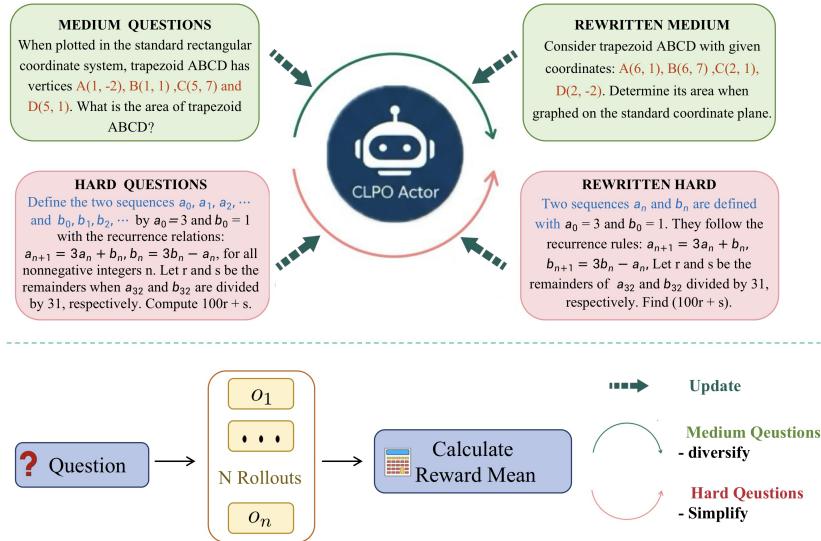


Figure 1: An overview of the Guided Self-Evolution paradigm in our proposed framework CLPO (Curriculum-guided Learning for Policy Optimization). For each initial question, CLPO first assesses its difficulty by evaluating N on-policy rollouts. The model (CLPO Actor) then acts as its own teacher, restructuring identified medium problems for diversification and hard problems for simplification. Restructured for effective learning, these new problems are then used for the final policy update, forming a dynamic, self-improving learning loop.

ABSTRACT

Recently, online Reinforcement Learning with Verifiable Rewards (RLVR) has become a key paradigm for enhancing the reasoning capabilities of Large Language Models (LLMs). However, existing methods typically treat all training samples uniformly, overlook the vast differences in problem difficulty relative to the model’s current capabilities. This uniform training strategy leads to inefficient exploration of problems the model has already mastered, while lacking effective guidance on the problems that are challenging its abilities the most, limiting both learning efficiency and the performance upper-bound. To address this, we propose **CLPO (Curriculum-guided Learning for Policy Optimization)**, a novel algorithm that creates a dynamic pedagogical feedback loop within the policy optimization process. The core of CLPO is to leverage the model’s own rollout performance to conduct real-time difficulty assessment, thereby constructing an **Online Curriculum**. This curriculum then guides an **Adaptive Problem Restructuring** mechanism, where the model acts as its own teacher: it diversifies medium-difficulty problems to promote generalization and simplifies hard problems to make them more accessible. Our approach transforms the static training procedure into a dynamic process that co-evolves with the model’s capabilities. Experiments show that CLPO achieves **state-of-the-art (SOTA)** performance across eight challenging mathematical and general reasoning benchmarks,

054 with an average **pass@1** improvement of **6.96%** over other methods, demonstrating
 055 its potential for more efficiently training more capable reasoning models.
 056
 057
 058

059 1 INTRODUCTION

060
 061 The capabilities of Large Language Models (LLMs) (Brown et al., 2020; Touvron et al., 2023;
 062 Achiam et al., 2023) have advanced substantially, demonstrating remarkable performance on a wide
 063 range of natural language tasks. However, tasks demanding complex, multi-step reasoning—such
 064 as advanced mathematical problem-solving, scientific inquiry, and code generation—continue to
 065 pose a significant challenge. While traditional Supervised Fine-Tuning (SFT) (Ouyang et al., 2022)
 066 plays a crucial role in aligning initial model capabilities, it relies on static datasets curated by ex-
 067 perts, which is not only costly but also struggles to cover all possible reasoning paths. To overcome
 068 these bottlenecks, Reinforcement Learning (RL) (Sutton et al., 1998) has emerged as a key post-
 069 training paradigm (Ouyang et al., 2022). Unlike passively imitating static examples, RL enables
 070 models to actively learn from their own generations through exploration and feedback (Guo et al.,
 071 2025; Silver & Sutton, 2025). Within this paradigm, Reinforcement Learning with Verifiable Re-
 072wards (RLVR) (Wen et al., 2025) has become a particularly significant and efficient method. RLVR
 073 leverages outcome supervision—generating reward signals directly based on the correctness of the
 074 final answer—making it well-suited for domains like mathematics that have clear, verifiable solu-
 075 tions (Shao et al., 2024).

076 However, when the RLVR algorithm (e.g., GRPO (Shao et al., 2024)) maximizes rewards, it of-
 077 ten leads to a decline in policy diversity and policy entropy collapse (Yu et al., 2025), limiting the
 078 model’s long-term improvement. To break this performance plateau, recent research has focused
 079 on enhancing the model’s exploration capabilities during training. Some works improve the opti-
 080 mization algorithm itself, aiming to sustain a higher policy entropy in the hope that the model will
 081 continuously explore more diverse reasoning paths (Yu et al., 2025; Cheng et al., 2025; Cui et al.,
 082 2025; Wang et al., 2025). A representative work in this direction, DAPO (Yu et al., 2025), introduces
 083 its Clip-Higher mechanism to prevent premature policy entropy collapse and sustain exploration.
 084 However, the primary goal of these methods is to increase the quantity of exploration or to maintain
 085 a higher entropy. As recent work has pointed out in Critique-GRPO (Zhang et al., 2025), higher en-
 086 tropy does not always guarantee efficient exploration; the quality of exploration can be more critical
 087 than its quantity. To pursue higher-quality exploration, another powerful line of research involves in-
 088 troducing external guidance. Representative works such as Critique-GRPO (Zhang et al., 2025) and
 089 LUFFY (Yan et al., 2025) leverage powerful external critique models (e.g., GPT-4o) or offline expert
 090 trajectories, respectively, to provide precise guidance signals, achieving powerful performance.

091 Despite significant progress, these approaches have not fully addressed a fundamental challenge
 092 in RLVR training: how to achieve efficient and targeted endogenous learning without relying on
 093 expensive external guidance (Schulman et al., 2017; Mnih et al., 2016).

094 To address this challenge, we propose **CLPO (Curriculum-guided Learning for Policy Optimi-**
 095 **zation)**, a novel framework that actualizes a paradigm of **Guided Self-Evolution** (Silver et al., 2018).
 096 The core innovation of CLPO is its elevation of rollout information from a mere reward calculation
 097 signal to the central driver for constructing a dynamic curriculum. It employs **Online Curricu-**
 098 **lum Learning** to assess problem difficulty in real-time, which in turn guides an **Adaptive Problem**
 099 **Restructuring** mechanism to diversify medium problems and simplify hard ones. Furthermore,
 100 we introduce Difficulty-aware Policy Optimization, which integrates the curriculum signal into the
 101 optimization process via **dynamic KL regularization**. Through these mechanisms, CLPO trans-
 102 forms the training process into a structured, adaptive curriculum that co-evolves with the model’s
 103 capabilities, all without any external dependencies.

104 We validate the effectiveness of CLPO on the Qwen3-8B (Yang et al., 2025) base model.
 105 Across eight mathematical and general reasoning benchmarks, including MATH-500 (Hendrycks
 106 et al., 2021), Minerva-Math (Lewkowycz et al., 2022), Olympiad (He et al., 2024), AMC23,
 107 AIME2024 (Li et al., 2024), TheoremQA (Chen et al., 2023), GPQA Diamond (Rein et al., 2024),
 108 and MMLU Pro (Wang et al., 2024), CLPO achieves an average **pass@1** performance improvement
 109 of **6.96%** over strong baselines. Our main contributions are as follows:

- 108 • We propose a novel framework to explore the previously unaddressed problem of inefficient
109 learning arising from **uniform data sampling in RLVR**, effectively transforming unguided
110 exploration into structured, purposeful self-improvement.
- 111 • We design a Difficulty-aware Policy Optimization mechanism that deeply integrates the
112 curriculum signal with the policy optimization process via dynamic KL regularization to
113 balance exploration and exploitation.
- 114 • We achieve state-of-the-art (SOTA) pass@1 performance on the highly challenging
115 **AIME2024** benchmark, yielding a **3.3%** over the strongest baseline and validating the
116 effectiveness of our method.
- 117 • We will open-source all our code and training scripts, hoping to inspire the community to
118 further explore and utilize the rich information generated during the rollout phase.

120 2 RELATED WORK

121 2.1 ADAPTIVE METHODS IN ONLINE REINFORCEMENT LEARNING

122 Reinforcement Learning with Verifiable Rewards (RLVR) (Wen et al., 2025) has become a key technique
123 for enhancing the reasoning abilities of LLMs. Foundational algorithms in this domain, such
124 as PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024), enable models to learn from their own
125 generated experiences via online sampling and policy gradient updates. To further improve learning
126 efficiency and exploration, a series of recent works have begun to explore more sophisticated uses
127 of online information, developing diverse adaptive strategies. For instance, DAPO (Yu et al., 2025)
128 and GFPO (Shrivastava et al., 2025) filter samples to focus on high-value data, while SVS (Liang
129 et al., 2025) augments the problem set to maintain exploration diversity. Other approaches refine the
130 optimization process itself; GSPO (Zheng et al., 2025) elevates rewards from the token to the se-
131 quence level, PKPO (Walder & Karkhanis, 2025) directly optimizes the pass@k metric to broaden
132 the solution space. Our **CLPO** introduces a deeper, pedagogically-motivated adaptive paradigm.
133 Through its Online Curriculum Learning mechanism, it ensures that every act of Adaptive Problem
134 Restructuring is purposeful (simplification or diversification), aiming for higher-quality exploration.

