
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ACTION DEPENDENCY GRAPHS FOR GLOBALLY OPTI-
MAL COORDINATED REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Action-dependent policies, which condition decisions on both states and other
agents’ actions, provide a powerful alternative to independent policies in multi-
agent reinforcement learning. Most existing studies have focused on auto-regressive
formulations, where each agent’s policy depends on the actions of all preceding
agents. However, this approach suffers from severe scalability limitations as the
number of agents grows. In contrast, sparse dependency structures, where each
agent relies only on a subset of other agents, remain largely unexplored and lack
rigorous theoretical foundations. To address this gap, we introduce the action
dependency graph (ADG) to model sparse inter-agent action dependencies. We
prove that action-dependent policies can converge to solutions stronger than Nash
equilibria, which often trap independent policies, and we refer to such solutions
as Gd-locally optimal policies. Furthermore, within coordination graph (CG)
structured problems, we show that a Gd-locally optimal policy attains global
optimality when the ADG satisfies specific CG-induced conditions. To substantiate
our theory, we develop a tabular policy iteration algorithm that converges exactly
as predicted. We further extend a standard deep MARL method to incorporate
action-dependent policies, confirming the practical relevance of our framework.

1 INTRODUCTION

Achieving effective multi-agent reinforcement learning (MARL) in fully cooperative environments
requires agents to coordinate their actions to maximize collective performance. Most existing MARL
methods rely on independent policies (Zhang et al., 2021; Oroojlooy & Hajinezhad, 2023), where
each agent makes decisions based solely on its state or observation. Although computationally
tractable and scalable, these completely decentralized policies are often suboptimal (Fu et al., 2022).
The primary limitation lies in their tendency to converge to one of many Nash equilibrium solutions
(Ye et al., 2022), which may not correspond to the globally optimal solution.

The emergence of action-dependent policies (Fu et al., 2022) offers a promising solution to this
challenge. By incorporating the actions of other agents into an agent’s decision-making process,
action-dependent policies enable more effective cooperation and achieve superior performance
compared to independent policies. We introduce the action dependency graph (ADG), a directed
acyclic graph, to represent the action dependencies required for agents to make decisions. Theoretical
studies (Bertsekas, 2021; Chen & Zhang, 2023) demonstrate that policies with auto-regressive forms,
associated with fully dense ADGs—where replacing each directed edge with an undirected edge
yields a complete graph—guarantee global optimality. However, fully dense ADGs pose substantial
scalability issues, as they require a high degree of interdependence and coordination.

Sparse ADGs, which involve fewer inter-agent dependencies, offer a more scalable alternative. This
leads to a critical question: can action-dependent policies with sparse ADGs still guarantee global
optimality? To answer this question, we build on the framework of coordinated reinforcement
learning (Guestrin et al., 2002), where the cooperative relationship between agents is described by
a coordination graph (CG). We find that global optimality can still be achieved using an action-
dependent policy with a sparse ADG, provided that a specific relationship between the ADG and the
CG is satisfied.

The contributions of this paper are summarized as follows. (i) We introduce the notion of a Gd-
locally optimal policy, which differs from the Nash equilibrium and more precisely characterizes

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the convergence behavior of action-dependent policies. (ii) We establish a theoretical framework
that unifies coordination graphs with action-dependent policies and derive optimality conditions for
sparse ADGs. To the best of our knowledge, this is the first work to seamlessly integrate these two
perspectives. (iii) We design a policy iteration algorithm that, grounded in our theory, guarantees
convergence of action-dependent policies to a Gd-locally optimal policy, and further to a globally
optimal policy under the optimality conditions.

2 RELATED WORK

Independent policy. The majority of the literature on MARL represents the joint policy as the
Cartesian product of independent individual policies. Value-based methods such as IQL (Tan, 1993),
VDN (Sunehag et al., 2018), QMIX (Rashid et al., 2018), and QTRAN (Son et al., 2019) employ local
value functions that depend only on the state or observation of each agent. Similarly, policy-based
methods such as MADDPG (Lowe et al., 2017), COMA (Foerster et al., 2018), MAAC (Iqbal & Sha,
2019), and MAPPO (Yu et al., 2022) directly adopt independent policies. These approaches often fail
to achieve global optimality, as they are not able to cover all strategy modes (Fu et al., 2022).

