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ABSTRACT

The long chain-of-thought (LongCoT) capability is central to the recent break-
throughs achieved by large language models in complex reasoning tasks. However,
the accompanying issue of “underthinking”, where models exhibit shallow reason-
ing by frequently switching thoughts without sufficient exploration, limits both
performance and token efficiency. To address this problem, we propose a sim-
ple yet effective reasoning strategy: the SmartSwitch inference framework. This
framework can be easily integrated into any large language model as a plug-and-
play solution, continuously monitoring the model’s reasoning process to detect
underthinking and guide it toward deeper exploration of promising but overlooked
thoughts. Specifically, the perception module identifies points where thoughts
switch and evaluates the potential of the preceding thought using an off-the-shelf
process reward model (PRM). If a high-potential thought is found to be prematurely
abandoned, the intervention module interrupts the ongoing inference, backtracks
to the point before the switch, and inserts a “deepening prompt” to encourage fur-
ther exploration along that promising path. Extensive experiments on challenging
mathematical reasoning benchmarks demonstrate that our method significantly
enhances the performance of various large language models of different sizes.
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Figure 1: Qualitative and Quantitative illustration for the “underthinking problem”. (a) presents an
example with the underthinking phenomenon sampled from DeepSeek-R1 (Guo et al., 2025). The full
response consists of 74 different thoughts, each with a relatively short length (around 150 tokens). (b)
shows the “Underthinking Frequency” metric UF(L) (defined in Eq.(1)) of six mainstream LongCoT
LLMs at different values of length threshold L. The results show that underthinking is widespread in
all models.

1 INTRODUCTION

Recent Large Language Models (LLMs) (OpenAI, 2024b; 2025a; DeepMind, 2025; Guo et al., 2025)
have demonstrated significant progress, even surpassing human performance on tackling challenging
complex reasoning tasks, such as competitive mathematics (AIME, 2024; 2025), programming
(Jain et al., 2024), and PhD-level science question answering (Rein et al., 2024). The driving
force behind this significant advancement is the Long Chain-of-Thought (LongCoT) reasoning
paradigm. Unlike traditional Chain-of-Thought (CoT) reasoning (Wei et al., 2022), LongCoT often

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

incorporates spontaneous reflection, self-correction mechanisms, and even the ability to switch
thinking perspectives (OpenAI, 2024b).

Observations. Despite progress, certain issues still limit the performance and efficiency of the
LongCoT paradigm, such as the underthinking problem (see Section 3). In particular, models often
switch thoughts prematurely without fully exploring their feasibility and potential (see Figure 1).
This behavior significantly increases the risk of overlooking promising ideas, ultimately resulting in
incorrect final answers. Additionally, frequent thought-switching leads to substantial token wastage.

This underthinking behavior parallels impaired cognitive control in humans, where anxious problem-
solvers abandon promising ideas too soon due to low confidence or high perceived failure risk
(Robertson et al., 1997; Eysenck et al., 2007). Research shows that external support, like encouraging
suggestions or metacognitive prompts from tutors, can help alleviate this tendency (Wells & Matthews,
2016; Clark & Beck, 2011; Cohen et al., 2007; Botvinick & Braver, 2015). These insights emphasize
the need for potential assessment mechanisms and confidence calibration to help LLMs avoid
underthinking.

Our Approach. This paper proposes a novel SmartSwitch inference framework designed to detect and
mitigate underthinking in real time. SmartSwitch operates in two cyclical stages. First, the Perception
module identifies premature thought-switching by detecting linguistic cues (e.g., “Alternatively, ...”)
that signal a change in direction and evaluates the potential of the just-abandoned reasoning path using
a process reward model. Second, if a high-potential thought is deemed to have been prematurely
discarded, the Intervention module activates. It interrupts the current generation, backtracks to
the promising thought, and injects a targeted prompt to encourage deeper exploration along that
thought. By enabling the reconsideration of prematurely abandoned yet promising reasoning avenues,
SmartSwitch mitigates shallow reasoning and enhances model performance. Furthermore, our
framework is fine-tuning-free and plug-and-play, facilitating seamless integration with a wide range
of LLMs.

We evaluate our approach on five well-known challenging mathematics benchmarks, including four
competition-level datasets — AIME24 (AIME, 2024), AIME25 (AIME, 2025), AMC23 (AMC,
2023), and MATH-500 (Hendrycks et al., 2021), and one standard-level benchmark — GaoKao2023en
(Chinese GaoKao Community, 2024). Results in Table 1 show that our SmartSwitch consistently
outperforms vanilla inference strategy, and brings significant improvements for existing LLMs with
sizes ranging from 1.5B to 32B, demonstrating the good compatibility, generalization, and robustness
of our approach. For example, inference by SmartSwitch, the accuracy of DeepSeek-R1-Distill-
Qwen-1.5B on AIME24 is boosted by 11.1 points (from 28.9% to 40.0%), and QwQ-32B achieves
73.3% on AIME25 with a gain of 10.0 points.

2 RELATED WORK

Large language models with LongCoT reasoning. Reasoning ability is a core indicator of the
intelligence of Large Language Models (LLMs). For a long time, Chain-of-Thought (CoT) reasoning
(Wei et al., 2022) has served as the dominant paradigm, allowing models to reason step by step
until deriving the final answer. While effective on many tasks (Cobbe et al., 2021; Chen et al.,
2021), CoT-based LLMs still struggle with challenging reasoning problems, for example, GPT-4o
(OpenAI, 2024a) achieves only 13.4% accuracy on the well-known AIME24 math competition
(AIME, 2024). This landscape changed with the emergence of OpenAI’s o1 model (OpenAI, 2024b),
which marked a milestone in reasoning LLMs. It demonstrated significant improvements across a
wide range of challenging reasoning tasks, including competition-level mathematics (AIME, 2024;
2025), programming (Jain et al., 2024), and PhD-level scientific question answering (Rein et al., 2024).
These advances are attributed to a novel reasoning paradigm, Long Chain-of-Thought (LongCoT)
reasoning, which enables models to conduct a thorough thinking process before giving a deterministic
solution. In contrast to the deterministic reasoning traces in CoT, LongCoT exhibits a more free-form
and exploratory structure, allowing the model to explore different ideas, reflect intermediate steps,
and correct its own errors. Given its clear advantages, researchers have sought to replicate the
capabilities of o1, inspiring a wave of subsequent works, such as closed-source models (DeepMind,
2025), open-source efforts (Guo et al., 2025; Muennighoff et al., 2025; Min et al., 2024; Bespoke
Labs, 2025), as well as the upgraded versions from OpenAI itself (OpenAI, 2025a;b).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Thinking effectiveness in LongCoT reasoning. Although the LongCoT reasoning paradigm
provides opportunities for free and in-depth exploration through a human-like slow thinking phase,
the effectiveness of thinking plays a crucial role in determining the performance of the model on
challenging reasoning tasks. An effective thinking process can be characterized by several behaviors
that involve reasonably planning the reasoning trajectory, for example, reflecting previous steps and
exploring new ideas when necessary rather than casually or frequently. The low-effectiveness of
thinking in existing LongCoT models (Guo et al., 2025; Qwen Team, 2025; 2024) is reflected in two
extremes. On the one hand, the model tends to overthink. Some studies (Chen et al., 2024) have
shown that models take about 1000 tokens to reason even for a simple problem like “1 + 1 =?”. This
redundancy not only leads to unnecessary token usage and inefficient reasoning, but also has no benefit
to performance. On the other hand, we found that models still suffer from the underthinking problem.
They tend to switch thoughts frequently, e.g., prematurely turning to other thoughts without sufficient
exploration on the currect thought. This behavior limits the effectiveness of in-depth thinking and
leads to the neglect of promising ideas and the opportunity to derive the correct final answer. Recent
study (Wang et al., 2025) also recognized the risk of premature switching and proposed a token-space
decoding constraint to suppress the generation probability of tokens corresponding to keywords
for switching thoughts. While, such heuristic method introduces artificial bias, which may hinder
the indispensable and reasonable exploration behavior due to over-constraining. In contrast, we
adaptively steer the model to dive deeper into the current thought or explore a new thought based on
the feasibility and potential of the current thought.