135 2.2 EXTERNAL GUIDANCE IN ONLINE LEARNING

136 Distinct from improving exploration through internal adaptive mechanisms, another line of research
137 enhances learning quality by introducing external guidance. Representative works in this area in-
138 clude LUFFY (Yan et al., 2025) and Critique-GRPO (Zhang et al., 2025). LUFFY incorporates an
139 imitation learning objective on high-quality offline expert trajectories into its RL objective. Critique-
140 GRPO leverages a powerful external critique model (e.g., GPT-4o) to generate fine-grained linguistic
141 feedback that guides the model’s refinement process online. Seeking even more granular feedback,
142 other approaches such as Process Supervision (Cobbe et al., 2021) train a reward model to evaluate
143 each intermediate step of the reasoning process, not just the final outcome. Our approach aligns with
144 the goal of guided learning but differs fundamentally in its implementation. CLPO requires no ex-
145 ternal teacher models or offline expert data; its guidance signal is derived entirely from introspection
146 on its own online performance, achieving a purely self-contained form of guidance.

147 2.3 CURRICULUM LEARNING FOR LARGE LANGUAGE MODELS

148 Curriculum Learning (CL) (Bengio et al., 2009) is a classic machine learning paradigm that mimics
149 human learning by presenting training samples in an easy-to-hard order to accelerate convergence
150 and improve final performance. In the field of natural language processing, applications of CL are
151 often static and pre-defined, unable to adapt to the model’s evolving capabilities during training.
152 Some efforts have aimed to create dynamic curricula; for instance, FASTCURL (Song et al., 2025)
153 employs a staged strategy that organizes the curriculum based on input prompt length while progres-
154 sively scaling the context window. Other approaches, such as Train Long, Think Short (Hammoud
155 et al., 2025), use a dynamically decaying token budget to guide length-controlled reasoning, en-
156 abling a smooth transition from exploring long trajectories to distilling concise solutions. Taking a
157 step further, AdaRFT (Shi et al., 2025) introduces a reward-driven approach, adaptively adjusting
158 the difficulty of training tasks based on the model’s recent performance signals to keep it within

162 an optimal learning zone. Our CLPO brings the idea of curriculum learning into a new dimension,
 163 being the first to deeply integrate dynamic, online curriculum learning with reinforcement learning
 164 finetuning. It uses the model’s real-time performance during rollouts to dynamically construct the
 165 curriculum, which in turn drives subsequent data restructuring and policy optimization, achieving
 166 truly adaptive learning.
 167

168 3 METHODOLOGY

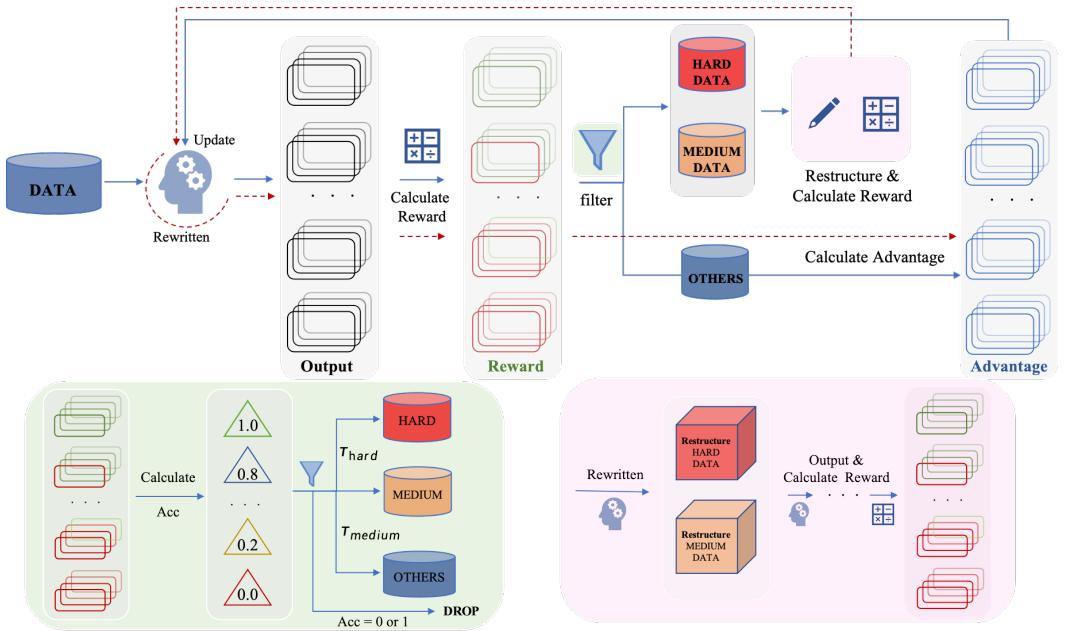
170 3.1 PRELIMINARY: GROUP RELATIVE POLICY OPTIMIZATION

172 The central innovation of Group Relative Policy Optimization (GRPO) (Guo et al., 2025) lies in its
 173 critic-free approach to advantage estimation. Specifically, for a given prompt, the algorithm normalizes
 174 the reward of each generated response against the mean and standard deviation of rewards from
 175 a concurrently sampled group of its peers. The process involves sampling G responses $\{y_i\}_{i=1}^G$ for a
 176 question q from an old policy $\pi_{\theta_{\text{old}}}$, and assigning a reward r_i to each. The GRPO training objective
 177 is formulated as:

$$178 \mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{(q,a) \sim \mathcal{D}, \{y_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \\ 179 \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|y_i|} \sum_{t=1}^{|y_i|} \left(\min(k_{i,t}(\theta) \hat{A}_{i,t}, \text{clip}(k_{i,t}(\theta), 1-\epsilon, 1+\epsilon) \hat{A}_{i,t}) - \beta D_{\text{KL}}(\pi_{\theta} \parallel \pi_{\text{ref}}) \right) \right] \quad (1)$$

183 where $k_{i,t}(\theta) = \frac{\pi_{\theta}(y_{i,t}|q, y_{i,<t})}{\pi_{\theta_{\text{old}}}(y_{i,t}|q, y_{i,<t})}$ and $\hat{A}_{i,t} = \frac{r_i - \text{mean}(\{r_j\}_{j=1}^G)}{\text{std}(\{r_j\}_{j=1}^G)}$. The GRPO algorithm utilizes this
 184 group-relative advantage within its clipped objective function to achieve stable and efficient policy
 185 optimization.
 186

187 3.2 CLPO: AN OVERVIEW



210 Figure 2: The overall workflow of CLPO. The framework consists of three main stages detailed in
 211 the green and pink boxes: (1) Online Curriculum Learning, (2) Adaptive Problem Restructuring,
 212 and (3) Value-Driven Filtering and Optimization.
 213

214 While standard RLVR methods like GRPO operate on a static dataset, CLPO introduces a paradigm
 215 of Guided Self-Evolution. As illustrated in Figure 2, at each training step, CLPO dynamically
 216 reconstructs the training batch B_{mix} to create a valuable mixture of problems tailored to the model’s

216 current ability. The optimization phase of CLPO then proceeds by maximizing our objective over
 217 this dynamic batch. This objective estimates advantages using group-relative performance and is
 218 regularized by a difficulty-aware KL penalty:

$$219 \quad J_{\text{CLPO}}(\theta) = \mathbb{E}_{(q, a) \sim B_{\text{mix}}, \{y_i\}_{i=1}^G \sim \pi_{\theta, \text{old}}} (\cdot | q) \\ 220 \quad \left[\frac{1}{\sum_{i=1}^G |y_i|} \sum_{i=1}^G \sum_{t=1}^{|y_i|} \left\{ \min(k_{i,t}(\theta) \hat{A}_{i,t}, \text{clip}(k_{i,t}(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_{i,t}) - \lambda_d \beta \cdot D_{\text{KL}}(\pi_{\theta} \| \pi_{\text{ref}}) \right\} \right] \\ 221 \quad (2) \\ 222 \quad \left[\frac{1}{\sum_{i=1}^G |y_i|} \sum_{i=1}^G \sum_{t=1}^{|y_i|} \left\{ \min(k_{i,t}(\theta) \hat{A}_{i,t}, \text{clip}(k_{i,t}(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_{i,t}) - \lambda_d \beta \cdot D_{\text{KL}}(\pi_{\theta} \| \pi_{\text{ref}}) \right\} \right] \\ 223 \quad (2) \\ 224 \quad \left[\frac{1}{\sum_{i=1}^G |y_i|} \sum_{i=1}^G \sum_{t=1}^{|y_i|} \left\{ \min(k_{i,t}(\theta) \hat{A}_{i,t}, \text{clip}(k_{i,t}(\theta), 1 - \epsilon, 1 + \epsilon) \hat{A}_{i,t}) - \lambda_d \beta \cdot D_{\text{KL}}(\pi_{\theta} \| \pi_{\text{ref}}) \right\} \right] \\ 225 \quad (2)$$

226 The effectiveness of CLPO stems from three core mechanisms, which we detail in the following sections:
 227 Online Curriculum Learning, Adaptive Problem Restructuring, and Difficulty-aware Policy
 228 Optimization.

229 3.3 ONLINE CURRICULUM LEARNING

231 The foundational mechanism of CLPO is **Online Curriculum Learning**, which transforms the
 232 rollout phase from a mere data collection step into a real-time diagnostic tool. In each training step,
 233 for every problem q in the sampled batch $\mathcal{D}_{\text{batch}}$, we generate G responses $\{y_i\}_{i=1}^G$ using the current
 234 policy π_{θ} . We then compute the empirical accuracy $\text{Acc}(q, \pi_{\theta})$ using a **Verifier**:

$$235 \quad \text{Acc}(q, \pi_{\theta}) = \frac{1}{G} \sum_{i=1}^G \mathbb{I}(\text{Verifier}(y_i, a) = \text{True}) \quad (3) \\ 236 \quad \text{Acc}(q, \pi_{\theta}) = \frac{1}{G} \sum_{i=1}^G \mathbb{I}(\text{Verifier}(y_i, a) = \text{True}) \quad (3) \\ 237 \quad \text{Acc}(q, \pi_{\theta}) = \frac{1}{G} \sum_{i=1}^G \mathbb{I}(\text{Verifier}(y_i, a) = \text{True}) \quad (3)$$

238 This accuracy score serves as a direct, online measure of the model’s current proficiency on the problem.
 239 Based on this, we utilize predefined difficulty thresholds $(\tau_{\text{hard}}, \tau_{\text{med}})$ to dynamically partition
 240 the batch into two key subsets for subsequent action:

$$242 \quad \mathcal{D}_{\text{batch}}^{\text{hard}} = \{q \in \mathcal{D}_{\text{batch}} \mid \text{Acc}(q, \pi_{\theta}) \leq \tau_{\text{hard}}\} \quad (4) \\ 243 \quad \mathcal{D}_{\text{batch}}^{\text{med}} = \{q \in \mathcal{D}_{\text{batch}} \mid \tau_{\text{hard}} < \text{Acc}(q, \pi_{\theta}) \leq \tau_{\text{med}}\} \quad (5)$$

244 These sets, the **batch hard set** and the **batch medium set**, provide the precise, real-time guidance
 245 signal for the next stage of our framework.

