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ABSTRACT

Action-dependent policies, which condition decisions on both states and other
agents’ actions, provide a powerful alternative to independent policies in multi-
agent reinforcement learning. Most existing studies have focused on auto-regressive
formulations, where each agent’s policy depends on the actions of all preceding
agents. However, this approach suffers from severe scalability limitations as the
number of agents grows. In contrast, sparse dependency structures, where each
agent relies only on a subset of other agents, remain largely unexplored and lack
rigorous theoretical foundations. To address this gap, we introduce the action
dependency graph (ADG) to model sparse inter-agent action dependencies. We
prove that action-dependent policies can converge to solutions stronger than Nash
equilibria, which often trap independent policies, and we refer to such solutions
as Gd-locally optimal policies. Furthermore, within coordination graph (CG)
structured problems, we show that a Gd-locally optimal policy attains global
optimality when the ADG satisfies specific CG-induced conditions. To substantiate
our theory, we develop a tabular policy iteration algorithm that converges exactly
as predicted. We further extend a standard deep MARL method to incorporate
action-dependent policies, confirming the practical relevance of our framework.

1 INTRODUCTION

Achieving effective multi-agent reinforcement learning (MARL) in fully cooperative environments
requires agents to coordinate their actions to maximize collective performance. Most existing MARL
methods rely on independent policies (Zhang et al., 2021; Oroojlooy & Hajinezhad, 2023), where
each agent makes decisions based solely on its state or observation. Although computationally
tractable and scalable, these completely decentralized policies are often suboptimal (Fu et al., 2022).
The primary limitation lies in their tendency to converge to one of many Nash equilibrium solutions
(Ye et al., 2022), which may not correspond to the globally optimal solution.

The emergence of action-dependent policies (Fu et al., 2022) offers a promising solution to this
challenge. By incorporating the actions of other agents into an agent’s decision-making process,
action-dependent policies enable more effective cooperation and achieve superior performance
compared to independent policies. We introduce the action dependency graph (ADG), a directed
acyclic graph, to represent the action dependencies required for agents to make decisions. Theoretical
studies (Bertsekas, 2021; Chen & Zhang, 2023) demonstrate that policies with auto-regressive forms,
associated with fully dense ADGs—where replacing each directed edge with an undirected edge
yields a complete graph—guarantee global optimality. However, fully dense ADGs pose substantial
scalability issues, as they require a high degree of interdependence and coordination.

Sparse ADGs, which involve fewer inter-agent dependencies, offer a more scalable alternative. This
leads to a critical question: can action-dependent policies with sparse ADGs still guarantee global
optimality? To answer this question, we build on the framework of coordinated reinforcement
learning (Guestrin et al., 2002), where the cooperative relationship between agents is described by
a coordination graph (CG). We find that global optimality can still be achieved using an action-
dependent policy with a sparse ADG, provided that a specific relationship between the ADG and the
CG is satisfied.

The contributions of this paper are summarized as follows. (i) We introduce the notion of a Gd-
locally optimal policy, which differs from the Nash equilibrium and more precisely characterizes
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the convergence behavior of action-dependent policies. (ii) We establish a theoretical framework
that unifies coordination graphs with action-dependent policies and derive optimality conditions for
sparse ADGs. To the best of our knowledge, this is the first work to seamlessly integrate these two
perspectives. (iii) We design a policy iteration algorithm that, grounded in our theory, guarantees
convergence of action-dependent policies to a Gd-locally optimal policy, and further to a globally
optimal policy under the optimality conditions.

2 RELATED WORK

Independent policy. The majority of the literature on MARL represents the joint policy as the
Cartesian product of independent individual policies. Value-based methods such as IQL (Tan, 1993),
VDN (Sunehag et al., 2018), QMIX (Rashid et al., 2018), and QTRAN (Son et al., 2019) employ local
value functions that depend only on the state or observation of each agent. Similarly, policy-based
methods such as MADDPG (Lowe et al., 2017), COMA (Foerster et al., 2018), MAAC (Iqbal & Sha,
2019), and MAPPO (Yu et al., 2022) directly adopt independent policies. These approaches often fail
to achieve global optimality, as they are not able to cover all strategy modes (Fu et al., 2022).

Coordination graph. Some value-based methods (Böhmer et al., 2020; Castellini et al., 2021; Li
et al., 2021; Wang et al., 2022b) recognize that the limitation of independent policies is due to a
game-theoretic pathology known as relative overgeneralization (Panait et al., 2006). To mitigate this,
they employ a higher-order value decomposition framework by introducing the coordination graph
(CG) (Guestrin et al., 2002). In this graph, the vertices represent agents, and the edges correspond to
pairwise interactions between agents in the local value functions. While CGs improve cooperation by
considering inter-agent dependencies, the resulting joint policy cannot be decomposed into individual
policies. Consequently, decision-making algorithms still require intensive computation, such as
Max-Plus (Rogers et al., 2011) or Variable Elimination (VE) (Bertele & Brioschi, 1972). When
the CG is dense, these computations may become prohibitively time consuming, making the policy
difficult to execute in real time.

Action-dependent policy. In contrast to independent policies, action-dependent policies (Wang et al.,
2022a; Ruan et al., 2022; Li et al., 2023; 2024) incorporate not only the state, but also the actions
of other agents into an agent’s decision-making process. The action dependencies among agents
can be represented by a directed acyclic graph, which we refer to as the action dependency graph
(ADG). In some literature, the action-dependent policy is also referred to as Bayesian policy (Chen
& Zhang, 2023) or auto-regressive policy (Fu et al., 2022). Moreover, the use of action-dependent
policies can be viewed as a mechanism to leverage communications for enhancing cooperation (Zhou
et al., 2023; Duan et al., 2024; Jing et al., 2024). Some approaches (Bertsekas, 2021; Ye et al., 2022;
Wen et al., 2022) transform a multi-agent MDP into a single-agent MDP with a sequential structure,
enabling each agent to consider the actions of all previously decided agents during decision-making.
This transformation ensures the convergent joint policy to be globally optimal (Bertsekas, 2021).
However, the fully dense ADG makes these methods computationally expensive and impractical for
large-scale systems. For more general ADGs, existing theories can only guarantee convergence to a
Nash equilibrium solution (Chen & Zhang, 2023). Currently, no theoretical evidence demonstrates the
superiority of action-dependent policies with sparse dependency graphs over independent policies.

3 PRELIMINARY

We formulate the cooperative multi-agent reinforcement learning problem as a Multi-Agent Markov
Decision Process (MAMDP), represented by the tuple ⟨N ,S,A, P, r, γ⟩, where N = {1, . . . , n}
denotes the set of agents, S is the finite state space, A =

∏n
i=1Ai is the joint action space formed by

the Cartesian product of each agent’s finite action space, P : S × A × S → [0, 1] is the transition
kernel, r : S ×A → R is the reward function, and γ ∈ [0, 1) is the discount factor.

We consider policies of the deterministic form π : S → A. The state value function and state-action
value function induced by a policy π are

V π(s) := Eπ

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣∣ s0 = s

]
, Qπ(s, a) := Eπ

[ ∞∑
t=0

γtr(st, at)

∣∣∣∣∣ s0 = s, a0 = a

]
, (1)
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where the expectation E is taken over all random variables st induced by π and P . For any function
V ∈ R(S), whereR(S) denotes the set of real-valued functions J : S → R, we define

QV (s, a) := r(s, a) + γ
∑
s′∈S

P (s′|s, a)V (s′). (2)

The Bellman operator Tπ : R(S)→ R(S) and the Bellman optimality operator T : R(S)→ R(S)
are given by

TπV (s) = QV (s, π(s)), T V (s) = max
a∈A

QV (s, a). (3)

The value function V π is the unique fixed point of Tπ, and the optimal value function V ∗ is the
unique fixed point of T .

3.1 COORDINATION GRAPH

2 3

1

2 3

1

(a) (b)

12Q

23Q

13Q
1a 1a

2a

Figure 1: A coordination graph (a) and an
action dependency graph (b).

In many practical scenarios such as sensor networks
(Zhang & Lesser, 2011), wind farms (Bargiacchi
et al., 2018), mobile networks (Bouton et al., 2021),
etc., the Q-function can be approximated as the sum
of local value functions, each depending on the states
and actions of a subset of agents. A widely used
approach to representing this decomposition is the
use of the coordination graph (CG) (Guestrin et al.,
2002), which captures the pairwise coordination rela-
tionships between agents. Formally, we define a CG
as follows.
Definition 3.1 (Coordination Graph). An undirected
graph1 Gc = (N , Ec) is a CG under state s ∈ S of a value function Qπ : S ×A → R, if there exists
a local value function Qπ

ij : S ×Ai ×Aj → R for every edge (i, j) ∈ Ec, and a local value function
Qπ

i : S × Ai → R for every vertex i ∈ N , such that for any a ∈ A, the following decomposition
holds:

Qπ(s, a) =
∑
i∈N

Qπ
i (s, ai) +

∑
(i,j)∈Ec

Qπ
ij(s, ai, aj). (4)

Remark 3.2. If Gc is a subgraph of G′
c, and Gc is a CG of Qπ , then G′

c is also a CG of Qπ . Therefore,
multiple CGs may correspond to the same value function Qπ .

Without loss of generality, we assume that Gc is connected; otherwise, the problem can be decom-
posed into independent subproblems depending on the connected components of Gc. In a connected
graph, each vertex is involved in an edge, allowing the local value functions associated with vertices
to be merged into those local value functions associated with edges, yielding:

Qπ(s, a) =
∑

(i,j)∈Ec

Qπ
ij(s, ai, aj). (5)

Figure 1 (a) shows a CG where Qπ can be decomposed as:
Qπ(s, a) = Qπ

12(s, a1, a2) +Qπ
13(s, a1, a3) +Qπ

23(s, a2, a3). (6)
Throughout this paper, we focus on a MAMDP structured by a CG.