3 UNDERTHINKING PROBLEM INVESTIGATION

In LongCoT reasoning, a thought refers to an independent reasoning unit aimed at solving a specific
sub-problem or achieving an intermediate objective. The model is allowed to switch thoughts when
the current thought proves infeasible or the objective itself needs to be redefined. This thought-
switching mechanism is a core mechanism, disengaging the model from unproductive explorations
and dynamically adapting its reasoning paths.

However, we observe that current LongCoT LLMs often switch thoughts too prematurely before fully
exploring the potential of the current thought. This leads to the premature abandonment of promising
directions, ultimately harming performance. We refer to this behavior as the “underthinking problem”.
Notably, switching thoughts is not problematic in itself; rather, it is the frequency and hasty switching
that undermines deep and effective reasoning.

3.1 QUALITATIVE ANALYSIS

(a) (b)

Figure 2: (a) Underthinking frequency increases
with problem difficulty on the MATH-500 dataset
(Hendrycks et al., 2021). (b) Incorrect answers
are associated with a higher frequency of under-
thinking than correct ones. (Underthinking thresh-
old L=100 tokens; “R1-Distill” is DeepSeek-R1-
Distill-Qwen).

Figure 1(a) qualitatively illustrates underthink-
ing in a DeepSeek-R1 response: its reasoning
trace exhibits frequent shifts, suggesting insuf-
ficient depth. The model prematurely abandons
viable strategies (e.g., by partially applying ge-
ometric properties like harmonic relations) or
disrupts valid reasoning chains through concep-
tual errors (e.g., conflating distinct geometric
points) or misjudgments of problem complexity,
resulting in a cascade of short, underdeveloped
thoughts.

3.2 QUANTITATIVE ANALYSIS

To quantify the underthinking in existing LLMs
with LongCoT capabilities, we define a new met-
ric, named Underthinking Frequency, which rep-
resents the number of underthinking thoughts
in the entire thinking process. Specically, given
a LongCoT response consisting of a thinking
process T and a solution S for a question Q, we
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Figure 3: The overall pipeline of the SmartSwitch Inference Framework. During generation, the
Perception module monitors for thought switches. When a switch occurs, the preceding thought is
evaluated by a Process Reward Model (PRM). If Tk−1 is deemed promising (score above threshold),
the Intervention module activates: generation is paused, the context is reverted to the end of Tk−1, a
“deepen prompt” is inserted, and generation resumes, encouraging deeper exploration of Tk−1. If not
promising, the generation continues.

first segment T into a sequence of individual thoughts {Ti}Mi=1, where Ti is the i-th thought and M
is the total number of thoughts. This segmentation can be performed using a capable LLM (e.g.,
DeepSeek-V3 (Liu et al., 2024)). The specific prompt used for this process is detailed in Appendix F.3.
Then, we can define the Underthinking Frequency (UF) metric:

UFL =

M∑
i=1

λi(L), (1)

where λi(L) is a binary variable indicating whether thought Ti exhibits underthinking. Heuristically,
we define λi(L) according to the length of thought Ti, that is, λi(L) = 1 if |Ti| < L, otherwise
λi(L) = 0, where L is the token length threshold.

Figure 1(b) shows the average frequency metric for under-thinking on AIME24 (AIME, 2024) in
six main LongCoT LLMs with different values of L. Figure 2 illustrates the correlation between
underthinking frequency and task difficulty. We conclude three key observations below:

(1) Prevalence: All six models consistently exhibit the underthinking behavior, indicating its
widespread presence among current LongCoT LLMs.

(2) Severity: The degree of underthinking differs across models. QwQ-32B (Qwen Team, 2025)
shows the most severe underthinking, while within the DeepSeek-R1-Distill-Qwen series, the
smallest 1.5B model exhibits the highest tendency to underthink.

(3) Contributing Factors: We observe a clear correlation between underthinking and task difficulty.
As Figure 2(a), problems that the model fails to solve tend to trigger more underthinking than
those it answers correctly. Underthinking frequency increases steadily with human-annotated
difficulty levels, indicating that harder problems tend to amplify underthinking.

4 METHODOLOGY

To address the underthinking problem, we propose the SmartSwitch inference framework. This
framework aims to dynamically guide LLMs towards deeper exploration of promising reasoning
paths that might otherwise be prematurely abandoned.

4.1 MOTIVATION

The investigation in Section 3 reveals that LLMs, despite their LongCoT capabilities, often fail to
fully explore complex problems due to underthinking—rapidly switching between shallow thoughts.

4
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This behavior limits their ability to solve challenging tasks that require sustained, in-depth reasoning.
Human problem-solving often benefits from metacognitive strategies, such as recognizing a promising
but underdeveloped idea and consciously deciding to delve deeper. Our framework is inspired by
this, aiming to equip LLMs with a similar capability: to perceive when a valuable thought is being
neglected and to intervene by prompting a more thorough exploration of that thought. The goal is to
transform the default, sometimes erratic, exploration pattern into a more deliberate and productive
reasoning process.

4.2 SMARTSWITCH INFERENCE FRAMEWORK

The SmartSwitch framework operates iteratively during the LLM’s generation process, as illustrated
in Figure 3. It consists of two main modules: Perception and Intervention. The complete algorithm is
detailed in Appendix D.1.

Perception module. During the autoregressive generation process, where the LLMM produces
tokens ti ∼ PM(ti | Q, t1:i−1), the Perception module continuously monitors the output stream.

• Thought Switch Detection: It looks for linguistic cues (e.g., “Alternatively”) that signal a potential
shift away from the current line of reasoning. A comprehensive list of these cues is provided in
Appendix D.2.

• Thought Segmentation: Upon detecting a switch, the primary unit for evaluation is the entire
block of text preceding the cue, which we denote as the thought Tprev. To ensure that these
thoughts remain a manageable length for evaluation, we apply a simple rule: if Tprev exceeds a
predefined threshold (e.g., 200 tokens), it can be further subdivided at natural breaks like paragraph
boundaries (\n\n). Otherwise, the entire Tprev is passed to the next stage.

• Potential Evaluation: The segmented thought Tprev is then evaluated by a pre-trained Process
Reward Model (PRM). The PRM outputs a score indicating the quality or potential of Tprev. If
this score exceeds a predefined threshold τscore, it suggests that Tprev is a promising reasoning
path that has likely been abandoned prematurely.

Intervention module. If the Perception module flags Tprev as a high-potential, prematurely aban-
doned thought, the Intervention module activates:

• Interruption and Backtracking: The LLM’s current generation (which has started on a new thought
after the switch) is interrupted. The generation context is rolled back to the state immediately after
Tprev completes but before the switch occurs.

• Deepen Prompt Injection: A predefined “deepen prompt” is appended to the context. An example
prompt is: “Wait, this seems like a promising idea. Let’s dive deeper into this reasoning path and
not give up easily. Continue exploring this direction thoroughly.”

• Resumed Generation: The LLM then resumes generation from this modified context, now guided
to further explore Tprev instead of switching away. To maintain consistency, the generation
proceeds with the original inference parameters.

If the PRM score for Tprev is below τscore, no intervention occurs, and the LLM continues with its
new thought. This cyclical process of perception and potential intervention continues throughout the
generation, aiming to foster deeper exploration when beneficial. A maximum intervention depth or
count per problem can be set to prevent excessive looping.

By systematically identifying and reinforcing promising but underdeveloped lines of reasoning,
SmartSwitch aims to improve the overall quality and success rate of LLM problem-solving without
requiring model retraining.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Baseline Models. We apply our SmartSwitch inference framework to a variety of advanced LongCoT
LLMs with varying sizes (1.5B to 32B), including DeepSeek-R1-Distill-Qwen-1.5B / 7B / 14B / 32B
(Guo et al., 2025) and QwQ-32B (Qwen Team, 2025).

