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Abstract

Noisy labels often compel models to overfit, especially in multi-label classification
tasks. Existing methods for noisy multi-label learning (NML) primarily follow
a discriminative paradigm, which relies on noise transition matrix estimation or
small-loss strategies to correct noisy labels. However, they remain substantial
optimization difficulties compared to noisy single-label learning. In this paper,
we propose a Co-Occurrence-Aware Diffusion (CAD) model, which reformulates
NML from a generative perspective. We treat features as conditions and multi-
labels as diffusion targets, optimizing the diffusion model for multi-label learning
with theoretical guarantees. Benefiting from the diffusion model’s strength in
capturing multi-object semantics and structured label matrix representation, we
can effectively learn the posterior mapping from features to true multi-labels. To
mitigate the interference of noisy labels in the forward process, we guide generation
using pseudo-clean labels reconstructed from the latent neighborhood space, replac-
ing original point-wise estimates with neighborhood-based proxies. In the reverse
process, we further incorporate label co-occurrence constraints to enhance the
model’s awareness of incorrect generation directions, thereby promoting robust op-
timization. Extensive experiments on both synthetic (Pascal-VOC, MS-COCO) and
real-world (NUS-WIDE) noisy datasets demonstrate that our approach outperforms
state-of-the-art methods.

1 Introduction

Multi-label classification is a specialized subfield of classification tasks where each instance is
assigned multiple labels, making it inherently more complex than multi-class classification [[1]].
Modern multi-label classification methods typically leverage deep neural networks (DNNs) trained
iteratively on large-scale, accurately annotated datasets [2H6l]. However, collecting expert-labelled
data in real-world scenarios is time-consuming and expensive. Crowd-sourcing [7] and model-
generated labels [8] are commonly employed to mitigate annotation costs, inevitably introducing
noisy labels into datasets. Unfortunately, due to their high capacity, DNNs can fit most training data,
regardless of whether the labels are clean or noisy [9H12]. This overfitting to noisy labels prevents
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Figure 1: The illustration of the co-occurrence-aware diffusion model. The example comes from
the MS-COCO dataset, where the label set has been corrupted to {Person, Elephant, Boat}. The
true co-occurrence probability of the label pair < Elephant, Boat > is very low, so our intuition is
to constrain the learning weight of this pair during the reverse process. The pseudo-clean label set
{Person, Dog, Boat}, estimated through latent neighborhood space, is more suitable as the starting
point y, for label diffusion after being transformed into matrix form.

the model from achieving actual empirical risk minimization, making it crucial to address label noise
in multi-label classification.

To tackle this challenge, researchers have proposed noisy multi-label learning (NML), a paradigm
that extends the well-established label noise learning (LNL) from single-label settings to multi-label
scenarios [13H17]. Existing NML approaches predominantly follow LNL strategies, employing noise
transition matrix estimation and correction mechanisms to identify and rectify noisy
labels. Some studies [27, 20] further exploit label dependencies to improve the accuracy of noise
estimation or correction. However, most of these methods are based on discriminative paradigms,
often facing optimization challenges.

Huang et al. proposed a generative-based method LSNPC, where they used variational autoen-
coders (VAE) to treat noisy labels as the result of latent space transitions, enabling more accurate
label correction. Similarly, in the LNL domain, Bae et al. [30] utilized VAE to estimate the transition
matrix for post-processing label correction, while Chen et al. framed label noise as a random
generation process and used denoising diffusion probabilistic models (DDPM) [32] to model the
uncertainty in noisy label generation, optimizing classification via maximum likelihood estimation.
These works demonstrate the feasibility and effectiveness of generative models in classification tasks.
Inspired by this insights, we reformulate the NML problem using DDPM as a robust label generation
task.

We aim to develop a universal denoising probabilistic diffusion framework for NML, achieved by
modeling multi-labels as diffusion targets and using instance features as guided conditions. By
representing the labels in matrix form, we strengthen the mapping between features and multi-labels,
ultimately optimizing maximum likelihood estimation to obtain the accurate class distribution. A
key challenge in this paradigm is that only noisy multi-labels are available. To overcome this issue,
we reconstruct pseudo-clean labels based on each sample’s latent neighborhood feature space, and
estimate a meta-label co-occurrence matrix from a relatively clean subset to guide the reverse process.
Figure [T] illustrates our intuition: when noisy labels exhibit low co-occurrence probability (e.g.,
Elephant vs. Boat), our model learns to steer generation away from such incorrect associations via
co-occurrence constraints. The latent neighborhood feature space is extracted using a pre-trained
encoder, obtained through self-supervised learning or large-scale pre-trained models, enhancing
robustness against noise. These pre-trained encoders remain frozen during diffusion model training,
ensuring flexibility and broad applicability.



Our main contributions are summarized as follows: 1) We reframe NML as a robust label generation
task based on diffusion models with theoretical deduction, and enhance the mapping between features
and multi-labels through matrix-based label representation. 2) We design a pseudo-clean label
reconstructor and a meta-label co-occurrence matrix estimator, leveraging pre-trained encoders to
provide strong priors for diffusion model training. 3) We integrate co-occurrence constraints into
the diffusion modeling, proposing the Co-Occurrence-Aware Diffusion (CAD) model, which can
robustly learn the generative mapping from features to true multi-labels. 4) Our model achieves
state-of-the-art (SOTA) performance in synthetic and real-world noisy datasets, e.g., 5~8% OF1
improvement on noisy Pascal-VOC datasets.

2 Related Work

Noisy Multi-label Learning. Previous studies have primarily focused on improving multi-label
classification models. BCE [33]], ADDGCN [34] and ASL [35]] are highly effective for multi-label
classification but lack mechanisms to handle label noise. Numerous LNL approaches, such as GCE
[36], Co-teaching [37] and DivideMix [38]], aim to develop noise-robust classification models but
lack specialized techniques for handling noisy multi-labels. Liu et al. [39] highlighted the lack and
urgency of research in NML, and only recently have a few studies emerged to address this issue
directly. Hu et al. [40] proposes WSIC using clean subsets to regularize network learning, while Xie
et al. [41] introduces a unified learning framework called CCMN for learning with class-conditional
noise. Xia et al. [27] explored the critical role of label dependencies in noisy label learning and
proposed the holistic label correction (HLC) algorithm to refine multi-label classification under
label noise. Our method focuses explicitly on tackling the NML problem and advocates for uising
generative models. We model multi-label noise as a stochastic generation process, capturing the
uncertainty in multi-label generation to enhance robustness against noise.

Generative Classification Method. Bae et al. [30] introduced VAE to estimate the transition
matrix for post-processing correction in single-label tasks. At the same time, Huang et al. [28]
integrated the VAE with previous NML methods for more accurate label correction. However, their
fundamental framework remains limited to a discriminative paradigm. Diffusion models [32}42H44]
were initially designed for image generation tasks, and classification and regression diffusion models
(CARD) [435] first treated classification tasks as conditional generative tasks, generating single-label
outputs based on features. Building on this, label-retrieval-augmented diffusion models (LRAD) [31]
addressed the robustness issue of diffusion models in noisy single-label learning by incorporating a
neighbor retrieval mechanism. Our approach redefines NML as robust generative inference learning
and enhances the adaptability of diffusion models in transitioning from single-label to multi-label
classification tasks by matrixing labels. We also introduce a unique co-occurrence constraint to
alleviate the multi-label noise problem further.

3 Preliminary

This section introduces the diffusion theoretical framework and training architecture for single-label
classification tasks. Similar to traditional DDPM, it consists of a forward diffusion process and
a reverse denoising process. The target of diffusion and denoising is the sample labels, with in-
stance features embedded as control conditions in the diffusion paradigm. For example, CARD
introduces a pre-trained encoder fg. In the forward process, it uses the encoded result of the
sample features fy(x) as the Gaussian noise mean, performing conditional diffusion on the one-
hot labels with the diffusion endpoint prior distribution as ¢(yr | x) = N (yr; fo(x),I). Using
a time diffusion schedule {3;};—1.7 € (0,1)T, the conditional distribution of the forward pro-
cess is defined as ¢ (y¢|y:—1, fo(X)) = N (ye;vI = Beye—1 + (1 = VI = By) f4(x), 8,1). This
admits a closed-form sampling distribution with an arbitrary time step ¢: ¢ (y: | Yo, fo (X)) =
N (ye; vVaryo + (1 — Vay) fg (%), (1 — an) I), where oy := 1 — f; and & := [[, . Following
DDPM'’s approach, the posterior distribution of the forward process can be derived using Bayes’ rule:

q(ye-1 1 y6,50,%X) = q(yi—1 | yt. Y0, fo(x)) = N (Yt—l;ﬂt (¥¢, Y0, fo(x)) aBtI) , (D

Btf/HYO + (1_&”12\/@}% +(1+ (E_lﬁﬁerm(X) and Bt = l_atflﬁt-
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In the reverse process, CARD gradually recovers the label vector y, from a Gaussian noise distribution

pyr | x) = N(yr; f3(x), 1) :
Po (Yeo1 | Y&, %, fo (X)) =N (Yt—1§,u955~t1) . 2)

The primary objective of model learning is to make the predicted posterior distribution py approximate
the true noise-added estimated posterior distribution g. According to the evidence lower bound
(ELBO) and Kullback-Leibler (KL) divergence, the optimization objective can be written as:

Loy :=Eq[Drr(¢(ye-1 | (v, 50, f6(x))) [ Po (ye-1 | (¥, %, f5 (x))))]. ©)

Observing that learnable knowledge resides on the distribution’s mean term, which can be repa-
rameterized as py = W(Yt - \/Leg (¥4,x, fo (x),t)). The final loss function simplifies to

Lsimpie = ||€ — €0 (Y1, X, fo(x), )|| , which represents the mean squared error between the model-
predicted noise €y and the real random noise e.

