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Abstract

Evolutionary algorithms (EAs) have proven effective in exploring the vast solu-
tion spaces typical of graph-structured combinatorial problems. However, tradi-
tional encoding schemes, such as binary or numerical representations, often fail to
straightforwardly capture the intricate structural properties of networks. Through
employing the image-based encoding to preserve topological context, this study
utilizes multimodal large language models (MLLMs) as evolutionary operators to
facilitate structure-aware optimization over graph data. To address the visual clutter
inherent in large-scale network visualizations, we leverage graph sparsification
techniques to simplify structures while maintaining essential structural features. To
further improve robustness and mitigate bias from different sparsification views,
we propose a cooperative evolutionary optimization framework that facilitates
cross-domain knowledge transfer and unifies multiple sparsified variants of diverse
structures. Additionally, recognizing the sensitivity of MLLMs to network layout,
we introduce an ensemble strategy that aggregates outputs from various layout con-
figurations through consensus voting. Finally, experiments on real-world networks
through various tasks demonstrate that our approach improves both the quality and
reliability of solutions in MLLM-driven evolutionary optimization.

1 Introduction

Graph-structured combinatorial problems in real-world complex systems occupy a central role in
various domains [1l]. These problems require selecting an optimal set of nodes within a network
and are inherently NP-hard due to the combinatorial explosion of possible node combinations [2, 3].
Evolutionary algorithms (EAs) have been extensively employed to address such challenges because
of their ability to effectively deal with non-linearity and explore discrete search spaces [4]].

The encoding scheme plays a fundamental role in addressing discrete optimization problems, as
it dictates how solutions are structured and operated within the EA framework [} |6]. Different
combinatorial tasks have unique requirements, for example, permutation and path encodings are
commonly used for scheduling [7] and routing problems [8]], while binary and index-based encodings
are often applied to node or edge subset selection tasks [9]. Despite their widespread use, conventional
encoding schemes represent data in an abstract way, overlooking their contextual significance within
the network. Therefore, evolutionary operators like crossover and mutation are applied blindly,
without recognizing the underlying structural relationships of solutions.
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An image-based encoding framework, combined with multimodal large language models (MLLMs)
as evolutionary operators, offers a practical approach for complex network optimization [10]. Visual
representations can preserve structural and contextual nuances that are often lost in string-based
encodings. By virtue of their capacity to interpret both textual and visual information [11], MLLMs
facilitate the integration of context awareness into the optimization process, rendering them especially
effective for tackling combinatorial problems in networks.

However, visualizing large-scale networks often leads to cluttered plots, hindering structural interpre-
tation. Graph sparsification can help reduce this complexity while preserving key topological features
[12,[13]. Yet, any single sparsified view may introduce bias by overemphasizing specific structures.
Therefore, we distribute the optimization process across multiple sparsified versions, allowing diverse
structural insights to emerge and reducing reliance on any single simplification.

While cooperative evolutionary optimization has shown success in handling complex tasks [[14, [15]],
traditional approaches generally rely on the assumption of a shared domain, which is incompat-
ible with our multi-sparsification setting. To make the cooperative framework adaptable to the
multi-domain case, we implement a master-worker architecture, where a central coordinator directs
subprocessors operating on distinct sparsified networks. Moreover, we establish a cross-domain
mapping mechanism to enable effective knowledge transfer across these subprocessors.

Recent studies indicate that MLLMs are sensitive to variations in network layouts [[16], which can
influence optimization outcomes. To address this limitation, we propose an ensemble model that
integrates multiple layout styles. By employing a consensus voting mechanism to fuse their outputs,
we are able to enhance robustness and mitigate layout-induced bias. To demonstrate the effectiveness
of the proposed method, an important combinatorial problem, influence maximization, is utilized as
the main case study [17,[18]]. Our key contributions are summarized as follows:

* To counteract the bias of relying on any single simplified network, we distribute the op-
timization process across multiple sparsified versions. This approach preserves diverse
structural insights and improves optimization performance.

¢ In the cooperative framework, we adopt the master-worker model to coordinate optimization
across heterogeneous sparsified networks. By establishing the cross-domain mapping mech-
anism, knowledge is effectively transferred among subprocessors operating on networks of
different scales and characteristics.

* Recognizing the sensitivity of MLLMs to network visualization layouts, we develop an
ensemble model that incorporates multiple layouts. A consensus voting mechanism is then
proposed to aggregate these representations to mitigate layout-induced variance and improve
the optimization robustness.

Ilustrative task: The focus of this paper is not on advancing the state-of-the-art in the influence
maximization problem, but rather on using this challenging problem as a representative task to
demonstrate how MLLMs can function as structure-aware evolutionary optimization operators.
Moreover, several additional toy tasks are presented in Section[4.4]to demonstrate the generalizability
and potential of structure-aware optimization. The implementation code is available online at
Structure-Aware EQO.

2 Related Work

2.1 Evolutionary Optimization on Combinatorial Problems

EAs have proven effective across various combinatorial tasks, including routing [8]], scheduling
[19]], network robustness enhancement [20] and network reconstruction [21]]. Their adaptability
also extends to tasks like community deception [22]], sensor selection [23] and dynamic community
detection [24]). In EAs, the encoding strategies are problem-specific, e.g., permutation/path encodings
for scheduling and routing [25]], and binary/label-based encoding for influence maximization [26].
However, such encoding schemes often lack structural awareness, leading to naive modifications.


https://osf.io/hymgp/overview?view_only=f37dfac5aed44ba8a00d2f9213a0e7d6

2.2 LLM-Assisted Evolutionary Optimization

Recent work has integrated LLMs into evolutionary frameworks [27, 28], particularly as search
operators [29, [30] and automation tools [31]]. Specifically, LLMs could be used to implement
mutation and crossover [32}33]], and support multi-objective optimization [34} 35]]. However, LLMs
struggle to capture higher-order structural information, and representing networks as natural language
will incur substantial computational costs, making them less suitable for structure-aware optimization.
An alternative is offered by MLLMs with image-based encodings, which can address such problems
intuitively in a human-like manner [10].

3 Cooperative and Ensemble MLLM-based Evolutionary Optimization

In this section, we provide a detailed explanation of the proposed framework, including graph
sparsification and cooperative/ensemble MLLM-based evolutionary optimization.