5
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Table 1: Comparison of Vanilla inference and our Perception-and-Intervention (SmartSwitch) in-
ference framework on different baseline models. We report the pass@1 Accuracy (averaged on 32
responses) for all benchmarks.

Models Inference
Framework

Competitional-level Standard-level
AIME24 AIME25 AMC23 MATH-500 GaoKao2023en

DeepSeek-R1-Distill
Qwen-1.5B

Vanilla 28.9 20.0 67.5 83.9 72.2
SmartSwitch (ours) 40.0 (+11.1) 36.7 (+16.7) 77.5 (+10.0) 85.8 (+1.9) 76.9 (+4.7)

DeepSeek-R1-Distill
Qwen-7B

Vanilla 55.5 30.0 85.0 92.8 82.6
SmartSwitch (ours) 66.7 (+11.2) 53.3 (+23.3) 92.5 (+7.5) 93.4 (+0.6) 84.2 (+1.6)

DeepSeek-R1-Distill
Qwen-14B

Vanilla 69.7 43.3 92.5 93.2 82.4
SmartSwitch (ours) 76.7 (+7.0) 53.3 (+10.0) 100.0 (+7.5) 95.2 (+2.0) 86.0 (+3.6)

DeepSeek-R1-Distill
Qwen-32B

Vanilla 72.6 46.7 90.0 94.3 85.4
SmartSwitch (ours) 76.7 (+4.1) 66.7 (+20.0) 100.0 (+10.0) 95.2 (+0.9) 87.0 (+1.6)

QwQ-32B Vanilla 79.5 63.3 97.5 95.0 85.2
SmartSwitch (ours) 86.7 (+7.2) 73.3 (+10.0) 100.0 (+2.5) 97.0 (+2.0) 88.3 (+3.1)

Table 2: Comparison on the “response length (to-
ken number)” of models under vanilla inference
and our SmartSwitch. We report the average length
on AIME24 benchmark. “only correct” corre-
sponds to the problems answered correctly.

Model Inference
Framework

Response Length (Token Number)

All ↓ only correct ↓

Vanilla 14973.97 6424.33DeepSeek-R1-Distill
Qwen-1.5B SmartSwitch 13486.80↓9.93% 6125.78↓4.65%

Vanilla 14663.03 9215.86DeepSeek-R1-Distill
Qwen-7B SmartSwitch 14240.07↓2.88% 8096.79↓12.14%

Vanilla 14128.90 11195.50DeepSeek-R1-Distill
Qwen-14B SmartSwitch 14480.20↑2.49% 9433.19↓15.74%

Vanilla 15375.17 12272.28DeepSeek-R1-Distill
Qwen-32B SmartSwitch 13188.00↓14.22% 10284.33↓16.20%

Vanilla 16924.40 14115.48
QwQ-32B

SmartSwitch 15939.97↓5.82% 13116.87↓7.07%

Table 3: Comparison of inference time (min/q)
and the time change achieved by SmartSwitch on
competition-level benchmarks.

Model Inference
Framework

Avg. Time (min/q)

AIME24 ↓ AIME25 ↓ AMC23 ↓

Vanilla 3.23 2.69 1.10DeepSeek-R1-Distill
Qwen-1.5B SmartSwitch 2.14↓33.7% 2.30↓14.5% 1.09↓0.9%

Vanilla 3.31 3.35 0.90DeepSeek-R1-Distill
Qwen-7B SmartSwitch 2.14↓35.3% 2.30↓31.3% 0.72↓20.0%

Vanilla 2.57 3.22 1.29DeepSeek-R1-Distill
Qwen-14B SmartSwitch 2.09↓18.7% 2.43↓24.5% 1.07↓17.1%

Vanilla 4.87 5.27 2.12DeepSeek-R1-Distill
Qwen-32B SmartSwitch 3.91↓19.7% 4.98↓5.5% 1.91↓9.9%

Vanilla 5.77 6.82 3.07
QwQ-32B

SmartSwitch 4.97↓13.9% 5.67↓16.9% 2.77↓9.8%

Evaluation Benchmarks. We evaluate the
models with our SmartSwitch inference frame-
work on various challenging mathematics bench-
marks, since mathematical problem solving is
one of the most fundamental tasks for assess-
ing the reasoning ability of LLMs. To ensure
comprehensiveness, we consider benchmarks
spanning two difficulty levels: competition-
level and standard-level. The competition-level
set includes AIME24 (AIME, 2024), AIME25
(AIME, 2025), AMC23 (AMC, 2023), and
MATH-500 (Hendrycks et al., 2021), which are
collected from real human math competitions.
The standard-level benchmark, GaoKao2023en
(Chinese GaoKao Community, 2024), offers a
more routine yet still non-trivial evaluation. We
report the pass@1 accuracy averaged on 32 re-
sponses for all benchmarks.

Inference Settings. For fair comparisons, we
apply the same inference settings as each base-
line model. In particular, the temperature is set
to 0.6, and top-p equals 0.95. The maximum
output length is limited to 32768 tokens. We
generate 32 responses per query to estimate sta-
ble pass@1 accuracy. All the experiments are
conducted on NVIDIA A100 GPUs.

Implementation Details. In our SmartSwitch
inference framework, we employ the off-the-
shelf Universal-PRM-7B as our thought scor-
ing model (Tan et al., 2025) to evaluate the
promising score of each thought. The reason
for this choice is attributed to its capability to
assess LongCoT reasoning traces, with support
for input lengths up to 32768 tokens, which is a
substantial increase over the typical 4096-token
limit of most open-source process reward models. We set the promising score threshold to 0.7,
meaning that any thought with a score above this value is considered promising and eligible for
deepening intervention. To prevent excessive interventions within a single reasoning process, we cap
the number of interruptions at three. Furthermore, as part of our thought segmentation strategy, any
thought segment Tprev that exceeds a 200-token threshold is first subdivided at natural paragraph
breaks before being scored by the PRM.
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5.2 MAIN RESULTS

Significant Improvements for Small LLMs. Our SmartSwitch yields substantial gains for smaller
models. As shown in Table 1, DeepSeek-R1-Distill-Qwen-1.5B achieves an accuracy gain of 16.7%
on AIME25, and DeepSeek-R1-Distill-Qwen-7B is improved by 23.3% points on AIME25.

Consistent Gains for Large LLMs. While larger LLMs have already achieved high performance on
challenging benchmarks, SmartSwitch continues to bring consistent and substantial improvements on
these strong LLMs. Taking QwQ-32B as an example, our SmartSwitch boosts the accuracy from
79.5% to 86.7% (with 7.2 points gain) on AIME24, and the accuracy from 63.3% to 73.3% (with
10.0 points gain) on AIME25. Remarkably, QwQ-32B even achieves 100% accuracy on AMC23
competition. These results highlight the robustness and broad applicability of our SmartSwitch, even
for top-performing models with few improvement room.

Bridging the Gap Across Model Scales. Our SmartSwitch can also help narrow the performance
gap between smaller and larger model variants. For example, DeepSeek-R1-Distill-Qwen-14B with
our SmartSwitch inference surpasses the DeepSeek-R1-Distill-Qwen-32B with vanilla inference on
all benchmarks (53.3 vs. 46.7 on AIME25). This highlights the potential of our approach for enabling
more capable reasoning in resource-constrained scenarios.

5.3 FURTHER ANALYSIS

Efficiency. Interestingly, our SmartSwitch significantly improves inference efficiency by reducing
both total inference time and response length, even while explicitly encouraging deeper thinking. On
the AIME24 benchmark, our method shortens the total wall-clock inference time, which compre-
hensively includes all overhead from PRM scoring and intervention management, by 33.7% for the
DeepSeek-R1-Distill-1.5B model and 19.7% for the 32B model (Table 3). Concurrently, the average
response length is also reduced by 9.93% and 14.22% for the respective models (Table 2). This dual
improvement suggests that our SmartSwitch effectively prunes wasteful reasoning on less fruitful
thoughts, thereby focusing computational resources and exploration on more promising directions.