Coordination graph. Some value-based methods (Böhmer et al., 2020; Castellini et al., 2021; Li
et al., 2021; Wang et al., 2022b) recognize that the limitation of independent policies is due to a
game-theoretic pathology known as relative overgeneralization (Panait et al., 2006). To mitigate this,
they employ a higher-order value decomposition framework by introducing the coordination graph
(CG) (Guestrin et al., 2002). In this graph, the vertices represent agents, and the edges correspond to
pairwise interactions between agents in the local value functions. While CGs improve cooperation by
considering inter-agent dependencies, the resulting joint policy cannot be decomposed into individual
policies. Consequently, decision-making algorithms still require intensive computation, such as
Max-Plus (Rogers et al., 2011) or Variable Elimination (VE) (Bertele & Brioschi, 1972). When
the CG is dense, these computations may become prohibitively time consuming, making the policy
difficult to execute in real time.

Action-dependent policy. In contrast to independent policies, action-dependent policies (Wang et al.,
2022a; Ruan et al., 2022; Li et al., 2023; 2024) incorporate not only the state, but also the actions
of other agents into an agent’s decision-making process. The action dependencies among agents
can be represented by a directed acyclic graph, which we refer to as the action dependency graph
(ADG). In some literature, the action-dependent policy is also referred to as Bayesian policy (Chen
& Zhang, 2023) or auto-regressive policy (Fu et al., 2022). Moreover, the use of action-dependent
policies can be viewed as a mechanism to leverage communications for enhancing cooperation (Zhou
et al., 2023; Duan et al., 2024; Jing et al., 2024). Some approaches (Bertsekas, 2021; Ye et al., 2022;
Wen et al., 2022) transform a multi-agent MDP into a single-agent MDP with a sequential structure,
enabling each agent to consider the actions of all previously decided agents during decision-making.
This transformation ensures the convergent joint policy to be globally optimal (Bertsekas, 2021).
However, the fully dense ADG makes these methods computationally expensive and impractical for
large-scale systems. For more general ADGs, existing theories can only guarantee convergence to a
Nash equilibrium solution (Chen & Zhang, 2023). Currently, no theoretical evidence demonstrates the
superiority of action-dependent policies with sparse dependency graphs over independent policies.

3 PRELIMINARY

We formulate the cooperative multi-agent reinforcement learning problem as a Multi-Agent Markov
Decision Process (MAMDP), represented by the tuple ⟨N ,S,A, P, r, γ⟩, where N = {1, . . . , n}
denotes the set of agents, S is the finite state space, A =

∏n
i=1Ai is the joint action space formed by

the Cartesian product of each agent’s finite action space, P : S × A × S → [0, 1] is the transition
kernel, r : S ×A → R is the reward function, and γ ∈ [0, 1) is the discount factor.

We consider policies of the deterministic form π : S → A. The state value function and state-action
value function induced by a policy π are

V π(s) := Eπ

[∞∑
t=0

γtr(st, at)

∣∣∣∣∣ s0 = s

]
, Qπ(s, a) := Eπ

[∞∑
t=0

γtr(st, at)

∣∣∣∣∣ s0 = s, a0 = a

]
, (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

where the expectation E is taken over all random variables st induced by π and P . For any function
V ∈ R(S), whereR(S) denotes the set of real-valued functions J : S → R, we define

QV (s, a) := r(s, a) + γ
∑
s′∈S

P (s′|s, a)V (s′). (2)

The Bellman operator Tπ : R(S)→ R(S) and the Bellman optimality operator T : R(S)→ R(S)
are given by

TπV (s) = QV (s, π(s)), T V (s) = max
a∈A

QV (s, a). (3)

The value function V π is the unique fixed point of Tπ, and the optimal value function V ∗ is the
unique fixed point of T .