3.1 Problem Formulation

Given a network G = (V, E), the goal of the influence maximization problem is to select a seed set
S C V of size k that maximizes the expected influence spread:

max o(9),
SCV,|S|=k

where o(.S) denotes the expected number of nodes activated under a diffusion model. Estimating
o(9) typically requires costly Monte Carlo simulations, posing scalability issues. Therefore, we
adopt the expected diffusion value (EDV) [36] as a surrogate:

EDV(S)=k+ > (1-(1-p'"),
beN (S)\S
where p is the influence probability, §(b) counts the edges from S to b, and N (S) is the one-hop
neighborhood of S, including S itself.

3.2 Graph Sparsification

Visualizing large-scale labeled networks can result in excessive clutter, affecting MLLMS’ recognition
on graph structure. To address this, we apply graph sparsification to obtain a miniature version of the
original networks that preserves essential structures while reducing noise. Let the original network
be G = (V, E); a sparsified version is produced via a sparsification operator S(-; 6), yielding:

G, = S(G: ),

where 0; is the sparsification strategy. Different sparsification methods preserve different structural
properties, with some emphasizing global connectivity and others focusing on local clustering. By
applying multiple strategies, we can generate a set of simplified networks capturing diverse aspects
of the original:

G, ={G.,G?...,G"}, where G’ CG.

In this work, we employ two heuristic graph sparsification techniques to reduce network size while
preserving essential structural properties from various perspectives.

3.2.1 Degree-based Sparsification

In this method, we simplify the graph by retaining nodes with high degree. Given a graph G = (V, E),
we define N as the number of nodes to retain, and the subset V of retained nodes is:

Ve ={v; € V| d(v;) > d(vj),Yv; € V\ Vi} with [Vi| = N,

where d(v) represents the degree of the node v.



3.2.2 Community-based Sparsification

Given a partition of GG into communities C= {C1,Cs,...,Cp}, the number of selected nodes of each
community is determined by:
Ci] s
e = | )
14

Within each community, the nodes are chosen based on their betweenness centrality values, denoted
as b(v) for v € V. The selected nodes V; are given by:

Ve = [ J{vs € Ci | b(v;) = b(w), Vo € C; \ Va} with [V, NG| =|C]].
i=1
In the community-based sparsification method, the initial community distribution of network is
obtained by the FastGreedy algorithm [37]].

3.2.3 Subgraph Refinement

After selecting the nodes, we construct the subgraph G = (V;, Ey), where
Es ={(u,v) € E|u,v €V}

If the number of edges in E; exceeds the predefined edge number N}, we prune edges randomly
until only N7 remain. Finally, we remove the isolated nodes and retain only the largest connected
component to ensure structural coherence.

3.3 Knowledge Transfer-based Cooperative Evolutionary Optimization

In our cooperative optimization, each processor optimizes over different sparsified networks G =
(Vi E%) with the knowledge transfer from each other (see Flgurel 1| for the illustration), optimizing
candidate solutions s C V. During the optimization, each processor evolves a population P;, where

VseP;, sVl
The goal of the i-th processor is to find the individual s} with the best performance:

s; = arg gé%%f(‘lsi(s)% G),

where f(s; G) is the fitness function to evaluate solution s regarding the original network G. Every
candidate solution optimized in G% € G will be mapped back to the domain of network G' via
function ¢; for fitness evaluation to ensure that the solutions are relevant and effective with respect
to the full network. Following that, the elite solution optimized in one sparsified domain will be
transferred into another sparsified domain via the original domain. Specifically, we define two
mapping functions:

e Projection to Original: A function ¢; : V! — V
maps nodes from a sparsified network G to their
corresponding nodes in G. A candidate solution s C
V! is projected to the domain of the original network

as ¢;(s) = {¢i(v) : v € s} where ¢;(s) € V.

o Injection (Reverse Projection): A function ¢,
s Subprocessor1  \ l’ Subprocessor2  \ l/ SubprocessorN \ V N VSZ maps Candidate SOlutionS s C V frOm the

(Sparsified network) 1 (Sparsified network) | I (Sparsified network) |

. Master
" (Original network)

: ) : | 0 Lo 0 1 original network into the domain of a given sparsified
Ro@ | T, Q) @ © | network G%, i.e., ¢; (s) = {¢; (v) : v € s} where
Ken LA B srweve Z
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(O S SNIIT T < oD T -" Remark 1. Let G% and G, be two simplified rep-

Figure 1: Diagram of the cooperative evolu- 7esentations of an original network G, obtained via
tionary optimization. The master unit stores  distinct graph sparsification methods. Although ¢;(v)
. . . . o o : (3 s

the elite solutions and is responsible for 54 valid node in Gfor. any v € Ve, ti.ler.e 1§ no guar-

knowledge transfer across subprocessors. antee that ¢;(v) € V is contained within the vertex
set VI of G when attempting to map it via the injec-

tion function ¢; . This potential infeasibility arises because different sparsification methods may

retain distinct subsets of nodes, even though both sparsified networks originate from G.



The master process coordinates the search by collecting high-quality solutions from the subprocessors.
Each subprocessor periodically sends its best candidate (projected via ¢) to the master, which
aggregates them into a global elite pool £. Specifically, if the i-th subprocessor provides its best
candidate s} from its sparsified network, the corresponding candidate in the original domain is:

Si = ¢i(s7),
where the mapped candidate S; will be added into the elite pool £.

3.3.1 Update of Master

In our cooperative evolutionary optimization framework, each candidate stored in the global elite
pool & is represented as (S, f(5), g), i.e.,

&= {(Si,j7 f(SZ,])MQJ) | = 17 2a s 7”}7
where S; ; is the best solution in the i-th subprocessor at the j-th generation. f(.S) is its corresponding
fitness (e.g., estimated influence spread), and g is the generation number at which the candidate was
added (serving as a timestamp). Then, we can determine the current generation geyrent by taking the
maximum generation value in &:

YGeurrent = max{ 9gj | (Si,jv f(Si,j)7gj) €& }

Then, a threshold parameter Ag is defined to specify the maximum allowed age (in terms of genera-
tions) for candidates to remain in the pool. The elite pool £ is pruned as follows:

& « {(Si,jaf(si,j)7gj) €& | Yeurrent — G5 < Ag},
which ensures that only those candidates whose age is at most Ag are retained.

Note that £ is sorted in descending order based solely on fitness. Specifically, for any two
candidates (.S; ;, f(S:.;),9;) and (Si s, f(Siv j7),g5) in &, if (S, 4, f(Si;),9;) appears before
(Sir.j7, £(Si jr), g;7) in the sorted order, then f(S; ;) > f(Sy ;). Finally, to prevent unbounded
growth, the pool £ is limited to size Ng, ensuring that the global elite pool focuses on recent and
high-quality solutions.