(a)

(b)
Figure 4: SmartSwitch reduces underthinking fre-
quency and the number of thought-switches on
AIME24. “R1-Distill” abbreviates “DeepSeek-R1-
Distill-Qwen”.

Mitigate Underthinking. SmartSwitch signif-
icantly reduces the underthinking behavior of
LLMs. Specifically, when measuring with a to-
ken length threshold of L = 100, it not only low-
ers the Underthinking Frequency metric defined
in Equation. (1) (as shown in Figure 4(a)), but
also decreases the number of thought switches
(as illustrated in Figure 4(b)). This leads to more
focused and coherent reasoning trajectories.

Boost Performance on Failures without Hurt-
ing Successes. Our SmartSwitch improves
model performance on challenging problems
previously answered incorrectly under vanilla
inference, while preserving accuracy on those
already solved correctly. For DeepSeek-R1-
Distill-Qwen-14B on AIME24, SmartSwitch
maintains 100% accuracy on all previously cor-
rect answers and successfully recovers 20% of
the previously incorrect ones. This demonstrates
that SmartSwitch delivers targeted gains without
compromising existing capabilities.

5.4 COMPARISON WITH OTHER UNDERTHINKING MITIGATION METHODS

We compare SmartSwitch with two alternative methods for mitigating underthinking:
• Standard Prompting: Incorporate general instructions into initial system prompt to encourage

deeper thinking “Think step by step. Explore each idea thoroughly before moving on.”.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

• TIP (Thought Switching Penalty) (Wang et al., 2025): A method introduces a penalty on tokens
that are associated with thought transitions during decoding.

As shown in Table 5, standard prompting shows nearly no improvement, indicating general instruc-
tions are insufficient. TIP only brings limited gain, because it suppresses the decoding probability of
the thought-switching tokens indiscriminately, regardless of whether the current thought has become
unpromising. This rigid constraint may hinder the model’s ability to explore alternative reasoning
paths when necessary. In contrast, our SmartSwitch performs best with 40.0% accuracy on AIME24,
compared to vanilla inference (28.9%), standard prompting (29.0%), and TIP (31.3%).

5.5 ABLATION STUDY

Potential Scoring Model. Table 4 presents the performance of various Process Reward Models
(PRMs) on AIME25. To quantify the value of PRM guidance, we test an “Always Intervene” baseline
that injects a prompt at every thought switch, while adhering to the same three-intervention limit
per problem. This naive strategy degrades performance to 18.9%, highlighting the critical role
of selective, PRM-guided intervention. Among the PRMs, Universal-PRM-7B achieves the best
accuracy at 36.7%. We select it not only for its superior performance but, more importantly, for its
essential long-context capability, supporting inputs up to 32,768 tokens. This feature is crucial for
evaluating our LongCoT traces and is a key limitation of other PRMs, which either perform worse or
lack the necessary context length (see Appendix D.2 for details).

Table 4: Ablation on the effect of different Process
Reward Models to scoring the potential.

Models Process Reward Model AIME25

DeepSeek-R1-Distill
Qwen-1.5B

N/A 20.0
Always Intervene 18.9

Qwen2.5-Math-PRM-7B 21.1
Qwen2.5-Math-7B-PRM800K 22.3

Qwen2.5-Math-PRM-72B 24.8
Universal-PRM-7B 36.7

Table 5: Comparison of different inference frame-
works.

Model Inference Framework AIME24

DeepSeek-R1-Distill
Qwen-1.5B

Vanilla 28.9
Standard Prompting 29.0

TIP Wang et al. (2025) 31.3
SmartSwitch (ours) 40.0

Table 6: Ablation on the effect of process division
strategy on AIME25 benchmark.

Model v1 v2 v3 v4

R1-Distill-Qwen-1.5B 23.3 26.7 26.7 36.7

R1-Distill-Qwen-7B 40.0 43.3 40.0 53.3

R1-Distill-Qwen-14B 43.3 46.7 46.7 53.3

R1-Distill-Qwen-32B 50.0 53.3 53.3 66.7

QwQ-32B 70.0 70.0 73.3 73.3

Process Division Strategy. To enable effective
scoring by the Process Reward Model (PRM),
the full reasoning trace must first be divided
into coherent processes. Here, we explore four
strategies:

• Model Division (v1) utilizes a powerful LLM
(such as DeepSeek-V3 (Liu et al., 2024)) to
perform this division using a carefully de-
signed prompt. This approach introduces ad-
ditional computational or API cost.

• Grouped Paragraph (v2): This method seg-
ments at paragraph boundaries (\n\n) and
then groups these initial segments into fixed-
size chunks (e.g., five steps).

• Single Paragraph (v3): Segments the output
strictly at each detected paragraph boundary
(\n\n), treating every resulting block as an
individual reasoning step, which can lead to
fragmentation.

• Adaptive Paragraph (v4) (ours): Our pro-
posed method (v4) is a multi-stage approach
designed to ensure conceptual coherence and
optimal segment length for PRM scoring. It
first splits the text at logical transition points,
such as ’alternate’. If any resulting segment
is still longer than 200 tokens, it is further di-
vided using adaptive subdivision–specifically,
by breaking at paragraph boundaries (e.g.,
“\n\n”) to maintain readability and structure.

As shown in Table 6, strategy v4 consistently outperforms its counterparts (v1, v2, and v3) across all
model scales, achieving superior accuracy. The effectiveness of v4 arises from its principled design,
which ensures conceptual coherence within each step and optimizes segment length for effective
PRM scoring, thereby avoiding the fragmentation issues of strict paragraph splits (v3), the potential
conceptual merging of arbitrary grouping (v2), and the additional computational cost and potential
inconsistencies of a model-based approach (v1). These results highlight the critical role of a carefully
designed step division strategy in maximizing the performance of the framework.
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Process-to-Thought Score Mapping Strategy. Since the PRM assigns a potential score to each
individual process, but a single thought may consist of multiple processes, we need to aggregate
these process-level scores to obtain a final score for each thought. We explore several aggregation
strategies, including taking the mean, maximum, median, weighted average, or simply the score of the
last process within the thought. As shown in Table 7, for a thought, the simple strategy that treating
the score of last process within this thought as its final potential score achieves the best performance.
Thus, we use this strategy by default.

Table 7: Ablation on the effect of different process-
to-thought score mapping strategies.

Models Mapping Strategy AIME24

DeepSeek-R1-Distill
Qwen-1.5B

max 33.33
min 30.00

mean 30.00
median 33.33

weighted average 33.33
last 40.00

Potential Score Threshold. We investigated the
impact of the potential score threshold on R1-
Distill-Qwen-1.5B’s AIME24 performance (Ta-
ble 8). Compared to the vanilla baseline (28.90%
accuracy), thresholds of 0.68 and 0.69 increased
accuracy to 30.00%. Performance peaked signif-
icantly at a 0.70 threshold with 40.00% accuracy,
before dropping to 30.00% at 0.71. This demon-
strates that while a suitable threshold range im-
proves results, selecting the optimal value, such
as 0.70 in this case, is crucial.

6 DISCUSSION

Table 8: AIME24 ablation on the potential score
threshold.