246 3.4 ADAPTIVE PROBLEM RESTRUCTURING

247 To achieve high-quality, guided exploration, CLPO introduces **Adaptive Problem Restructuring**
 248 (**APR**), a mechanism where the model acts as its own teacher to create more suitable learning materials.
 249 This mechanism is implemented through a restructuring function $f_p(q, d)$, which leverages two
 250 distinct **Prompts** (p) tailored to the problem’s difficulty d (see AppendixE for the specific prompts):

$$251 \quad q' = f_p(q, d), \quad \text{where } d \in \{\text{hard, medium}\} \quad (6) \\ 252 \quad q' = f_p(q, d), \quad \text{where } d \in \{\text{hard, medium}\} \quad (6) \\ 253 \quad q' = f_p(q, d), \quad \text{where } d \in \{\text{hard, medium}\} \quad (6)$$

254 The restructuring strategy is guided by the online curriculum. For problems classified as medium
 255 ($d = \text{medium}$), we employ a **Diversification** prompt. This prompt aims to enhance the model’s ro-
 256 bustness by generating semantically equivalent but varied phrasings, encouraging it to grasp deeper
 257 semantic commonalities. For problems classified as hard ($d = \text{hard}$), we utilize a **Simplification**
 258 prompt. Its objective is to generate a restructured problem q' that is easier for the model to com-
 259 prehend, transforming an initially intractable problem into an effective and learnable training signal. In
 260 both cases, the original answer a is strictly preserved.

261 3.5 VALUE-DRIVEN FILTERING AND DIFFICULTY-AWARE OPTIMIZATION

262 In order to ensure maximum training efficiency, CLPO employs a two-stage Value-Driven Filtering
 263 process to construct the final training batch, followed by Difficulty-aware Policy Optimization.

264 First, we filter the original batch to form the **base set** B_{base} , retaining only the problems within the
 265 model’s learning area (i.e., accuracy $0 < \text{Acc}(q, \pi_{\theta}) < 1$):

$$266 \quad B_{\text{base}} = \{(q, a) \mid q \in \mathcal{D}_{\text{batch}}, 0 < \text{Acc}(q, \pi_{\theta}) < 1\} \quad (7) \\ 267 \quad B_{\text{base}} = \{(q, a) \mid q \in \mathcal{D}_{\text{batch}}, 0 < \text{Acc}(q, \pi_{\theta}) < 1\} \quad (7) \\ 268 \quad B_{\text{base}} = \{(q, a) \mid q \in \mathcal{D}_{\text{batch}}, 0 < \text{Acc}(q, \pi_{\theta}) < 1\} \quad (7)$$

270 Second, the newly restructured problems q' undergo the same filtering criterion, forming the Re-
 271 structure set $B_{\text{restructure}}$:

$$272 \quad B_{\text{restructure}} = \{(q', a) \mid q' = f_p(q, d), q \in \mathcal{D}_{\text{batch}}^{\text{hard}} \cup \mathcal{D}_{\text{batch}}^{\text{med}}, 0 < \text{Acc}(q', \pi_\theta) < 1\} \quad (8)$$

273 The final training batch is the union $B_{\text{mix}} = B_{\text{base}} \cup B_{\text{restructure}}$. When optimizing on this high-quality
 274 data, we employ Difficulty-aware Policy Optimization. This is achieved via a dynamic KL regular-
 275 ization mechanism, where the scaling factor λ_d in Eq. equation 2 depends on the problem's original
 276 difficulty. By setting $\lambda_{\text{hard}} < \lambda_{\text{non-hard}}$, we encourage greater policy exploration on difficult prob-
 277 lems while enforcing stronger regularization on problems where the model already has a foothold,
 278 thereby achieving a dynamic balance between exploration and exploitation.

280 3.6 ALGORITHM

281 We integrate the core mechanisms into the CLPO algorithm. At each training step, the algorithm
 282 first performs an online evaluation on a sampled batch to determine the difficulty level of each prob-
 283 lem. Specifically, it generates multiple candidate solutions using the current policy to calculate an
 284 empirical accuracy score, which is then used to categorize problems as "hard" or "medium". Subse-
 285 quently, the algorithm applies adaptive problem restructuring to these identified problems, perform-
 286 ing simplification and diversification, respectively. Finally, a rigorous value-driven filter is applied
 287 to all original and restructured problems, and only the high-value samples with an accuracy strictly
 288 between 0 and 1 are combined to form the final training batch, B_{mix} , for the policy update. The
 289 complete pseudocode for this algorithm, alongside a deeper theoretical analysis and implementa-
 290 tion details for each mechanism, is provided in the Appendix 1.

292 4 EXPERIMENT

294 To systematically evaluate the effectiveness of our proposed CLPO algorithm, we conducted a
 295 series of comprehensive experiments. Our evaluation begins by comparing the performance of
 296 CLPO against current state-of-the-art finetuning methods on a wide range of mathematical rea-
 297 soning benchmarks. Subsequently, we perform a series of detailed ablation studies to analyze the
 298 contribution of each core component within CLPO. Finally, we analyze the computational scaling
 299 properties of models trained with CLPO at test time.

301 4.1 EXPERIMENTAL SETUP

302 We select **Qwen3-8B** (Yang et al., 2025) as the base model for all experiments and conduct training
 303 on the **DAPO-Math-17k** (Yu et al., 2025) dataset. To comprehensively evaluate model performance,
 304 we employ a diverse evaluation suite comprising eight benchmarks, which can be categorized into
 305 two main groups. The **In-Domain** test sets, which are stylistically and topically closer to the training
 306 data, include MATH 500, Minerva MATH, Olympiad Bench, AMC23, and AIME24 (Hendrycks
 307 et al., 2021; Lewkowycz et al., 2022; He et al., 2024; Li et al., 2024). The **Out-of-Distribution**
 308 (**OOD**) test sets, used to assess the model's generalization and reasoning capabilities in different
 309 domains, include TheoremQA, GPQA Diamond, and MMLU Pro (Chen et al., 2023; Rein et al.,
 310 2024; Wang et al., 2024).

311 All our experiments were conducted on 8x H20 GPUs. The models were trained for 200 steps on
 312 the DAPO-Math-17k dataset, and the checkpoint with the best performance on a validation set was
 313 selected for final evaluation. During training, the rollout number was set to n=4 for each prompt,
 314 with a decoding temperature of 1.0 and a maximum response length of 8192 tokens. For CLPO, we
 315 set the default difficulty thresholds to **(0.3, 0.7)** and the dynamic KL regularization scaling factors to
 316 $(\lambda_{\text{hard}}, \lambda_{\text{non-hard}}) = \mathbf{(0.3, 1.0)}$. We used a constant learning rate schedule with a learning rate of 1e-6.
 317 For our main experiments, we report pass@1 as the primary evaluation metric. All ablation studies
 318 were conducted on the AIME24 test set to analyze the impact of each component on challenging
 319 problems.

321 4.2 MAIN RESULTS

322 We compared the performance of CLPO with all baseline methods across the in-domain and out-
 323 of-distribution test sets, with detailed results presented in Table 1. The results clearly demonstrate

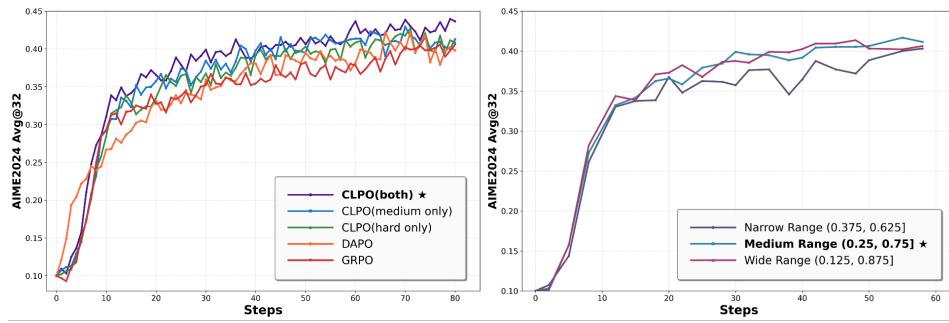
324
 325 Table 1: Performance of CLPO against state-of-the-art finetuning methods on Qwen3-8B. Our
 326 method, CLPO, operating under the *Guided Self-Evolution* paradigm, demonstrates superior per-
 327 formance across all benchmarks without relying on external guidance.