3.3.2 Update of Subprocessor

When the i-th subprocessor requests an elite candidate, the master may send a candidate S; € £,7 # j
expressed in the original domain. Because the sparsified networks differ in size, S; may not directly
map onto the domain of G% € G,. To address this issue, we define a projection mechanism for
cross-domain injection. Given a solution S € € and a sparsified network G, let

¢; (S)={¢; (v) eVi|veS SCV},

where ¢; (v) maps the node v € V into the domain of sparsified network G*. The projected candidate
is then obtained by

i (), if |¢; (S) =k,
¢; (S)UFI(S, GY), if |¢; ()] <k,
where £ is the predefined size of solutions. Fill(.S, G") (strategically or randomly) selects additional
nodes from V' to ensure that the final candidate contains exactly k£ nodes. This mechanism guarantees

that elite solutions from the master can be feasibly injected into any subprocessor’s local search space,
despite differences among the sparsified networks.

Proj(S, G%) = {

A shared global elite pool £ is maintained by all processors. Every T" generations (the elite injection
interval), each processor sends its best candidate (after projection to the original network) into
&. Conversely, a candidate from £ is injected into the local population of a subprocessor after
projection into the sparsified network whenever that candidate performs better than the weakest
solution currently in the local population.

3.4 Ensemble MLLM-based Evolutionary Optimization

Here, we introduce an ensemble framework leveraging MLLMs for evolutionary optimization on
graph-structured data by incorporating multiple visual layouts.



3.4.1 Visualization

Since each graph layout imposes distinct structural biases [16], the performance of MLLMs is
inherently sensitive to layout choice, and reliance on a single layout risks introducing perceptual
distortions. To mitigate this issue, we adopt an ensemble strategy that integrates multiple layouts,
providing diverse structural views and enhancing overall performance (see Figure 2)).

[ R i . mm—— . To enable seamless visual incorpora-
I’ Layout1 | I’ layout2 | Il LayoutN 1 - a— tion into our evolutionary framework,
ON (A) 1 t te functions de-
| 16 N o OF we use two separa
94@~ : ! "@ : e 1 " 1 . + @ signed for generating image represen-
| »‘D ¥ G’ </ G‘ QL ! & m tations [10]. One function handles the
1 (E) : 1 (E) : | E) O | - initialization phase, while the other en-
————l——— = —— —! Consensus Voting ¢ des individual candidate solutions
| & mums by © mums : | @ mums . as images for their participation in ge-
; x) ¥ X) P! ) ! netic operations. The MLLM-based
v_ohe I ohe ! '\ x , initialization is defined as follows:

Tinit(G, ©) = Visualize(G, 0),
(D
which renders a visual depiction of
graph G based on the layout parame-
ters O, utilizing external visualization
tools. In contrast, to encode individual candidate solutions in image form, we have

Z(G,©,s) = Visualize(G, 0, s), )
which produces a visual representation of graph G arranged according to layout ©, with the nodes
belonging to solution s distinctly marked in color, as illustrated in Figure |3| Note that in practice,

during crossover, only the seed nodes are visualized to reduce inference difficulty, whereas in mutation
all nodes are visualized.

Figure 2: Diagram of the ensemble strategy. Each layout is
fed into MLLMs separately, and the final outcome is deter-
mined using the consensus voting strategy.

3.4.2 MLLM-based Initialization

Given a graph G, an initialization strategy and layout style ©, the initial population P is generated as:
P = MLLM_init(Z,i (G, ©); N,), 3)
where N, denotes the population size.

Original Network Solution Image 1 Solution Image 2 m

Examine a network image where seed
nodes are colored and non-seed nodes
are labeled in white. Carefully analyze
the seed nodes present in the image.

Identify the current seed node that
contributes the least to influence

—
l Crossover | maximization.

Examine two network images where seed nodes are colored and non-seed
nodes are labeled in white. Carefully analyze the seed nodes present in each
network image and suggest an optimal set of seed nodes that harness the
advantages of both parent networks to maximize influence spread.

Propose a non-seed node that could
significantly increase the network's
influence spread.

Figure 3: Diagram of the MLLM-based evolutionary optimization on influence maximization. The
solution and its underlying network are jointly represented in the image format.

3.4.3 Ensemble MLLM-based Crossover and Mutation

Given two candidate solutions s;, s; € P where P denotes the population, the crossover operation
guided by MLLMs generates an offspring as:

sc = MLLM_crossover (Z(G, ©, 5;),Z(G, O, s,); P.),
where P, denotes the crossover probability. To mitigate layout-specific bias, we propose an ensemble
strategy that aggregates decisions across multiple layouts {©;}2_ | via:

s!. = ConsensusVoting ({MLLM_crossover(I(G, 01,5:),Z(G, 0y, sj))}lel) ,



where ConsensusVoting aggregates candidate solutions by evaluating the support each node
receives in different layouts. Each node accumulates votes according to its frequency of occurrence,
and nodes that meet a predefined threshold are chosen first. If the number of qualified nodes is
insufficient, additional nodes are selected greedily based on their influence in the graph, measured by
the number of uncovered neighbors.

Similarly, the ensemble mutation is defined as:
$m = MLLM_mutate(Z(G, ©, s); P,,,),
s, = ConsensusVoting ({MLLM_mutate(I(G, Oy, 3))}{;1) ,

where IP,,, denotes the mutation probability.

4 Experimental Study

The experiments are conducted on eight real-world networks, as shown in Table[I] The number of
nodes and edges in the simplified networks is fixed at 50 and 100, respectively, to remain manageable
for MLLMs. The probabilities of crossover and mutation are set to 0.2 and 0.1. The number of
individuals in the initialized population is set to 20. The reported results are averaged from 10
independent simulations unless otherwise specified. The backbone MLLM is gpt-40-2024-11-20.

Table 1: Structural details about the networks: |V] is the number of nodes; | E|, the number of edges.
Network USAir Netscience Polblogs Facebook WikiVote Rutgers§9 MSU24 Texas84

V 332 379 1,222 4,039 7,066 24,568 32,361 36,365

K 2,126 914 16,717 88,234 100,736 784,596 1,118,767 1,590,651

4.1 Effectiveness Examination of Cooperative Evolutionary Optimization

In this section, we compare the proposed cooperative optimization (multi-domain) with other evolu-
tionary frameworks (single-domain). Spars-D-EO and Spars-C-EO apply the vanilla evolutionary
optimization to degree-based and community-based sparsified networks without involving any ad-
vanced techniques, respectively. Co-EO combines both sparsification strategies with a knowledge
transfer mechanism. As shown in Table[2] Co-MLLM(KK) integrating MLLM with the KK layout
and cooperative optimization achieves the highest fitness values across most networks. For fairness,
SAEP [22], CoeCo [38]], and SSR [39] optimize the population over the degree-based sparsified
network. These methods highlight the advantages of self-adaptive control, divide-and-conquer de-
composition, and search-space reduction in addressing complex network optimization tasks. The
results indicate the potential for evolutionary optimization strategies, originally developed for the
original domain, to be effectively transferred and integrated into frameworks operating on sparsified
domains.