Model vanilla 0.68 0.69 0.70 0.71

R1-Distill-Qwen-1.5B 28.9 30.0 30.0 40.0 30.0

R1-Distill-Qwen-7B 55.5 53.3 43.3 66.7 43.3

R1-Distill-Qwen-14B 69.7 66.7 70.0 76.7 70.0

R1-Distill-Qwen-32B 72.6 63.3 63.3 76.7 63.3

QwQ-32B 79.5 73.3 73.3 86.7 73.3

Limitations. The efficacy of our framework
depends on the quality and calibration of the ex-
ternal Process Reward Model. Its performance
is fundamentally bounded by the PRM’s abil-
ity to accurately assess the potential of diverse
reasoning paths. Furthermore, SmartSwitch re-
lies on several key hyperparameters, such as the
potential score threshold and the maximum in-
tervention count. While our experiments show
that a well-chosen setting is effective across var-
ious models, these parameters may require domain-specific or model-specific tuning for optimal
performance. Finally, our current thought-switch detection mechanism is based on linguistic cues,
which may not capture all instances of premature abandonment, especially those that occur without
explicit textual markers. This reliance on explicit markers means it may miss more subtle or implicit
shifts in reasoning strategy.

Future work. A primary direction for future work is to reduce the reliance on external components.
One promising avenue is to distill the evaluative capabilities of the PRM directly into the base LLM,
enabling it to perform self-assessment of its reasoning paths without an external call. This could
lead to a more efficient and integrated system. Another area for advancement is the development of
more sophisticated intervention mechanisms. Instead of a fixed prompt, a dynamic system could
generate context-aware prompts to guide the model’s exploration more precisely. Finally, we plan
to extend the SmartSwitch framework beyond mathematical reasoning to other complex domains
such as software engineering, scientific discovery, and legal analysis, which will require adapting the
evaluative criteria and intervention strategies to new contexts.

7 CONCLUSION

In this paper, we identify and characterize the “underthinking” phenomenon in LLMs with Long-
CoT capabilities, where models prematurely abandon promising reasoning paths, hindering their
performance on complex tasks. To address this, we propose the SmartSwitch framework. Using
linguistic cues, SmartSwitch detects these switches, employs a PRM to assess abandoned thoughts,
and prompts deeper exploration of valuable overlooked paths. This training-free, model-agnostic
approach significantly improves LLM performance on mathematical benchmarks by fostering deeper
exploration and reducing shallow reasoning. SmartSwitch offers a promising direction for enhancing
the reliability and depth of reasoning in LLMs.
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ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics. Our work aims to positively contribute to society by
improving the reasoning capabilities of Large Language Models (LLMs), making them more robust
and efficient for complex tasks. We acknowledge the importance of the responsible application of this
technology. We encourage practitioners who build upon our framework to be mindful of potential
societal impacts and to ensure that the underlying models are used in a fair and equitable manner.
Our research does not involve the collection or use of new personally identifiable information.

REPRODUCIBILITY STATEMENT

The supplementary material contains the complete source code to ensure full reproducibility of our
results. This encompasses all pipelines used for response generation and the automated evaluation of
model outputs.
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A THE USE OF LARGE LANGUAGE MODELS (LLMS)

A large language model was utilized in the preparation of this manuscript to assist with proofread-
ing and improving the clarity of the text. All intellectual content, including ideas, analysis, and
conclusions, is solely the work of the authors.

B DATASET AND BENCHMARK DETAILS

B.1 EVALUATION BENCHMARKS

To comprehensively assess the reasoning capabilities of our framework, we conduct evaluations on
a curated set of five challenging mathematics benchmarks. These benchmarks span two distinct
difficulty tiers: competition-level and standard-level, providing a robust testbed for our method. A
detailed description of each benchmark, including its source and the number of questions, is provided
in Table 9.

B.2 MOTIVATION FOR DATASET SELECTION

The selection of these specific benchmarks is motivated by several key criteria. First, they are well-
established and widely recognized in the research community for evaluating advanced mathematical
reasoning, providing a standardized basis for comparison (Liu et al., 2024; Guo et al., 2025). Second,
their public availability is crucial, as it ensures that our experimental results can be independently
verified and reproduced by other researchers. All datasets are utilized in strict accordance with their
original licenses, and all sources are appropriately cited in the main paper.

Table 9: Details of evaluation benchmarks used in our experiments. All benchmarks are publicly
available and selected for their established role in assessing advanced mathematical reasoning.

Benchmark Description # Questions
Competition-Level

AIME24 (AIME, 2024) The American Invitational Mathematics Exam-
ination 2024, a highly challenging high-school
mathematics competition.

30

AIME25 (AIME, 2025) The American Invitational Mathematics Exam-
ination 2025, continuing the series of challeng-
ing problems.

30

AMC23 (AMC, 2023) The American Mathematics Competitions, a
qualifying competition for the AIME.

40

MATH-500 (Hendrycks et al., 2021) A subset of 500 challenging competition-
level problems from the comprehensive MATH
dataset.

500

Standard-Level

GaoKao2023en (Chinese GaoKao Community, 2024) A collection of English-translated mathematics
problems from the 2023 Chinese National Col-
lege Entrance Examination (Gaokao).

385

C EXPERIMENTAL SETUP

This section details the experimental configurations used to evaluate our SmartSwitch framework,
ensuring full reproducibility.

C.1 EVALUATION METRIC

Our primary evaluation metric is pass@1 accuracy. To mitigate generation stochasticity, the final
score is calculated as the average success rate over 32 independent evaluation runs on the entire
benchmark. For correctness, we employ a rigorous automated verifier that checks for mathematical
equivalence, thus overcoming the limitations of brittle string matching.

Specifically, we utilize the “symeval” library (Tong, 2024), which implements a robust validation
pipeline. This pipeline first extracts the final numerical or symbolic answer from the model’s response
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using regular expressions and then evaluates its correctness against the ground truth via symbolic
comparison with the SymPy library. This method ensures accurate verification for a wide range of
mathematical answer formats, including complex numbers, matrices, sets, and symbolic expressions,
which would otherwise be prone to evaluation errors. A generation attempt is marked as correct only
if the extracted answer is symbolically equivalent to the ground truth.

C.2 BASELINE MODELS

To demonstrate the generalizability and model-agnostic nature of SmartSwitch, we apply it to a
range of state-of-the-art Large Language Models (LLMs) with Long-Chain-of-Thought (LongCoT)
capabilities. These models vary in size and architecture, providing a robust testbed for our framework.
The specific models are:

• DeepSeek-R1-Distill-Qwen series (1.5B, 7B, 14B, 32B) (Guo et al., 2025)
• QwQ-32B (Qwen Team, 2025)

These models are selected due to their strong baseline performance on rea-
soning tasks and their publicly available LongCoT generation capabilities.

C.3 COMPUTING INFRASTRUCTURE AND INFERENCE SETTINGS

Algorithm 1 Simplified PI Framework

Input: Original Problem Porig; LLM L; PRM R; Signals S; Deepening Prompt
DP ; Threshold θ.

Output: Final Output Ofinal.
1: Linput ← Porig

2: while True do
3: Ocurrent pass ← ””
4: for each Chunk ← L.Stream(Linput) do // LLM streams content
5: Ocurrent pass ← Ocurrent pass + Chunk
6: Step 1: Thought Switching Monitor
7: found,Oprefix ← CheckSignal(S, Ocurrent pass)
8: if found then
9: Step 2: Potential Evaluator

10: score← R.Score(Steps(Oprefix))
11: if score ≥ θ then // High score: Intervene
12: Step 3: DeepThink Inducer
13: Linput ← Porig +Oprefix +DP

14: break // Restart pass

15: if finished then // Stream finished naturally
16: Ofinal ← Ocurrent pass

17: break // Process complete

18: return Ofinal

1

Figure 5: Pseudocode of the SmartSwitch infer-
ence algorithm. The framework continuously mon-
itors the generated token stream for thought-switch
cues. Upon detection, the preceding thought is
evaluated by a Process Reward Model (PRM). If
its score exceeds a threshold (τscore), generation is
interrupted and redirected to further explore the
promising thought via a “deepen prompt.” Oth-
erwise, the model proceeds with the new thought
without intervention.