328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343	Method	Optimization Policy	330 Math (In-Domain)					331 General Reasoning (OOD)			Avg									
			332 MATH 500 333 Math	332 Minerva 333 Bench	332 Olympiad 333 AMC23	332 AIME24 333	332 MMLU 333 Pro	332 Theorem 333 QA	332 GPQA 333 Diamond											
<i>All methods are finetuned on Qwen3-8B</i>																				
<i>Supervised Fine-Tuning (SFT)</i>																				
RAFT	Ranking-Based Imitation		76.20	35.58	36.86	50.00	26.67	65.93	43.50	36.76	46.44									
Refinement FT	Guided Refinement		83.20	47.58	40.71	70.00	33.33	67.84	41.29	34.47	52.30									
Critique FT	Learning to Critique		79.00	35.23	39.64	67.50	33.33	63.16	46.00	34.84	49.84									
CITL-FT	Mixed-Data SFT		76.40	37.20	38.57	62.50	30.00	66.13	44.25	36.36	48.93									
<i>Reinforcement Learning with Verifiable Rewards (RLVR)</i>																				
GRPO	Group-Based RL		89.20	51.47	57.40	82.50	43.33	69.86	54.75	47.80	62.04									
DAPO	Dynamic Sampling		91.20	53.31	63.80	87.50	46.67	70.01	55.00	48.48	64.50									
LUFFY	Off-Policy Imitation		89.40	52.94	58.80	85.00	40.00	70.34	58.25	49.49	63.03									
Critique-GRPO (Simple)	Critique-Driven RL		89.40	52.57	60.20	87.50	40.00	70.13	59.00	48.63	63.43									
Critique-GRPO (CoT)	Critique-Driven RL		91.20	61.50	63.80	90.00	46.67	70.98	59.50	50.50	66.77									
CLPO (Ours)	Guided Self-Evolution		89.60	76.10	77.50	90.00	50.00	72.39	71.63	62.63	73.73									

344
 345 that CLPO achieves state-of-the-art performance across most of eight benchmarks. It is particularly
 346 noteworthy that even on the most challenging in-domain datasets (e.g., Olympiad Bench, AIME24)
 347 and all OOD datasets, CLPO shows significant improvements over the powerful methods, such as
 348 Critique-GRPO. This outcome strongly suggests that our proposed framework of online curriculum
 349 learning and adaptive problem restructuring effectively enhances the model’s deep reasoning and
 350 generalization capabilities, rather than merely memorizing patterns in the training data.

351 4.3 ABLATION STUDIES

352 To deeply investigate the effectiveness of each core design module within CLPO, we conducted a
 353 series of detailed ablation studies on the challenging **AIME24** dataset. All results from our ablation
 354 studies are presented as **Avg@32** to better evaluate the upper bound of the model’s capabilities and
 355 the diversity of its exploration.



369 Figure 3: Ablation studies on Adaptive Problem Restructuring. Left: Comparison of restructuring
 370 strategies. Right: Impact of difficulty ranges. All experiments sampled each problem 8 times.

371
Impact of Adaptive Problem Restructuring. We first analyze the impact of different strategies
 372 and parameters within our **Adaptive Problem Restructuring (APR)** mechanism, with all exper-
 373 iments conducted by sampling each problem 8 times and using a default medium difficulty range
 374 of $(0.25, 0.75]$. The left panel of Figure 3 compares different restructuring strategies. We observe
 375 that diversifying medium-difficulty problems only (medium only) yields better performance than
 376 simplifying hard problems only (hard only). We attribute this to the fact that problems clas-
 377 sified as medium lie at the edge of the model’s current cognitive learning zone, and diversifying

them is the most effective way to consolidate existing knowledge and generalize to new domains. Nonetheless, the strategy of only restructuring hard problems still outperforms baselines like GRPO and DAPO. This is thanks to our dynamic training set and the guided self-evolution the model undergoes via simplification, which allows it to extract effective signals from previously intractable problems. Ultimately, the results clearly show that the full CLPO strategy (both), which combines both approaches, achieves the best performance. This demonstrates that our framework perfectly synergizes two learning modes: it both expands generalization capabilities on moderately mastered problems and enables effective learning through the simplification strategy on challenging ones, leading to the most comprehensive capability improvement.

The right panel of Figure 3 investigates the choice of the difficulty range in **Online Curriculum Learning**. We find that a moderately sized range is crucial. If the range is too wide (e.g., (0.125, 0.875]), some problems that are inherently very difficult for the model are misclassified as "medium" and subjected to diversification. This process is tantamount to turning one hard problem into another equally difficult variation, leading to inefficient learning. At the same time, overly simple problems may also be included for restructuring, causing the model to waste computational resources on low-information-gain samples. Conversely, if the range is too narrow (e.g., (0.375, 0.625]), a large number of valuable problems at the model's capability frontier are excluded from the restructuring process. This results in insufficient raw material for the curriculum, thereby limiting the algorithm's optimization potential. Therefore, a medium-sized range, such as (0.25, 0.75], most accurately filters for the candidate problems that are most valuable for the model's current stage, striking an optimal balance between learning efficiency and full data utilization.

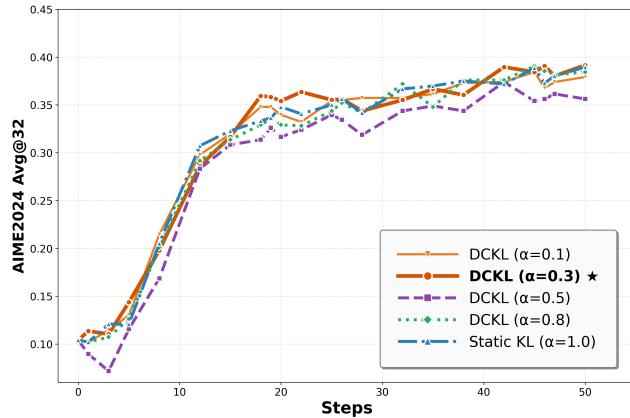
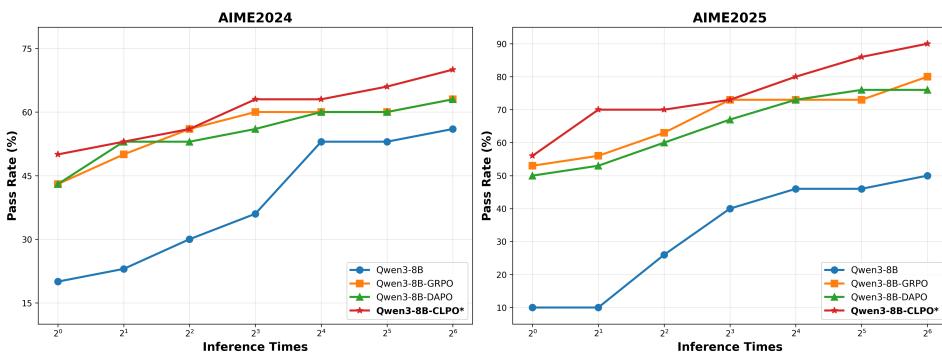


Figure 4: Performance comparison of dynamic KL regularization with different scaling factors (α) against a static KL baseline.

Role of Difficulty-aware Policy Optimization. Finally, we analyze our **Difficulty-aware Policy Optimization** mechanism, specifically the effectiveness of dynamic KL regularization (DCKL). In Figure 4, we compare the performance of dckl with different scaling factors α (i.e., λ_{hard}) against a static KL baseline ($\alpha = 1.0$), where a lower α represents a weaker KL constraint on difficult problems. The experimental results clearly reveal the critical importance of striking a precise balance between exploration and exploitation. We observe the worst performance when α is set to 0.5. We infer that this value falls into a suboptimal exploration range: the policy constraint is strong enough to hinder truly novel solution attempts, yet weak enough to disrupt policy stability. Interestingly, the setting with a weak policy constraint ($\alpha = 0.1$) and those with strong policy constraints ($\alpha = 0.8$ and the static KL, $\alpha = 1.0$) ultimately converge to a similar level of suboptimal performance. The former's convergence stability may be compromised by insufficient constraint, while the latter are too restrictive to effectively learn new solutions for difficult problems. In contrast, setting α to **0.3** strikes the optimal balance between exploration freedom and policy stability, achieving the best performance. CLPO, by precisely adjusting the policy constraint for difficult problems, provides effective guidance for high-quality exploration and thus surpasses other static or suboptimal optimization strategies.

432 4.4 TEST-TIME SCALING ANALYSIS
433

434 Finally, we investigate the test-time scaling of the model trained with CLPO, specifically its **pass@k**
435 performance. This metric measures the probability of generating at least one correct answer in
436 k independent samples and is widely regarded as a key indicator of a model’s **problem-solving**
437 **ceiling** and its **coverage of the valid solution space**. We evaluate pass@k by generating k solutions
438 for each problem at test time, where k varies from $2^0 = 1$ to $2^6 = 64$. We compare CLPO against
439 the base model (Qwen3-8B), GRPO, and DAPO on the **AIME2024** and **AIME2025** test sets, with
440 the results plotted in Figure 5.
441



453 Figure 5: Test-time scaling performance (pass@k) on AIME2024 (left) and AIME2025 (right). The
454 pass rate is evaluated over k inference times, where k ranges from 1 to 64. CLPO outperforms the
455 baselines across all sampling counts.
456

457 Two phenomena can be observed from the plots. First, at all sample counts k , the pass rate (pass@k)
458 of CLPO is **higher** than all baseline methods. This demonstrates that the model trained with CLPO
459 not only has a higher single-sample success rate but also explores a broader valid solution space.
460 This suggests that the solutions generated by the CLPO-trained model are not only of **higher individual correctness** but also richer in **solution path diversity**, allowing it to more efficiently cover
461 a correct answer through multiple samples.
462

463 5 CONCLUSION
464

466 In this paper, we proposed CLPO, a novel framework for guided self-evolution designed to
467 address the inefficient learning caused by the uniform training paradigm in existing RLVR methods.
468 The core innovation of this approach is its elevation of online performance signals from the roll-
469 out phase to become the central driver for constructing a dynamic curriculum. Through the synergy
470 of three core mechanisms—Online Curriculum Learning, Adaptive Problem Restructuring,
471 and Difficulty-aware Policy Optimization—our framework transforms the training process into an
472 adaptive pedagogical loop that co-evolves with the model’s capabilities, all without any external de-
473 pendencies. Our extensive experiments on multiple challenging mathematical and general reason-
474 ing benchmarks demonstrate that this method significantly outperforms state-of-the-art finetuning
475 approaches, achieving SOTA performance.

476 Despite the encouraging results, there are several avenues for future exploration. First, our current
477 approach to assessing problem difficulty relies primarily on the final answer’s correctness; future
478 work could explore incorporating more fine-grained process signals to enable even more precise
479 curriculum construction. Second, while this work primarily validates our method in the domain
480 of mathematical reasoning, extending this dynamic learning paradigm to other complex reasoning
481 domains, such as code generation and scientific question-answering, presents a promising direction.
482 Finally, we believe that the adaptive learning capabilities championed by our framework will exhibit
483 even greater potential as training data and model parameter scales continue to grow, and we plan to
484 further validate its scalability on larger-scale models and datasets.
485

486 REPRODUCIBILITY STATEMENT
487

488 We provide a comprehensive set of resources to ensure the reproducibility of our work. Our algo-
489 rithm, CLPO, is detailed in Appendix C and Algorithm 1. All hyperparameters for both the main
490 training process and our CLPO-specific components are listed in Appendix B. To facilitate full repli-
491 cation of our results, we have included our complete, anonymized source code and scripts as part
492 of the supplementary material. Furthermore, the appendix includes visualizations of the curricu-
493 lum dynamics (Appendix D), the exact prompts used for problem restructuring (Appendix E), and
494 detailed case studies (Appendix F) to provide deeper insights into our method’s behavior.