Table 2: Performance comparison (Mean and Standard Deviation (SD)) of different evolutionary
optimization methods across various networks.

Networks Single-Domain Multi-Domain

SAEP [22] CoeCo [38 SSR 39 Spars-D-EO Spars-C-EO Co-EO Co-MLLM(KK)
USAir 41.1£2.89(-) 48.9+0.50(+) 48.4+1.04(+) 41.5+£3.25(-) 40.9+2.62(-) 44.54+2.17(-) 4534285
Netscience 14.940.79(-) 16.8+0.24(-) 16.4+0.26(-) 14.1+0.78(-) 14.240.65(-) 15.340.46(-) 17.6+0.70
Polblogs 189.8+6.99(-) 223.5+2.56(+) 198.6£7.86(-) 192.2+6.86(-) 188.5+£10.59(-) 203.7+9.21(=) 207.4+4.05
Facebook 387.9430.54(~) 378.843.28(-) 383.74+26.98(-) 326.5+14.38(-) 337.2430.93(-) 367.2425.19(-) 396.3+31.90
WikiVote 492.2413.16(-) 502.048.36(-) 504.2412.17(-) 489.1423.63(-) 478.6125.04(-) 518.3+17.76(=) 524.9+16.76
MSU24 1119.9444.56(-) 1115.24£21.83(-) 1118.1+£45.62(-)  1111.6£46.19(-)  1057.0+44.86(-)  1133.1428.38(~) 1146.7+18.53
Texas84 1992.3+£180.30(-) 2515.7+£148.16(~) 2198.2+173.29(-) 1998.4+204.98(-) 1969.5+£229.25(-) 2459.0+109.70(-)  2522.9+111.28
Rutgers89 704.6431.18(-) 742.04+27.04 (-) 712.0429.39(-) 707.34+41.70(-) 705.04+18.91(-) 736.7+£28.21(-) 765.9+22.10
Avg ranking 4.38 2.63 3.38 5.75 6.63 3.25 1.38

The strength of the cooperative mechanism can also be observed in Figure 4], which shows the opti-
mization process of Spars-D, Spars-C and the cooperative way. Across all networks, the cooperative
approach consistently outperforms the other two methods with higher fitness values, suggesting that
the cooperative optimization strategy effectively leverages information from both sparsified domains
to enhance optimization performance.
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Figure 4: Comparison of cooperative and vanilla evolutionary optimization (EO). Shaded regions
represent the Standard Error of the Mean (SEM). The number of solutions in each Co-EO subprocessor
population is set to half that of the single-domain configuration, since two sparsified networks are
employed.

Table 3: Comparison of cooperative optimization for To further evaluate the effectiveness of
different transfer intervals. The results are obtained based our cooperative framework, we compare

on the vanilla EO with 30 runs. different configurations of the knowledge
transfer interval. As shown in Table [3]

Graph Interval = 2 Interval = 5 more frequent knowledge transfer (Inter-
USAir 44.4 + 2.42 42.9 +£2.24 val = 2) generally results in improved opti-
Netscience 14.9 +0.77 14.9 + 0.86 mization performance, demonstrating the
Polblogs 199.9 + 7.88 192.4 £+ 631 importance of timely information sharing:

Facebook 368.5 + 25.31 359.9 +26.94 the elite solutions discovered in one spar-
WikiVote 527.5 + 14.77 510.8+ 15.37 sified domain can be effectively used to
MSU24 1154.6 & 14.60 1140.2 + 17.12 guide the search in other domains, and
TeX3584 2332.2 Zt 179.56 22359 Zl: 17471 these CrOSS_domain insights Canjointly im_
Rutgers89 753.1 + 17.67 743.2 £ 2181 prove overall optimization outcomes.

4.2 Effectiveness Examination of Ensemble Approach

To show the strength of the ensemble method, we compare the ensemble variant of MLLM with
its single-layout counterpart. Vanilla EO refers to the probability-based evolutionary optimization.
Symbols indicate statistical significance from the Wilcoxon test (95% confidence interval): ‘+’
for better, ‘~’ for no difference, and ‘—’ for worse performance than MLLM-Ensemble. Table E]
provides a comparative analysis of different evolutionary optimization modes in optimizing influence
maximization. As seen, MLLM-Ensemble achieves the highest influence scores across most networks.
The ensemble approach benefits from combining multiple layout perspectives and employing a
consensus voting strategy, making it more robust. In contrast, the other MLLM-based methods
(KK, FR, and GraphOpt) show mixed performance, especially in Facebook and Texas84 networks,
demonstrating the influence of layout on the performance of MLLM-based optimization.

Figure [5] presents the fitness progression of various MLLM-based optimization methods. Single-
layout methods (KK, FR, and GraphOpt) exhibit network-dependent performance, for example, the
FR layout performs significantly worse than the others in Polblogs and Facebook, while KK or
GraphOpt underperform in different cases. These results highlight that no single layout consistently
dominates across networks. By integrating multiple layouts, the ensemble method achieves steady
improvement and avoids stagnation, thereby demonstrating superior robust optimization through
diverse visual inputs. Additional evidence supporting the effectiveness of the ensemble strategy is
presented in Figures|/|and where two tasks are employed for further validation.



Table 4: Performance comparison (Mean and Standard Deviation (SD)) of different reproduction
modes across various networks. The domain is built upon community-based sparsification method.