4 Co-Occurrence-Aware Diffusion Model

In this section, we first provide an overview of our proposed method in Section [@.1] followed
by an introduction to the theoretical framework and inference mechanism of conditional multi-
label diffusion in Section[4.2] Finally, in Sectiond.3] we propose replacing point estimation with
neighborhood distribution estimation and introducing multi-label co-occurrence-aware in the reverse
process.

4.1 Model Overview

Our co-occurrence-aware diffusion (CAD) model addresses the NML problem, with the overall
framework shown in Figure We use a diffusion paradigm to model the multi-label matrix,
recovering clean labels from a noisy label distribution based on features and co-occurrence awareness.
Instead of using point estimates, we replace them with the multi-label distribution of neighboring
instances and leverage its stability to extract a subset of metadata (i.e., a clean subset). This
strategy enables the estimation of a meta-co-occurrence probability matrix. During the training
phase of the diffusion-based model, the estimated neighborhood label distribution is formatted into
a matrix structure to serve as the generation target, yo, which is progressively corrupted into a
standard Gaussian distribution, A/(0, I) in the forward process. In the reverse process, we not only
utilize feature-conditioned guidance but also incorporate co-occurrence-aware strategy to prevent the
generation of unrealistic label combinations.

4.2 Diffusion-based Multi-label Learning

Inspired by CARD, we redefine NML as a stochastic process of conditional label generation (i.e.,
label diffusion). However, there are two issues can be optimized. First, multi-labels inherently offer
greater scalability than single-labels, as a multi-label can be extended as C' one-hot vectors (denoting
C as the number of classes). Therefore, we model the label matrix instead of a single-dimensional
label vector. Second, when f, fails to accurately map to the true classes, especially in datasets with
label noise, it significantly interferes with the learning direction. As a result, we discard f,; and
remodel the conditional multi-label diffusion paradigm.

Forward process. In the forward process, we redefine a conditional Markov diffusion process similar
to the unconditional multi-label forward distribution g (detailed theoretical framework in Appendix
[A), assuming that when conditioned on features x, the prior distribution of § is the same as ¢:

q(yelye-1,%x) = q(yelyi-1)

=N (Yt; V1=Byi-1, /BtI) ; @

T

d(yrr | yo,x) =[] a(e | yi-1,%)
t=1 (5)

=N (v vVaryo, (1 —ap) 1),
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where parameters a; and ; are consistent with those in DDPM, meaning the forward diffusion
process of the labels is not influenced by any features, and the endpoint conditional distribution
of label diffusion is ¢ (yr | x) = N (yr;0,I). It is important to note that, unlike single-label
classification tasks where the diffusion target is a one-hot vector, our diffusion targetis a C x C
one-hot matrix obtained by forming the multi-label into a matrix structure. The higher-dimensional
diffusion target is more stable in generative learning compared to a single vector, facilitating the
establishment of a stronger mapping from features to true multi-labels.

We derive the conditional posterior distribution during the forward diffusion process using Bayes’
rule and Taylor expansion:

q(ye-1 | ye.®) =N (yi-1; fir, 07 1), (6)
where fi; = B‘lv_adtt’lyo + (I_E{S(;Z\/Eyt + 02V, logp (x|yi—1) and oy = 4/ 1;?(;1 B¢. The last

term in fi; can be considered a deviation to the unconditional distribution mean, guided by the first
derivative of p (x|y;_1), indicating that during training, the decoding information from y; to x must
be introduced, otherwise the predictions of the diffusion model will become completely random, and
no generative knowledge will be learned (See Appendix [B]for detailed proof).

Reverse process. During the reverse generation process, we directly use feature information as input
for the neural network model to predict the reverse posterior distribution:

Do (ytfl | Y, X, t) = N (}’tflé He (thvt) aBtI) . (7)

where §; = 1;3'5;1 B:. Based on the analysis of the forward process, reverse prediction requires
training a class decoder p (x|y:) for gradient guidance, which may incur additional costs. We adopt a
straightforward approach which naturally integrates the decoding process into the diffusion model
architecture. Specifically, we use a trainable decoding layer L, to map y; into the feature space
of x. However, this is impractical due to the much lower dimensionality of y; compared to the
conditional feature space dimensions. Therefore, we utilize a pre-trained encoder to obtain quality
information during the label purification process, concatenating it with the labels for joint decoding.
This enriches the original label information, effectively improving the learning quality of the decoding
layer. Detailed information about the specific diffusion model network structure is shown in Appendix

Figure By reparameterizing the training objective, our final training loss is simplified to
= = 2
Le=lle—es (Vayo+vVI—aext) [, ®)

Inference. Since the classification diffusion model is deterministic in inference and the dimensionality
of the multi-label vector is much lower than that of features, we mimic the inference process
of denoising diffusion implicit models (DDIM) [46] to generate multi-labels in as few steps as
possible without affecting the generated results. Appendix |C|introduces the inference algorithm,
its implementation details, and the recorded inference times. In experiments, we use settings of
S = 10 and 7' = 1000, where the inference efficiency of the diffusion model is on the same order of
magnitude as that of traditional classification models (See Appendix Table [H.T).

4.3 Neighborhood Label Estimation and Co-Occurrence-Aware

By optimizing the diffusion-based multi-label learning, we can effectively guide the model to learn a
generative mapping from features to true multi-labels. However, in noisy environments, excessive con-
tamination of the generative target can lead to a wrong shift in learning target distribution. To mitigate
this issue, we propose optimizations from both the forward and reverse process simultaneously.

Neighborhood label estimation for forward process. A key challenge in label estimation in
noisy environments is the reliance on single-point estimates, which may fail to capture wrong label
distributions. To address this, we adopt a neighborhood-based label distribution estimation as a proxy
for each instance. This approach is grounded in the neighborhood consistency assumption [47], which
posits that in a latent space, instances with similar features tend to cluster. Ensuring this assumption
holds requires an unbiased latent space, which we achieve by leveraging pre-trained encoders trained
via self-supervised learning or on meta-data, thus mitigating the influence of label noise. In fact,
pre-training not only significantly enhances adversarial robustness but is also widely used in LNL to
improve resilience against noisy labels.



Table 1: The mean and standard deviation of results (%) on noisy Pascal-VOC 2007
Metrics | Methods | Sym. 10%  Sym.30%  Sym.50% | Asym. 10% Asym.30% Asym.50%
Standard 70.17+£0.84 64.50+1.20 48.1940.23 | 72.66£1.15 60.94+4.25 46.724+2.13

ASL 72.98+0.85 66.79+1.19 47.64+1.81 | 73.50£0.99 61.99£0.78  45.10+£0.15
LRAD-R 74.71+£0.61  69.97+1.36 67.44+0.61 | 74.55+£0.79 70.64+0.93  59.274+0.72
HLC 76.59+£1.76  72.07+0.67 68.03+0.78 | 75.72+£0.64 69.86£1.61 59.09+£1.73

mAP 1 | LSNPC-R | 79.21£1.16 73.27£0.87 70.19£0.93 | 77.52+1.53 71.33£0.95 58.91+0.26
CAD-R' 80.56+0.69  75.184+0.47 72.37£0.29 | 78.98+£0.90 74.56+0.45 61.884+1.05
LRAD-V | 82.50+0.24 80.14+1.00 78.93+0.74 | 80.14£0.99 79.94£1.79 68.72£1.05
LSNPC-V | 83.71£0.58  80.19+0.80  79.69+0.66 | 79.90£0.88  80.01£0.55 68.57£1.19
CAD-V' 87.82£0.18  86.86+0.60 84.61+£0.58 | 87.50£0.58 81.24+0.42  69.37£0.41

Standard 65.51+£1.23  63.52+0.48 48.08%+1.77 | 67.34£0.78 58.30+2.82 42.19+1.11

ASL 68.14+0.60 65.11+0.77 47.65+1.32 | 68.12+£1.93  60.02+1.80 43.83+1.10
LRAD-R 69.75+1.11  60.88+1.10  53.304+0.33 | 69.10+£0.96 61.42+0.47 45.32+1.50
HLC 71.51+£1.81 68.71+£0.28  66.62+1.52 | 70.18£1.67 64.75£0.70  58.58+1.35

OF1 1 LSNPC-R | 73.96+0.50 67.75+£0.66 65.47+1.19 | 71.87£1.15 63.08£0.66  55.07£0.59
CAD-R' 75.224+0.74  71.424+0.92  67.19+1.50 | 73.24£091 65.77£1.72  59.51+0.43
LRAD-V | 76.03£1.83 69.47+1.18 68.38+1.12 | 74.28£0.72 65.37£1.81 58.45+£1.15
LSNPC-V | 77.15£1.60 70.78+0.19  69.08+0.29 | 74.05£1.19 66.43£1.36 59.35+1.65
CAD-V' 82.00£0.10  76.42+0.11  72.41£0.62 | 81.40+0.99 70.12+0.85 64.511+0.46

Standard 65.65+1.52  55.64+0.84 43.04+1.71 | 67.16£1.03 57.03£3.43 41.24+1.75

ASL 68.28+0.68 57.63+1.27 47.60+0.13 | 67.94+£0.74 58.33+0.49 42.84%1.16
LRAD-R | 69.90+0.87 60.37+0.53 53.24+1.81 | 68.91£1.80 62.05£2.98 44.29+0.62
HLC 71.66+£1.45 62.19+£042 63.65+0.36 | 70.07£1.37 65.63+1.04 56.51+1.94

CF1 1 LSNPC-R | 74.11£1.71  63.22+0.62 62.41+0.26 | 71.67£1.74 61.49£1.09 54.05+0.57
CAD-R' 75.37+0.57 64.87+0.44 64.13+1.08 | 73.00£0.81 65.78+0.52  56.17+0.49
LRAD-V | 77.19£1.53 70.87£0.14 64.31+0.11 | 74.08£1.19 64.67£1.89 59.28+1.69
LSNPC-V | 7831+£1.27 69.19£0.76  64.92+0.55 | 73.85£1.25 64.73£1.38 59.18+1.32
CAD-V' 82.17+0.83  75.78+0.19  69.33+0.72 | 81.18+0.25 70.25+0.69  62.74+0.54

Specifically, given a noisy training dataset D = {(1’1, Gi) |z eREL G eR™i=1,..., n}, for
each instance z; in the latent space, we assign the label sets of its K nearest neighbors, i.e., V; =
{ygl) ey yi(K)}. Then we compute the normalized frequency distribution of these labels by 4; =

7 )

ﬁ 22{:1 y®), which estimates distribution then serves as the generation target y, for diffusion
model’s training. To this end, the model mimics the human annotation process, where labels are
assigned based on contextual information from similar features. This approach parallels how humans
retrieve similar features from memory for semantic labeling, allowing the model to learn and infer
semantic similarities. While the neighborhood proxy method mitigates errors in the generation target,
severe noise contamination can still introduce estimation bias (see detailed analysis in Appendix
[F). To address this, we incorporate co-occurrence awareness into the reverse process to refine the
generation direction.