3.2 NOTATIONS

In the paper, we frequently use sets as subscripts in expressions. Let S ⊆ N , and denote its elements
in ascending order as S = {s1, s2, . . . , sk}. For a space, such as AS , we define AS :=

∏
i∈S Ai :=∏k

i=1Asi . For a vector, such as aS , we define aS := (as1 , as2 , . . . , ask), asi ∈ Asi . The notation
< i indicates the set of agents with indices smaller than i, similarly for ≤ i, > i, and ≥ i. For an
undirected graph Gc, NGc

(i) denotes the neighbor of vertex i. When there is no ambiguity, we
abbreviate NGc

(i) as Nc(i). Nc[i] := Nc(i) ∪ i, and Nc(S) denotes the neighbors of a set S, that
is, Nc(S) =

⋃
i∈S Nc(i) \ S. For a directed graph Gd, NGd

(i) denotes the parent set of vertex i.
Likewise, we abbreviate NGd

(i) as Nd(i). Similarly, Nd[i] := Nd(i) ∪ i, and Nd(S) denotes the set
of all parent nodes of vertices in S.

1In this paper, the vertices and edges of the graph are represented by agent indices and index pairs.
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4 ADG WITH OPTIMALITY GUARANTEE

4.1 ACTION DEPENDENCY GRAPH

In MARL, a deterministic joint policy π(s) is a vector-valued mapping from states to actions,
where each component corresponds to an individual action. Thus, π(s) can always be written as a
collection of independent policies (π1(s), π2(s), . . . , πn(s)). In this sense, the independent policies is
expressive enough to represent any joint deterministic policy, including an optimal one. However, this
does not imply that independent learning can converge to the optimal joint policy, since independent
policies cannot capture coordinated behaviors that rely on correlated actions across agents. The
absence of such correlations may cause independent learners to converge to suboptimal points.

To address this limitation, we introduce a broader class of policies, termed action-dependent policies,
whose inputs include not only the state but also the actions of other agents. Formally, specifying
action-dependent policies requires determining the order in which actions are generated. Without loss
of generality, we assume that actions are output according to agent indices. In this case, the general
form of agent i’s policy is πi : S ×A<i → Ai. Since some policies may not depend on the actions
of all preceding agents, we use a dependency set to represent this sparse dependency relation.
Definition 4.1 (Dependency Set). Let C ⊆ (< i) be the dependency set of agent i’s policy πi under
state s ∈ S. Then, for any aC ∈ AC , a′(<i)\C , a(<i)\C ∈ A(<i)\C , it holds that

πi(s, aC , a
′
(<i)\C) = πi(s, aC , a(<i)\C).

If C is the dependency set of agent i, then the policy of agent i depends only on the actions of agents
in C. For convenience, depending on the context, we sometimes write πi(s, a<i) as πi(s, aC). For a
joint policy, the overall action dependency structure can be represented as a directed acyclic graph
(DAG).
Definition 4.2 (Action Dependency Graph (ADG)). The DAG Gd = (N , Ed) is the Action Depen-
dency Graph of the joint policy π under state s ∈ S if, for any i ∈ N , Nd(i) is the dependency set of
πi under state s.

The acyclic nature of the ADG guarantees that dependencies do not form cycles, which would
otherwise cause decision-making deadlocks and render the policy infeasible. Figure 1(b) illustrates
the ADG of a joint policy π with the following form:

π(s) = (π1(s), π2(s, π1(s)), π3(s, π2(s, π1(s)), π1(s))) . (7)

From (7), it is evident that expressing the components of a joint policy directly in terms of action-
dependent policies becomes cumbersome. To streamline such representations, we recursively define
the following policy notation:

πi,C(s, aC) =

{
ai if i ∈ C,

πi(s, π<i,C(s, aC)) otherwise,
(8)

where π<i,C = (π1,C , . . . , πi−1,C). The key difference between πi,C and action-dependent policy πi

is that the former’s actions in (< i) \C are already determined by π<i,C , and therefore πi,C depends
only on the actions in C. A special case is πi,∅, where no other agent’s action is involved. In this
case, πi,∅ is exactly the standard independent policy, and (7) can be rewritten concisely as

π(s) = (π1,∅(s), π2,∅(s), π3,∅(s)) . (9)

4.2 COORDINATION POLYMATRIX GAME

A key reason why independent policies often converge to locally optimal solutions is the existence
of Nash equilibrium policies (Zhang et al., 2022; Kuba et al., 2022), also known as agent-by-agent
optimal policies (Bertsekas, 2021). In this subsection, we illustrate the suboptimality of Nash
equilibria through an example of coordination polymatrix game (Cai & Daskalakis, 2011), and
demonstrate how action-dependent policies can overcome this limitation.

A coordination polymatrix game can be viewed as a single-step decision problem, formulated by
a MAMDP tuple ⟨N ,S,A, P, r, γ⟩, with S = ∅ and γ = 0. In addition, the game is equipped
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with an undirected graph Gc = (N , Ec) and a set of pairwise payoff functions {rij}(i,j)∈Ec
, which

together determine the global reward r(a) =
∑

(i,j)∈Ec
rij(ai, aj). In this setting, r is equivalent to

the (state)-action value function Q : A → R, and Gc serves as the CG of Q. Figure 2 illustrates a
polymatrix game with three agents, each having two possible actions, Ai = {0, 1}, i = 1, 2, 3. The
payoff matrices specify the reward for each agent pair; for example, if agents 1 and 2 both choose
action 0, they receive a payoff of 1 together.

1 2 3

1 0 

0 0.6 

 
12r 23r

1 0 

0 0.6 

 

0

1

0 1 10

0

1

Figure 2: A polymatrix game on a line CG.

For independent policies, the joint policies π =
(1, 1, 1) and π = (0, 0, 0) are both Nash equi-
libria. However, only π = (0, 0, 0) is globally
optimal. Although π = (1, 1, 1) is suboptimal,
no single agent has an incentive to deviate uni-
laterally, since any individual deviation reduces
the total reward.

Now consider action-dependent policies with an
ADG Gd whose edge set is Ed = {(1, 2), (2, 3)}.
Suppose the policies are given by π1 = 1,
π2(0) = 0, π2(1) = 1, π3(0) = 0, and π3(1) = 1. This corresponds to the same joint policy
π = (1, 1, 1). However, if agent 1 switches its action to 0, agents 2 and 3 will also switch to 0,
leading to the joint action (0, 0, 0) with reward r(0, 0, 0) = 2, which exceeds r(1, 1, 1) = 1.2. Thus,
agent 1 is incentivized to choose action 0, driving the system toward the globally optimal policy.

4.3 OPTIMALITY GUARANTEE

The coordination polymatrix game example demonstrates that action-dependent policies can converge
to solutions stronger than Nash equilibria. Such solutions are relatively rare in the policy space and
are therefore more likely to be globally optimal. We refer to them as Gd-locally optimal policies.
Definition 4.3 (Gd-locally Optimal). Let Gd = (N , Ed) be a DAG. A joint policy π is Gd-locally
optimal under s ∈ S if, for any aNd(i) ∈ ANd(i), the following holds:

Qπ(s, πN ,Nd(i)(s, aNd(i))) = max
ai∈Ai

Qπ(s, π(<i),Nd(i)(s, aNd(i)), ai, π(>i),Nd[i](s, aNd[i])). (10)

Dense ADG 

4

3

2 5

1

4

3

2 5

1

Sparse ADG 

4

3

2 1

5

4

3

2 1

5

Sparse ADG 

4

3

2 1

5

CG

Figure 3: Different index orders of agents result in
different sparsity of the ADG.

When Gd is empty (i.e., independent poli-
cies), the notion of Gd-local optimality co-
incides with agent-by-agent optimality. As
more edges are added to Gd, condition (10)
becomes increasingly restrictive. In the ex-
treme case where Gd is a fully dense DAG
with edge set Ed = {(i, j) ∈ N × N :
i < j}, a Gd-locally optimal policy aligns
with the globally optimal policy. In gen-
eral, a joint policy with ADG Gd tends to
converge to a Gd-locally optimal solution,
as discussed in the next section. Thus, the
most straightforward way to avoid subopti-
mality is to adopt a fully dense ADG. However, the computational cost of training and executing such
policies grows rapidly with the number of agents, limiting scalability. In fact, if the CG structure can
be exploited, even some sparse ADGs suffice to guarantee global optimality. We now introduce a
graph condition that links the CG and ADG, ensuring that every Gd-locally optimal policy is also
globally optimal.
Theorem 4.4 (Optimality of ADG, proof in Appendix C). Let s ∈ S, and let Gd(s) be a DAG and
Gc(s) be the CG of Qπ under state s. Suppose that for every s ∈ S, the policy π is Gd(s)-locally
optimal and the following holds:

NGd(s)(i) ⊇ NGc(s)(≥ i), ∀i ∈ N . (11)

Then π is globally optimal.
Remark 4.5. We write Gd(s) and Gc(s) to emphasize that the theorem can apply to problems where
the CG may vary across states. For brevity, unless otherwise specified, we assume a fixed CG across
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all states and denote it by Gc, with the corresponding fixed ADG denoted by Gd. Nevertheless, all
subsequent results can immediately extend directly to state-dependent CG settings.

CG ADG

1 4321 432 1 4321 432

1

43

2 1

43

2 1

43

2 1

43

2

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

Figure 4: ADGs generated by Algorithm 2 for CG
topologies: line, ring, and star.

This theorem indicates that the ADG can be de-
signed from the CG to guarantee that Gd-local
optimality implies global optimality. Two spe-
cial cases illustrate this principle: (i) When both
Gc and Gd are empty, condition (11) reduces
to Nd(i) = Nc(≥ i) = ∅, in which case the
Q-function admits a VDN decomposition and
any Nash equilibrium is globally optimal, con-
sistent with Dou et al. (2022). (ii) When Gc is
complete and Gd is fully dense, condition (11)
is also satisfied. Thus, for any CG, a fully dense
ADG guarantees global optimality, since every
CG is a subgraph of the complete graph.

If the agent indices are predetermined, replacing
the superset relationship with an equality in con-
dition (11) uniquely yields the sparsest ADG.
However, the choice of index order strongly in-
fluences the sparsity of Gd, as shown in Figure 3.
Determining the optimal index order is analo-
gous to finding the optimal elimination order in variable elimination (VE), an NP-complete problem
(Kok & Vlassis, 2006). Despite this complexity, practical heuristics such as the greedy algorithm
described in Appendix E (Algorithm 2) can be employed. Figure 4 illustrates the resulting ADGs for
several simple CG topologies.