Reproduction modes

Networks
Vanilla EO MLLM-KK MLLM-FR MLLM-GraphOpt MLLM-Ensemble
USAir 42.14+2.24(-) 44.442.78(=) 44.942.70(~) 44.74+2.03(=) 45.14+2.10
Netscience 14.0£0.34(~) 14.6+0.67(~) 15.0+£0.99(~) 14.7£0.92(~) 14.9£0.63
Polblogs 190.0+6.31(-) 191.8+6.16(-) 187.3+6.23(-) 191.0+7.22(-) 196.31+6.92
Facebook 337.44+37.83(-) 356.8+27.30(-) 357.14£30.70(-) 375.2424.91(=x) 387.3+31.15
WikiVote 466.2+27.28(-) 483.3+24.08(-) 474.7+£13.75(-) 475.2422.54(-) 510.0+10.30
MSU24 1053.2+46.85(-) 1099.6+41.54(-) 1117.6+16.40(~) 1126.7+£23.39(~) 1129.24+14.04
Texas84 2075.0£297.49(-) 2104.24+189.68(-) 2269.24+171.70(~) 2205.8+£229.82(-) 2285.1+95.72
Rutgers89 705.6+36.87(-) 749.6+11.27(x) 746.94+17.06(~) 742.9420.42(-) 757.9+7.99
Avg ranking 4.63 3.25 3.00 3.00 1.13
e KK === FR === GraphOpt =—— Ensemble
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Figure 5: Comparison of MLLM-based optimization performance across different graph layouts.
Shaded regions represent the Standard Error of the Mean (SEM).

4.3 Examination of Network Layout

Initialization can be viewed as a one-time optimization of the network to a certain extent, since the
MLLMs are required to select the most promising candidate. By prompting the MLLM to initialize
the population, we further investigate its structural sensitivity to network images generated under
different layouts and sparsification strategies, as illustrated in Figure[6] Each point represents a single
solution in the population, which is directly generated by the MLLMs as the initial population for
optimization. Note that the sparsification strategy also influences the visualization, as the layout
algorithm adaptively positions nodes based on structural properties.

As demonstrated in several cases, the choice of layout has a clear impact on MLLMs’ performance.
For instance, initial candidates generated with KK and GraphOpt exhibit higher overall fitness
compared to those produced with FR in Polblogs and Facebook (Spars-C). Moreover, the influence of
the sparsification strategy on MLLMs can also be observed. In networks such as USAir and Texas84,
the same layout yields distinct distributions, indicating that the sparsification strategy is related to the
layout.

4.4 Generalizability Analysis

To examine the generalizability of MLLM-based structure-aware optimization, we evaluate it on tasks
with different characteristics. We first study a sequential decision-making problem in which nodes
are removed to disrupt a network’s connectivity [40], and its effectiveness is measured using the area
under the curve (AUC) of the largest connected component (LCC). We compare the single-layout
and multi-layout approaches on two non-sparsified networks (Dolphins and Lesmis) in Figure[/] and
observe that the ensemble strategy consistently outperforms any single layout.
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Figure 6: Distribution of MLLM-based initialization with different layouts and sparsified networks.

We then consider a classical permutation-based combinatorial problem, the Traveling Salesman Prob-
lem (TSP). In TSP, the layout is fixed by the coordinates of the cities, which makes the multi-layout
ensemble inapplicable. Thus, we compare the vanilla evolutionary optimization with our MLLM-
based evolutionary optimization, as shown in Figure 8] The results demonstrate that incorporating
MLLM-guided evolutionary operators significantly improves search effectiveness. Together, these
tasks, ranging from subset selection (one additional example can be found in Figure[T4) in graphs to
permutation optimization as well as sequential decision-making problem, illustrate the breadth of
our framework, demonstrating comprehensive evidence of the generalizability and flexibility of the
structure-aware optimization approach.

Dolphins Lesmis 15-Node TSP Instance 20-Node TSP Instance

== KK (AUC=714.6) ] = KK (AUC=534.4) 150 ~—— Vanilla Optimization o —— Vanilla Optimization
- FR (AUC=727.0) 70 -+ FR (AUC=494.6) ~—— MLLM-based Optimization ~—— MLLM-based Optimization
- GraphOpt (AUC=723.5) - GraphOpt (AUC=626.1)
Ensemble (AUC=712.1) | Ensemble (AUC=488.8)

¥
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o o o o s o0 oo on ) s 7 T ¢ 7 i 3
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Figure 7: Comparison of different layout strate- Figure 8: Comparison of different evolutionary
gies in the network dismantling problem. optimization strategies in the TSP.

5 Conclusion

This paper investigates the methods to facilitate the integration between evolutionary optimization
and multimodal large language models (MLLMs), aiming to harness their combined strengths. This
synergy is significant as it opens new avenues for solving complex problems more effectively by
leveraging the deep contextual understanding of MLLMs. By utilizing MLLMs as evolutionary opera-
tors, we demonstrate that incorporating graph sparsification and diverse network layouts significantly
enhances the optimization process. Our findings also highlight the superiority of knowledge transfer
across different sparsified networks in the cooperative evolutionary framework.
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A Discussion

A.1 Representation Comparison of Natural Language and Image

In addition to the advantages of image-based encoding for graph-structured combinatorial optimiza-
tion discussed in [10], we extend the discussion by presenting two additional aspects.

Token usage: In conventional LLM-based evolutionary optimization, the graph structure and candi-
date solution must be described separately in text. This inflates the token count, as both structural
information and solution details have to be serialized into lengthy textual descriptions. As the problem
size grows, the token cost quickly becomes prohibitive. By contrast, in image-based representation,
the graph and solution are merged into a single visual object. This compact encoding substantially
reduces token usage, since the MLLM processes the image as one unified input rather than parsing
long text sequences.

Reasoning: When structural information and solution are separated into different textual descriptions,
the LLM must internally re-align two distinct streams of data, i.e., the abstract topology of the network
and the numerical value of the solution before performing inference. This disintegration increases
reasoning difficulty and introduces unnecessary cognitive overhead. In image-based encoding,
however, the network and solution are presented together in a single representation. This integration
allows the model to reason about their interactions more directly and coherently, without the burden
of reconstructing connections across fragmented inputs.

A.2 Limitation and Mitigation
A.2.1 Limitation

Although graph sparsification improves the scalability by reducing the size of large networks, it also
has inherent constraints that limit its applicability.

Subset selection problems: In practice, plotting beyond roughly 200 nodes produces highly cluttered
images, which in turn makes MLLM reasoning unreliable. This imposes a hard ceiling on the number
of nodes that can be included in the visual representation. If the number of important or required
selected nodes exceeds this threshold, the candidate node will also necessarily far exceed it, rendering
the image-based approach invalid.

Permutation problems: In tasks such as permutation optimization, sparsification cannot be applied.
These problems require complete output over all nodes in the original network, meaning no node
can be safely removed. Any reduction of the graph would distort the problem definition, making the
method inapplicable.

A.2.2 Mitigation

To mitigate these limitations, we plan to explore divide-and-conquer strategies in the future work.

Subset selection problems: For subset selection tasks, one promising approach is to employ
community detection to partition the large graph into smaller subgraphs. Each subgraph remains
within the visualization threshold, allowing MLLMs to reason effectively over its structure and
candidate solutions. The results from individual subgraphs can then be aggregated, ensuring that the
final solution considers both local community-level optimization and global consistency.