Co-occurrence-aware in reverse process. Our goal is to pre-estimate a label co-occurrence probabil-
ity matrix that captures relationships between label pairs, guiding the diffusion model to to be aware
of implausible label combinations and avoid generating them(e.g., elephant vs. boat). Ideally, such
estimation would rely on a meta-dataset, as seen in meta-learning, to ensure robustness. However,
in real-world noisy multi-label learning, directly available meta-data is often lacking. To overcome
this, we secondary use the latent neighborhood space to extract a clean meta-subset from noisy data.
Specifically, for each instance x;, we estimate its neighborhood label distribution 7; while measure
its instability by §; = |71| >y, ev: (5 — §i)?. To differentiate samples with varying instability, we
employ a binary Gaussian mixture model (GMM) to model the distribution of ¢;, and define the
meta-subset(clean subset) D’ as the subset of samples belonging to the lower mean component in
GMM (i.e., lower instability samples). This aligns with our neighborhood consistency assumption,
as samples with more stable neighborhood distributions are more likely to be clean and thus more
valuable for estimating the co-occurrence matrix.

For the selected meta-subset D’, we estimate the co-occurrence probability of each label category
using the co-occurrence matrix C, where Cy, », = P(ym, = 1,y, = 1|z € D’). Each element C,, ,,
represents the probability of labels m and n appearing together within the meta-subset. Then, we com-



Algorithm 1 CAD Training

Input: noisy training set D = {X, Y}, pre-trained encoder f,
1: Obtain latent feature space by f, and record the K -nearest neighbor of each sample

Compute instability scores ¢ and isolate meta-subset D’
Estimate co-occurrence matrix C on D’
while not converged do

Sample a batch data (x,y) ~ D; time slice ¢ ~ {1,...,T}; and noise ¢ ~ N (0, 1)

Estimate ¥ as y( and convert it to a one-hot matrix

Compute learning weight w and take gradient descent step on the loss £, (Eq@)
end while

pute the mean co-occurrence rate across all label pairs for samples x; by C; = ﬁ Z(ym Un)EV: Conyn-

Note that we use a hard truncation to count co-occurrence label combinations );, i.e., a positive label
is assigned if its value is greater than 0.5. Finally, we apply Min-Max normalization at the batch
level to obtain the learning weight w; for each sample, which is used to adjust the learning weight by
modifying Eq. 8

_ — 2
Ll —w- |l e~ eo (Vag + VI aex) | ©)

Algorithm |1 describes the overall training procedure. Steps 1-3 correspond to data preparation,
while steps 4-8 cover diffusion model training. After obtaining the trained diffusion model and its
parameters, inference is performed using Appendix Algorithm[C.1] which progressively generates the
label matrix from input instances. Finally, the multi-label set is recovered through matrix inversion.

5 Experimental Results and Analysis

5.1 Experimental Setup

Datasets and noisy multi-label simulation. We validate the effectiveness of the proposed method
on three multi-label synthetic noisy datasets: Pascal-VOC 2007 [48], Pascal-VOC 2012 [48]] and
MS-COCO [49]], as well as on the real-world noisy dataset NUS-WIDE [50]. In the synthetic noisy
datasets, we randomly retain 10% of the samples as a validation set and introduce simulated multi-
label noise into the training set using a noise transition matrix 7" [18H21]]. Specifically, for any ¢ # j,
Tij=r(y; € YNy ¢ Vy; ¢ Y ANy; € V) represents the probability r of the i-th class label to be
corrupted into the j-th class label. To mimic real-world label noise, we consider both symmetric and
asymmetric noise patterns and select noise rates of 10%, 30%, and 50% for each patterns. The details
of the transition matrix are provided in Appendix Figure [D.T]

Baselines. We exploit the following baselines: (1) Standard [33]], which trains ResNet with a BCE
loss. (2) ASL [335]], which operates differently on positive and negative samples. (3) LRAD-R [31], a
diffusion model with a pre-trained ResNet encoder. (4) HLC [27]], a 1abel correction method using
label dependence. (5) LSNPC-R [28]], which integrates a VAE with a pre-trained ResNet encoder.
(6) LRAD-V [31]], which builds upon LRAD-R by replacing the ResNet with a Vision Transformer
(ViT) [51] pre-trained encoder for improved feature extraction. (7) LSNPC-V [28]], a variation of
LSNPC-R, replacing the ResNet with a ViT pre-trained encoder to combine generative modeling
with transformer-based representations. Note that Standard, ASL are designed for clean multi-label
data. LRAD-R/V is designed for LNL. HLC and LSNPC-R/V are designed for NML.

Implementation details and metrics. Our model requires a pre-trained encoder f,,. We use two
versions, CAD-R and CAD-V, which integrate ResNet-50 and ViT-14/L models pre-trained on
ImageNet, respectively. Both remain frozen during the diffusion model training without fine-tuning.
For fairness, baselines (1)—(5) are compared with CAD-R, which called the Common group, while
baselines (6) and (7) are compared with CAD-V, which called the ViT group. We report the mean
and standard deviation of the results from five random experiments. Following the conventional
settings [52]], we evaluate multi-label classification performance using mean average precision (mAP),
overall F1 score (OF1), and per-class F1 score (CF1) as assessment metrics. Notably, the best results
in Common group and ViT group are highlighted in blue and red, respectively. More details and
pre-trained model combinations’ results can be found in Appendix and Appendix



Table 2: The mean and standard deviation of results (%) on noisy Pascal-VOC 2012
Metrics | Methods | Sym. 10%  Sym.30%  Sym.50% | Asym. 10% Asym.30% Asym.50%
Standard 71.33£1.02 66.084+0.68 50.304+1.10 | 74.05£1.57 61.60+0.38 49.614+0.23

ASL 74.18+£1.16  68.43+0.23  49.72+1.08 | 74.90£1.53 62.66+£0.61 48.82+1.07
LRAD-R | 75.94+0.11 71.69+0.54 70.39+0.47 | 7597£1.51 71.41£1.20 63.68+1.13
HLC 77.85+£1.48 72.84+1.82 69.03+1.34 | 75.17+£0.94 70.62+0.77 64.27+1.62

mAP 1 | LSNPC-R | 80.52£1.96 75.07£0.34 73.26+£0.43 | 77.89+0.13 72.10£1.69 65.08+£1.26
CAD-R' 81.894+0.21  77.02+0.94  75.53£0.17 | 80.49+0.27 75.37+0.39  68.361+0.89
LRAD-V | 83.86+0.34 81.15+0.39 80.38+1.88 | 81.67£0.78 79.81£1.67 72.91£1.14
LSNPC-V | 85.09+£1.41 82.16+0.60 83.17+1.35 | 81.42+£0.60 80.88£1.82 73.75£1.49
CAD-V' 89.27£0.97 88.99+0.69 88.31£0.72 | 89.17£1.03  82.124+0.25 76.63£0.59

Standard 66.09+0.28  64.284+0.79 49.95+1.06 | 68.32+£1.45 58.21£1.74 43.67£1.43

ASL 68.74+0.71  65.89+0.77 49.50+1.18 | 69.12+1.12  56.18+1.36  45.37+0.24
LRAD-R 70.36+0.66 61.60+2.00 55.76+1.10 | 70.11£0.35 57.49£0.29 46.91+£0.12
HLC 72.14+£1.73  70.19+0.11  67.83+1.05 | 72.37£0.77 65.56£0.65 60.64+0.89

OF1 1 LSNPC-R | 74.61£1.08 68.56+0.24 68.01+0.73 | 72.92+£1.39 64.04£0.66 58.01+0.11
CAD-R' 75.88+0.57  72.274+0.77 69.80+0.94 | 74.31+£0.47 65.71£0.71  61.60+£0.85
LRAD-V | 74.72+0.39 71.33+1.14 70.07+0.64 | 74.37£1.17 61.53£1.22 59.51£1.29
LSNPC-V | 77.83£0.13  72.61+0.87 71.76+1.10 | 75.13£0.84 65.05£1.14 61.44£1.92
CAD-V' 82.7240.80  77.33£0.61  75.224+0.89 | 82.59+0.83 70.31+1.17 66.784+1.28

Standard 66.74+1.31 57.74+£1.05 44.2241.18 | 68.98+£0.83 56.40£1.22 43.36£1.79

ASL 69.42+0.80 59.81+1.38 48.90+0.25 | 69.78+£0.63 57.68+£0.48 46.08+1.73
LRAD-R | 71.07£0.59 60.65+0.24 54.70+1.47 | 70.78£0.12 59.36£1.05 47.64+1.76
HLC 72.85+0.65 68.54+1.73 64.37+0.68 | 71.89+£0.83  65.42+0.74 59.86+£1.75

CF1 1 LSNPC-R | 75.35£1.77 65.61+1.10 64.12+0.66 | 73.61£1.48 60.81£0.60  58.14+0.99
CAD-R' 76.63+0.57 68.62+0.11 64.86+0.73 | 74.984+0.95 65.47+0.58 60.56+1.41
LRAD-V | 7448+£1.49 70.54+1.28 64.07+£0.40 | 73.09£0.71 62.93£0.37 60.77£0.79
LSNPC-V | 79.62+0.89 71.80£0.58 70.69+0.91 | 75.85+0.39 65.99+£0.46 63.66+1.38
CAD-V' 83.54+0.13  78.64+0.77 71.23£0.21 | 83.384+0.29 72.44+0.94 67.49+1.07

5.2 Comparison with SOTA methods

The results on noisy Pascal-VOC 2007, Pascal-VOC 2012, MS-COCO and real-world noisy dataset
NUS-WIDE are shown in Table|[T] Table 2] Table [3]and Table[d] respectively. Our method (denoted
by 1) consistently outperforms SOTA methods across synthetic and real-world noisy dataset. We
analyze our experimental results in two groups based on different pre-trained encoders.