5 CONVERGENCE OF ACTION-DEPENDENT POLICY

5.1 CONVERGENCE TO Gd-LOCALLY OPTIMAL POLICY

In this section, we introduce a policy iteration algorithm for MARL in the tabular setting. This
algorithm highlights the advantage of employing action-dependent policies, enabling convergence to
a Gd-locally optimal policy rather than merely an agent-by-agent optimal one.

Our approach extends the multi-agent policy iteration (MPI) framework proposed in Bertsekas (2021),
which decomposes the joint policy update step of standard policy iteration (PI) (Sutton, 2018) into
sequential updates of individual agents’ policies, thereby mitigating the computational complexity of
PI. However, MPI guarantees convergence only to an agent-by-agent optimal policy, which is often
suboptimal. To address this limitation, we propose Algorithm 1, which incorporates action-dependent
policies into the MPI framework and ensures convergence to a Gd-locally optimal policy.

Algorithm 1 Action-Dependent Multi-Agent Policy Iteration

Initialize policies π1
i , i ∈ N , with ADG Gd under every s ∈ S

for k = 1, 2, . . . do
// Policy Evaluation
Compute V πk

by solving V = TπkV and derive Qπk

from V πk

// Policy Improvement
for i = 1, 2, . . . , n do

Update πk+1
i for every (s, a<i) pair by

πk+1
i (s, a<i)← argmax

ai

Qπk

(s, πk+1
(<i),Nd(i)

(s, aNd(i)), ai, π
k
(>i),Nd[i]

(s, aNd[i])). (12)

end for
end for
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Since the policies of agents in (< i) are always updated before agent i, the update rule (12) can
always be applied in succession. Since the image set of argmax may have multiple values, we
arbitrarily select one of them. Specifically, if πk

i (s, a<i) is already in the image set, then we prioritize
selecting πk

i (s, a<i). Note that while the update is specified for every (s, a<i) pair, the argmax in
(12) only depends on (s, aNd(i)), so the actual computation only needs to be performed for every
(s, aNd(i)) pair. When update rule no longer changes πk

i for any (s, a<i), the algorithm reaches
convergence. The following theorem describes the convergence property:
Theorem 5.1 (Convergence of Algorithm 1, proof in Appendix D). Let {πk}∞k=1 be the policy
sequence generated by Algorithm 1. Then {πk}∞k=1 converges to a Gd-locally optimal policy in a
finite number of steps.

It is straightforward to verify that once all individual policies converge, the joint policy is Gd-locally
optimal. Thus, the main challenge in proving this theorem lies in establishing convergence of all
individual policies. Chen & Zhang (2023) studied action-dependent policies in the policy gradient
method and encountered a similar issue, which they bypassed by assuming that individual policies
always converge. In contrast, we show that the joint policy converges regardless of whether individual
policies converge directly (see Appendix Lemma D.1). Although convergence of the joint policy does
not automatically imply Gd-local optimality, we can inductively establish that all individual policies
converge from the convergence of the joint policy (see Appendix Lemma D.6). Therefore, our policy
iteration method does not require additional assumptions and provides a complete resolution to this
challenge.

5.2 CONVERGENCE TO GLOBALLY OPTIMAL POLICY

When the CG of an MDP is fixed, independent of both the state and the joint policy (e.g., polymatrix
games), we can construct an ADG that satisfies (11) based on the CG, and then apply Algorithm 1 to
update policies under this ADG. Upon convergence, Theorem 5.1 ensures that the resulting policy is
Gd-locally optimal, and by Theorem 4.4, it is also globally optimal.
Corollary 5.2. Assume Gc is the CG of the state-action value function Qπ for all policies π and
states s. Let {πk}∞k=1 be the policy sequence generated by Algorithm 1 with an ADG Gd. If Gc and
Gd satisfy (11), then {πk}∞k=1 converges to a globally optimal policy in a finite number of steps.

In more general scenarios, the CG may be dynamic. To guarantee convergence to an optimal solution,
the ADG must also evolve accordingly. Such changes in the CG are typically driven by both the
state and the joint policy. We denote this dependence by Gc(s, π). For state-dependent changes,
it suffices to design a distinct ADG for each state, ensuring that Equation (11) remains valid. In
contrast, for policy-dependent changes, the ADG should be updated after each policy iteration to
preserve convergence to the globally optimal policy. A key challenge arises here: directly modifying
the ADG may alter the structural dependencies of individual policies. For instance, under one ADG,
agent i may depend only on the action of agent j, whereas under another ADG it may additionally
depend on the actions of both j and k. If the policy of agent i lacks the interface to accommodate
these additional dependencies, direct modification of the ADG becomes infeasible.

To address this issue, we could employ an indirect construction. Specifically, we build a set of
individual policies such that, although their functional forms may differ before and after the ADG
update, their induced joint policies remain identical. For deterministic policies, this construction is
straightforward. Given a joint policy π̃ with independent components π̃(s) = (π̃1(s), . . . , π̃n(s)),
we define a set of action-dependent policies {πi}i∈N with new ADG such that,

π1(s)← π̃1(s), π2(s, π1(s))← π̃2(s), . . . , πn(s, π̃1(s), . . . , π̃n−1(s))← π̃n(s). (13)

This guarantees that the joint policies before and after the ADG update are equivalent. Consequently,
if the CG changes after (12), we reconstruct the new policy πk+1

i according to (13). This ensures
that the ADG and CG continue to satisfy Equation (11), thereby allowing Algorithm 1 to achieve the
optimal solution.
Corollary 5.3 (Proof in Appendix D). Assume Gc(s, π) is the CG of the state-action value Qπ for
joint policy π and state s. Let {πk}∞k=1 be the policy sequence generated by Algorithm 1, with policy
reconstruction according to (13) upon CG change. Then {πk}∞k=1 converges to a globally optimal
policy in a finite number of steps.

7
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6 EXPERIMENTS

6.1 COORDINATION POLYMATRIX GAMES

To validate our theoretical results, we evaluate Algorithm 1 on polymatrix games with CGs of
different topologies: star (5 agents), ring (5 agents), tree (7 agents), and mesh (9 agents). The payoff
matrices are randomly generated, with the maximum reward set equal to the number of CG edges.
We compare three ADG types: sparse (generated by Algorithm 2 to satisfy (11)), fully dense, and
empty. Additional experimental details are provided in Appendix F. Figure 5 reports the learning
curves averaged over 100 runs. Both sparse and dense ADGs consistently reach the reward upper
bound, with their learning curves being very close. In contrast, empty ADGs often become trapped in
suboptimal Nash equilibria.
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Figure 5: Results of coordination polymatrix game.

To assess computational efficiency, Figure 6 (right) shows the average per-iteration runtime across
100 experiments when each agent has two actions. Shaded areas represent the 95% confidence
intervals computed over multiple independent runs (similarly hereafter). As runtime is primarily
determined by policy dimension and dimensions of dense ADG policies are independent of CG
structure, their curves nearly overlap. Due to exponential growth in policy dimension, dense ADGs
incur substantially higher costs as agent number increases, whereas sparse ADGs maintain scalability.
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Figure 6: Results of MAPPO on star CG (left) and average time per iteration (right).

We also extend the MAPPO algorithm to incorporate action-dependent policies to examine the
convergence of action-dependent policies under more practical learning settings. Nevertheless, ADGs
are not tailored to any specific MARL algorithm. Any method that includes an actor module can
be adapted to the action-dependent policy. For algorithms based on independent actor, one can
simply replace the independent actor with an action-dependent actor following the ADG structure.
For auto-regressive actor, the adaptation amounts to removing action information that lies outside
the ADG. For MAPPO, we transform the independent policy πθi(ai|s) into the action-dependent
form πθi(ai|s, aNd(i)). This requires a corresponding modification of the optimization objective to
properly handle the action-dependent policy. Consider MAPPO (Yu et al., 2022), where the original
objective is

L(θ) = Es∼D,a∼πθold

[
n∑

i=1

min
(
rθi(ai, s)Aπθold

(s, a), clip(rθi(ai, s), 1± ε)Aπθold
(s, a)

)]
,

8
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where rθi(ai, s) =
πθi

(ai|s)
πθi,old

(ai|s) , andD denotes the distribution in the replay buffer. To adapt this objec-

tive for action-dependent policies, we replace rθi(ai, s) with rθi(ai, s, aNd(i)) =
πθi

(ai|s,aNd(i))

πθi,old
(ai|s,aNd(i))

.

Figure 6 (left) presents results of the extended MAPPO on polymatrix games with a star CG, using
fixed payoff matrices (maximum reward 20) and 10 random seeds. As the value of the largest
suboptimal point is 18, both sparse and dense ADGs successfully escape all suboptimal points. The
slight deviations from the maximum reward are primarily attributed to exploratory behavior caused
by entropy regularization. These results demonstrate that even in non-tabular settings parameterized
by neural networks, Theorem 4.4 provides a reliable design principle for sparse ADGs. In future
work, we also plan to provide a rigorous theoretical analysis to substantiate these empirical findings.

6.2 ATSC

Figure 7: 3x3 road network.

To further examine practical applicability, we evaluate the extended
MAPPO on adaptive traffic signal control (ATSC) problem, a bench-
mark with a natural coordination structure. Experiments are conducted
on 2x2 (4 agents), 3x3 (9 agents), and 4x4 (16 agents) road networks
using the Simulation of Urban Mobility (SUMO) platform Lopez et al.
(2018) and SUMO-RL Alegre (2019). The CG is defined by adjacency
between intersections, and sparse ADGs are derived with Algorithm 2.
To verify the computational efficiency improvement of sparse ADGs
in deep learning settings, we measure the FLOPs required for a single
forward pass of the action-dependent policy employed in the ATSC,
as presented in Table 1. Detailed experimental protocols and hyperpa-
rameters are given in Appendix F.

As shown in Figure 8, sparse ADGs achieve performance comparable to dense ADGs, and both
outperform empty ADGs. This indicates that even with approximate CG structures, sparse ADGs
retain the efficiency of action-dependent policies without sacrificing optimality.

Table 1: FLOPs of a single forward pass in ATSC.

environment dense ADG sparse ADG
2x2grid 45312 42496
3x3grid 140112 104832
4x4grid 412672 232448
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Figure 8: Results of ATSC.