Computing infrastructure. All experiments
are conducted on a cluster of NVIDIA A100
GPUs, each with 80GB of VRAM. The software
environment is as follows:

• Operating System: Ubuntu 22.04 LTS
• CUDA Version: 12.4
• Python Version: 3.10
• Key Libraries: PyTorch 2.5.1, Transformers

4.53.1, vLLM 0.7.3

Inference settings. To ensure fair and repro-
ducible comparisons, we use consistent infer-
ence settings across all experiments for both
vanilla generation and our SmartSwitch frame-
work.

• Temperature: 0.6
• Top-p: 0.95
• Maximum Output Tokens: 32,768
• Repetitions per Query: 32
• Randomness: For each of the 32 generations

per query, we use a fixed random seed. This
ensures that the results are fully reproducible.

D SMARTSWITCH FRAMEWORK IMPLEMENTATION

This section provides a detailed description of the SmartSwitch framework’s algorithm and its core
components.

D.1 ALGORITHMIC DETAILS

The SmartSwitch framework operates as an intervention loop during the autoregressive generation
process. Figure 5 presents the pseudocode for our method. The framework monitors the generated
token stream for thought-switch cues. Upon detection, it evaluates the preceding thought using a
Process Reward Model (PRM). If the thought is deemed promising (score above τscore), the generation
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is halted, backtracked, and guided to explore the promising thought further by injecting a “deepen
prompt.” Otherwise, generation continues along the new path.

D.2 CORE COMPONENT DETAILS

Thought switch detection. The framework identifies thought switches by scanning the generated
text for specific linguistic cues that indicate the model is abandoning one line of reasoning to start
another. Our implementation relies on a predefined set of phrases that signal a deliberate shift in
strategy. The complete set of these linguistic cues is detailed in Table 10.

Table 10: The complete set of predefined linguistic
cues used to detect thought switches during the
reasoning process. The detection of any of these
phrases triggers the potential evaluation step.

Category Linguistic Cues
Simple Alternatives Alternately,

Alternatively,
Alternative:
Alternative approach:
Wait, alternatively,

Method/Approach Shifts Let me try another method
Let me try another approach
Wait, another approach:
Wait, alternate approach:
Wait, let me try another method
Wait, let me try another approach

Process division strategy. As described in the
main paper’s ablation study (Section 5.4), we
adopt the Adaptive Paragraph (v4) strategy for
segmenting reasoning traces into processes for
PRM evaluation. This method first splits the text
at logical transition points (i.e., where a thought
switch is detected). If a resulting thought seg-
ment exceeds 200 tokens, it is further subdivided
at natural paragraph breaks (\n\n). This adap-
tive strategy ensures that the segments provided
to the PRM are both conceptually coherent and
within an optimal length for accurate evaluation.

Potential evaluation with PRM. The selec-
tion of an appropriate Process Reward Model
(PRM) is critical for the efficacy of the
SmartSwitch framework. The PRM must accurately assess the quality and potential of a given
reasoning step to ensure that interventions are both meaningful and beneficial. We considered several
state-of-the-art PRMs, each with distinct characteristics:

• Qwen2.5-Math-PRM (7B & 72B) (Zhang et al., 2025): This series of models from the Qwen
team represents a specialized family of evaluators engineered for process-level supervision in
mathematics. In contrast to reward models that only score the final outcome, these PRMs are
trained to assess the correctness of intermediate steps within a complex reasoning chain, and they
have demonstrated high efficacy on standard error-identification benchmarks.

• Qwen2.5-Math-7B-PRM800K (Zhang et al., 2025; Zheng et al., 2024): This model provides a
publicly accessible baseline, created by fine-tuning the Qwen2.5-Math-7B-Instruct model on the
open-source PRM800K dataset. Its transparent and reproducible training on a well-known corpus
makes it a valuable reference point for comparative analysis, though its architecture and training
data are less specialized than those of the flagship Qwen PRMs.

• Universal-PRM-7B (Tan et al., 2025): This state-of-the-art PRM, also built upon the Qwen2.5-
Math-7B-Instruct foundation, was developed externally with a distinct and sophisticated training
methodology. Its training regimen integrates techniques such as diverse policy sampling and reverse
verification, which were specifically designed to enhance its robustness and generalization. This
allows it to accurately score a wider spectrum of reasoning strategies, even those not seen during
its training.

Our decision to employ Universal-PRM-7B as the primary thought evaluator is based on three decisive
advantages. First, it demonstrates state-of-the-art performance on public leaderboards, achieving a
top-tier average score of 74.3 on ProcessBench (Zheng et al., 2024), outperforming other candidates.
Second, and critically for our application, it supports a long-context window of up to 32,768 tokens,
a necessity for evaluating the extensive reasoning traces generated in LongCoT paradigms. This
capability is absent in many other PRMs, which are often limited to 4096 tokens. Finally, its superior
benchmark performance was empirically validated in our own ablation studies (see Table 6 in the
main paper), where it consistently yielded the highest final task accuracy when integrated into the
SmartSwitch framework.
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E ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSIS

This section provides supplementary results that further substantiate the claims made in the main
paper.

E.1 IMPACT ON CORRECT VERSUS INCORRECT ANSWERS

An analysis of the framework’s impact on individual problem outcomes reveals that its performance
gains are achieved without compromising existing model capabilities. SmartSwitch primarily im-
proves accuracy by enabling the model to “recover” solutions for problems that it previously answered
incorrectly. For instance, when applied to the DeepSeek-R1-Distill-Qwen-14B model on the AIME24
benchmark, our framework successfully converted 20% of the previously incorrect attempts into
correct solutions.

Crucially, this improvement does not come at the expense of existing strengths. The framework
preserved a 100% success rate on the subset of problems that the baseline model already answered
correctly. This demonstrates that SmartSwitch functions as a targeted and non-destructive enhance-
ment, selectively improving performance on challenging problems without introducing negative
side-effects on established capabilities.

F PROMPT DETAILS

This section provides the exact prompts used in our framework and for baseline comparisons, ensuring
full transparency and reproducibility.

F.1 DEEPEN PROMPT FOR SMARTSWITCH

This prompt is injected by the Intervention module to encourage deeper exploration of a promising
thought.

Prompt for dividing steps

Wait, this seems like a promising idea. Let's dive deeper into this reasoning path and
not give up easily. Continue exploring this direction thoroughly.

F.2 PROCESS REWARD MODEL PROMPTS

Universal-PRM-7B prompt. This is the template used to score a reasoning process with Universal-
PRM-7B (Tan et al., 2025).

Prompt for Universal-PRM-7B

## System message
You are a helpful assistant.

## User query
{{question}}
The reference answer is: There is no reference answer for this question.

## Assistant response:
<Special-Token> <thought_1> <Special-Token>
<Special-Token> <thought_2> <Special-Token>
...
<Special-Token> <thought_n> <Special-Token>

Qwen-PRM prompt (for ablation). This template was used with Qwen-PRM models in our
ablation studies. Due to its shorter context limit, a pairwise comparison strategy was adopted.
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Prompt for Qwen PRM

## System message
Please reason step by step, and put your final answer within \boxed{}.

## User query
{{question}}

## Assistant response:
<Special-Token> <thought_1> <Special-Token>
<Special-Token> <thought_2> <Special-Token>
...
<Special-Token> <thought_n> <Special-Token>

F.3 PROMPT FOR PROCESS DIVISION

This prompt was used in our ablation study for the Model Division (v1) strategy, where a powerful
LLM like DeepSeek-V3 is asked to segment the reasoning trace.

Prompt for dividing steps

You are an expert in analyzing and decomposing complex problem-solving processes,
especially in mathematics.

---

Task:

Your task is to divide a long and systematic thinking process (provided below) into
coherent, sequential steps. Each step should represent a complete phase of reasoning,
such as problem analysis, exploration, reassessment, or verification. Ensure **no
content is omitted** between steps, and the entire process is covered from start to
finish.