495
496 ETHICS STATEMENT
497

498 This research was conducted with full consideration of and adherence to the ICLR Code of Ethics
499 throughout its design, implementation, and reporting. Our work aims to advance the scientific under-
500 standing of how to enhance the reasoning capabilities of Large Language Models by proposing
501 a novel, adaptive learning algorithm (CLPO). This goal aligns with the principles of contributing to
502 society and upholding high standards of scientific excellence.

503 To ensure the transparency and reproducibility of our research, we have provided comprehensive
504 implementation details, hyperparameters, and the exact prompts used for problem restructuring in
505 the Appendix. Furthermore, our complete source code has been submitted as supplementary material
506 to facilitate verification and further research by the community.

507 All datasets used in this study (e.g., DAPO-Math-17k) are publicly available academic benchmarks
508 and do not involve any private or sensitive information, thus posing no privacy concerns. Our method
509 is a general-purpose learning algorithm, and we do not foresee any direct, predictable negative
510 societal impacts or potential harms arising from our work. We have also explicitly disclosed our
511 use of Large Language Models as writing assistants in the preparation of this manuscript in the
512 Appendix.

513
514 REFERENCES

515 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
516 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
517 report. *arXiv preprint arXiv:2303.08774*, 2023.

518 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
519 *Proceedings of the 26th annual international conference on machine learning*, pp. 41–48, 2009.

520 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
521 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
522 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

523 Wenhui Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang,
524 and Tony Xia. Theoremqa: A theorem-driven question answering dataset. *arXiv preprint
arXiv:2305.12524*, 2023.

525 Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and
526 Furu Wei. Reasoning with exploration: An entropy perspective. *arXiv preprint arXiv:2506.14758*,
527 2025.

528 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
529 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
530 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

531 Ganqu Cui, Yuchen Zhang, Jiacheng Chen, Lifan Yuan, Zhi Wang, Yuxin Zuo, Haozhan Li, Yuchen
532 Fan, Huayu Chen, Weize Chen, et al. The entropy mechanism of reinforcement learning for
533 reasoning language models. *arXiv preprint arXiv:2505.22617*, 2025.

534 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
535 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
536 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

540 Hasan Abed Al Kader Hammoud, Kumail Alhamoud, Abed Hammoud, Elie Bou-Zeid, Marzyeh
 541 Ghassemi, and Bernard Ghanem. Train long, think short: Curriculum learning for efficient rea-
 542 soning. *arXiv preprint arXiv:2508.08940*, 2025.

543

544 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
 545 Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
 546 promoting agi with olympiad-level bilingual multimodal scientific problems. *arXiv preprint*
 547 *arXiv:2402.14008*, 2024.

548 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 549 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
 550 *preprint arXiv:2103.03874*, 2021.

551

552 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 553 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 554 serving with pagedattention. In *Proceedings of the 29th symposium on operating systems prin-
 555 ciples*, pp. 611–626, 2023.

556 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 557 masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
 558 reasoning problems with language models. *Advances in neural information processing systems*,
 559 35:3843–3857, 2022.

560

561 Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
 562 Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
 563 ai4maths with 860k pairs of competition math problems and solutions. *Hugging Face repository*,
 564 13(9):9, 2024.

565

566 Xiao Liang, Zhongzhi Li, Yeyun Gong, Yelong Shen, Ying Nian Wu, Zhijiang Guo, and Weizhu
 567 Chen. Beyond pass@ 1: Self-play with variational problem synthesis sustains rlvr. *arXiv preprint*
 568 *arXiv:2508.14029*, 2025.

569

570 Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
 571 Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
 572 learning. In *International conference on machine learning*, pp. 1928–1937. PMLR, 2016.

573

574 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 575 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 576 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 577 27730–27744, 2022.

578

579 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
 580 rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
 581 mark. In *First Conference on Language Modeling*, 2024.

582

583 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 584 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

585

586 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 587 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 588 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

589

590 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 591 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *Proceedings*
 592 *of the Twentieth European Conference on Computer Systems*, pp. 1279–1297, 2025.

593

Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and Jieyu Zhao. Efficient reinforcement finetun-
 594 ing via adaptive curriculum learning. *arXiv preprint arXiv:2504.05520*, 2025.

Vaishnavi Shrivastava, Ahmed Awadallah, Vidhisha Balachandran, Shivam Garg, Harkirat Behl,
 595 and Dimitris Papailiopoulos. Sample more to think less: Group filtered policy optimization for
 596 concise reasoning. *arXiv preprint arXiv:2508.09726*, 2025.

594 David Silver and Richard S Sutton. Welcome to the era of experience. *Google AI*, 1, 2025.
 595

596 David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
 597 Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
 598 learning algorithm that masters chess, shogi, and go through self-play. *Science*, 362(6419):1140–
 599 1144, 2018.

600 Mingyang Song, Mao Zheng, Zheng Li, Wenjie Yang, Xuan Luo, Yue Pan, and Feng Zhang.
 601 Fastcurl: Curriculum reinforcement learning with stage-wise context scaling for efficient train-
 602 ing r1-like reasoning models. *arXiv preprint arXiv:2503.17287*, 2025.

603 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT
 604 press Cambridge, 1998.

605 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 606 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 607 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

608 Christian Walder and Deep Karkhanis. Pass@ k policy optimization: Solving harder reinforcement
 609 learning problems. *arXiv preprint arXiv:2505.15201*, 2025.

610 Shenzhi Wang, Le Yu, Chang Gao, Chujie Zheng, Shixuan Liu, Rui Lu, Kai Dang, Xionghui Chen,
 611 Jianxin Yang, Zhenru Zhang, et al. Beyond the 80/20 rule: High-entropy minority tokens drive
 612 effective reinforcement learning for llm reasoning. *arXiv preprint arXiv:2506.01939*, 2025.

613 Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
 614 Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
 615 task language understanding benchmark. *Advances in Neural Information Processing Systems*,
 616 37:95266–95290, 2024.

617 Xumeng Wen, Zihan Liu, Shun Zheng, Zhijian Xu, Shengyu Ye, Zhirong Wu, Xiao Liang, Yang
 618 Wang, Junjie Li, Ziming Miao, et al. Reinforcement learning with verifiable rewards implicitly
 619 incentivizes correct reasoning in base llms. *arXiv preprint arXiv:2506.14245*, 2025.

620 Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
 621 Learning to reason under off-policy guidance. *arXiv preprint arXiv:2504.14945*, 2025.

622 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 623 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 624 arXiv:2505.09388*, 2025.

625 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 626 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
 627 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

628 Xiaoying Zhang, Hao Sun, Yipeng Zhang, Kaituo Feng, Chaochao Lu, Chao Yang, and Helen Meng.
 629 Critique-grpo: Advancing llm reasoning with natural language and numerical feedback. *arXiv
 630 preprint arXiv:2506.03106*, 2025.

631 Chujie Zheng, Shixuan Liu, Mingze Li, Xiong-Hui Chen, Bowen Yu, Chang Gao, Kai Dang,
 632 Yuqiong Liu, Rui Men, An Yang, et al. Group sequence policy optimization. *arXiv preprint
 633 arXiv:2507.18071*, 2025.

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648
649 APPENDIX650
651 A USAGE OF LARGE LANGUAGE MODELS652
653 During the preparation of this manuscript, we utilized Large Language Models (LLMs) as a writing
654 assistant. The usage of LLMs was strictly limited to improving the fluency, clarity, and grammatical
655 correctness of the language, such as rephrasing sentences or correcting grammatical errors. LLMs
656 were not involved in the core research ideation, experimental design, analysis of results, or the
657 formulation of conclusions presented in this paper.658
659 B IMPLEMENTATION DETAILS660
661 Table 2: Main hyperparameters for training, evaluation, and environment.

Name	Value	Description
<i>Training</i>		
Base Model	Qwen3-8B	The base model used in experiments.
Dataset	DAPO-Math-17k	The dataset used for training.
training_steps	200	Total number of training steps.
Optimizer	AdamW	The optimizer used.
lr	1e-6 (Constant)	Learning rate.
batch_size	64	Global batch size during training.
n_rollouts (G)	4	Number of rollouts per prompt.
rewards	1 or -1	Scalar rewards for correct/incorrect responses.
kl_loss_coef (β)	0.001	Coefficient for KL divergence loss.
grad_clip	1.0	Gradient clipping threshold.
train_temp	1.0	Sampling temperature during training rollout.
top-p	1.0	Top-p sampling parameter during training rollout.
max_response_length	8192	Maximum length of generated responses.
<i>Evaluation</i>		
val_temp	1.0	Sampling temperature during evaluation.
<i>Environment</i>		
Hardware	8 × NVIDIA H20	Hardware used for experiments.
Software	verl (Sheng et al., 2025)	Software frameworks used.

684
685 Table 3: CLPO-specific hyperparameters.

Name	Value	Description
hard_threshold (τ_{hard})	0.3	Accuracy threshold for hard problems.
medium_threshold (τ_{med})	0.7	Accuracy threshold for medium problems.
hard_kl_scaler (λ_{hard})	0.3	KL scaling factor for hard problems.
non_hard_kl_scaler ($\lambda_{\text{non-hard}}$)	1.0	KL scaling factor for non-hard problems.

693
694 This section provides the detailed experimental setup to ensure the reproducibility of our work. All
695 our experiments were conducted using the **vLLM** inference framework (Kwon et al., 2023). Table 2
696 lists the main hyperparameters for our experiments, and Table 3 details the parameters specific to
697 CLPO.698
699 C THEORETICAL COMPARISON BETWEEN CLPO AND GRPO700
701 This section provides a more formal and detailed analysis of the key theoretical differences between
the learning paradigms of standard GRPO and our proposed CLPO.