7 CONCLUSION

In this work, we established a theoretical framework for action-dependent policies in multi-agent
reinforcement learning by introducing the ADG and the notion of Gd-locally optimal policies. We
further identified conditions under which these policies coincide with globally optimal solutions in
coordination graph structured problems, and proposed a policy iteration algorithm with guaranteed
convergence. Finally, we validated our theory and demonstrated its practical potential through
experiments on polymatrix games and adaptive traffic signal control. Recognizing that complex
environments may involve unknown CGs, hypergraph CGs, we aim to explore the adaptability and
potential of ADGs in these challenging settings in future research.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS

We used LLMs for improving the grammar and clarity of the manuscript. All scientific content, ideas,
and analysis are original and authored by the listed contributors.

B MATHEMATICAL PRELIMINARIES

In the appendix, we first reformulate the MAMDP as a sequentially expanded MDP (SEMDP)
(Ye et al., 2022; Li et al., 2023; Bhattacharya & Bal, 2025), and then establish our proofs on this
reformulation. The SEMDP transforms a multi-agent system into a single-agent MDP by expanding
the state space. Importantly, the SEMDP reformulation is non-essential: it does not introduce any new
assumptions, and our results can still be proven directly under the MAMDP formulation. However,
introducing the SEMDP greatly simplifies the notation used in the proofs.

Given an MAMDP ⟨N ,S,A, P̃ , r̃, γn⟩, we construct a SEMDP denoted by ⟨N ,S,A, P, r, γ⟩, where

• S is identical to the state space in the MAMDP;
• A =

∏n
i=1Ai is identical to the joint action space in the MAMDP;

• Z =
⋃

i∈N Zi is the expanded state space, where Zi = S ×
∏i−1

j=1Aj is the individual
expanded state space for agent i;

• P : Z × Z ×
⋃

i∈N Ai → [0, 1] is the transition kernel of the SEMDP;

• r :
⋃

i∈N (Zi ×Ai)→ R is the reward function of the SEMDP;
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The SEMDP transition kernel is defined as

P ((s, a≤i)|(s, a<i), ai) = 1, ∀s ∈ S, a≤i ∈ A≤i, 0 < i < n, (14)

P (s′|(s, a<n), an) = P̃ (s′|s, a), ∀s ∈ S, a≤n ∈ A≤n. (15)

The reward function is defined as

r((s, a<i); ai) = 0, ∀s ∈ S, a≤i ∈ A≤i, 0 < i < n, (16)

r((s, a<n); an) = r̃(s, a), ∀s ∈ S, a ∈ A. (17)

In the appendix, the joint policy in the SEMDP is denoted by π : Z →
⋃

i∈N A, where

π(s, a<i) ∈ Ai, ∀s ∈ S, a<i ∈ A<i.

The individual policy of agent i is defined as πi := π|Zi , which restricts the function to Zi. This
formulation is identical to the individual policy in the MAMDP. To distinguish between the joint
policies in MAMDP and SEMDP, we rewrite the joint policy in the MAMDP as π̂ := πk

N ,∅ =

(π1,∅, . . . , πn,∅).

In the SEMDP, the state value function takes the form V : Z → R, and the state-action value function
takes the form Q :

⋃
i∈N (Zi ×Ai)→ R. For any V ∈ R(Z), we define

QV (s, a<i; ai) := r(s, a<i; ai) + γ
∑
z′∈Z

P (z′ | (s, a<i), ai)V (z′). (18)

The Bellman operator Tπ and the optimal Bellman operator T are given by

TπV (z) = QV (s, a<i;πi(s, a<i)), T V (z) = max
ai

QV (s, a<i; ai). (19)

The state value function V π is the fixed point of Tπ , and the state-action value function is Qπ := QV π

.
The optimal state value function V ∗ is the fixed point of T , and Q∗ := QV ∗

. The semicolon in Q
and r highlights the action dependence. However, Q(s, a<n; an) can also be regarded as the value
function of the full joint action and thus is sometimes written simply as Q(s, a).

Proposition B.1. We summarize several fundamental properties of the SEMDP:

1. V π̂(s) = γ1−nV π(s), Qπ̂(s, a) = γ1−nQπ(s, a), where V π̂ and Qπ̂ denotes the state and
state-action value function in the original MAMDP.

2. Qπ(s, a<i; ai) = γV π(s, a≤i), 1 ≤ i < n.

3. Qπ(s, a<i; ai) = γn−iQπ(s, π(<n),(≤i)(s, a≤i);πn,(≤i)(s, a≤i)), 1 ≤ i < n.

Proof. (i) We expand the definition of V π̂ in the MAMDP:

V π̂(s) = E

[ ∞∑
t=0

γntr(st, π̂(st))

∣∣∣∣∣st+1 ∼ P (·|st, π̂(st)), s0 = s

]

= E

[ ∞∑
t=0

n∑
i=1

γnt+i−nr(st, π<i,∅(st);πi,∅(st))

∣∣∣∣∣st+1 ∼ P (·|st, π̂(st)), s0 = s

]

= E

[
γ1−n

∞∑
t=0

n∑
i=1

γnt+i−1r(st, π<i,∅(st);πi,∅(st))

∣∣∣∣∣st+1 ∼ P (·|st, π̂(st)), s0 = s

]

= γ1−nE

[ ∞∑
t′=0

γt′r(zt′ ;π(zt′))

∣∣∣∣∣zt′+1 ∼ P (·|zt′ , π(zt′)), z0 = s

]
= γ1−nV π(s)

Similarly, we can derive that Qπ̂(s) = γ1−nQπ(s).
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(ii) For 1 ≤ i < n, we compute:

Qπ(s, a<i; ai) = r(s, a<i; ai) + γ
∑
z′∈Z

P (z′ | (s, a<i), ai)V
π(z′)

= γV π(s, a≤i).

(iii) Repeatedly unrolling the recursion yields:
Qπ(s, a<i; ai) = γV π(s, a≤i)

= γQπ(s, a≤i;πi+1,(≤i)(s, a≤i))

= · · · = γn−iQπ(s, π(<n),(≤i)(s, a≤i);πn,(≤i)(s, a≤i)).

From Proposition B.1(i), we see that the value functions in the SEMDP and the MAMDP are
equivalent up to a constant factor. Therefore, it can be easily verified that (1) an optimal policy in
the SEMDP remains optimal in the original MAMDP, (2) Qπ and Qπ̂ have the same CG, and (3) in
update rule (12), replacing the Q-function with its SEMDP counterpart does not affect the update
outcome:

πk+1
i (s, a<i)← argmax

ai

Qπk

(s, πk+1
(<i),Nd(i)

(s, aNd(i)); ai). (20)

C PROOF OF OPTIMALITY

In the appendix, we generalize the concept of the dependency set to more general functions to simplify
the description of subsequent proofs.
Definition C.1 (Dependency Set). Let f : AS → Y be a mapping defined on the joint action space
of a subset of agents S ⊆ N . A subset C ⊆ S is called a dependency set of f if for any s ∈ S,
aC ∈ AC , a′S\C , aS\C ∈ AS\C , the following holds:

f(aC , a
′
S\C) = f(aC , aS\C).

For notational convenience, we may permute the order of variables when writing a function, but the
evaluation of the function always follows the ordering of variables according to their agent indices.

Since the form of the Q-function changes in the SEMDP setting, we restate the definition of Gd-
locally optimal policies for SEMDPs. Note that, according to Proposition B.1 (i) and (iii), this
definition is equivalent to the one given in the main text.
Definition C.2 (Gd-locally Optimal in SEMDP). Let Gd be a DAG. A joint policy π is Gd-locally
optimal under s ∈ S if, for any aNd(i) ∈ ANd(i), the following holds:

Qπ(s, π(<i),Nd(i)(s, aNd(i));πi,Nd(i)(s, aNd(i))) = max
ai

Qπ(s, π(<i),Nd(i)(s, aNd(i)); ai). (21)

Lemma C.3. For any fixed s ∈ S, let Gd be a DAG. Suppose a joint policy π is Gd-locally optimal
at s. If for every i ∈ N , the set Si is the dependency set of the function argmaxai

Qπ(s, a(<i); ai)
with respect to a(<i) at s, and if Nd(i) ⊇ Si, then π is globally optimal.

Proof. Fix any s ∈ S. Since π is Gd-locally optimal, we have
πi(s, a<i) ∈ argmax

ai

Qπ(s, π(<i),Nd(i)(s, aNd(i)); ai)

= argmax
ai

Qπ(s, aNd(i), π(<i)\Nd(i),Nd(i)(s, aNd(i)); ai).
(22)

Because Nd(i) ⊇ Si, where Si is the dependency set of argmaxai
Qπ(s, a(<i); ai), it follows that

πi(s, a<i) ∈ argmax
ai

Qπ(s, a<i; ai), ∀a<i ∈ A<i. (23)

Therefore,
V π(s, a<i) = TπV π(s, a<i) = Qπ(s; a<i;πi(s, a<i))

= max
ai

Qπ(s; a<i; ai) = T V π(s, a<i),
(24)

which shows that V π is a fixed point of T . Hence, π is globally optimal.
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Lemma C.4. Let Q be a state–action value function, and let Gc = (N , Ec) be the CG of Q at state s.
Then for any i ∈ N , there exist functions Q1 : S ×ANc[≥i] → R and Q2 : S ×A<i → R such that

Q(s, a) = Q1(s, aNc[≥i]) +Q2(s, a<i), ∀s ∈ S, a ∈ A, (25)

where Nc[≥ i] := Nc(≥ i) ∪ (≥ i).

Proof. Decomposing Q according to the structure of Gc yields

Q(s, a) =

 ∑
(j,k)∈Ec[≥i,<i]

+
∑

(j,k)∈Ec[≥i]

+
∑

(j,k)∈Ec[<i]

Qjk(s, aj , ak), (26)

where Ec[≥ i, < i] denotes the subset of Ec containing edges between vertices in the sets ≥ i and < i,
and Ec[≥ i] := Ec[≥ i,≥ i] containing edges within the set ≥ i. Noting that Ec[≥ i, < i] = Ec[≥
i,Nc(≥ i)], thus, we can rewrite:

Q(s, a) =
( ∑

(j,k)∈Ec[≥i,Nc(≥i)]

+
∑

(j,k)∈Ec[≥i]

+
∑

(j,k)∈Ec[Nc(≥i)]

+
∑

(j,k)∈Ec[<i]\Ec[Nc(≥i)]

)
Qjk(s, aj , ak).