3.1 COORDINATION GRAPH

2 3

1

2 3

1

(a) (b)

12Q

23Q

13Q
1a 1a

2a

Figure 1: A coordination graph (a) and an
action dependency graph (b).

In many practical scenarios such as sensor networks
(Zhang & Lesser, 2011), wind farms (Bargiacchi
et al., 2018), mobile networks (Bouton et al., 2021),
etc., the Q-function can be approximated as the sum
of local value functions, each depending on the states
and actions of a subset of agents. A widely used
approach to representing this decomposition is the
use of the coordination graph (CG) (Guestrin et al.,
2002), which captures the pairwise coordination rela-
tionships between agents. Formally, we define a CG
as follows.
Definition 3.1 (Coordination Graph). An undirected
graph1 Gc = (N , Ec) is a CG under state s ∈ S of a value function Qπ : S ×A → R, if there exists
a local value function Qπ

ij : S ×Ai ×Aj → R for every edge (i, j) ∈ Ec, and a local value function
Qπ

i : S × Ai → R for every vertex i ∈ N , such that for any a ∈ A, the following decomposition
holds:

Qπ(s, a) =
∑
i∈N

Qπ
i (s, ai) +

∑
(i,j)∈Ec

Qπ
ij(s, ai, aj). (4)

Remark 3.2. If Gc is a subgraph of G′
c, and Gc is a CG of Qπ , then G′

c is also a CG of Qπ . Therefore,
multiple CGs may correspond to the same value function Qπ .

Without loss of generality, we assume that Gc is connected; otherwise, the problem can be decom-
posed into independent subproblems depending on the connected components of Gc. In a connected
graph, each vertex is involved in an edge, allowing the local value functions associated with vertices
to be merged into those local value functions associated with edges, yielding:

Qπ(s, a) =
∑

(i,j)∈Ec

Qπ
ij(s, ai, aj). (5)

Figure 1 (a) shows a CG where Qπ can be decomposed as:
Qπ(s, a) = Qπ

12(s, a1, a2) +Qπ
13(s, a1, a3) +Qπ

23(s, a2, a3). (6)
Throughout this paper, we focus on a MAMDP structured by a CG.

3.2 NOTATIONS

In the paper, we frequently use sets as subscripts in expressions. Let S ⊆ N , and denote its elements
in ascending order as S = {s1, s2, . . . , sk}. For a space, such as AS , we define AS :=

∏
i∈S Ai :=∏k

i=1Asi . For a vector, such as aS , we define aS := (as1 , as2 , . . . , ask), asi ∈ Asi . The notation
< i indicates the set of agents with indices smaller than i, similarly for ≤ i, > i, and ≥ i. For an
undirected graph Gc, NGc

(i) denotes the neighbor of vertex i. When there is no ambiguity, we
abbreviate NGc

(i) as Nc(i). Nc[i] := Nc(i) ∪ i, and Nc(S) denotes the neighbors of a set S, that
is, Nc(S) =

⋃
i∈S Nc(i) \ S. For a directed graph Gd, NGd

(i) denotes the parent set of vertex i.
Likewise, we abbreviate NGd

(i) as Nd(i). Similarly, Nd[i] := Nd(i) ∪ i, and Nd(S) denotes the set
of all parent nodes of vertices in S.

1In this paper, the vertices and edges of the graph are represented by agent indices and index pairs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 ADG WITH OPTIMALITY GUARANTEE

4.1 ACTION DEPENDENCY GRAPH

In MARL, a deterministic joint policy is typically decomposed into independent policies of agents,
denoted as π(s) = (π1(s), π2(s), . . . , πn(s)). Although independent policies can, in principle,
represent optimal solutions, they are unable to capture behaviors that require correlated actions. The
absence of such correlations may prevent a policy from iteratively improving from a suboptimal
solution to an optimal one.

To address this limitation, we introduce a broader class of policies, termed action-dependent policies,
whose inputs include not only the state but also the actions of other agents. Formally, specifying
action-dependent policies requires determining the order in which actions are generated. Without loss
of generality, we assume that actions are output according to agent indices. In this case, the general
form of agent i’s policy is πi : S ×A<i → Ai. Since some policies may not depend on the actions
of all preceding agents, we use a dependency set to represent this sparse dependency relation.