Permutation problems: For permutation-type tasks, the graph can be partitioned into geographical
or structural regions (e.g., clustering cities into local areas for TSP). The MLLM can then solve
the permutation subproblem within each region before combining the partial tours into a global
route. This regional divide-and-conquer strategy preserves all nodes while reducing the reasoning
complexity faced by the model.

A.3 Injection Strategy
Elite candidates identified in the master domain must be adapted before they can be injected into

the subprocessors’ local search spaces as the sparsified networks may differ in size and structure.
After projection, some candidates may fall short of the required size k. To address this, we employ a
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Table 5: Comparison of optimization performance for different injection strategies. The result is
obtained based on the vanilla evolutionary optimization with 30 runs.

Graph Random filling Heuristic-based filling
USAir 442 £2.30 44.4 +2.42
Netscience 14.8 + 0.86 14.9 + 0.77
Polblogs 198.5 £ 8.03 199.9 + 7.88
Facebook 352.4 £25.83 368.5 + 25.31
WikiVote 5212 £17.75 527.54+ 14.77
MSU24 1146.8 + 25.21 1154.6 £ 14.60
Texas84 2312.1 + 156.01 2332.18 £+ 179.56
Rutgers89 732.9 4+ 27.02 753.12 + 17.67
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Figure 9: Comparison of token usage across different network depiction methods and settings [10].

filling step to ensure that each injected solution is feasible by supplementing it with additional nodes.
Specifically, we explore two strategies for the filling step:

Heuristic-based filling (default): prioritizes nodes with high betweenness centrality.
Random filling: selects nodes randomly from all available nodes.

The results in Table [5] show that heuristic-based filling achieves slightly better performance than
random filling across all tested graphs, though the differences are small. This suggests that while
heuristics provide a marginal advantage, the cooperative framework itself is robust and consistently
delivers good optimization results regardless of the injection strategy employed. Moreover, when
compared to the single-domain results in Table 2] these findings further demonstrate the effectiveness
of our cooperative framework.

B Computational Cost Analysis

While large language models (LLMs) have proven effective across a wide range of domains [41} 42,
43|, they often struggle with discrete graph-structured problems [44, 45]]. To address these challenges,
researchers have explored the use of MLLMs, which leverage visual representations of graphs to
enhance reasoning capabilities [46,/47]. For instance, recent work has demonstrated success in solving
the traveling salesman problem by combining textual and visual modalities [48]]. Building on this
trend, our approach applies MLLM-based reasoning to the domain of discrete network optimization.

The scalability of the input representations is a critical factor when working with LLMs and MLLMs
[LO]. Traditional textual encodings, such as adjacency and incidence representations [49], incur a
token cost that grows linearly with the size of the network, making them increasingly inefficient
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as the number of nodes and edges expands. In contrast, visual inputs used in MLLMs maintain a
constant token count, independent of the graph’s scale (see Figure [9).

Table 6: Average running time (in seconds) per API call for different MLLMs performing crossover
(with 2 input images) and mutation (with 1 input image) during evolutionary optimization.

Networks Kamada-Kawai Fruchterman-Reingold GraphOpt

Crossover Mutation Crossover Mutation Crossover Mutation
gpt-40-2024-11-20 3.5+£0.66 244074 3.4£0.68 2.3+0.73 3.6+0.81 2.3£0.49
Gemeni-2.0-flash-lite 2.2+044 224049 2.34+0.51 2.14+0.53 2.3+0.45 2.240.52
Qwen-vl-max 3.84+1.15 2.3+1.25 3.7£1.58 2.34+1.36 3.84+1.15 2.3+£1.17

We compare the running time across different models in performing crossover and mutation under
three layouts in Table [6] which presents the average API call running time, revealing several key
insights. First, the running time clearly depends on the foundation model, with Gemeni-2.0-flash-lite
consistently being the fastest and Qwen-vl-max generally incurring higher latency. Second, consistent
with findings from [[10]], crossover operations requiring two input images are more time-consuming
than mutation operations, which involve only one image. This trend holds across all models and
layout strategies. Third, despite using the same foundation models, the running times reported here
differ from those in [10]], potentially due to variability in server load, highlighting the importance of
deploying these models in practical environments.

== |V|=50, |E|=100
—e— |V|=100, |E|=200

Average Running Time (seconds)

o
Seed Size |S|

Figure 10: Average running time (in seconds) per API call for MLLMs performing initialization
across different settings of network and seed size.

Figure [I0] shows the average running time per API call for MLLMs (gpt-40-2024-11-20) during
initialization under different network and seed size settings. The results indicate that the running time
is influenced by both context difficulty, represented by network size (|V|, | E'|), and task difficulty,
represented by solution size (|S]). Larger networks and required seed sizes consistently lead to longer
running times, reflecting the increased computational demands of more complex inputs.

C Fidelity Validation of MLLLMs Outputs

While MLLMs demonstrate promising capabilities in reasoning over visualized network structures,
their outputs may still violate task-specific constraints. Therefore, we implement a set of fidelity
checks at each evolutionary stage (initialization, crossover, and mutation) to detect and correct such
issues. These checks are designed to maintain the structural integrity, constraint compliance, and
overall quality of the evolving population. The validation criteria applied in each stage are detailed
below.

The outputs of MLLMs are validated at different evolutionary stages to ensure solution quality and
adherence to constraints:

Initialization Phase:

* T! - Valid Node Check: Ensures that all nodes belong to the predefined valid set.
« T? - Initialization Size Check: Verifies that the initial solutions meet the required seed size.
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Table 7: Evaluation of MLLM-generated outputs at initialization under the Spars-D setting.

Networks Spars-D (KK) Spars-D (FR) Spars-D (GraphOpt)
S A T A O
USAir 100% 100% 99.8% 100% 100% 100% 100% 100% 99.9%

Netscience 100% 100% 96.8% 100% 100% 94.8% 100% 100% 99.9%
Polblogs 100% 100% 99.7% 100% 100% 98.9% 100% 100% 99.6%
Facebook 100% 100% 99.3% 999% 100% 96.3% 99.9% 100% 96.8%
WikiVote 100% 100% 97.8% 100% 99.5% 97.2% 100% 100% 98.3%
MSU24 100% 100% 97.7% 100% 100% 91.6% 99.9% 100% 99.3%
Texas84 100% 100% 98.7% 100% 100% 99.1% 100% 100% 98.8%
Rutgers89 100% 100% 98.1% 100% 100% 96.3% 100% 100% 96.8%

Table 8: Evaluation of MLLM-generated outputs at initialization under the Spars-C setting.