---

Output Format:
Present the steps in the following structured XML-like format:

```XML
<step number="step id">

<objective> Purpose of this step </objective>
<start> First exact sentence of this step in the given thinking process </start>
<end> Last exact sentence of this step in the given thinking process </end>

</step>
```

---

Key Requirements:
1. **Continuity Preservation**:

- The `end` sentence of step *i* must **immediately precede** the `start` sentence
of step *i+1* in the original text.
- No sentences should be skipped or omitted between steps.

2. **Complete Coverage**:
- The last step's `end` must be the **very last sentence** of the entire thinking
process.

3. **Step Objectives**:
- Label each step's purpose clearly (e.g., "Initial analysis," "Error correction,"
"Explore different ideas").
- For backtracking/reassessment, use objectives like "Re-evaluating approach due to
X."

---

Strict Validation Rules:
1. **Text Continuity Check**:

- For all steps except the last, the `end` of step *i* must be the **direct
predecessor** of the `start` of step *i+1* in the original text.
- Example: If step 1 ends with *"Now I'll try Method A,"* step 2 must start with the

**very next sentence** in the original text (e.g., *"First, I apply Method A to the
equation..."*).
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2. **Final Step Coverage**:
- The `end` of the final step **must match** the last sentence of the entire
thinking process.

---

Instructions:
1. **Read the entire thinking process carefully**: Identify logical segments where the
problem-solver shifts focus (e.g., from analyzing to solving or reflecting, or
exploring, or summarizing).
2. **Define each step**: Assign a unique step number and describe its purpose
(objective).
3. **Adjust step granularity adaptively**: Smaller steps for detailed reasoning, larger
steps for broader phases.
4. **Extract the text**: Mark the exact beginning and ending sentences of each step in
the original text.
5. **Ensure every sentence is included** in exactly one step, with no overlaps or gaps.
6. **Explicitly verify** the key requirements above before finalizing the output.

---

Thinking Process to Decompose (Input):
{{thinking_process}}

F.4 PROMPT FOR TIP BASELINE

This is the prompt template used to generate responses for the Thought Switching Penalty (TIP)
baseline (Wang et al., 2025), which includes an instruction to encourage persistence.

Prompt engineering for fostering “thought persistence”

<context>
You are an expert math-solving assistant who prioritizes clear, concise solutions. You
solve
problems in a single thought process, ensuring accuracy and efficiency. You seek
clarification
when needed and respect user preferences even if they are unconventional.
</context>

<solving rules>
- Try to complete every idea you think of and don't give up halfway
- Don't skip steps
- Display solution process clearly
- Ask for clarification on ambiguity
</solving rules>

<format rules>
- Use equations and explanations for clarity
- Keep responses brief but complete
- Provide step-by-step reasoning if needed
</format rules>

PROBLEM: {{problem}}

OUTPUT: Following above rules to get the correct answer for PROBLEM. Focus on clear,
concise
solutions while maintaining a helpful, accurate style.

G QUALITATIVE CASE STUDIES

We present three case studies to provide qualitative insight into the operational dynamics of the QwQ-
32B model with vanilla inference versus our SmartSwitch framework. These examples illustrate how
SmartSwitch mitigates underthinking to improve solution accuracy and efficiency.

In the first case, an AIME25 geometry problem, the vanilla model exhibits clear underthinking
(Figure 6). It generates 31,812 tokens and cycles through 126 distinct thoughts but fails to explore
promising ideas like the nine-point circle properties, leading to an incorrect answer. In contrast,
the SmartSwitch-augmented model solves the problem correctly using only 22,580 tokens. Our
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framework intervenes when a promising thought about the nine-point circle (potential score: 0.711) is
about to be abandoned, prompting deeper exploration and guiding the model to the correct solution.

The second case, a MATH-500 problem involving parenthesization (Figure 7), further highlights the
benefits. The vanilla model consumes 25,469 tokens and undergoes 198 thought switches, yielding
an incorrect count. With SmartSwitch, the model correctly identifies all distinct values using 20,488
tokens. The framework intervenes multiple times (e.g., with PRM scores of 0.705, 0.707) to prevent
the model from abandoning a systematic exploration, leading to a more robust and efficient reasoning
process.

Our final case study on a MATH-500 recurrence relation (Figure 8) shows SmartSwitch’s ability to
improve efficiency even when the base model is correct. The vanilla model finds the right answer but
requires 11,244 tokens and 22 thought switches. The SmartSwitch-augmented model also arrives at
the correct answer but does so using only 6,012 tokens. Interventions help consolidate the reasoning
path, significantly reducing redundant exploration and demonstrating the framework’s value in
optimizing the reasoning process.
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Suppose triangle ABC has angles angle BAC = 84 degrees, angle ABC = 60 degrees, 
and angle ACB = 36 degrees. Let D, E, and F be the midpoints of sides BC, AC, and 
AB, respectively. The circumcircle of triangle DEF intersects BD, AE, and AF at 
points G, H, and J, respectively. The points G, D, E, H, J, and F divide the 
circumcircle of triangle DEF into six minor arcs. Find arc DE + 2 * arc HJ + 3 * 
arc FG, where the arcs are measured in degrees.

[AIME25]

Vanilla: (31812 tokens)
Thought1: Okay, so I need to find the measure of 
the sum overarc DE plus twice overarc HJ plus 
three times overarc FG. ... 

First, maybe I should draw a rough sketch or at 
least visualize the problem ... So maybe properties 
of the nine-point circle can be useful here.

Thought2: Alternatively, maybe coordinate 
geometry could work here? Let me see. ...
[omitted 483 tokens]

Thought3: Alternatively, maybe using coordinates 
would be a good approach here. Let me try ...
[omitted 278 tokens]

Thought126: Alternatively, ithe arcs DE, HJ, FG 
might each be 60°, leading to 60+120+180=360. ... 
[omitted 44 tokens]

Solution:
The arcs between the points G, D, E, H, J, and F 
were measured. The arcs DE, HJ, and FG were 
found to be:

72 , 130.7 , and 72 

The problem asks for the value of:

arc DE + 2 × arc HJ + 3 × arc FG

Substituting the values:

72 + 2 × 130.7 + 3 × 72 ≈  549.4 

However, by analyzing the geometric configuration 
and using properties of the nine-point circle, it can 
be shown that the exact answer is:

180 degrees (Wrong !!!)

Final answer: 180 degrees

SmartSwitch(Our): (22580 tokens)
Thought1: Okay, so I need to find the measure of 
the sum overarc DE plus twice overarc HJ plus 
three times overarc FG. ... 

First, maybe I should draw a rough sketch or at 
least visualize the problem ... So maybe properties 
of the nine-point circle can be useful here.
Alternatively,
[potential score : 0.711 ] Dive Deep !!!

Thought2: Wait, let's dive deeper into this idea. 
The nine-point circle has a radius half of the 
circumradius of ABC ....

so maybe coordinate system can be chosen so that 
point B....

Wait, but according to the central angles between 
the points, we have to consider the positions of G, 
H, J. Alternatively,
[potential score : 0.708 ]    Dive Deep !!!

Thought3: Wait, let's dive deeper into this idea.
The arcs between the six points (G, D, E, H, J, 
F) ....

Solution:

DE : 2 × 36° = 72°
EF : 2 × 84° = 168°
FD : 2 × 60° = 120°

Intersection Points and Arcs :

Arc HJ ≈ 24°
Arc FG ≈ 72°

Final Calculation :

expression 
arc DE + 2 × arc HJ + 3 × arc FG

Substituting the values: 
72° + 2 × 24° + 3 × 72° = 336°

Final answer: 336 degrees

. . 

. . 

Figure 6: Case study 1 (AIME25 geometry). Left: vanilla QwQ-32B (incorrect, 31,812 tokens).
Right: SmartSwitch-augmented QwQ-32B (correct, 22,580 tokens).
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The expression 2 * 3 * 4 * 5 + 1 is equal to 121, since multiplication is carried out 
before addition. However, we can obtain values other than 121 for this expression 
if we are allowed to change it by inserting parentheses. For example, we can 
obtain 144 by writing (2* ( 3 * 4) ) * ( 5 + 1 ) = 144.