Compared with the Common group. First, our method consistently outperforms the Standard
across all noise settings. For instance, on Pascal-VOC 2007 with 30% symmetric noise, our method
improves mAP by 11% and OF1 by 8%, demonstrating the necessity of handling noise in NML
problem. Second, when combined with a ResNet pre-trained encoder, our approach maintains a
stable advantage over SOTA methods such as LSNPC-R and HLC, e.g., on Pascal-VOC 2012 with
50% noise, our method surpasses SOTA by an average of 2%. Notably, compared to mAP, the OF1
and the CF1 scores of CAD-R show less stability. In the high-noise setting of the Pascal-VOC 2007
dataset, the CF1 score is slightly lower than HLC, but still competitive. We attribute this to the
bias in neighborhood proxy estimation and the noise leakage from the meta-subset, and analyzes
the limitations of the CAD-R version in high-noise environments (see Appendix [F). Therefore, we
recommend using the CAD-V version, which offers better performance and stability.

Compared with the ViT group. CAD-V exhibits even greater improvements than Common group.
On MS-COCO, it outperforms LRAD-V and LSNPC-V by an average of 8% and 4%, respectively,
highlighting its superior ability to leverage the same prior information more effectively. Compared to
the Standard method, our method achieves over a 30% improvement in high-noise settings (50% noise
rate), validating its robustness. Additionally, we compare the CAD-V version with the respective
state-of-the-art methods on the real-world noisy dataset NUS-WIDE, and the results are provided
in the Table[d] further demonstrating that our method can well handle practical scenes. As shown
in Figure 2] our method not only corrects erroneous labels (e.g., the second image in the first row,
where ‘tiger’ is corrected to ‘cat’) but also generates missing labels (e.g., the third image in the first
row, where ‘plants’ and ‘rocks’ are added). This underscores our method’s practical effectiveness in
real-world settings and its potential to extend from noisy label learning to partial label learning.



Table 3: The mean and standard deviation of results (%) on noisy MS-COCO
Metrics | Methods | Sym. 10%  Sym.30%  Sym.50% | Asym. 10% Asym.30% Asym.50%
Standard 59.274+0.86  54.904+0.73  40.754+0.75 | 61.61£0.69 55.48+0.62 36.85+1.96

ASL 61.64+1.10 56.85+0.61 40.294+0.74 | 62.32+£1.52 56.44£0.32 39.22+0.48
LRAD-R | 63.11+£0.45 59.55+1.42 57.03+0.78 | 63.21£0.94 64.31£1.19 45.44+1.74
HLC 64.69+1.10 61.34+1.95 57.53+1.10 | 64.20£0.57 63.60£0.28  49.25+0.55

mAP 1 | LSNPC-R | 6691£1.86 62.36£0.80 59.36+£0.86 | 65.73+1.45 64.94£1.56 59.07£1.21
CAD-R' 68.05+0.87 63.994+0.80 61.204+0.32 | 66.97+0.59 67.88+0.89  60.051+0.82
LRAD-V | 69.69+£1.07 69.91+£1.90 66.75+0.36 | 67.95£1.66 69.78+£0.82 68.91£0.98
LSNPC-V | 70.71£1.35  68.25+1.35 67.39+0.54 | 67.75£1.19 68.84£1.15 67.76+0.64
CAD-V' 74.184£0.11  73.93+0.62  71.554+0.75 | 74.194£0.65 73.96+0.57 69.5640.32

Standard 57.43+0.65 58.511+0.64 42.594+0.33 | 59.46+£0.66 54.57+0.27 38.84+1.84

ASL 59.74+1.48 59.97+1.44 422140.64 | 60.15£1.79 59.13£0.36  41.46£0.98
LRAD-R | 61.15£1.82 56.08+1.19 46.07+1.18 | 61.02£0.20 60.42+£0.46  44.94+0.30
HLC 62.69+0.80 63.29+1.78 59.01+0.72 | 61.97+£0.11 60.60£1.09  58.09+£0.35

OF1 1 LSNPC-R | 64.84+1.16 62.40+1.74 57.99+1.31 | 63.46£1.55 59.04£1.50 55.61£0.86
CAD-R' 65.95+0.24  63.784+0.82  59.524+0.74 | 64.67£0.39 61.56£0.61 59.01+£0.65
LRAD-V | 66.41£1.80 65.75£1.36 59.46+0.67 | 64.59£1.95 63.99£0.41 55.96£1.06
LSNPC-V | 67.64+£1.68 64.27+0.34 61.19+£1.07 | 65.39£0.37 64.05£0.34 58.85+1.17
CAD-V' 71.89+£0.91 70.39+0.45 64.14+0.68 | 71.88£0.61 69.31£0.90 63.97+0.82

Standard 56.42+0.65 50.244+0.94 38.65+0.61 | 58.45+0.16 53.19+1.10 37.36+0.92

ASL 58.68+1.55 52.03+£1.97 42.75%+1.18 | 59.13£1.52 54.40£1.18 40.89+1.25
LRAD-R | 60.07£1.80 54.51+1.53 47.81+1.14 | 59.97£1.44 57.87£0.57 42.27+0.70
HLC 61.59+£0.24  56.15+0.13  56.26+0.25 | 60.91£1.08 59.81+£0.97 54.81£1.13

CF1 1 LSNPC-R | 63.69+0.68 57.08+1.47 56.05+0.13 | 62.37£0.53 57.35£0.90 53.59+1.51
CAD-R' 64.78+0.54  58.574+0.50 56.694+0.90 | 63.53+£0.91 59.86+£0.95 54.85+0.75
LRAD-V | 63.34+£0.11 59.99+1.06 56.75+1.76 | 62.47£0.11 61.18%£1.16 51.58+0.89
LSNPC-V | 67.30+£1.47 62.47+1.88 58.29+1.39 | 64.27£1.27 62.24£0.70 56.48+1.83
CAD-V' 70.62+0.25  68.42+0.59  62.26+0.93 | 70.65£0.70  68.32+£0.48  59.88+1.06

Table 4: Comparison of our method’s result (%) to SOTA on the NUS-WIDE dataset.
Metrics  Standard [33] ASL [35] HLC[27] LRAD-V [31] LSNPC-V [28] CAD-V'

mAP 1 59.21 63.92 63.14 63.95 64.37 65.13
OF1 1 71.52 75.03 74.68 72.13 74.92 75.58
CF1 1 57.77 62.69 62.87 60.53 63.43 63.68

5.3 Ablation Studies

We conducted ablation experiments on Pascal-VOC 2012 and MS-COCO to assess the effectiveness
of three modules: neighborhood label proxy (¥), co-occurrence-aware (CA) strategy, and diffusion
model (DM). As shown in Table |§L disabling all three modules results in the Standard baseline.
Enabling only the DM approximates the LRAD model without neighborhood retrieval, causing
a 9% performance drop. Conversely, disabling the DM reduces the method to a non-parametric
neighborhood estimation, performing worse than most other settings. Notably, the whole framework’s
performance is only closely matched when DM is combined with either y or CA, highlighting the
importance of the diffusion model. Additional ablation studies on pre-trained f,, neighborhood proxy
estimation performance, the impact of neighbor K value, and training efficiency analysis are detailed

in Appendices[E] [F] [G| and [H] respectively.

Table 6 further demonstrates that, compared to neighborhood estimation results under different
pretrained encoders, the diffusion paradigm consistently plays a critical role in CAD. For example,
when ResNet50—with relatively weaker representation capacity—is used as the pretrained encoder,
its neighborhood estimation performance falls below that of the baseline HLC. Even with such
coarse estimations, CAD is capable of refining the generative feature-label mapping and consistently
achieving performance improvements beyond the label estimation stage. Moreover, the CAD model
with ViT-14/L still outperforms the baseline, whereas the neighborhood label estimation alone (based
on ViT-14/L) performs worse than the baseline across key metrics like OF1 and CF1. This clearly
highlights the indispensable role of the diffusion architecture in enhancing performance beyond what
weak feature spaces can offer.
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Figure 2: True noisy multi-label examples from the NUS-WIDE dataset and the prediction results
from the proposed CAD model. The noisy items in the ground truth label set are highlighted in red,
while the successfully corrected items in the CAD model’s generated label set are highlighted in blue.

Table 5: Ablation study results with 30% noise, reporting the average OF1 scores (%).
Modules | Pascal-VOC 2012 | MS-COCO
CA DM | Sym. Gapl | Asym. Gapl | Sym. Gap| | Asym. Gap|

64.28 13.05 | 58.21 12.10 | 5851 11.88 | 5457 14.74
70.31 7.02 60.52 997 | 6475 5.64 62.98 6.33
7429  3.04 68.41 1.90 | 67.35 3.04 66.58 2.73
7543 190 67.99 232 | 68.13 226 65.97 3.34
71.66  5.67 64.87 544 | 6347 692 62.53 6.78
7733 N/A 70.31 N/A | 70.39 N/A 69.31 N/A

LAX A X X |«
LAAX X X
A SENENENRX

Table 6: Comparison of the two phased results of label pre-estimation (y) and CAD with different
pre-trained encoders. HLC is presented as the baseline in the first row, while the best and second-best
metrics are highlighted in red and blue, respectively.