702 C.1 GRPO: A STATIC LEARNING PARADIGM
703704 First, we recall the objective function of GRPO from Eq. (1):
705

706
$$\mathcal{J}_{\text{GRPO}}(\theta) = \mathbb{E}_{(q,a) \sim \mathcal{D}, \{y_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \left[\frac{1}{G} \sum_{i=1}^G \frac{1}{|y_i|} \sum_{t=1}^{|y_i|} \left(\min(k_{i,t}(\theta) \hat{A}_{i,t}, \text{clip}(k_{i,t}(\theta), 1-\epsilon, 1+\epsilon) \hat{A}_{i,t}) - \beta D_{\text{KL}}(\pi_{\theta} \parallel \pi_{\text{ref}}) \right) \right] \quad (9)$$

707

708 The core of GRPO lies in its advantage estimation $\hat{A}_{i,t}$, which is entirely dependent on the rewards
709 of responses $\{y_i\}$ generated for a *given* question q . The expectation $\mathbb{E}_{(q,a) \sim \mathcal{D}}$ reveals that the opti-
710 mization is performed over a **static, policy-independent data distribution** \mathcal{D} . In each training
711 step, the sampling probability of a problem q , $P(q)$, remains constant, typically following a uniform
712 distribution $P(q) = 1/|\mathcal{D}|$.
713714 This implies that the learning process of GRPO follows a **static paradigm**. Under this paradigm,
715 the model passively receives problems sampled from \mathcal{D} , and its only agency lies in optimizing its **re-
716 sponse space** $\pi(y|q)$ to assign higher probabilities to "good" responses. However, the model cannot
717 actively influence the **problem space** it is exposed to. This uniform sampling strategy presents two
718 main theoretical limitations. First, when the policy π_{θ} has already achieved high proficiency on a
719 subset of \mathcal{D} (e.g., easy problems), GRPO continues to allocate the same computational resources to
720 sampling and exploring these problems. This leads to sparse learning signals, as the rewards for all
721 responses on these mastered problems may be very similar, causing the advantage $\hat{A}_{i,t}$ to approach
722 zero and thus providing no effective gradient for policy updates. Second, for problems that are too
723 difficult for the current model, all responses may receive zero or negative rewards, which can also
724 lead to the advantage signal within a group collapsing to zero, trapping the model in a state of "per-
725 sistent failure" without making progress. Both scenarios result in wasted computational resources
726 and the emergence of performance plateaus.
727728 C.2 CLPO: A DYNAMIC LEARNING CURRICULUM
729730 CLPO fundamentally alters this static learning paradigm by introducing a dynamic curriculum that
731 co-evolves with the model's capabilities. We recall the CLPO objective from Eq. (2):
732

733
$$\mathcal{J}_{\text{CLPO}}(\theta) = \mathbb{E}_{(q,a) \sim B_{\text{mix}}, \{y_i\}_{i=1}^G \sim \pi_{\theta_{\text{old}}}(\cdot|q)} \left[\frac{1}{\sum_{i=1}^G |y_i|} \sum_{i=1}^G \sum_{t=1}^{|y_i|} \left\{ \min(k_{i,t}(\theta) \hat{A}_{i,t}, \text{clip}(k_{i,t}(\theta), 1-\epsilon, 1+\epsilon) \hat{A}_{i,t}) - \lambda_d \beta \cdot D_{\text{KL}}(\pi_{\theta} \parallel \pi_{\text{ref}}) \right\} \right] \quad (10)$$

734

735 The core improvements here are twofold: a **dynamic training data distribution** and a **dynamic
736 regularization strength**.
737738 C.2.1 DYNAMIC TRAINING DATA DISTRIBUTION
739740 This is the most central theoretical innovation of CLPO. The key difference lies in the expectation
741 $\mathbb{E}_{(q,a) \sim B_{\text{mix}}}$. The training batch B_{mix} is not directly sampled from the static distribution \mathcal{D} , but is
742 dynamically constructed via a deterministic function $g(\cdot)$ that depends on the performance of the
743 **current policy** π_{θ} :
744

745
$$B_{\text{mix}} = g(\mathcal{D}_{\text{batch}}, \pi_{\theta}) \quad (11)$$

746 This function g corresponds to our Online Curriculum Learning and Adaptive Problem Restructuring
747 mechanisms. We can formalize this process in three steps.
748749 **Step 1: Online Curriculum Learning and Partitioning.** The Online Curriculum Learning mech-
750 anism first partitions the original batch $\mathcal{D}_{\text{batch}}$ into three disjoint subsets based on the online accu-
751 racy of π_{θ} , $\text{Acc}(q, \pi_{\theta})$: the base training set $\mathcal{D}_{\text{base}}$, the restructuring candidates $\mathcal{D}_{\text{candidates}}$, and the
752 dropped set $\mathcal{D}_{\text{drop}}$.
753

754
$$\mathcal{D}_{\text{base}} = \{(q, a) \in \mathcal{D}_{\text{batch}} \mid \tau_{\text{med}} < \text{Acc}(q, \pi_{\theta}) < 1\} \quad (12)$$

755
$$\mathcal{D}_{\text{candidates}} = \{(q, a) \in \mathcal{D}_{\text{batch}} \mid 0 < \text{Acc}(q, \pi_{\theta}) \leq \tau_{\text{med}}\} \quad (13)$$

$$\mathcal{D}_{\text{drop}} = \{(q, a) \in \mathcal{D}_{\text{batch}} \mid \text{Acc}(q, \pi_{\theta}) \in \{0, 1\}\} \quad (14)$$

756 Samples in $\mathcal{D}_{\text{base}}$ are deemed suitably challenging and will directly be included in the final training
 757 batch.
 758

759 **Step 2: Adaptive Problem Restructuring and Filtering.** The Adaptive Problem Restructuring
 760 mechanism, $f_p(q, d)$, is applied to each problem q in $\mathcal{D}_{\text{candidates}}$. For each candidate, its difficulty
 761 level d (hard or medium) is determined, and its restructured version q' is generated:

$$762 \quad \forall (q, a) \in \mathcal{D}_{\text{candidates}}, \quad q' = f_p(q, \text{GetDifficulty}(\text{Acc}(q, \pi_\theta))) \quad (15)$$

764 All generated problems $\{q'\}$ form a temporary set $\mathcal{D}'_{\text{temp}}$. This temporary set then undergoes a
 765 second round of **value filtering**, where only the problems that remain within the model’s effec-
 766 tive learning zone post-restructuring are retained. This forms the final restructured training set,
 767 $\mathcal{D}_{\text{restructured}}$.

$$768 \quad \mathcal{D}_{\text{restructured}} = \{(q', a) \mid (q, a) \in \mathcal{D}_{\text{candidates}}, q' = f_p(q, d), 0 < \text{Acc}(q', \pi_\theta) < 1\} \quad (16)$$

770 **Step 3: Final Training Batch Construction.** The final dynamic training batch B_{mix} is the union
 771 of the base training set and the doubly-filtered restructured set:

$$772 \quad B_{\text{mix}} = \mathcal{D}_{\text{base}} \cup \mathcal{D}_{\text{restructured}} \quad (17)$$

774 This rigorous, policy-dependent procedure implies that the probability of a problem instance appear-
 775 ing in the final training batch is no longer its intrinsic probability $P(q)$, but a complex **conditional**
 776 **probability that depends on π_θ** . Therefore, the optimization in CLPO is effectively performed over
 777 a **dynamic, policy-dependent effective data distribution** $P_{\text{eff}}(q' | \pi_\theta)$.

778 C.2.2 DYNAMIC REGULARIZATION: FROM GLOBAL COMPROMISE TO SAMPLE-LEVEL
 779 ADAPTIVE OPTIMIZATION

781 Beyond the dynamic data distribution, the second core theoretical advantage of CLPO lies in its
 782 **Difficulty-aware Policy Optimization**, actualized through the dynamic KL regularization mech-
 783 anism. The GRPO objective contains a **static, globally shared** KL penalty coefficient β . This fixed
 784 β must strike a **global, suboptimal compromise** between exploration (which requires a smaller β
 785 to allow policy deviation) and exploitation (which requires a larger β to ensure stability). The same
 786 policy constraint is applied to all samples throughout training, regardless of their difficulty, which is
 787 theoretically inefficient.

788 CLPO transforms this fixed KL penalty into a **dynamic, sample-level policy constraint** by intro-
 789 ducing the difficulty-aware scaling factor λ_d . We can define an **effective KL coefficient**, β_{eff} :

$$790 \quad \beta_{\text{eff}}(q, \pi_\theta) = \lambda_d \cdot \beta = \begin{cases} \lambda_{\text{hard}} \cdot \beta & \text{if } \text{Acc}(q, \pi_\theta) \leq \tau_{\text{hard}} \\ \lambda_{\text{non-hard}} \cdot \beta & \text{otherwise} \end{cases} \quad (18)$$

793 where we set $\lambda_{\text{hard}} < \lambda_{\text{non-hard}}$ (e.g., 0.3 vs. 1.0). This design has two distinct effects on the
 794 optimization process:

- 796 1. **For Hard Problems** ($\text{Acc}(q) \leq \tau_{\text{hard}}$): In this case, β_{eff} is small. From a policy opti-
 797 timization perspective, this is equivalent to **significantly widening the trust region** for
 798 this specific sample. For a difficult problem, the correct reasoning path may lie in a low-
 799 probability region of the current policy’s distribution, far from the reference policy π_{ref} .
 800 A smaller KL penalty, $-\lambda_{\text{hard}} \beta D_{\text{KL}}(\pi_\theta \| \pi_{\text{ref}})$, allows for larger, more exploratory gradi-
 801 ent steps during the policy update, increasing the likelihood that the model discovers these
 802 novel, high-reward reasoning trajectories.
- 802 2. **For Non-hard Problems:** In this case, β_{eff} is large. This is equivalent to **tightening**
 803 **the trust region** for this sample. For problems that the model has partially mastered, the
 804 goal is stable and fine-grained refinement rather than drastic policy shifts. A larger KL
 805 penalty, $-\lambda_{\text{non-hard}} \beta D_{\text{KL}}(\pi_\theta \| \pi_{\text{ref}})$, constrains the policy update to stay in the vicinity
 806 of the reference policy, effectively preventing **catastrophic forgetting** of already-learned
 807 capabilities and ensuring the stability of the learning process.