(27)
Define

Q1(s, aNc[≥i]) :=
( ∑

(j,k)∈Ec[≥i,Nc(≥i)]

+
∑

(j,k)∈Ec[≥i]

+
∑

(j,k)∈Ec[Nc(≥i)]

)
Qjk(s, aj , ak), (28)

and
Q2(s, a<i) :=

∑
(j,k)∈Ec[<i]\Ec[Nc(≥i)]

Qjk(s, aj , ak). (29)

Then (25) follows.

Proof of Theorem 4.4

Proof. For any fixed state s, we abbreviate Nc(i) = NGc(s)(i) and Nd(i) = NGd(s)(i). We proceed
by induction.

Base case: We aim to show that

max
an

Qπ(s, a<n; an) = Qπ(s, a<n;πn(s, a<n)), (30)

and that Nc(≥ n) is the dependency set of argmaxan
Qπ(s, a<n; an).

By Lemma C.4, there exist functions Q1 and Q2 such that

Qπ(s, a<n; an) = Q1(s, aNc[n]) +Q2(s, a<n). (31)

Consider
Qπ(s, a(<n)\Nc(n), aNc(n); an)−Qπ(s, a′(<n)\Nc(n)

, aNc(n); an)

=Q2(s, a(<n)\Nc(n), aNc(n))−Q2(s, a
′
(<n)\Nc(n)

, aNc(n)),
(32)

which is independent of an. Thus, the maximizing an is unaffected by a<n\Nc(n), implying that

argmax
an

Qπ(s, a<n\Nc(n), aNc(n); an) = argmax
an

Qπ(s, a′<n\Nc(n)
, aNc(n); an). (33)

Therefore, Nc(n) = Nc(≥ n) forms the dependency set of argmaxan
Qπ(s, a<n; an). Since π is

Gd-locally optimal and Nd(n) ⊇ Nc(≥ n), it follows that

πn(s, a<n) ∈ argmax
an

Qπ(s, a<n; an), (34)

and hence
max
an

Qπ(s, a<n; an) = Qπ(s, a<n;πn(s, a<n)). (35)
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Induction step: Assume for some i+ 1 that

max
a≥i+1

Qπ(s, a<n; an) = Qπ(s, π(<n),(<i+1)(s, a<i+1);πn,(<i+1)(s, a<i+1)), (36)

and that Nc(≥ i+ 1) is the dependency set of argmaxai+1
Qπ(s, a<(i+1); ai+1). We now prove the

case for i.

By Lemma C.4 and Proposition B.1 (iii), there exist functions Q1 and Q2 such that

Qπ(s, a<i; ai) = γn−iQπ(s, π(<n),(≤i)(s, a≤i);πn,(≤i)(s, a≤i))

= Q1(s, πNc[≥i],(≤i)(s, a≤i)) +Q2(s, π(<i),(<i)(s, a<i)).
(37)

From Equation (36), we obtain

π(≥i+1),(≤i)(s, a≤i) ∈ argmax
a≥i+1

Q1(s, aNc[≥i]), (38)

and hence
Q1(s, ai, aNc(≥i), π(≥i+1),(≤i)(s, aNc(≥i), a(<i)\Nc(≥i)))

= max
a≥i+1

Q1(s, aNc[≥i])

= Q1(s, ai, aNc(≥i), π(≥i+1),(≤i)(s, aNc(≥i), a
′
(<i)\Nc(≥i))).

(39)

Following the same argument as in (32),

Qπ(s, aNc(≥i), a(<i)\Nc(≥i); ai)−Qπ(s, aNc(≥i), a
′
(<i)\Nc(≥i); ai)

=Q1(s, πNc(≥i),(<i)(s, aNc(≥i), a(<i)\Nc(≥i)), ai) +Q2(s, π(<i),(<i)(s, aNc(≥i), a(<i)\Nc(≥i)))

−Q1(s, πNc(≥i),(<i)(s, aNc(≥i), a
′
(<i)\Nc(≥i)), ai)−Q2(s, π(<i),(<i)(s, aNc(≥i), a

′
(<i)\Nc(≥i)))

=Q2(s, π(<i),(<i)(s, aNc(≥i), a(<i)\Nc(≥i)))−Q2(s, π(<i),(<i)(s, aNc(≥i), a
′
(<i)\Nc(≥i))).

(40)
Therefore,

argmax
ai

Qπ(s, aNc(≥i), a(<i)\Nc(≥i); ai) = argmax
ai

Qπ(s, aNc(≥i), a
′
(<i)\Nc(≥i); ai), (41)

which implies that Nc(≥ i) is the dependency set of argmaxai
Qπ(s, a<i; ai). Moreover, since π is

Gd-locally optimal and Nd(i) ⊇ Nc(≥ i), it follows that

πi(s, a<i) ∈ argmax
ai

Qπ(s, π(<i),Nd(i)(s, aNd(i)); ai)

= argmax
ai

Qπ(s, aNc(≥i), π(<i)\Nc(≥i),Nd(i)(s, aNd(i)); ai)

= argmax
ai

Qπ(s, a<i; ai).

(42)

Consequently, by Proposition B.1 (iii), it holds that

Qπ(s, π(<n),(<i)(s, a<i);πn,(<i)(s, a<i))

=γi−nQπ(s, a<i;πi(s, a<i))

=max
ai

γi−nQπ(s, a<i; ai)

=max
ai

Qπ(s, π(<n),(<i+1)(s, a<i+1);πn,(<i+1)(s, a<i+1))

=max
ai

max
a≥i+1

Qπ(s, a<n; an) = max
a≥i

Qπ(s, a<n; an).

(43)

Conclusion: By induction, for any given s, Nc(≥ i) is the dependency set of
argmaxai

Qπ(s, a<i; ai) for all i ∈ N . Together with the condition Nd(i) ⊇ Nc(≥ i), Lemma C.3
guarantees that π is globally optimal.
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D PROOF OF CONVERGENCE

We first prove that the joint policy πk
N ,∅(s) in MAMDP converges.

Lemma D.1. Let {πk}∞k=1 be the policy sequence generated by Algorithm 1. Then both V πk

(s) and
πk
N ,∅(s) converge within a finite number of steps.

Proof. From the update rule (20), for any s ∈ S, 0 ≤ i ≤ n, we have

Tπk+1V πk

(s, πk+1
<i,∅(s)) = Qπk

(s, πk+1
<i,∅(s);π

k+1
i (s, πk+1

<i,∅(s)))

≥ Qπk

(s, πk+1
<i,∅(s);π

k
i (s, π

k+1
<i,∅(s)))

= V πk

(s, πk+1
<i,∅(s)).

(44)

We now proceed by induction. Assume that

T j
πk+1V

πk

(s, πk+1
<i,∅(s)) ≥ T

j−1
πk+1V

πk

(s, πk+1
<i,∅(s)), ∀s ∈ S, 0 ≤ i ≤ n. (45)

We now prove that

T j+1
πk+1V

πk

(s, πk+1
<i,∅(s)) ≥ T

j
πk+1V

πk

(s, πk+1
<i,∅(s)), ∀s ∈ S, 0 ≤ i ≤ n. (46)

When i < n,

T j+1
πk+1V

πk

(s, πk+1
<i,∅(s)) = γT j

πk+1V
πk

(s, πk+1
<i+1,∅(s))

≥ γT j−1
πk+1V

πk

(s, πk+1
<i+1,∅(s))

= T j
πk+1V

πk

(s, πk+1
<i,∅(s)).

(47)

When i = n,

T j+1
πk+1V

πk

(s, πk+1
<n,∅(s)) = r(s, πk+1

≤n,∅(s)) + γ
∑
s′

P (s′|s, πk+1
≤n,∅(s))T

i
πk+1V

πk

(s′)

≥ r(s, πk+1
≤n,∅(s)) + γ

∑
s′

P (s′|s, πk+1
≤n,∅(s))T

i−1
πk+1V

πk

(s′)

= T j
πk+1V

πk

(s, πk+1
<n,∅(s)).

(48)

Thus,

V πk+1

(s, πk+1
<i,∅(s)) = lim

j→∞
T j
πk+1V

πk

(s, πk+1
<i,∅(s)) ≥ V πk

(s, πk+1
<i,∅(s)) ≥ V πk

(s, πk
<i,∅(s)).

(49)
By the monotone convergence theorem, V πk

(s, πk
<i,∅(s)) converges. Since the policy space is finite,

V πk

(s, πk
<i,∅(s)), ∀ i ∈ N , s ∈ S converges within a finite number of steps.

Next, we prove by contradiction that πk
N ,∅(s) also converges. Suppose that for some M , V πk

(s) has
already converged when k ≥ M . Assume that for k ≥ M , πk

N ,∅(s) ̸= πk+1
N ,∅(s). Let i be the first

17
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index such that πk
i,∅(s) ̸= πk+1

i,∅ (s) while πk
<i,∅(s) = πk+1

<i,∅(s). Then

V πk+1

(s) = γV πk+1

(s, πk+1
<2,∅(s)) = · · · = γn−1V πk+1

(s, πk+1
<n,∅(s))

= γn−1

(
r(s, πk+1

≤n,∅(s)) + γ
∑
s′

P (s′|s, πk+1
≤n,∅(s))V

πk+1

(s′)

)

= γn−1

(
r(s, πk+1

≤n,∅(s)) + γ
∑
s′

P (s′|s, πk+1
≤n,∅(s))V

πk

(s′)

)
= γn−1Qπk (

s, πk+1
<n,∅(s);π

k+1
n (s, πk+1

<n,∅(s))
)

≥ γn−1Qπk (
s, πk+1

<n,∅(s);π
k
n(s, π

k+1
<n,∅(s))

)
= γn−2Qπk (

s, πk+1
<n−1,∅(s);π

k+1
n−1(s, π

k+1
<n−1,∅(s))

)
≥ · · · ≥ γi−1Qπk

(s, πk+1
<i,∅(s);π

k+1
i (s, πk+1

<i,∅(s)))

> γi−1Qπk

(s, πk
<i,∅(s);π

k
i (s, π

k
<i,∅(s)))

= γi−1V πk

(s, πk
<i,∅(s)) = V πk

(s).