Networks Spars-C (KK) Spars-C (FR) Spars-C (GraphOpt)
o o1 1 1 1 T T2 T
USAir 100% 100% 99.2% 100% 100% 99.1% 100% 100% 99.0%

Netscience 100% 100% 96.2% 100% 100% 96.0% 100% 100% 96.1%
Polblogs 100% 100% 99.7% 100% 100% 98.8% 100% 100%  99.5%
Facebook 100% 100% 93.0% 99.9% 100% 89.7% 100% 100% 90.2%
WikiVote 100% 100% 98.0% 100% 100% 97.5% 100% 100% 98.7%
MSU24 100% 100% 98.9% 100% 100% 98.9% 100% 100% 99.1%
Texas84 100% 100% 98.3% 100% 100% 96.8% 100% 99.5% 97.5%
Rutgers89 100% 100% 95.1% 100% 100% 97.5% 100% 100% 98.8%

* T} - Low Degree Node Check: Identifies nodes with low degrees that may affect solution quality.
Crossover Phase:

* T¢ - Crossover Size Check: Ensures that the offspring solutions adhere to size constraints.
* T% - Duplicate Node Check: Detects repeated nodes within the solution.

« T?, - Parent Node Source Check: Confirms that all nodes in the offspring are inherited from
parent solutions.

Mutation Phase:

« T}, - Node Presence Check: Ensures that nodes targeted for removal actually exist in the solution.
« T%; - Mutation Valid Node Check: Verifies that newly added nodes are part of the valid node set.

* T3, - Mutation Repetitive Node Check: Checks whether added nodes are already present in the
solution.

Due to the concern about hallucination, we examine the correctness of MLLM outputs during
initialization in Tables and The results indicate that T and T? achieve 100% accuracy across all
networks and strategies, confirming that the MLLM-based evolutionary process consistently selects
nodes from the valid set and adheres to the required seed size constraints. This demonstrates that
the initialization process is robust across different sparsification and layout strategies. However, T3
(Low-Degree Node Check) exhibits slight variations depending on the sparsification and layout used.
The degree-based sparsification approach generally achieves higher T% accuracy, with values close to
or exceeding 99% across all networks. In contrast, community-based sparsification shows slightly
lower T3 scores, especially in layouts like FR and GraphOpt, where percentages sometimes drop
below 90% (e.g., Facebook: 89.7% in FR, 90.2% in GraphOpt). The differences in T2 scores across
layouts further suggest that graph layout sensitivity should be carefully considered when designing
optimization strategies for influence maximization.

Figure [TT]illustrates the impact of graph layout choices on the validation rates of MLLM-generated
solutions across various networks during evolutionary optimization. Overall, while most validation
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tests maintain high fidelity, noticeable discrepancies arise during the mutation phase especially
for test Tﬁ/[ (Mutation Repetitive Node Check). Networks such as Facebook, Polblogs, WikiVote,
and Texas84 show significant variation in this metric depending on the layout used, with darker
shades indicating more frequent validation failures. Notably, layouts like GraphOpt and KK are
more susceptible to producing invalid outputs in this stage, particularly for complex networks (e.g.,
Polblogs and Facebook). These results highlight the sensitivity of MLLMs to visual layout encodings,
and further justify the use of layout ensembles to enhance robustness and consistency in MLLM-based
network optimization.

USAir Netscience Polblogs Facebook
KK- KK KK KK
0.75
FR- FR FR FR
0.8
GraphOpt- GraphOpt GraphOpt GraphOpt
I T e T e 0.85
TET2 TR OTH TR OTH TEOTE TR T TR Ty TETR TR OTH TR T TEOT2 TR T TR T
WikiVote Rutgers89 MSU24 Texas84
0.9
KK- KK KK KK
0.95
FR FR FR FR
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TEOTE TR T, TR TR TEOTE TR T, TR T TEOTE TR OTH TR Ty L I - P PR

Figure 11: Examination of layouts’ influence on validation rates for MLLMs across various networks.
The sparsification strategy is the community-based graph sparsification. Higher validation rates
indicate greater reliability of reproduction operations, with darker colors corresponding to lower
validation rates.

Figure[2] highlights the impact of different sparsification strategies, Spars-C (community-based) and
Spars-D (degree-based), on the validation rates of MLLM outputs across various networks. Consistent
with findings in Figure[TT] most validation checks yield high accuracy across strategies, except for
T3, (Mutation Repetitive Node Check), where darker shades indicate more frequent violations.
Degree-based sparsification (Spars-D) tends to result in lower validation rates in this mutation phase,
especially in networks like Netscience, WikiVote, Rutgers89, and Texas84 while Spars-C produces
more errors in Polblogs and Facebook. This is because sparsification alters the structure and density
of the graph, it inherently affects how layouts are rendered, potentially exacerbating the sensitivity of
MLLMs to visual encoding. Thus, the interplay between sparsification and layout further underscores
the importance of using ensemble and cooperative framework when applying MLLMs to discrete
graph optimization tasks.

Moreover, we evaluate the structural sensitivity of MLLMs in network analysis by examining their
mutation behavior. Ideally, mutations replace low-impact seeds with high-influence candidates. As
shown in Figure added nodes consistently exhibit higher degrees than removed ones across
networks and layouts, indicating effective refinement and the excellent structural awareness of
MLLMs.

D Prompt Engineering

The prompts used in this work are presented in Tables [OHI2] The prompt consists of two main
components: (1) the context-setting prompt, which introduces the input information and specifies the
roles of the agents, and (2) the output-directive prompt, which defines the desired output format and
provides the necessary guidance or restrictions. Owing to the distinct characteristics of each problem,
the prompts differ as follows:

Influence Maximization: The prompt is structured around three phases of evolutionary optimiza-
tion: initialization, crossover, and mutation. The mutation phase is further divided into two steps:
identifying the least influential node for removal and selecting the most promising node for addition.
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Figure 12: Examination of sparsification strategy’s influence on validation rates for MLLMs across
various networks. Higher validation rates indicate greater reliability of reproduction operations, with
darker colors corresponding to lower validation rates.
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Figure 13: Comparison of degree distribution for removed and added seed nodes during MLLM-based
mutation. The simplified graph is obtained by the community-based sparsification strategy.
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Immunization: Given its similarity to influence maximization as a subset selection problem, the
prompt design largely follows the same structure.

Graph Dismantling: As this is a sequential decision-making problem (used to validate the ensemble
strategy), evolutionary optimization is not applied. Instead, the prompt directs the MLLM to identify
the node most likely to cause network collapse.