808 **In summary**, this dual shift—from optimizing over a **fixed distribution** $P(q)$ and a **fixed regu-**
 809 **larization** to a **dynamic distribution** $P(q' | \pi_\theta)$ and a **dynamic regularization** λ_d —constitutes the

810 most fundamental theoretical advantage of CLPO over GRPO. It elevates the model from a passive
 811 problem-solver to an active curriculum-designer, enabling it to continuously focus both its **learning**
 812 **resources** and its **exploration intensity** on the frontier of its own capabilities, thereby breaking the
 813 bottlenecks of static learning and achieving more efficient and sustained self-evolution.

814
 815 **C.3 ALGORITHM**
 816

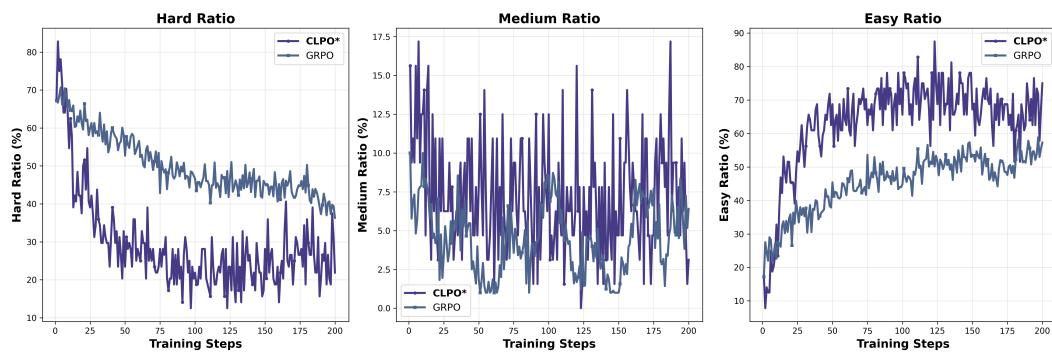
817 **Algorithm 1** Curriculum-guided Learning for Policy Optimization (CLPO)
 818

```

 819 1: Input: Data  $\mathcal{D}$ , policy  $\pi_\theta$ , ref policy  $\pi_{\text{ref}}$ , thresholds  $(\tau_{\text{hard}}, \tau_{\text{med}})$ , rewrite func.  $f_p(\cdot, d)$ , samples
 820    $G$ .
 821 2: for each training step do
 822   3:   Sample batch  $\mathcal{D}_{\text{batch}} \subset \mathcal{D}$ ; Initialize  $B_{\text{mix}} \leftarrow \emptyset$ ,  $D_{\text{candidates}} \leftarrow \emptyset$ .
 823   4:   for  $(q, a) \in \mathcal{D}_{\text{batch}}$  do
 824     5:      $\text{Acc}(q) \leftarrow \text{EvaluateAccuracy}(\pi_\theta, q, a, G)$ .
 825     6:     if  $0 < \text{Acc}(q) < 1$  then
 826       7:        $B_{\text{mix}} \leftarrow B_{\text{mix}} \cup \{(q, a)\}$ .
 827       8:       if  $\text{Acc}(q) \leq \tau_{\text{med}}$  then
 828         9:          $D_{\text{candidates}} \leftarrow D_{\text{candidates}} \cup \{(q, a)\}$ .
 829         10:        end if
 830       11:      end if
 831     12:    end for
 832   13:   for  $(q, a) \in D_{\text{candidates}}$  do
 833     14:      $d \leftarrow \text{GetDifficulty}(\text{Acc}(q))$ ;  $q' \leftarrow f_p(q, d)$ .
 834     15:      $\text{Acc}(q') \leftarrow \text{EvaluateAccuracy}(\pi_\theta, q', a, G)$ .
 835     16:     if  $0 < \text{Acc}(q') < 1$  then
 836       17:        $B_{\text{mix}} \leftarrow B_{\text{mix}} \cup \{(q', a)\}$ .
 837       18:     end if
 838     19:   end for
 839   20:   if  $B_{\text{mix}} \neq \emptyset$  then
 840     21:     Update  $\pi_\theta$  on  $B_{\text{mix}}$  using Eq. equation 2.
 841   22:   end if
 842 23: end for
 843
```

844
 845 **D VISUALIZATION OF CURRICULUM DYNAMICS**

846 To visually demonstrate that CLPO’s online curriculum learning mechanism accelerates the model’s
 847 learning process more effectively than standard GRPO, we conducted a visual analysis of the prob-
 848 lem difficulty distribution within the dynamically constructed training batches. As illustrated in
 Figure 6, the two methods exhibit starkly different **Learning Dynamics**.



861 Figure 6: Comparison of the evolution of problem difficulty distribution during training for CLPO
 862 (dark purple lines) vs. GRPO (blue-gray lines) over the first 200 training steps. From left to right:
 863 Hard Ratio, Medium Ratio, and Easy Ratio.

864 **Hard Ratio (Left Panel).** The proportion of hard problems for CLPO (dark purple line) shows
 865 a **sharp decline** in the early stages of training, quickly converging to a lower level than GRPO. In
 866 contrast, the decline for GRPO (blue-gray line) is significantly more gradual, indicating its lower
 867 efficiency in tackling difficult problems compared to CLPO’s guided approach.
 868

869 **Medium Ratio (Middle Panel).** The difference in dynamics for medium-difficulty problems is
 870 the most revealing, visually demonstrating the different learning modes. CLPO’s ratio exhibits
 871 strong oscillations around a much higher mean. This serves as direct visual evidence of the dy-
 872 namic curriculum in action: CLPO continuously simplifies hard problems into learnable medium
 873 ones, dynamically replenishing the supply of “nutrients” at the edge of the model’s learning zone
 874 and thus maintaining a high learning vitality. GRPO’s ratio, however, fluctuates within a lower
 875 and flatter band, indicating its lack of a mechanism to actively generate medium-difficulty learning
 876 opportunities.
 877

878 **Easy Ratio (Right Panel).** Corresponding to the previous metrics, the proportion of
 879 ‘Easy/Mastered’ problems for CLPO **grows faster and reaches a higher stable level**, directly re-
 880 flecting its superior overall learning efficiency.

881 This series of comparisons provides compelling visual evidence that CLPO, through its dynamic
 882 curriculum, significantly accelerates the model’s learning trajectory and enables a more thorough
 883 mastery of the problem space.

884 E PROMPTS FOR ADAPTIVE PROBLEM RESTRUCTURING

885 This section provides the exact prompts used in our **Adaptive Problem Restructuring (APR)**
 886 mechanism to guide the Large Language Model (LLM) in rewriting problems. These prompts are
 887 designed to clearly communicate the goal of the restructuring while strictly constraining the model
 888 to preserve the mathematical core and the answer of the original problem.
 889

890 We employ two distinct prompts based on the problem difficulty identified during the Online Cur-
 891 riculum Learning stage. For problems classified as “medium” difficulty, we use the diversification
 892 prompt shown in Figure 7, which aims to generate semantically equivalent but stylistically varied
 893 versions to enhance the model’s generalization. For problems classified as “hard,” we use the sim-
 894 plification prompt shown in Figure 8, whose core objective is to reduce the cognitive complexity of
 895 the problem and transform it into a more accessible and effective training signal.
 896

897 F CASE STUDIES

898 To provide a concrete illustration of our Adaptive Problem Restructuring (APR) mechanism in ac-
 899 tion, this section presents a case study on a medium-difficulty problem. We showcase the original
 900 problem and the model’s response, followed by the restructured version generated by CLPO and the
 901 corresponding improvement in the model’s reasoning process.
 902

903 F.1 CASE STUDY: DIVERSIFICATION OF A MEDIUM-DIFFICULTY PROBLEM

904 Figure 9 displays a medium-difficulty problem defined using a compact, symbolic notation typical in
 905 mathematical texts. The response generated by the base Qwen3-8B model, while ultimately correct,
 906 exhibits a hesitant and circuitous reasoning path. The model frequently expresses self-doubt (e.g.,
 907 “Wait, but let me check,” “Wait a second”) and performs multiple, redundant verification steps. This
 908 indicates that while the model possesses the necessary knowledge, the symbolic formulation of the
 909 problem introduces ambiguity, leading to a less confident and inefficient solution process.
 910

911 Figure 10 shows the same problem after being processed by CLPO’s diversification mechanism.
 912 The algorithm restructured the problem by elaborating the compact, symbolic set-builder notation
 913 into explicit, full-sentence natural language descriptions. This seemingly minor change had a pro-
 914 found impact on the model’s response. The new reasoning path is linear, structured, and confident,
 915 proceeding logically from step to step without the self-doubt and redundant checks seen previously.
 916

918
 919 **Medium Question Rewriting prompt:**
 920 "You are a master-level question rewriting expert. Your mission is TOP-SECRET: rewrite the g
 921 iven math question into a diverse but semantically equivalent version, while maintaining the EXACT s
 922 ame task, constraints, solution method, and CORRECT ANSWER. DO NOT solve the problem or mak
 923 e any assumptions about its solution.\n\n"
 924 "CRITICAL RULES FOR OUTPUT:\n"
 925 "- OUTPUT MUST BE A SINGLE CODE BLOCK using the exact format provided below:\n"
 926 "```text\n"
 927 "user\n"
 928 "Solve the following math problem step by step. The last line of your response should be of the
 929 form Answer: \$Answer (without quotes) where \$Answer is the answer to the problem.\n\n"
 930 "[Rewritten question here]\n\n"
 931 "Remember to put your answer on its own line after \"Answer:\"\n"
 932 "assistant\n"
 933 "```\n"
 934 "- Output NOTHING outside the code block.\n"
 935 "- Rewrite the question to DIVERSIFY its expression but PRESERVE its exact meaning and co
 936 nstraints.\n"
 937 "- Keep the rewritten question STRICTLY UNDER 400 tokens, including all characters, symbo
 938 ls, and spaces.\n"
 939 "- DO NOT change any math content (variables, relationships, solution method, etc.).\n"
 940 "- Avoid repetitive sentence structures or template-like phrasing by using varied grammar struc
 941 ture, synonyms, or logical order.\n"
 942 "- Preserve ALL formatting or directive rules exactly as in the original question (e.g., 'write the
 943 answer in a box', 'solve step by step').\n"
 944 "- The rewritten question must lead to the SAME correct answer as the original: {ANSWER}.