(50)

The first equality follows from Proposition B.1 (ii). The third equality uses the fact that V πk

(s) has
already converged. The strict inequality follows from the update rule, which preferentially selects the
pre-update policy.

Hence V πk+1

(s) > V πk

(s), contradicting the assumption that V πk

(s) has converged. Therefore,
πk
N ,∅(s) = πk+1

N ,∅(s) for k ≥M , implying that the joint policy πk
N ,∅(s) also converges.

In order to deduce the convergence of individual policies from the convergence of πk
N ,∅(s), we

employ induction. To make the induction work properly, we need to construct a special ordering.
Definition D.2. Let C = P({1, 2, . . . , n − 1}), where P denotes the power set. We introduce a
binary relation < on C as follows:

A < B ⇐⇒ min(A \B) > min(B \A), A,B ∈ C. (51)

For the case involving the empty set, we define min∅ := n.
Lemma D.3. For any A,B ∈ C, the following holds:

A < B ⇐⇒ min(A∆B) ∈ B \A,

where ∆ denotes the symmetric difference, i.e., A∆B := (A \B) ∪ (B \A).

Proof. We first prove the direction ”⇐”. Let k = min(A∆B) ∈ B\A. Since A\B ⊆ A∆B, we have
min(A∆B) ≤ min(A\B). Moreover, because k ∈ B\A, it follows that min(A∆B) = min(B\A).
Since (B\A)∩(A\B) = ∅, we obtain min(A∆B) < min(A\B). Thus, min(B\A) < min(A\B),
i.e., A < B.

Conversely, assume A < B. Then min(B \A) < min(A \B). Hence,

min(A∆B) = min{min(B \A),min(A \B)} = min(B \A). (52)

Therefore, min(A∆B) ∈ B \A.

Proposition D.4. The binary relation < on C is a strict total order.

Proof. Irreflexivity and asymmetry are immediate. We now prove that < is connected and transitive.

(Connectedness): Let A,B ∈ C with A ̸= B. We distinguish three cases:

(i) If A ⊊ B, then B \ A ̸= ∅. Hence min(B \ A) ≤ n− 1 and min(A \ B) = n > min(B \ A),
so A < B.

(ii) If B ⊊ A, by symmetry we obtain B < A.
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(iii) If A ⊈ B and B ⊈ A, then min(A \B) ̸= min(B \A). Thus, either A < B or B < A.

(Transitivity): Let A,B,C ∈ C with A < B and B < C.

If A = ∅, then clearly A < C. Otherwise, set k1 = min(A∆B) and k2 = min(B∆C). By
Lemma D.3, we have k1 ∈ B \A and k2 ∈ C \B. We analyze three cases:

(i) If k1 < k2, then k1 /∈ B∆C. Since k1 ∈ B, it follows that k1 ∈ B ∩C. Moreover, as k1 ∈ B \A,
we have k1 ∈ C \A. Now, we only need to show k1 = min(A∆C). For all i < k1 with i ∈ A ∪B,
we have i /∈ A∆B, hence i ∈ A∩B. Since k1 < k2, we also get i ∈ A∩B∩C, implying i /∈ A∆C.
Thus k1 = min(A∆C), and by Lemma D.3, A < C.

(ii) If k2 < k1, then by symmetry, k2 = min(A∆C) and k2 ∈ C \A. Hence A < C.

(iii) If k1 = k2, then k1 ∈ B \A and k1 ∈ C \B simultaneously, which is a contradiction. Thus this
case cannot occur.

Therefore, < is transitive.

After defining the strict total order <, we arrange the elements of C in ascending order as C =
{C1, C2, . . . , C|C|}.
Lemma D.5. Let Cm ∈ C and Cm ̸= ∅. Let Gd be the ADG of π under state s. If Nd(i) ⊉ Cm, i ∈
N , denote k = min(Cm \Nd(i)), and define

Cj = A ∪B := {x ∈ Cm | x < k} ∪ {x ∈ {1, . . . , n− 1} | x > k}. (53)

Then we have j < m. Furthermore, if i ̸= k, the following holds:

πi,Cj
(s, πCj ,Cm

(s, aCm
)) = πi,Cm

(s, aCm
). (54)

Proof. We first verify that j < m. Since Nd(i) ⊉ Cm, we have Cm \Nd(i) ̸= ∅, and hence k < n.
By construction of Cj , min(Cm \ Cj) = k. Therefore,

min(Cj∆Cm) = min{min(Cj \ Cm),min(Cm \ Cj)} = min{min(Cj \ Cm), k}. (55)

Because min(Cj \Cm) > k, we obtain min(Cj∆Cm) = k ∈ Cm \Cj . By Lemma D.3, this implies
Cj < Cm, i.e., j < m.

When i ∈ Cm, since i ̸= k, we have i ∈ Cm ∩ Cj , and therefore

πi,Cj
(s, πCj ,Cm

(s, aCm
)) = ai = πi,Cm

(s, aCm
). (56)

When i /∈ Cm, we consider the two cases k = 1 and k > 1 respectively.

(i) k = 1.

In this case, Cj = {2, 3, . . . , n− 1}. We analyze the construction of πi,Cj (s, aCj ):

πi,Cj
(s, aCj

) =πi(s, π(<i),Cj
(s, aCj

))

=πi(s, π1,Cj
(s, aCj

), π(<i)∩Cj ,Cj
(s, aCj

))

=πi(s, π1(s), a(<i)∩Cj
)

=πi(s, π1(s), a(<i)∩(Cm\{1}), a(<i)\Cm
).

(57)

Substituting πCj ,Cm(s, aCm) into aCj , we obtain

πi,Cj (s, πCj ,Cm(s, aCm))

=πi(s, π(<i),Cj
(s, aCj

))
∣∣
aCj

=πCj,Cm (s,aCm )

=πi(s, π1(s), a(<i)∩(Cm\{1}), π(<i)\Cm,Cm
(s, aCm

)).

(58)

Since 1 /∈ Nd(i), πi does not depend on a1. Thus, replacing π1(s) with a1, we obtain

πi,Cj
(s, πCj ,Cm

(s, aCm
))

=πi(s, a1, a(<i)∩(Cm\{1}), π(<i)\Cm,Cm
(s, aCm

))

=πi(s, a(<i)∩Cm
, π(<i)\Cm,Cm

(s, aCm
))

=πi,Cm
(s, aCm

).

(59)
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(ii) k > 1.

We proceed by induction to prove that

πℓ,Cj (s, πCj ,Cm(s, aCm)) = πℓ,Cm(s, aCm), ∀ 1 ≤ ℓ < k. (60)

For ℓ = 1, since 1 < k, we have 1 ∈ Cm ∩ Cj . Thus,

π1,Cj (s, πCj ,Cm(s, aCm)) = a1 = π1,Cm(s, aCm). (61)

Assume the statement (60) holds for all indices less than ℓ. For ℓ < k, note that (< ℓ) ∩ Cm = (<
ℓ) ∩ Cj and (< ℓ) \ Cm = (< ℓ) \ Cj . Therefore,

πℓ,Cj
(s, πCj ,Cm

(s, aCm
))

=πℓ(s, a(<ℓ)∩Cj
, π(<ℓ)\Cj ,Cj

(s, aCj ))
∣∣
aCj

=πCj,Cm (s,aCm )

=πℓ(s, a(<ℓ)∩Cm
, π(<ℓ)\Cm,Cj

(s, πCj ,Cm(s, aCm))).

(62)

By the induction hypothesis,

π(<ℓ)\Cm,Cj
(s, πCj ,Cm(s, aCm)) = π(<ℓ)\Cm,Cm

(s, aCm), (63)

which yields

πℓ,Cj
(s, πCj ,Cm

(s, aCm
)) = πℓ(s, a(<ℓ)∩Cm

, π(<ℓ)\Cm,Cm
(s, aCm

)) = πℓ,Cm
(s, aCm

). (64)

Finally, similar to (58), analyzing the construction of πi,Cj
(s, aCj

) gives

πi,Cj
(s, πCj ,Cm

(s, aCm
))

=πi(s, π<i,Cj (s, aCj ))
∣∣
aCj

=πCj,Cm (s,aCm )

=πi(s, a(<i)∩Cm
, π(<k)\Cm,Cj

(s, πCj ,Cm(s, aCm)), πk,Cj (s, πCj ,Cm(s, aCm)), πCj\Cm,Cm
(s, aCm)).

(65)
Since k /∈ Nd(i), we can replace πk,Cj

(s, πCj ,Cm
(s, aCm

)) by πk,Cm
(s, aCm

), yielding

πi,Cj (s, πCj ,Cm(s, aCm))

=πi(s, a(<i)∩Cm
, π(<k)\Cm,Cm

(s, aCm
), πk,Cm

(s, aCm
), πCj\Cm,Cm

(s, aCm
))

=πi(s, a(<i)∩Cm
, π(<i)\Cm,Cm

(s, aCm
))

=πi,Cm(s, aCm).

(66)

Lemma D.6. Let {πk}∞k=1 be the policy sequence generated by Algorithm 1. Then for every Cm ∈ C,
πk
N ,Cm

converges within a finite number of steps.

Proof. We proceed by induction.

Base case: Consider C1 = ∅. By Lemma D.1, we directly obtain that πk
N ,C1

converges in finitely
many steps.

Induction step: Assume that πk
N ,Cj

has already converged for all j < m when k ≥ M . We now
prove that πk

N ,Cm
also converges in finitely many steps.