Pre-trained | VOC 2007-sym. 50% | VOC 2007-Asym. 50% | VOC 2012-Sym. 50% | VOC 2012-Asym. 50%
Encoders | mAP OFl CFl | mAP OFl CFl | mAP OFl CFl | mAP OF1 CFl
HLC N/A | 68.03 66.62 63.65 | 59.09 5859 56.51 | 69.03 67.83 64.37 | 64.27 60.64 59.86

Methods

y ResNet50 | 63.65 4742 4453 | 4536 31.62 37.88 | 6588 39.69 3531 | 59.56 32.62 31.61
CAD ResNet50 | 72.37 67.19 64.13 | 61.88 59.51 56.17 | 7553 69.80 64.86 | 68.36 61.60 60.56
y ViT-14/L | 8220 5321 5543 | 5238 39.99 46.57 | 8227 48.64 47.79 | 52.17 4423 48.68
CAD ViT-14/L | 84.61 7241 69.33 | 69.37 6451 62.74 | 88.31 7522 7124 | 76.63 66.78 67.49

6 Conclusion

In this work, we advocate for deep generative perspective to achieve robust multi-label classification,
offering a novel insight. We use powerful diffusion models to reformulate NML within a probabilistic
denoising label learning and robust inference paradigm, proposing the CAD model. We enhance the
reliability of the target distribution in the forward process through neighborhood proxy estimation in
the latent feature space, while constraining erroneous generation directions in the reverse process
using label co-occurrence rates. To the best of our knowledge, this is the first application of diffusion
models to the NML problem. The proposed method achieves SOTA performance on both synthetic
and real-world noisy datasets, highlighting its strong potential in this domain.

10



Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grants
U21A20513, 62476157, 62576201, and 62276161.

References

(1]

(2]

(3]

[4

—

(3]

[6

—_

[7

—

[8

—_—

[9

—

(10]

(11]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning algorithms,” IEEE Transactions on
Knowledge and Data Engineering, vol. 26, no. 8, pp. 1819-1837, 2013.

K. Zhu and J. Wu, “Residual attention: A simple but effective method for multi-label recognition,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 184—193.

B.-B. Gao and H.-Y. Zhou, “Learning to discover multi-class attentional regions for multi-label image
recognition,” IEEE Transactions on Image Processing, vol. 30, pp. 5920-5932, 2021.

J. Zhao, K. Yan, Y. Zhao, X. Guo, F. Huang, and J. Li, “Transformer-based dual relation graph for multi-
label image recognition,” in Proceedings of the IEEE/CVF international conference on computer vision,
2021, pp. 163-172.

M.-K. Xie, J. Xiao, and S.-J. Huang, “Label-aware global consistency for multi-label learning with single
positive labels,” Advances in Neural Information Processing Systems, vol. 35, pp. 18430-18 441, 2022.

J.-Y. Hang and M.-L. Zhang, “Collaborative learning of label semantics and deep label-specific features
for multi-label classification,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44,
no. 12, pp. 9860-9871, 2021.

W. Wang, G. Xu, W. Ding, G. Y. Huang, G. Li, J. Tang, and Z. Liu, “Representation learning from limited
educational data with crowdsourced labels,” IEEE Transactions on Knowledge and Data Engineering,
vol. 34, no. 6, pp. 2886-2898, 2020.

H. Bae, S. Shin, B. Na, J. Jang, K. Song, and I.-C. Moon, “From noisy prediction to true label: Noisy
prediction calibration via generative model,” in International Conference on Machine Learning. PMLR,
2022, pp. 1277-1297.

A. Vahdat, “Toward robustness against label noise in training deep discriminative neural networks,”
Advances in Neural Information Processing Systems, vol. 30, 2017.

A. Veit, N. Alldrin, G. Chechik, I. Krasin, A. Gupta, and S. Belongie, “Learning from noisy large-scale
datasets with minimal supervision,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2017, pp. 839-847.

L. Feng, S. Shu, Z. Lin, F. Lv, L. Li, and B. An, “Can cross entropy loss be robust to label noise?”
in Proceedings of the Twenty-ninth International Joint Conferences on Artificial Intelligence, 2021, pp.
2206-2212.

B. Frénay and M. Verleysen, “Classification in the presence of label noise: a survey,” IEEE Transactions
on Neural Networks and Learning Systems, vol. 25, no. 5, pp. 845-869, 2013.

Y. Kim, J. Yim, J. Yun, and J. Kim, “NInl: Negative learning for noisy labels,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp. 101-110.

H. Wei, L. Feng, X. Chen, and B. An, “Combating noisy labels by agreement: A joint training method
with co-regularization,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2020, pp. 13726-13735.

H. Wei, L. Tao, R. Xie, and B. An, “Open-set label noise can improve robustness against inherent label
noise,” Advances in Neural Information Processing Systems, vol. 34, pp. 7978-7992, 2021.

X. Xia, T. Liu, B. Han, C. Gong, N. Wang, Z. Ge, and Y. Chang, “Robust early-learning: Hindering the
memorization of noisy labels,” in International Conference on Learning Representations, 2020.

X. Xia, T. Liu, B. Han, M. Gong, J. Yu, G. Niu, and M. Sugiyama, “Sample selection with uncertainty of
losses for learning with noisy labels,” arXiv preprint arXiv:2106.00445, 2021.

T. Liu and D. Tao, “Classification with noisy labels by importance reweighting,” I[EEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 38, no. 3, pp. 447-461, 2015.

11



(19]

(20]

[21]

[22]

(23]

[24]

[25]

(26]

(27]

(28]

[29]
(30]

(31]

(32]

(33]

[34]

[35]

(36]

(371

Y. Yao, T. Liu, B. Han, M. Gong, J. Deng, G. Niu, and M. Sugiyama, “Dual t: Reducing estimation error
for transition matrix in label-noise learning,” Advances in Neural Information Processing Systems, vol. 33,
pp. 7260-7271, 2020.

S. Li, X. Xia, H. Zhang, Y. Zhan, S. Ge, and T. Liu, “Estimating noise transition matrix with label
correlations for noisy multi-label learning,” Advances in Neural Information Processing Systems, vol. 35,
pp. 24 184-24198, 2022.

S. Li, X. Xia, H. Zhang, S. Ge, and T. Liu, “Multi-label noise transition matrix estimation with label
correlations: Theory and algorithm,” arXiv preprint arXiv:2309.12706, 2023.

M. Sheng, Z. Sun, Z. Cai, T. Chen, Y. Zhou, and Y. Yao, “Adaptive integration of partial label learning and
negative learning for enhanced noisy label learning,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 38, no. 5, 2024, pp. 4820-4828.

J. Lienen and E. Hiillermeier, “Mitigating label noise through data ambiguation,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 38, no. 12, 2024, pp. 13 799-13 807.

Y. Li, H. Han, S. Shan, and X. Chen, “Disc: Learning from noisy labels via dynamic instance-specific
selection and correction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023, pp. 24 070-24 079.

G. Jiang, J. Zhang, X. Bai, W. Wang, and D. Meng, “Which is more effective in label noise cleaning,
correction or filtering?” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 11,
2024, pp. 1286612 873.

M. K. Taraday and C. Baskin, “Enhanced meta label correction for coping with label corruption,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 16295-16 304.

X. Xia, J. Deng, W. Bao, Y. Du, B. Han, S. Shan, and T. Liu, “Holistic label correction for noisy multi-label
classification,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp.
1483-1493.

W. Huang, Q. Li, Y. Xiao, C. Qiao, T. Cai, J. Liao, N. J. Hurley, and G. Piao, “Correcting noisy multilabel
predictions: Modeling label noise through latent space shifts,” arXiv preprint arXiv:2502.14281, 2025.

D. P. Kingma, M. Welling et al., “Auto-encoding variational bayes,” 2013.

H. Bae, S. Shin, B. Na, J. Jang, K. Song, and 1.-C. Moon, “From noisy prediction to true label: Noisy
prediction calibration via generative model,” in Proceedings of the 39th International Conference on
Machine Learning, ser. Proceedings of Machine Learning Research, vol. 162. PMLR, 17-23 Jul 2022,
pp. 1277-1297.

J. Chen, R. Zhang, T. Yu, R. Sharma, Z. Xu, T. Sun, and C. Chen, “Label-retrieval-augmented diffusion
models for learning from noisy labels,” Advances in Neural Information Processing Systems, vol. 36, pp.
66499-66 517, 2023.

J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in Neural Information
Processing Systems, vol. 33, pp. 6840-6851, 2020.

Q. Li, X. Jia, J. Zhou, L. Shen, and J. Duan, “Rediscovering bce loss for uniform classification,” arXiv
preprint arXiv:2403.07289, 2024.

J. Ye, J. He, X. Peng, W. Wu, and Y. Qiao, “Attention-driven dynamic graph convolutional network for
multi-label image recognition,” in The 2020 European Conference on Computer Vision. Springer, 2020,
pp. 649-665.

T. Ridnik, E. Ben-Baruch, N. Zamir, A. Noy, I. Friedman, M. Protter, and L. Zelnik-Manor, “Asymmetric
loss for multi-label classification,” in Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 82-91.

Z. Zhang and M. Sabuncu, “Generalized cross entropy loss for training deep neural networks with noisy
labels,” Advances in Neural Information Processing Systems, vol. 31, 2018.

B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and M. Sugiyama, “Co-teaching: Robust training
of deep neural networks with extremely noisy labels,” Advances in Neural Information Processing Systems,
vol. 31, 2018.

12



(38]

(39]

(40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

(52]

(53]

[54]

J. Li, R. Socher, and S. C. Hoi, “Dividemix: Learning with noisy labels as semi-supervised learning,” arXiv
preprint arXiv:2002.07394, 2020.