945 DO NOT explicitly, implicitly, or indirectly REVEAL or SUGGEST the answer.\n\n"
 946 "HOW TO DIVERSIFY:\n"
 947 "1) Rephrase clauses logically (e.g., change phrasing while maintaining meaning).\n"
 948 " * Original: 'What is the sum of 4 and 5?' ➔ 'Calculate the result of adding 4 with 5.'\n"
 949 "2) Rearrange sentence structure without altering mathematical intent.\n"
 950 " * Original: 'Evaluate $3x - 1$ where $x = 2$.' ➔ 'Find the value of $3x$ minus 1, with x set to 2.'\n"
 951 "3) Use synonyms or alternative phrasing to express the same logic and tasks.\n"
 952 " * Original: 'Determine the area of the rectangle.' ➔ 'Find the rectangular region's area.'\n"
 953 "4) DO NOT add or remove constraints, context, or instructions.\n\n"
 954 "ONE-SHOT EXAMPLE (STRICT FORMAT ONLY):\n\n"
 955 "Original question (with role markers):\n"
 956 "user\n"
 957 "Compute the value of $2 + 3$. The last line of your response should be of the form Answer: \$An
 958 swer.\n\n"
 959 "Remember to put your answer on its own line after \"Answer:\"\n"
 960 "assistant\n\n"
 961 "Your output:\n"
 962 "```text\n"
 963 "user\n"
 964 "Solve the following math problem step by step. The last line of your response should be of the
 965 form Answer: \$Answer (without quotes) where \$Answer is the answer to the problem.\n\n"
 966 "Determine the result of adding 2 and 3.\n\n"
 967 "Remember to put your answer on its own line after \"Answer:\"\n"
 968 "assistant\n"
 969 "```\n"
 970 "ORIGINAL_QUESTION (to rewrite):\n"
 971 "{{Q}}\n"

Figure 7: The prompt used for diversification restructuring of medium-difficulty problems.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Hard Question Rewriting prompt:

"You are a master-level question rewriting expert. Your mission is TOP-SECRET: rewrite the given math question so that it is simpler, clearer, and more direct, while maintaining the EXACT same task, constraints, solution method, and CORRECT ANSWER. DO NOT solve the problem or make any assumptions about its solution.\n\n"

"CRITICAL RULES FOR OUTPUT:\n"

"- OUTPUT MUST BE A SINGLE CODE BLOCK using the exact format provided below:\n"

"```text\n"
"user\n"

"Solve the following math problem step by step. The last line of your response should be of the form Answer: \$Answer (without quotes) where \$Answer is the answer to the problem.\n\n"

"[Rewritten question here]\n\n"
"Remember to put your answer on its own line after \"Answer:\"\n"
"assistant\n"
"```\n"
"- Output NOTHING outside the code block.\n"
"- Do NOT include any reasoning, parsing, or explanation of the problem (e.g., avoid phrases like \"Let me simplify this question\" or \"This problem can be rewritten as...\".)\n"
"- Rewrite the question to make it SIMPLER and CLEARER for the reader, while preserving the EXACT task, math content, and structure.\n"
"- Keep the rewritten question STRICTLY UNDER 400 tokens, including all characters, symbols, and spaces.\n"
"- Remove redundancy and completely clarify definitions, if needed.** For example, if there are implied constraints, make them explicit.\n"
"- Preserve ALL formatting or directive rules exactly as in the original question (e.g., 'write the answer in a box', 'solve step by step').\n"
"- The rewritten question must lead to the SAME correct answer as the original: {ANSWER}.
DO NOT explicitly, implicitly, or indirectly REVEAL or SUGGEST the answer.\n\n"

"HOW TO SIMPLIFY:\n"

"1) Eliminate redundant or overly verbose phrasing while keeping the exact math concepts, symbols, and structure.\n"
"2) Avoid complex clauses by breaking them into shorter, simpler sentences, but do NOT remove or alter necessary constraints.\n"
"3) Include IMPLICIT constraints explicitly if they improve clarity (e.g., 'x > 0' if it is implied implicitly).\n"
"4) DO NOT add any background information, new context, or reasoning unrelated to the question.\n\n"

"ONE-SHOT EXAMPLE (STRICT FORMAT ONLY):\n\n"
"Original question (with role markers):\n"
"user\n"
"Compute the value of 2 + 3. The last line of your response should be of the form Answer: \$Answer.\n\n"
"Remember to put your answer on its own line after \"Answer:\"\n"
"assistant\n"
"Your output:\n"
"```text\n"
"user\n"
"Solve the following math problem step by step. The last line of your response should be of the form Answer: \$Answer (without quotes) where \$Answer is the answer to the problem.\n\n"
"What is the sum of 2 and 3?\n\n"
"Remember to put your answer on its own line after \"Answer:\"\n"
"assistant\n"
"```\n"
"ORIGINAL_QUESTION (to rewrite):\n"
"{{Q}}\n"

Figure 8: The prompt used for simplification restructuring of hard-difficulty problems.

1026
1027
1028
1029
1030
1031

1032

ORIGINAL QUESTION

1033

Solve the following math problem step by step. The last line of your response should be of the form `Answer`:
Answer(*without quotes*) where *Answer* is the answer to the problem.

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Let set $A = \{n \mid \frac{n}{3} \in \mathbb{N}_+\}$, and $B = \{y \mid y = x + 4 + \sqrt{5 - x^2}\}$. Find the number of elements in the set $A \cap B$. Remember to put your answer on its own line after "Answer:".

ORIGINAL RESPONSE

Okay, let's try to solve this problem step by step. First, let me make sure I understand the question correctly.

We have two sets, A and B . Set A is ...So, A is $\{3, 6, 9, 12, \dots\}$ and so on. Set B is defined as ...So, $y = x + 4 + \sqrt{5 - x^2}$. The problem is asking for the number of elements in the intersection of A and B , meaning the numbers that are in both sets.

So, first, I need to figure out what elements are in set B . Then, find the common elements between A and B . Let me start by understanding set B more deeply.

...

Solving this inequality:

$$5 - x^2 \geq 0 \Rightarrow x^2 \leq 5 \Rightarrow -\sqrt{5} \leq x \leq \sqrt{5}$$

So, x has to be between $-\sqrt{5}$ and $\sqrt{5}$.

...

Let me try to find the minimum and maximum values of $y(x)$ over this interval. Since x and $\sqrt{5 - x^2}$ are both functions of x , maybe I can find their maximum and minimum values.

...

Therefore, the maximum value of y is at $x = \sqrt{5}/2 \approx 1.5811$, which is approximately 7.1623, and the minimum value of y occurs at the endpoints.

Wait, but when $x = -\sqrt{5}$, $y \approx 1.764$, which is lower than the other endpoint $x = \sqrt{5}$, which is ≈ 6.236 . So the minimum value of y is approximately 1.764, and maximum is approximately 7.1623. Therefore, the range of set B is $y \in [\approx 1.764, \approx 7.1623]$.

...

Therefore, the possible elements of A that can be in B are 3, 6. Because 9 is already larger than 7.16, so it cannot be achieved by any y .

Wait, but let me check. Let me verify if 3 and 6 are indeed attainable

...

Therefore, only 3 and 6. But also, what about other numbers?

...

Therefore, the number of elements is 2.

Wait, but wait! Wait a second. I need to check if there are other values. Let me check if maybe y can take 3, 6, or perhaps another multiple of 3?

...

Thus, both 3 and 6 are indeed in set B .

Final Answer

Answer: 2

Figure 9: The original medium-difficulty problem presented in a symbolic style and the corresponding hesitant response generated by the Qwen3-8B model.

1080 This case study vividly demonstrates the effectiveness of our APR mechanism. By transforming a
 1081 problem into a linguistic format that is more aligned with the model’s pre-training data, CLPO is
 1082 able to reduce ambiguity and significantly improve the robustness and efficiency of the reasoning
 1083 process itself, not just the final answer.
 1084

1085 **REWRITTEN QUESTION**

1086 Solve the following math problem step by step. The last line of your response should be of the form Answer:
 1087 *Answer*(*without quotes*) where *Answer* is the answer to the problem.

1088 Let A be the set of all positive integers n such that $\frac{n}{3}$ is a positive integer. Define B as the set of all real
 1089 numbers y that can be expressed as $y = x + 4 + \sqrt{5 - x^2}$ for some real number x . Determine the number of elements
 1090 in the intersection of sets A and B .

1091 Remember to put your answer on its own line after “Answer:”.

1092 **REWRITTEN RESPONSE**

1093 Okay, let’s try to tackle this problem step by step. First, I need to understand what sets A and B are and then
 1094 find their intersection. Starting with set A : it’s defined as So set A is all positive multiples of 3. **Got that.**
 1095 Now, set B is a bit trickier. It’s the set of ...

1096 First, I need to figure out the domain of x for which $\sqrt{5 - x^2}$ is real.

1097 ...

1098 Therefore, x must be in the interval $[-\sqrt{5}, \sqrt{5}]$. So x is between approximately -2.236 and 2.236.

1099 ...

1100 But maybe **it’s better to first find** the range of possible y ’s in set B , and then check which multiples of 3
 1101 lie within that range. Let’s try that approach.

1102 So, first, find the minimum and maximum possible values of y .

1103 ...

1104 Therefore, set B contains all real numbers y between $4 - \sqrt{5}$ and $4 + \sqrt{10}$. Now, set A is the set of positive
 1105 integers that are multiples of 3. So $A = \{3, 6, 9, 12, \dots\}$ and so on. Now, to find the intersection of A and B , **we**
 1106 **need to find** all positive integers n that are multiples of 3 and lie between $4 - \sqrt{5}$ and $4 + \sqrt{10}$.

1107 ...

1108 So in that interval, only 3 and 6. Hence, the intersection of A and B has two elements. So, the answer is 2.
 1109 Therefore, the number of elements in the intersection is 2.

1110 ### Final Answer

1111 Answer: 2

1112 Figure 10: The restructured version of the problem, elaborated into natural language by CLPO, and
 1113 the resulting confident, linear reasoning path from the same model.

1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133