We first show that, when k ≥M , for any maxCm < i ≤ n, the following inequality holds:

Qπk

(s, πk+1
<i,Cm

(s, aCm);πk+1
i,Cm

(s, aCm)) ≥ γ−1Qπk

(s, πk+1
<i−1,Cm

(s, aCm);πk+1
i−1,Cm

(s, aCm)).
(67)

(i): If Nd(i) ⊇ Cm, then by the update rule,

Qπk

(s, πk+1
<i,Cm

(s, aCm);πk+1
i,Cm

(s, aCm))

= Qπk

(s, πk+1
<i,Cm

(s, aCm
);πk+1

i (s, πk+1
<i,Cm

(s, aCm
)))

≥ Qπk

(s, πk+1
<i,Cm

(s, aCm
);πk

i (s, π
k+1
<i,Cm

(s, aCm
)))

= γ−1Qπk

(s, πk+1
<i−1,Cm

(s, aCm
);πk+1

i−1 (s, π
k+1
<i−1,Cm

(s, aCm
))).

(68)

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(ii): If Nd(i) ⊉ Cm, we then construct Cj = {x ∈ Cm | x < k′} ∪ {x ∈ {1, . . . , n− 1} | x > k′}
with k′ = min(Cm \ Nd(i)) according to Lemma D.5. Since i > maxCm, we have i ̸= k′,
and therefore πk

i,Cm
(s, aCm

) = πk
i,Cj

(s, πk
Cj ,Cm

(s, aCm
)). By the induction hypothesis, πk

N ,Cj
has

already converged. Hence,

πk+1
i,Cm

(s, aCm
) = πk+1

i,Cj
(s, πk+1

Cj ,Cm
(s, aCm

))

= πk
i,Cj

(s, πk+1
Cj ,Cm

(s, aCm
))

= πk
i (s, π

k
<i,Cj

(s, aCj ))
∣∣
aCj

=πk+1
Cj,Cm

(s,aCm )

= πk
i (s, π

k
<i,Cj

(s, πk+1
Cj ,Cm

(s, aCm
))).

(69)

We examine each component of πk+1
<i,Cj

(s, πk+1
Cj ,Cm

(s, aCm
)). If x ∈ (< i) and x = k′, since k′ /∈

Nd(i), then πk
i is independent of ax, so we replace πk

x,Cj
(s, πk+1

Cj ,Cm
(s, aCm

)) with πk+1
x,Cm

(s, aCm
)

in (69). If x ̸= k′, then we again apply Lemma D.5 and the induction hypothesis to obtain

πk
x,Cj

(s, πk+1
Cj ,Cm

(s, aCm
)) = πk+1

x,Cj
(s, πk+1

Cj ,Cm
(s, aCm

)) = πk+1
x,Cm

(s, aCm
). (70)

Thus,

πk+1
i,Cm

(s, aCm
) = πk

i (s, π
k
<i,Cj

(s, πk+1
Cj ,Cm

(s, aCm
))) = πk

i (s, π
k+1
<i,Cm

(s, aCm
)). (71)

Therefore,
Qπk

(s, πk+1
<i,Cm

(s, aCm
);πk+1

i,Cm
(s, aCm

))

= Qπk

(s, πk+1
<i,Cm

(s, aCm);πk
i (s, π

k+1
<i,Cm

(s, aCm)))

= γ−1Qπk

(s, πk+1
<i−1,Cm

(s, aCm);πk+1
i−1 (s, π

k+1
<i−1,Cm

(s, aCm))).

(72)

Next, we prove

Qπk

(s, πk+1
<maxCm,Cm

(s, aCm);πk+1
maxCm,Cm

(s, aCm)) = Qπk

(s, πk
<maxCm,Cm

(s, aCm);πk
maxCm,Cm

(s, aCm)).
(73)

We examine each component of πk+1
≤maxCm,Cm

(s, aCm
).

(iii): If i ∈ Cm, then πk
i,Cm

(s, aCm
) = ai = πk+1

i,Cm
(s, aCm

).

(iv): If i /∈ Cm, let Cj = Cm ∩ (< i). Since i < maxCm, we have Cj ⊊ Cm, and by Definition D.2,
j < m. By the induction hypothesis, πk

i,Cj
has converged. As πk

≤i depends only on the first i − 1

agents, it follows that πk
i,Cm

= πk
i,Cj

. Therefore,

πk
i,Cm

(s, aCm
) = πk

i,Cj
(s, aCj

) = πk+1
i,Cj

(s, aCj
) = πk+1

i,Cm
(s, aCm

). (74)

Thus, πk+1
≤maxCm,Cm

(s, aCm
) = πk

≤maxCm,Cm
(s, aCm

), and hence (73) holds.

Now,
Qπk+1

(s, πk+1
<n,Cm

(s, aCm);πk+1
n,Cm

(s, aCm))

= Qπk

(s, πk+1
<n,Cm

(s, aCm
);πk+1

n,Cm
(s, aCm

))

≥ · · · ≥ γmaxCm−nQπk

(s, πk+1
<maxCm,Cm

(s, aCm
);πk+1

maxCm,Cm
(s, aCm

))

= γmaxCm−nQπk

(s, πk
<maxCm,Cm

(s, aCm
);πk

maxCm,Cm
(s, aCm

))

= Qπk

(s, πk
<n,Cm

(s, aCm);πk
n,Cm

(s, aCm)).

(75)

Here, the second line follows from Lemma D.1, which ensures that V πk

(s) has converged, and hence
Qπk

(s, a) have converged; the third line follows from (67); the fourth line from (73).

Equation (75) shows that Qπk

(s, πk
<n,Cm

(s, aCm
);πk

n,Cm
(s, aCm

)) is monotonically non-decreasing,
and thus converges in finitely many steps.
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Let k ≥ M ′ ≥ M be such that Qπk

(s, πk
<n,Cm

(s, aCm
);πk

n,Cm
(s, aCm

)) has converged. We now
prove by contradiction that πk

N ,Cm
must also converge.

Suppose for k ≥M ′, πk
N ,Cm

(s) ̸= πk+1
N ,Cm

(s). Let i be the smallest index where they differ, i.e.,

πk
i,Cm

(s) ̸= πk+1
i,Cm

(s), πk
<i,Cm

(s) = πk+1
<i,Cm

(s). (76)

By the analyses in (iii) and (iv), i must satisfy i > maxCm. If Nd(i) ⊉ Cm, then by (ii),

πk+1
i,Cm

(s, aCm) = πk
i (s, π

k+1
<i,Cm

(s, aCm)) = πk
i (s, π

k
<i,Cm

(s, aCm)) = πk
i,Cm

(s, aCm), (77)

contradicting πk
i,Cm

(s) ̸= πk+1
i,Cm

(s). Therefore, it must be that Nd(i) ⊇ Cm.

Qπk+1

(s, πk+1
<n,Cm

(s, aCm
);πk+1

n,Cm
(s, aCm

))

= Qπk

(s, πk+1
<n,Cm

(s, aCm
);πk+1

n,Cm
(s, aCm

))

≥ γi−nQπk

(s, πk+1
<i,Cm

(s, aCm
);πk+1

i,Cm
(s, aCm

))

= γi−nQπk

(s, πk
<i,Cm

(s, aCm);πk+1
i (s, πk

<i,Cm
(s, aCm)))

> γi−nQπk

(s, πk
<i,Cm

(s, aCm
);πk

i (s, π
k
<i,Cm

(s, aCm
)))

= Qπk

(s, πk
<n,Cm

(s, aCm
);πk

n,Cm
(s, aCm

)).

(78)

The second line uses the fact that Qπk

(s, a) has converged; the third line is by the update rule; the
fifth line follows from the update rule, which preferentially selects the pre-update policy.

Equation (78) contradicts the fact that Qπk

(s, πk
<n,Cm

(s, aCm);πk
n,Cm

(s, aCm)) has already con-
verged. Therefore, for all k ≥M ′, πk

N ,Cm
(s) = πk+1

N ,Cm
(s), i.e., πk

N ,Cm
converges in finitely many

steps.

Proof of Theorem 5.1

Proof. According to Lemma D.6, we have that πk
i = πk

i,<i converges in a finite number of steps. Let
π be the limit point of the sequence {πk}∞k=1. From the update rule, it follows that

Qπ(s, π(<i),Nd(i)(s, aNd(i));πi,Nd(i)(s, aNd(i))) = max
ai

Qπ(s, π(<i),Nd(i)(s, aNd(i)); ai). (79)

Therefore, the limit point of {πk}∞k=1 is a Gd-locally optimal policy.

Proof of Corollary 5.3

Proof. From the analysis in Lemma D.1, we know that V πk

(s) is monotonically non-decreasing.
Hence, V πk

(s) also converges within a finite number of steps.

Suppose that for k ≥ M , V πk

(s) has already converged. Assume further that Gc(s, π̂
k+1) ̸=

Gc(s, π̂
k) when k ≥M . This implies π̂k+1 ̸= π̂k. From the contradiction argument in Lemma D.1,

it follows that
V πk+1

(s) = V π̂k+1

(s) > V π̂k

(s) = V πk

(s), (80)

which contradicts the assumption that V πk

(s) has already converged. Therefore, it must hold that
Gc(s, π̂

k+1) = Gc(s, π̂
k) for all k ≥M .

Consequently, when k ≥ M , the dynamic CG eventually stabilizes into a static CG. During this
stabilization stage, the update process reduces to Algorithm 1. By Theorem 5.1, πk converges within
a finite number of steps. Let π be the limit point of {πk}∞k=1. Then π is a Gd-locally optimal policy.
Furthermore, since the ADG satisfies condition (11), it follows from Theorem 4.4 that π is globally
optimal.
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E CONSTRUCTION OF ACTION DEPENDENCY GRAPHS

To elucidate the construction of ADGs, we present Algorithm 2 that efficiently derives an ADG from
a given CG such that the condition (11) is satisfied.

Algorithm 2 Greedy Algorithm: Finding a Sparse ADG

Input: A CG Gc

Output: An ADG Gd = (N , Ed)
Initialize an empty graph Gd = (N , Ed) with all vertices unindexed
for i = 0 to n− 1 do

Assign new index n−i to a vertex among the unindexed ones, such that the size of Nc(≥ (n−i))
is minimized

end for
Construct the edge set Ed by adding edges (j, i) for each vertex i ∈ N and each j ∈ Nc(≥ i) as
specified in (11)

F EXPERIMENTAL DETAILS

Setup of Coordination Polymatrix Game. In matrix cooperative games, different CGs and their
corresponding sparse ADGs are shown in Figure 9. For policy iteration methods, we randomly
generate the parameters of the payoff matrices, while fixing the maximum reward to be equal to the
number of edges in the CG. Moreover, the maximum reward is obtained when all agents choose
action 1. For the MAPPO method, we use fixed payoff matrices, with the exact parameters provided
in Table 2 to Table 5.
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Figure 9: The CG and sparse ADG of polymatrix coordination game.