W. Liu, H. Wang, X. Shen, and I. W. Tsang, “The emerging trends of multi-label learning,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 11, pp. 7955-7974, 2021.

M. Hu, H. Han, S. Shan, and X. Chen, “Weakly supervised image classification through noise regularization,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp.
11517-11525.

M.-K. Xie and S.-J. Huang, “Ccmn: A general framework for learning with class-conditional multi-label
noise,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, no. 1, pp. 154-166, 2022.

P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” Advances in Neural Informa-
tion Processing Systems, vol. 34, pp. 8780-8794, 2021.

P. Vincent, “A connection between score matching and denoising autoencoders,” Neural Computation, p.
1661-1674, Jul 2011.

M. Welling and Y. W. Teh, “Bayesian learning via stochastic gradient langevin dynamics,” in Proceedings
of the 28th International Conference on Machine Learning. Citeseer, 2011, pp. 681-688.

X. Han, H. Zheng, and M. Zhou, “Card: Classification and regression diffusion models,” Advances in
Neural Information Processing Systems, vol. 35, pp. 18 100-18 115, 2022.

J. Song, C. Meng, and S. Ermon, ‘“Denoising diffusion implicit models,” arXiv preprint arXiv:2010.02502,
2020.

A. Iscen, J. Valmadre, A. Arnab, and C. Schmid, “Learning with neighbor consistency for noisy labels,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp.
4672-4681.

M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pascal visual object classes
(voc) challenge,” International Journal of Computer Vision, vol. 88, pp. 303-338, 2010.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollér, and C. L. Zitnick, “Microsoft
coco: Common objects in context,” in The 2014 European Conference on Computer Vision. Springer,
2014, pp. 740-755.

T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng, “Nus-wide: a real-world web image database
from national university of singapore,” in Proceedings of the ACM International Conference on Image and
Video Retrieval, ser. CIVR *09. New York, NY, USA: Association for Computing Machinery, 2009.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Min-
derer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words: Transformers for image recognition at
scale,” arXiv preprint arXiv:2010.11929, 2020.

M.-L. Zhang and Z.-H. Zhou, “A review on multi-label learning algorithms,” IEEE Transactions on
Knowledge and Data Engineering, vol. 26, no. 8, pp. 1819-1837, 2013.

Y. Huang, B. Bai, S. Zhao, K. Bai, and F. Wang, “Uncertainty-aware learning against label noise on
imbalanced datasets,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, no. 6,
2022, pp. 6960-6969.

G. Humblot-Renaux, S. Escalera, and T. B. Moeslund, “A noisy elephant in the room: Is your out-of-

distribution detector robust to label noise?” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2024, pp. 22 626-22 636.

13



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect our contributions, highlight-
ing the CAD’s robust to noisy labels. The motivation and related work are discussed in
Sections[T]and [2] respectively. Our main theoretical basis and methodology are detailed in
Sections [3|and 4] confirming the robustness and performance of our approach. Experimental
results in Section [5]demonstrate significant improvements on both simulated and real-world
noisy datasets. Finally, in Section[6] we explore the implications, limitations, and future
perspectives of our work.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of our work was discussed in Appendix[I|
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: This paper provides a full set of assumptions and complete (and correct) proofs
for each theoretical result. Unconditional multi-label generation and conditional multi-label
diffusion models are analyzed in Appendices[A]and[B] Furthermore, we discuss the inference
process of the CAD algorithm in Appendix [C] All the theorems and formulas are clearly
numbered and cross-referenced throughout the paper.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

This paper fully discloses all information needed to reproduce the main experimental results.
Detailed descriptions of datasets, preprocessing, model architectures, hyperparameters, and
training procedures are provided in Appendix [D.T]and[D.2] Comprehensive tables, figures,
and step-by-step instructions ensure reproducibility and validation of our findings.

Guidelines:

* The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have submitted the code and detailed documentation in the supplementary
materials, including environment setup, execution scripts, and data preprocessing steps, to
ensure the reproducibility and validity of our findings. In addition, all datasets used in the
experiments are publicly available benchmark datasets.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies all the training and test details necessary in Section[5.1]
All hyperparameters used in our experiments are listed in Section [5.1]and Appendix [D.2]
along with a detailed explanation of how they were chosen, ensuring that readers can fully
appreciate the experimental setup and reproduce the experimental results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
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7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: This paper accurately reports error bars and statistical significance. We provide
error bars representing the standard deviation caused by different model initializations and
random seeds. For example, Tables [T} [2] and 3] present the mean and standard deviation of
results obtained from ten independent random trials.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We discuss sufficient information on the computer resources needed to re-
produce the experiments. All experiments were conducted on NVIDIA A800 GPUs. The
training efficiency analysis is provided in Appendix [H]

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
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Justification: The research conforms to the NeurIPS Code of Ethics. We have reviewed
the guidelines and ensured adherence to all ethical standards, including participant privacy,
responsible data use, and transparency. Sensitive information is anonymized, and we comply
with all relevant laws and regulations, with no deviations required.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work is foundational and not tied to specific applications with societal
impact. Our work focuses on theoretical and methodological improvements in label purifica-
tion using diffusion models, with no direct path to societal implications. It does not involve
technologies that could be misused or introduce fairness, privacy, or security concerns.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work poses no such risks. Our research focuses on theoretical and
methodological aspects of label purification using diffusion models, without releasing data
or models at high risk for misuse. Standard benchmarks are used, containing no sensitive or
harmful information.

Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used the following publicly available datasets, with proper citations,
licenses, and terms of use:

* Pascal-VOC 2007: The original papers are cited [48]. The datasets are available
athttp://host.robots.ox.ac.uk/pascal/V0OC/voc2007 and are released under
the MIT license.

» Pascal-VOC 2012: The original paper is cited [48]. The dataset is available at http:
//host.robots.ox.ac.uk/pascal/V0C/voc2012 and is released under the CC-
BY-NC 4.0 license.

* MS-COCO: The original paper is cited [49]. The dataset is available at https://
cocodataset.org/#download and is used under the Apache 2.0 license.

* NUS-WIDE: The original paper is cited [50]. The dataset is available at https:
//github.com/iTomxy/data/tree/master/nuswide and is used under the terms
specified by the creators.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This work does not release new assets. Our research is based on theoretical
developments and simulations, without creating new datasets, code, or models for public
release.

Guidelines:

* The answer NA means that the paper does not release new assets.

19


http://host.robots.ox.ac.uk/pascal/VOC/voc2007
http://host.robots.ox.ac.uk/pascal/VOC/voc2012
http://host.robots.ox.ac.uk/pascal/VOC/voc2012
https://cocodataset.org/#download
https://cocodataset.org/#download
https://github.com/iTomxy/data/tree/master/nuswide
https://github.com/iTomxy/data/tree/master/nuswide
paperswithcode.com/datasets

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing or research with human subjects.
Our study is based on theoretical modeling and computational experiments, with no need
for human participation or crowdsourcing. Therefore, no instructions, screenshots, or
compensation details are required.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve crowdsourcing or research with human subjects.
Our study focuses on theoretical modeling and computational experiments, without any
human interactions. Therefore, no IRB approvals or disclosures of potential risks are
required.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core methodology and experiments presented in this paper do not in-
volve the use of large language models (LLMs) as an important, original, or non-standard
component. No LLMs were employed for data processing, model design, training, or evalu-
ation. The research was conducted independently of any generative or foundation model
technologies; hence, an LLM declaration is not applicable.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Unconditional Multi-label Diffusion Models

In this section, we model unconditional label generation following the theoretical framework of
denoising diffusion probabilistic models (DDPM) [32]. We start by defining the data distribution
Yo ~ ¢ (yo) and a Markovian forward (diffusion) process ¢, which progressively adds Gaussian noise
e ~ N (0,1) to the labels based on diffusion strength j3;, diffusing label yq to yr:

(yt | Yt— 1 (yt’ v1i— Bryi—1, 51&1) (10)

According to the derivation of the Markov chain, the joint probability distribution from yq to y; can
be computed, which is also a Gaussian distribution:

a(ye | yo) =N (y; Vauyo, (1 — ay) I) (11)
= Vawo + V1 —aze, e~N(0,1). (12)
where oy := 1 — 5, and &y = Hi:o as. Under Bayes’ theorem, one finds that the posterior

distribution of the forward process can be represented as a Gaussian distribution with mean fi; (y¢, yo)
and variance S :

Q(yt—l |yt;y0) :./\/<yt_1, (yt,yo) 5t1) (13)
T \/ 1— oy
i (e, o) = e,y Voldlzam), (14)
— Oy 1-— (673
- 1—
B = 1_0“ —— g, (15)

In the reverse process, we naturally employ a neural network to perform Markovian inference from
q(yr), fitting the posterior distribution ¢ (y;—1 | y¢) through to yg. Since the variance of the posterior
Gaussian distribution depends only on the diffusion strength corresponding to time ¢, the neural
network focuses primarily on predicting and learning the mean:

Po (ytfl | yt) =N (ytq;ue (ytat) 751&1) . (16)

To train this model such that py (yo) closely approximates ¢ (yo), we optimize the variational lower
bound (VLB):

Lyrp:=Lo+Li+...4+ Lr_1+ L7, (17)

Lo := —logpo (yo | y1), (18)

Li—y = Dkr (¢ (e—1 | yt,90) | Po (ye—1 | %)), (19)
Lt =Dk (¢ (yr [ ) [ p(y7)) - (20)

However, Ho et al. [32] found that directly predicting the mean was not effective, so they reparam-
eterized the estimation target, constraining the neural network to estimate the actual noise of the
diffusion process and simplified the loss function:

Limpe = it 1)00ma(un) e~ 0,0 ||| € = €0 (e, ) I] @

During inference, we utilize the label noise estimated by the model, restoring the mean of the label
at time ¢t — 1 to retrieve its distribution form, and then gradually performing random sampling until

generating the label yq:
1 1-— it ~
= — - t 22
Yt—1 N (yt mﬁe (Yt )) + 1/ Bz, (22)

where z ~ N (0,I). Unfortunately, such a label generation process does not incorporate any
conditional information, thus for instances with same features, it can generate a variety of labels.
This characteristic makes the diffusion model impractical for classification tasks where distinct label
assignment is required.
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B Conditional Multi-label Diffusion Models and Feature Embedding

In this section, our main goal is to derive the posterior distribution of the forward diffusion process
when features are used as controlling conditions and to analyze its differences and connections with
the unconditional posterior distribution. Following the method used in DDPM [32], We first define a
conditional Markov process ¢ (where g represents the corresponding unconditional process) in which
Gaussian noise € ~ N (0, ) is incrementally added to the labels for diffusion. The addition of noise
remains the same whether features are conditioned or not, leading to the following definition:

q(yo) :==q (yo) (23)

Q(yt | yt—hm) = Q(yt | yt—l) s (24)
T

d(rr Ly, ) =[] dwe | v,z (25)
t=1

With knowledge of the forward process’s prior distribution, we can derive the prior distribution of §:

GWe lye—1) = / 4 (e, v | ye—1) dx (26)
/ G |y, 2) (@ | o) do @7)

= /q Ye lye—1) G (x| y—1) dx (28)

= Q(yt \ yt—l) /Q(I | yt—l)dfl? (29)

=q e | ye—1) (30)

=4yt | yr—1,2), (31)

which indicates that conditions do not affect the prior distribution in the forward process. Similarly,
we can derive the joint distribution of §:

dr ) = [ dnrs | w)do (32)
= /cj(x ‘ yo)@(?ﬂ:T | yo,CU) dx (33)
T
:/éw\yoH (ye | Y1, 2)de (34)
z t=1
T
=/éx\yo ITawe | ye-r)da 35)
z t=1
T
Lot ) [ o lw) do (36)
t=1 &
T
=TT e lve) 37)
t=1
=q(y1.7 | Yo) - (38)
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Based on this result, we can further derive the marginal distribution of ¢:

Cj(yt):/y. G (Yo -+ yt) dyo:t—1 (39)
=/y q(¥0) 4 (y1,-- -yt | Yo) dyot—1 (40)

0-1
:/y_ q (o) q(y1,--- Yt | Yo) dyor—1 1)
:/y. q(Yo,--»yt) dyo:e—1 (42)
ZQ(?OJZ)_-1 (43)

Using the prior and marginal distributions, we can demonstrate that the unconditional posterior
distribution aligns with ¢:

. q(Yys—1,Yt)

B _ 4\Jt-1,5t) 44
Q(Z/t 1 | Z/t) @(yt) (44)
_ q(ye | yifl) q (y1-1) (45)

q (yt)
_ q e | yi—1) g (ye—1) (46)

q(ye)
_ 9We-1,90) 47)

q(ye)

=q (Y1 | Yt) - (48)

By incorporating features as posterior conditions, we estimate the posterior distribution of the
conditional forward process using Bayes’ rule:

(o | 2) = L0 0m) )

Continuing, by adding the known distribution y; as a condition for generation, we can obtain:

QW ly) (@ | Y1, Y1)

i (Wer | v, ) = i (50)
q(yt 1 ‘yt ) q(l‘|yt)
_ a1 y)d (@ g ve) 51)
q (x[ye)
_ v d (@l ye) (52)
q (xly:)
= q(ye—1 | ye) €08 d@lye—1)—log d(wlye) (53)
where the derivation of ¢ (x | y¢—1,¥:) = ¢ (z | y¢—1) from Eq. to Eq. is as follows:
R . (x| yi-1)
T Yi—1,yt) = —1,%) S~ (54)
q@ | ye—1,90) =4 (e | yer )q(yt|yt—1)
. G (| ye—
= (| o) L LU1) (55)
q(ye | ye—1)
= (x| ye-1). (56)

We note that the term e~'°8 4(Iv¢) in Eq. (53] is independent of the distribution of y;_1, thus we set
this part as a constant A:

G (Y1 |y w) = A-qye | yp) e8I, (57)
where ¢ (y:—1 | y+) is the unconditional posterior distribution of the diffusion process, modeled as a

Gaussian distribution with mean fi; (y;, yo) and variance B, in Eq. and Eq. , respectively.
Simplifying the covariance from the probability density formula, we can get:

q (yt—l | o .T) e 6*”%71*/:%H2/2B~t+1084(1"yt71). (58)
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Figure B.1: The network architecture of the conditional multi-label diffusion model. Blue components
represent trainable network layers, while gray components represent normalization activation layers.

Given that the number of time steps 7' in the diffusion process is large enough and the diffusion
coefficient /3; is small enough, the variance of the distribution § (y;—1 | y:) is sufficiently small and
concentrated near ji;. We perform a Taylor expansion around y; 1 = fi; for log§ (z | y:—1) up to
the first derivative, for simplicity, we let V,,, | log§ (z | y1—1)| = g, which is essentially the

gradient of the distribution at that point.: e
log §(x | ye—1) o< log 4(@ [ ye—1)l,, ,—p, + (We—1 — fir)g + o(ys—1). (59)
Thus, the posterior distribution can be estimated as:
G |y, ) o e*l\yt—lfﬁtl\Q/QBtJr(yt,l*ﬁt)g+C1 (60)
o e—lye—1=fie=Begl®)/2B:+Co ©61)
=N (ye-13 fu, 071) (62)

where fi; = & &t_lyo + (17&#}2@% + U?Vytﬂ logg(z | ys—1) and oy = \/ By = 17&"_1515.

1—ay 1—a 1—ay
To ensure the correct introduction of conditions, we need to incorporate the decoding gradient into
the mean during model prediction. The diffusion model’s network architecture, depicted in Figure
consists of a ResNet encoder and a series of feedforward layers. The L; decoding layer plays
a crucial role by contributing the gradient V,,log p (x|y;—1) as guidance. The network inputs are
(z,y0), randomly sampled ¢ and e, where yq is transformed into y; by forward noise addition and
then concatenated with f,,(x). After decoding, it merges with the normalized encoding features of
ResNet through a Hadamard product, incorporates time positional encoding, and uses a series of
feedforward networks, batch normalization, and Softplus activation to predict the noise term eg.

C Deterministic Implicit Inference

This section primarily discusses the inference process of the CAD algorithm. Since the diffusion
process involves labels and is directed towards classification tasks, it is imperative to reduce the
uncertainty in the inference process and expedite it as much as possible, aligning with the method of
denoising diffusion implicit models (DDIM) [46]. With a trained conditional diffusion model, we

proceed as follows:
a (e | yo) =N (ye; vVauyo, (1 — ay) 1), (63)
Y = Vauyo + V1 — e, (64)
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Algorithm C.1 CAD inference
Input: Testing set D = {X}
Output: yg

1: Sample instance x ~ D, Sample multi-label y7 ~ N(0, )
2: for s = Sto1do
3 z~N(OI)ifs> 1,elsez=0

s T\ 1_74'\'6(1—5) Ts —
4: Yrey = O_éTS—l (y ) aib — )) + 1= Qrq — 0—2 E(T )(yTQ) + 052
5

Qg

: end for

where € ~ N(0,I). Similar to DDIM, we define a non-Markovian nature for the forward posterior
distribution:
Gos (yTS_l | Yrss yO) =N (y‘r,;_1 ; MyO + ]VyTS ’ USQI) ) (65)

where M and N are coefficients to be determined, and o5 > 0. 7 is a subsequence of [1,--- , T,
with 75 = T, e.g., if T'= 1000 and S = 10, then 7 = [1, 100, - - - , 900, 1000]. From the empirical
form of the posterior distribution, we have:

Yroow = Myo + Nyr, + o€ (66)
= Myo+ N (Vasyo + /I = aré) +0se (67
= (M +N\/a:)yo+ N\/1—aré+oge, (68)
where ¢ and € are independent and identically distributed Gaussian noises with additivity, hence:
Yr. . = (M +N\/a;)yo + VN2 (1 — a,,) + o€ (69)
=Var o+ VI-ar e (70)

By the method of undetermined coefficients, M and N are determined:

O{Tgl
R . an

(72)

We reorganize the inference distribution and since the yo term is unknown during actual inference, we

o —r/T—ar, e
estimate it using yo = a a_ < wr.) . The detailed inference process is outlined in Algorithm

[CI] For classification tasks, followmg the DDIM approach, we can achieve an implicit probabilistic
diffusion model, turning the inference into a deterministic process given yr by setting o, = 0 [46]].
This modification reduces the variability during inference, ensuring more consistent and reliable label
predictions crucial for classification accuracy. Additionally, since the inferred labels are in a matrix
form, we apply a necessary post-processing step to project the matrix-form labels into a normalized
probability distribution, similar to the SoftMax activation used in classification. To obtain the one-hot
label vector, we typically set the category with a probability greater than 0.5 to 1.

D Experimental Setup and Details

D.1 Dataset Details

Synthetic noisy datasets. Pascal-VOC 2007 and Pascal-VOC 2012 share the same 20 object
categories, with an average of 1.5 labels per image. The Pascal-VOC 2007 dataset consists of 5,011
training images and 4,952 test images, while Pascal-VOC 2012 includes 11,540 training images and
10,991 test images. Since the test set labels for Pascal-VOC 2012 are not publicly available, we
follow previous studies and use the Pascal- VOC 2007 test set for its evaluation. The MS-COCO
dataset contains 82,081 training images and 40,137 test images, covering 80 object categories with
an average of 2.9 labels per image. As shown in the Figure[D.I] we visualized the noise transition
matrix used in the experiments on Pascal-VOC 2007 and Pascal-VOC 2012.
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Figure D.1: Synthetic noise transition matrices used in our experiments on Pascal-VOC 2007. The
noise rate is set to 30%.