Traveling Salesman Problem (TSP): Since this task requires outputting all nodes in the network, the
prompt additionally provides the solution in textual form. This design reduces reasoning complexity
and enhances solution feasibility.

Table 9: Structure of prompts for MLLM-based evolutionary operators of different phases.

“Task Context-setting prompt Output directive prompt
You are an expert in network science and will
be provided with one network in the form of Only provide a list of node in-
Initialization an image. Please help me intelligently select d'ce};ze arated by commas
nodes as the diffusion seeds in this network to ~ * p y '
achieve influence maximization.
Examine a network image where seed nodes ggcrese (r)f(; d;:liitlﬁi dehslgihn_
are distinctly labeled. Carefully analyze the tgt . tions that sienif
C seed nodes present in each network image and SUAICEIC POSILONS that stghil-
rossover . icantly enhance network con-
suggest an optimal set of seed nodes that har- tivity. Provid _
ness the advantages of both parent networks to nectivily. rrovide your an
maximize influence spread. swer as a list of node indices,
separated by commas.
Examine a network image where seed nodes Focus on nodes that appear
Mutation are colored and non-seed nodes are labeled in trivial or less connecte dpli’ro-
(Removal) white. Identify the current seed node that con- _. de the ind £ thi : 4
tributes the least to influence maximization. vide the mdex ot this node.
Examine a network image where seed nodes Focus on nodes with higher
Mutation are.colored and non-seed nodes are labeled in degreeg or strgtegically criti-
(Addition) white. Propose a non-seed node that could cal positions in the network.

significantly increase the network’s influence
spread.

Provide the index of this
node.

=o= \anilla

== KK == FR =@= GraphOpt
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Figure 14: Comparison of different optimization methods in the network immunization problem.
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Table 10: Structure of prompts for MLLM-based evolutionary operators of different phases for
network immunization.

“Task Context-setting prompt Output directive prompt
You are given two parent immunization strate- Avoid clustering immunized
gies shown as graphs with highlighted nodes. nodes together. Your solu-
Each highlighted node is selected for immu- tion must include the same

Crossover nization. Generate a child solution by com- number of non-repetitive im-
bining high-impact nodes from both parents. munized nodes as the parents.
Prioritize nodes that connect to many non- Provide your answer as a list
immunized nodes, i.e., these create more cut  of node indices, separated by
edges, helping to stop virus spread. commas.
You are given an immunization solution visu- The goal is to improve effi-
alized as a graph with highlighted nodes. To ciency: keep only the most
Mutation refine the solution, remove one node that con- impactful nodes for maxi-
(Removal) tributes few connections to the rest of the net- mizing the number of cut
work (i.e., nodes mostly surrounded by other edges. Provide the index of
immunized nodes or on the periphery). this node.
Focus on nodes that, when
You are given an immunization solution visu- immunized, will connect to
Mutation alized as a graph with highlighted nodes. Im- many still-vulnerable nodes
(Addition) prove the solution by adding one new node to  and increase the total number
immunize. of cut edges. Provide the in-
dex of this node.
Table 11: Structure of prompts for MLLM-based network dismantling.

“Task Context-setting prompt Output directive prompt
You are an expert in network science and you Please tell me which node
will be provided with a network in the form of  to remove to most likely col-

Network . . L s . .
Dismantlin image. Each node is labeled with its node id in  lapse this network, i.e., make
4

black text. Your task is to help me dismantle
this network.

the largest connected compo-
nent as small as possible.

E Visualization

The visualization of network is supported by the external library and the details of visualization are
presented in Table[T3] In this work, we adopt an ensemble approach by visualizing each network using
three distinct layout algorithms before processing with MLLMs. This design choice is motivated by
the observation that MLLMs are highly sensitive to spatial structure in visual inputs: Small variations
in node positioning and edge arrangement can significantly influence the model’s perception and
output quality. To mitigate this layout-induced variability and enhance robustness, we incorporate
multiple layouts during optimization. The layouts used in this study are as follows:

Fruchterman-Reingold (FR): A force-directed algorithm where vertices repel each other and edges
act like springs pulling connected nodes together. It tends to produce aesthetically pleasing layouts
for medium-sized graphs.

Kamada-Kawai (KK): Focuses on preserving the graph-theoretical distances between nodes. It
minimizes an energy function to position nodes such that their Euclidean distances reflect their
shortest path distances.

GraphOpt: A force-directed method that uses simulated annealing techniques to optimize node
placement. It is tailored for larger networks and emphasizes computational efficiency while aiming
for visually distinct clusters.
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Table 12: Structure of prompts for MLLM-based evolutionary operators of different phases for
Traveling Salesman Problem (TSP).

“Task Context-setting prompt Output directive prompt
Use these to create a new
You are given two parent TSP tours, and each  ¢hild tour that combines
tour is shown as a image with numbered nodes.  parts from both parents. Try
You are also given their visiting orders as lists o keep the path smooth and

of node IDs below. avoid long jumps. The child
Crossover .

tour must visit every node ex-
Parent A tour: {solution} actly once and return to the
start. Return the complete
Parent B tour: {solution} visiting sequence as an or-

dered list of node IDs.
Make a small change to the
tour to try and shorten the
overall path. You can swap
You are given a TSP tour: it is shown as a  two nodes, move one node to
image with node numbers. You are also given a different place, or reverse a
Mutation its visiting order as a list of node IDs below. small segment. The new tour
must still visit every node
Current tour: {solution} once and return to the start.

Return the complete visiting
sequence as an ordered list of
node IDs.

Table 13: Visualization settings summary.

Setting Value

Graph Library plotly.graph_objs
Node Size 35

Label Size 22

Canvas Size 1200 x 1200 px

Init. & Crossover: #2F7FC1
Color Mutation: Solution#2F7FC1,
Non-solution#FFFFFF
Init. & Mutation: All nodes
Crossover: Solution only

Node Labels
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction have accurately reflected the paper’s contribu-
tions and scope.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Please find the related limitation in Section[A.2]
Guidelines:
* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.
* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: Yes.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

¢ All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This work can be easily reproduced by the detailed experimental settings and
provided prompts.

Guidelines:
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The implementation code is available online at Structure-Aware EQ.

Guidelines:

The answer NA means that paper does not include experiments requiring code.

Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please find them in Section [l
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Yes, all results are obtained from multiple simulations.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Please find the related information in Section 4
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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9.

10.

11.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: This research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Not applicable.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.

Guidelines:
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12.

13.

14.

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
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Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human

16.

subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: Please find related information in Section []
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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