In total, how many values can be obtained from the expression 2 * 3 * 4 * 5 + 1 by 
inserting parentheses? (Note that rearranging terms is not allowed, only inserting 
parentheses.)

[Math 500]

Vanilla: (25469 tokens)
Thought1: Okay, so I need to figure out how many 
different values I can get from the expression 
2·3·4·5+1 by just inserting parentheses. The 
original expression is 2*3*4*5+1, which is 
calculated as ((2*3)*4)*5 + 1 = 120 +1 = 121. ... 

So the operations are:\n\nFirst, 2 * 3,\n\nthen 
that result *4,\n\nthen that result *5,\n\nthen 
add 1. ... 

Since multiplication has higher precedence than 
addition, it is evaluated first, so:\n\n( ( (2 * 3) * 4 ) 
* 5 ) + 1 = 120 +1 = 121. ... So that changes the 
order.

Thought2: Alternatively, maybe we can group the 
addition with an earlier multiplication. Let's see. 
[omitted 303 tokens]

Thought3: Alternatively, maybe I can model this 
as an expression tree ...
[omitted 55 tokens]

Thought198: Alternatively, if we do (2*(3 +4*5 
+1)), but that requires two additions. 
[omitted 23 tokens]

Solution:

1. Original Expression:
2 * 3 * 4 * 5 + 1 = 121

2. Grouping the addition with 5 and 1 first:
2 * 3 * 4 * (5 + 1) = 2 * 3 * 4 * 6 = 144

3. Grouping the addition with 4, 5, and 1:
2 * 3 * (4 * 5 + 1) = 2 * 3 * 21 = 126

4. Grouping the addition with 3, 4, 5, and 1:
2 * (3 * 4 * 5 + 1) = 2 * 61 = 122

5. Grouping the addition with 2, 3, 4, and 1, then 
multiplying by 5:

(2 * 3 * 4 + 1) * 5 = 25 * 5 = 125 (Wrong !!!)

Final Answer: 5 distinct values in total.

SmartSwitch(Our): (20488 tokens)
Thought1: Okay, so I need to figure out how many 
different values I can get from the expression 
2·3·4·5+1 by just inserting parentheses. The 
original expression is 2*3*4*5+1, which is 
calculated as ((2*3)*4)*5 + 1 = 120 +1 = 121. ... 

So the operations are:\n\nFirst, 2 * 3,\n\nthen 
that result *4,\n\nthen that result *5,\n\nthen 
add 1. ... 

Since multiplication has higher precedence than 
addition, it is evaluated first, so:\n\n( ( (2 * 3) * 4 ) 
* 5 ) + 1 = 120 +1 = 121. ... So that changes the 
order. Alternatively,
[potential score : 0.705 ]   Dive Deep !!!

Thought2: Wait, let's dive deeper into this idea. 
The problem allows inserting parentheses ....

So the key is that the operations (multiplications 
and addition) are in the order they are written, 
but we can parenthesize them in different ways. 
Alternatively,
[potential score : 0.707 ]    Dive Deep !!!

Thought3: Wait, let's dive deeper into this idea.
The expression can be thought of as a list of 
operations between the numbers and the +1: ....
Alternatively,
[potential score : 0.712 ]    Dive Deep !!!

Solution:

1. Original Parenthesization:
(((2 * 3) * 4) * 5) + 1 = 121

2. Grouping the Addition with 5 and 1:
(2 * 3 * 4) * (5 + 1) = 2 * 3 * 4 * 6 = 144

3. Grouping the Addition with 4, 5, and 1:
2 * 3 * (4 * 5 + 1) = 2 * 3 * 21 = 126

4. Grouping the Addition with 3, 4, 5, and 1:
2 * (3 * 4 * 5 + 1) = 2 * 61 = 122

Thus, the number of distinct values is 4.

. . 
. . 

. . 

Figure 7: Case study 2 (Math 500 parentheses). Left: vanilla QwQ-32B (incorrect, 25,469 tokens).
Right: SmartSwitch-augmented QwQ-32B (correct, 20,488 tokens).
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If f(n + 1) = (-1)^(n + 1) * n - 2 * f(n) for n >= 1, and f(1) = f(1986), compute f(1) + 
f(2) + f(3) + ... + f(1985).

[Math 500]

Vanilla: (11244 tokens)
Thought1: Okay, so I need to solve this recurrence 
relation problem.... 

Starting with n = 1:\nf(2) = (-1)^{1+1} * 1 - 2f(1) = 
(-1)^2 * 1 - 2f(1). ... Hmm, this is getting a bit 
messy, but maybe there's a pattern here. ... Now 
let's look at the constant terms:\n\nFor 
n=1: ...Therefore, equate left and right:\n\nC(n+1) 
+ (-2)^n f(1)... then maybe relate it using the 
recurrence?

Thought2: Alternatively, maybe I can compute the 
sum S = sum_{k=1}^{1985} f(k) in terms of f(1). ...
[omitted 183 tokens]

Thought3: Alternatively, perhaps I can find a 
relationship between the sum S_n = sum_{k=1}^n 
f(k) and S_{n+1}  ...
[omitted 176 tokens]

Thought 21: Alternatively, Alternatively, let me 
see if there's a closed formula.

Thought 22:Alternatively,note that:
Sum2 = sum_{k=1}^N [ (-1)^{k+1}(k +1) ....

Solution:

Given the recurrence relation:

f(n + 1) = (-1)^{n + 1} n - 2f(n) 

First, we express  f(n)  in terms of  f(1). We find 
that:

f(n) = C(n) + (-2)^{n-1} f(1) 

Next, we compute the 

sum ( S_N = sum_{k=1}^N f(k) ). 

Substituting f(1) ,back into the expression for 
S_{1985} , we find:

S_{1985} = \frac{993}{3} = 331 

Final Answer: 331

SmartSwitch(Our): ( 6012 tokens)
Thought1: Okay, so I need to solve this recurrence 
relation problem.... 

Starting with n = 1:\nf(2) = (-1)^{1+1} * 1 - 2f(1) = 
(-1)^2 * 1 - 2f(1). ... Hmm, this is getting a bit 
messy, but maybe there's a pattern here. ... Now 
let's look at the constant terms:\n\nFor
n=1: ...Therefore, equate left and right:\n\nC(n+1) 
+ (-2)^n f(1)... then maybe relate it using the 
recurrence? Alternatively,
[potential score : 0.705 ] Dive Deep !!!

Thought2: Wait, let's dive deeper into this idea. 
Let me think about the recurrence relation and 
how it can relate the sum. ....

Let me consider the recurrence:f(n+1) + 2f(n) = (-
1)^{n+1} *n. ... Therefore, solving for S_N: 3S_N = 
f(1) - f(N+1) + sum_{n=1}^N (-1)^{n+1}. ...Ah, right! 
The problem has the condition f(1) = f(1986). So, in 
my test case, ... make sure I didn't make any 
miscalculations here. Let me think again. 
Alternatively,
[potential score : 0.723 ]    Dive Deep !!!

Thought3: Wait, let's dive deeper into this idea.
The key steps are .....

Solution:

Given the recurrence relation:

f(n + 1) = (-1)^(n + 1) * n - 2f(n)

The left-hand side can be simplified as:

3 * sum_{n=1}^{1985} f(n) - f(1) + f(1986)

The right-hand side is the alternating sum:

sum_{n=1}^{1985} (-1)^(n + 1) * n

Thus, we have:

3 * sum_{n=1}^{1985} f(n) = 993

sum_{n=1}^{1985} f(n) = 993 / 3 = 331

Final Answer: 331

. . 

. . 

Figure 8: Case study 3 (Math 500 recurrence). Left: vanilla QwQ-32B (correct, 11,244 tokens).
Right: SmartSwitch-augmented QwQ-32B (correct, 6,012 tokens).
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