Real-world noisy datasets. NUS-WIDE dataset [50] originally containing 269,648 images from
Flickr and manually annotated with 81 visual concepts, is employed to demonstrate the adaptability
of our problem setting to real-world scenarios. Since some download URLs have been deleted, we
use the version of the dataset provided in [35]. Our experiments follow the training/testing splits
provided by the original dataset. Figure [2]illustrates several real multi-label noisy examples from
NUS-WIDE. As shown, our method not only corrects erroneous labels (e.g., the second image in
the first row, where ‘tiger’ is corrected to ‘cat’) but also generates missing labels (e.g., the third
image in the first row, where ‘plants’ and ‘rocks’ are added). This underscores our method’s practical
effectiveness in real-world settings and its potential to extend from noisy label learning to partial
label learning.

D.2 Experimental Details

In our experiments, we configured ResNet50 (depicted as blue ResNet blocks in Figure [B.I) as
trainable encoders for the diffusion model, where all linear layers have a dimensionality of 1024. We
use the Adam optimizer for training 30 epochs with a batch size of 128. The initial learning rate is set
to Se-4, and a half-cycle cosine decay is employed. The images in three datasets resize to 224 x 224.
The experimental results on the synthetic noisy datasets are averaged over ten independent random
trials. Additionally, we used a range of K values from 1 to 100 on the validation set. Experimental
results in Appendix |G|showed that the mAP remained relatively stable for K values between 30 and
60. Based on these results, we inferred that our CAD was relatively insensitive to variations within
this range of K values and consequently set the default K value to 50. Due to the increased difficulty
of learning from the real-world noisy NUS-WIDE dataset and its higher computational cost, we use
ResNet-101 as the trainable encoder for the diffusion model and conduct only a single experiment.
The rest of the experimental setup remains the same as for the other three datasets.

E More Types of Pre-trained Encoders

We initially conducted research on different settings of the pre-trained encoders f,, and performed
ablation experiments comparing our method with Standard, LRAD, and LSNPC. Both the LRAD and
LSNPC require the integration of a pre-trained model f,, whereas Standard is a baseline method that
does not require any pre-trained models. We selected four pre-trained encoders for our experiments:

* ResNet-50 is a baseline multi-label classifier, we use the ResNet-50 model pre-trained on
ImageNet;

* ADDGCN uses a semantic attention module to estimate the content-aware class-label
representations for each class from extracted feature map where these representations are
fed into a graph convolutional network (GCN) for final multi-label classification;
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Table E.1: Results (%) on Pascal-VOC 2012 and MS-COCO with 30% symmetric noise, using
various methods with different pre-trained encoders. (1 denotes our method).

| Pascal-VOC 2012 | MS-COCO

mAP OF1 mAP  OFl1
Standard N/A 66.08 64.28 54.90 58.51
LRAD ResNet50 71.69 61.60 59.55 56.08
LSNPC ResNet50 75.07 68.56 62.36  62.40
CAD' ResNet50 77.02 72.27 63.99 63.78
LRAD ADDGCN 73.58 64.05 62.23  58.12
LSNPC ADDGCN 78.12 71.13 64.65 64.78
CADf ADDGCN 80.29 74.89 66.54 66.13

Method | Pre-trained f),

LRAD HLC 7513 6536 | 63.55 59.30
LSNPC HLC 7958 7254 | 65.82 66.04
CAD' HLC 81.86  76.48 6776  67.43
LRAD VIiT-L/14 81.15  71.33 6991 65.75
LSNPC VIiT-L/14 82.16  72.61 68.25 64.27
CADf ViT-L/14 88.99 77.33 7393 70.39

* HLC is a noisy multi-label correction approach built on top of ADDGCN. It uses the
ratio between the holistic scores of the example with noisy multi-labels and its variant
with predicted labels to correct noisy labels during training. A holistic score measures the
instance-label and label dependencies in an example.

* ViT-L/14 is a vision transformer (ViT) model with 306 million parameters, pre-trained on
the ImageNet containing over 4 million image-text pairs, providing our framework with
exceptional feature extraction capabilities.

We evaluate mAP and OF1 on the Pascal-VOC 2012 and MS-COCO datasets. As shown in Table
Built on feature spaces provided by ADDGCN, designed for multi-label classification, and
HLC, optimized for noisy multi-label learning, our CAD method significantly outperforms others,
demonstrating superior capability in complex label relationship modeling and noise robustness.
Under ADDGCN pretraining, CAD achieves mAP scores of 80.29% and 66.54% on Pascal-VOC
2012 and MS-COCO, respectively, surpassing LSNPC and LRAD, indicating its effectiveness in
leveraging graph structures for multi-label modeling. With HLC pretraining, CAD further improves
to 81.86% and 67.76% mAP, outperforming all competitors and approaching CAD-V, suggesting
its compatibility with other NML-based feature extraction methods. Additionally, under ViT-L/14
pretraining, CAD attains the highest performance (88.99% mAP and 73.93% mAP), reinforcing its
efficiency in leveraging prior information. Overall, when the three models use the same pre-trained
feature extractor, CAD consistently outperforms the other two methods, indicating that its superior
performance is not solely due to the effectiveness of feature extraction.

F Effects of Neighborhood Estimation Method

We validate the effectiveness of the neighborhood estimation proxy in the proposed CAD framework
on the Pascal-VOC 2007 and Pascal-VOC 2012 datasets. For comparison, we use the label retrieval
augmentation (LRA) technique from LRAD as a baseline. As shown in Figure both methods are
negatively impacted by noise intrusion as the noise rate increases. However, our method consistently
maintains a significant advantage in mAP. In high-noise environments, however, the OF1 and CF1
scores of our approach rapidly degrade to 0%. This is due to the excessive dispersion of label
distributions among neighborhood samples, leading to high entropy in neighborhood proxies, making
it difficult to distinguish positive samples. Addressing this limitation of our neighborhood estimation
method under high noise conditions will be a focus of future work.

Fortunately, by integrating co-occurrence constraints and diffusion models, our method achieves a
40% performance improvement in high-noise settings (e.g., 50% asymmetric noise), raising OF1 from
30% to 70%. This further validates the importance and necessity of these two additional components.
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Figure F.1: Comparison of the effectiveness of the neighborhood estimation method in our CAD
and the label retrieval augmentation (LRA) in LRAD. Subfigures (a)-(c) present results on the noisy
Pascal-VOC 2007 dataset, while Subfigures (d)-(f) show results on the noisy Pascal-VOC 2012
dataset.
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Figure G.1: The effect of different K values on the best mAP (%) of the CAD model under various
symmetric noise rates. The gray background highlights the range of K values where the mAP is
relatively stable and exhibits robust performance.

G Effects of Different K Value

To analyze the impact of K values on model performance, we conducted tests on the Pascal-VOC
2007 and Pascal-VOC 2012 datasets under varying Symmetric noise rates with K ranging from 1
to 100. Figure[G.T|shows that the CAD’s mAP remained relatively stable for K values between 30
and 60. We observe that in low-noise scenarios, a smaller neighborhood radius suffices for accurate
estimation, while an excessively large neighborhood can lead to noise leakage. As noise levels
increase, the required neighborhood size also grows. This phenomenon can be explained by the need
to expand the neighborhood size to stabilize label distributions when noisy information becomes
prevalent, thereby improving the model’s robustness. However, excessively large values of K increase
computational costs without yielding significant improvements in model performance. Considering
these factors, we set K = 50 as the default setting for CAD, as it achieves both stability and high
mAP across various noise conditions.
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Table H.1: Test Time (sec) for CAD and Discriminative Models on Different Datasets
Pascal-VOC (4925 test image) MS-COCO (40,137 test image)
CAD 8 | Discriminative 5 [ CAD 173 [ Discriminative 102

H Training and Inference Efficiency Analysis

The time expenditure comparison in Figure [H.] highlight the significant cost-effectiveness of our
CAD. Compared to LSNPC and HLC, CAD achieves optimal performance while saving half of times
in training costs, which is groundbreaking. Compared to LRAD, which use similar diffusion model
architectures, CAD incurs only about 5 seconds of additional cost. Moreover, its sample preparing
process can be pre-computed and cached before training, thereby avoiding the need for repeated
calculations. In other words, it is done once, meaning that when dealing with large-scale datasets, the
time cost of this process is negligible compared to model training, yet its contribution to enhancing
multi-label classification performance is significant.

Table [H.T|compares the classification time on the test set between the CAD and discriminative models.
Since both Pascal-VOC 2007 and Pascal-VOC 2012 share the test set of Pascal-VOC 2007, we
have combined the results. The Pascal-VOC test set consists of 4,925 images, while the MS-COCO
test set contains 40,137 images, resulting in a significant increase in testing time. Overall, the
diffusion models and discriminative models operate within the same order of magnitude in terms of
classification speed. Moreover, classification speed can be further improved with alternative noise
scheduling or accelerated sampling strategies, so slow classification does not pose a significant issue.

VOC2007 ® V0C2012 e coco

Training time cost (sec)

LSNPC HLC

ASL CAD LRAD

Figure H.1: Time cost (sec) of each method for training one epoch on one NVIDIA A800 GPU.

I Limitations and Future Work

In this work, although we demonstrate through experiments that CAD performs strongly on most
noisy benchmark datasets, it still has two main limitations: (1) instability under high-noise conditions,
and (2) a lack of evaluation in more complex noise scenarios, such as instance-dependent noise (IDN),
class imbalance [33]], or out-of-distribution (OOD) noise [54]. In future work, we aim to address the
issue of high variance in OF1 and CF1 scores and to validate the model’s robustness under a broader
range of noise conditions and real-world multi-label noisy datasets. Additionally, part of CAD’s
overall performance gain can be attributed to the use of a pre-trained encoder. Moving forward, we
plan to integrate discriminative and generative paradigms, enabling information generated by the
diffusion model to guide various stages of training.
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