Table 2: 1⃝ in Star

a1\a2 0 1 2 3 4
0 3.5 5.0 0.5 0.5 0.5
1 0.5 3.5 6.0 0.5 0.5
2 0.5 0.5 3.5 0.5 0.5
3 0.5 0.5 0.5 3.25 0.5
4 0.5 0.5 0.5 0.5 3.0

Table 3: 2⃝ in Star

a1\a3 0 1 2 3 4
0 3.5 0.5 5.0 0.5 0.5
1 0.5 3.5 6.0 0.5 0.5
2 0.5 0.5 3.5 0.5 0.5
3 0.5 0.5 0.5 3.25 0.5
4 0.5 0.5 0.5 0.5 3.0

Setup of ATSC. In the ATSC environment, we conduct experiments on the maps 2x2grid,
3x3grid, and RESCO/grid4x4 provided by SUMO-RL. Based on the road network connectivity,
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Table 4: 3⃝ in Star

a1\a4 0 1 2 3 4
0 3.5 0.5 0.5 5.0 0.5
1 0.5 3.5 6.0 0.5 0.5
2 0.5 0.5 3.5 0.5 0.5
3 0.5 0.5 0.5 3.25 0.5
4 0.5 0.5 0.5 0.5 3.0

Table 5: 4⃝ in Star

a1\a5 0 1 2 3 4
0 3.5 0.5 0.5 0.5 5.0
1 0.0 0.0 0.0 0.0 0.0
2 0.5 0.5 3.5 0.5 0.5
3 0.5 0.5 0.5 3.25 0.5
4 0.5 0.5 0.5 0.5 3.0

we design corresponding CGs, with their adjacency lists for CGs and sparse ADGs reported in Table 6
to Table 11. To increase task difficulty and highlight the benefits of cooperation, we follow the idea of
Li et al. (2021); Böhmer et al. (2020) to modify the reward function. Specifically, instead of assigning
each agent its own queue reward, we redefine the reward as the minimum individual reward among
its CG neighbors, thereby emphasizing the performance gap induced by cooperation.

Table 6: CG of 2x2grid

Vertex Neighbors
0 1, 2
1 0, 3
2 0, 3
3 1, 2

Table 7: Sparse ADG of 2x2grid

Vertex Parent nodes
0
1 0
2 1, 0
3 2, 1

Table 8: CG of 3x3grid

Vertex Neighbors
0 1, 3
1 0, 2, 4
2 1, 5
3 0, 4, 6
4 1, 3, 5, 7
5 2, 4, 8
6 3, 7
7 4, 6, 8
8 5, 7

Table 9: Sparse ADG of 3x3grid

Vertex Parent nodes
0
1 0
2 1, 0
3 2, 1, 0
4 3, 2, 1
5 4, 3, 2
6 5, 4, 3
7 6, 5, 4
8 7, 5

Experimental Hyperparameters. Our implementation of MAPPO is based on the open-source EPy-
MARL framework Papoudakis et al. (2021), employing the Adam optimizer for training. We use the
same hyperparameters across experiments under different ADGs, with a few critical hyperparameters
adjusted to fit each environment. These modified values are reported in Table 14, while any unlisted
parameters follow the default EPyMARL configuration.

Neural Network Architecture. For MAPPO with empty ADGs, we adopt the default MLP config-
urations specified in Papoudakis et al. (2021); Böhmer et al. (2020). For MAPPO with sparse and
dense ADGs, we modify the agent network architecture as follows.

Let oi ∈ Rdo denote the observational features of agent i, and ai ∈ Rda the action features of agent i.
The first-layer hidden features are computed as:

h1
oi = ReLU(W1oi + b1), h1

ai
= ReLU(W2ai + b2),

where W1 ∈ R64×do , W2 ∈ R64×da and b1, b2 ∈ R64 are the weights and biases, respectively.

Next, we take the average of h1
ai

over the dependency set Nd(i):

h2
ai

=
1

|Nd(i)|
∑

i∈Nd(i)

h1
ai
.
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Table 10: CG of 4x4grid

Vertex Neighbors
0 1, 4
1 0, 2, 5
2 1, 3, 6
3 2, 7
4 0, 5, 8
5 1, 4, 6, 9
6 2, 5, 7, 10
7 3, 6, 11
8 4, 9, 12
9 5, 8, 10, 13
10 6, 9, 11, 14
11 7, 10, 15
12 8, 13
13 9, 12, 14
14 10, 13, 15
15 11, 14

Table 11: Sparse ADG of 4x4grid

Vertex Parent nodes
0
1 0
2 0, 1
3 0, 1, 2
4 0, 1, 2, 3
5 1, 2, 3, 4
6 2, 3, 4, 5
7 3, 4, 5, 6
8 4, 5, 6, 7
9 5, 6, 7, 8
10 6, 7, 8, 9
11 7, 8, 9, 10
12 8, 9, 10, 11
13 9, 10, 11, 12
14 10, 11, 13
15 11, 14

Table 12: CG of Aloha

Vertex Neighbors
0 1, 5
1 0, 2, 6
2 1, 3, 7
3 2, 4, 8
4 3, 5, 9
5 0, 4, 6
6 1, 5, 7
7 2, 6, 8
8 3, 7, 9
9 4, 8

Table 13: Sparse ADG of Aloha

Vertex Parent nodes
0 1, 5
1 2, 6
2 3, 7
3 8, 4
4 9, 5
5 6
6 7
7 8
8 9
9

Table 14: Experimental Hyperparameters

learning rate weight decay buffer size batch size entropy coefficient

ATSC 0.0004 0.0001 8 8 0.02
Polymatrix Game 0.0004 0.0001 16 8 0.1

Aloha 0.0005 0.0001 16 16 0.01

We then concatenate the two feature vectors and obtain

h3 = [h1
oi , h

2
ai
],

which is fed into a multilayer perceptron:

h4 = ReLU(W3h
3 + b3), z = W4h

4 + b4,

where W3 ∈ R64×128, W4 ∈ Rdaction×64, b3 ∈ R64, and b4 ∈ Rdaction . The final output is z.

G ADDITIONAL EXPERIMENTS

G.1 BASELINE COMPARISONS IN ATSC

We include additional comparisons against standard MARL baselines, including QMIX, COMA, and
MAT, conducted in the ATSC environment. MAT (Wen et al., 2022) is an algorithm that employs
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auto-regressive policies and models action dependencies through attention networks. By modifying
the attention mask to suppress interactions outside the ADG, we construct a sparse-ADG variant of
MAT (denoted MAT-sparse). The results are provided in Figure 10.
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Figure 10: Results of ATSC with baselines.

The results show that the sparse-ADG version of MAPPO consistently outperforms its independent-
policy counterpart. On 3x3 and 4x4 grids, MAT exhibits only moderate performance, likely due
to its slower learning efficiency. Nevertheless, the learning curves of MAT-sparse and the original
MAT remain closely aligned, suggesting that enforcing sparse ADGs does not introduce performance
degradation for action-dependent policies.

G.2 RESULTS OF THE ALOHA ENVIRONMENT

We further evaluate the algorithms in Aloha Oliehoek (2010). Aloha consists of 10 islands, each
equipped with a radio tower that transmits messages to local residents. Each island maintains a
message queue, and at every timestep an agent may choose to transmit a message or stay idle. Due
to geographical proximity, simultaneous transmissions from adjacent islands interfere: when two
neighboring agents transmit at the same time, a collision occurs and the messages must be resent. A
successful transmission yields a global reward of 1 , while a collision incurs a penalty of -10.

We use the adjacency matrix provided by the environment as the CG and generate the corresponding
sparse ADG (Table 13) using Algorithm 2 . Results are given in Figure 11 (left). Algorithms based on
independent policies struggle to obtain positive transmission rewards, whereas ADG-based policies
successfully learn efficient transmission policies.
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Figure 11: Results of Aloha (left) and Ablation on heuristic ADGs (right).

G.3 ABLATION ON DIFFERENT ADGS

To examine the effect of alternative ADG constructions, particularly those that do not satisfy the
structural conditions of Theorem 4.4, we conducted ablations in the Aloha environment. We designed
several heuristic ADGs in which each agent depends only on the actions of the k immediately
preceding agents (k = 1, 2, 3). Notably, in the ADG generated by Algorithm 2, each node depends on
at most 3 agents. The results, shown in Figure 11 (right), indicate that such heuristically constructed
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ADGs perform noticeably worse than ADGs derived from the CG. This supports the importance of
using CG-consistent dependency structures when CG is available.

Different agent index orderings lead to different ADG structures according to (11). To examine
robustness with respect to ADG construction, we evaluate the sparse-ADG variant of MAPPO on
2x2 and 4x4 ATSC grids using both ascending and descending index orders. As shown in Figure 12,
the training curves under different indexings are nearly identical, indicating that the algorithm is
insensitive to index order.
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Figure 12: Results of Different Agent Index Orderings .

G.4 RESULTS OF SMAC
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Figure 13: Results of SMAC.

To further assess the behavior of sparse ADGs in complex dynamic settings, we perform experiments
in the SMAC environment. Since SMAC does not provide an explicit CG, we cannot construct
ADGs guaranteed to satisfy the conditions in Theorem 4.4. Thus, sparse ADGs in this setting
are not expected to match the performance of dense ADGs. We adopt a simple rule for sparse
ADGs: each agent depend on at most 1/4 of the total number of agents. (e.g., in the 8m map,
each agent only depends on the actions of its two immediate predecessors) These experiments are
intended solely to evaluate whether sparse ADGs still outperform independent-policy baselines. We
train MAT and its sparse-ADG variant on several SMAC maps. We adopt the hyperparameters

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

recommended by Wen et al. (2022) for the MAT and its sparse-ADG variant, while adopting the
hyperparameters recommended by EPYMARL for the baseline algorithms. The results in Figure 13
show that sparse ADG policies still outperform independent ones, and does not exhibit significant
degradation compared auto-regressive policies.
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