Definition 4.1 (Dependency Set). Let C ⊆ (< i) be the dependency set of agent i’s policy πi under
state s ∈ S. Then, for any aC ∈ AC , a′(<i)\C , a(<i)\C ∈ A(<i)\C , it holds that

πi(s, aC , a
′
(<i)\C) = πi(s, aC , a(<i)\C).

If C is the dependency set of agent i, then the policy of agent i depends only on the actions of agents
in C. For convenience, depending on the context, we sometimes write πi(s, a<i) as πi(s, aC). For a
joint policy, the overall action dependency structure can be represented as a directed acyclic graph
(DAG).

Definition 4.2 (Action Dependency Graph (ADG)). The DAG Gd = (N , Ed) is the Action Depen-
dency Graph of the joint policy π under state s ∈ S if, for any i ∈ N , Nd(i) is the dependency set of
πi under state s.

The acyclic nature of the ADG guarantees that dependencies do not form cycles, which would
otherwise cause decision-making deadlocks and render the policy infeasible. Figure 1(b) illustrates
the ADG of a joint policy π with the following form:

π(s) = (π1(s), π2(s, π1(s)), π3(s, π2(s, π1(s)), π1(s))) . (7)

From (7), it is evident that expressing the components of a joint policy directly in terms of action-
dependent policies becomes cumbersome. To streamline such representations, we recursively define
the following policy notation:

πi,C(s, aC) =

{
ai if i ∈ C,

πi(s, π<i,C(s, aC)) otherwise,
(8)

where π<i,C = (π1,C , . . . , πi−1,C). Using this notation, the joint policy π can be rewritten as πN ,∅,
and (7) can be concisely rewritten as

π(s) = (π1,∅(s), π2,∅(s), π3,∅(s)) . (9)

4.2 COORDINATION POLYMATRIX GAME

A key reason why independent policies often converge to locally optimal solutions is the existence
of Nash equilibrium policies (Zhang et al., 2022; Kuba et al., 2022), also known as agent-by-agent
optimal policies (Bertsekas, 2021). In this subsection, we illustrate the suboptimality of Nash
equilibria through an example of coordination polymatrix game (Cai & Daskalakis, 2011), and
demonstrate how action-dependent policies can overcome this limitation.

A coordination polymatrix game can be viewed as a single-step decision problem, formulated by
a MAMDP tuple ⟨N ,S,A, P, r, γ⟩, with S = ∅ and γ = 0. In addition, the game is equipped
with an undirected graph Gc = (N , Ec) and a set of pairwise payoff functions {rij}(i,j)∈Ec

, which
together determine the global reward r(a) =

∑
(i,j)∈Ec

rij(ai, aj). In this setting, r is equivalent to

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

the (state)-action value function Q : A → R, and Gc serves as the CG of Q. Figure 2 illustrates a
polymatrix game with three agents, each having two possible actions, Ai = {0, 1}, i = 1, 2, 3. The
payoff matrices specify the reward for each agent pair; for example, if agents 1 and 2 both choose
action 0, they receive a payoff of 1 together.

1 2 3

1 0

0 0.6

12r 23r

1 0

0 0.6

0

1

0 1 10

0

1

Figure 2: A polymatrix game on a line CG.

For independent policies, the joint policies π =
(1, 1, 1) and π = (0, 0, 0) are both Nash equi-
libria. However, only π = (0, 0, 0) is globally
optimal. Although π = (1, 1, 1) is suboptimal,
no single agent has an incentive to deviate uni-
laterally, since any individual deviation reduces
the total reward.

Now consider action-dependent policies with an
ADG Gd whose edge set is Ed = {(1, 2), (2, 3)}.
Suppose the policies are given by π1 = 1,
π2(0) = 0, π2(1) = 1, π3(0) = 0, and π3(1) = 1. This corresponds to the same joint policy
π = (1, 1, 1). However, if agent 1 switches its action to 0, agents 2 and 3 will also switch to 0,
leading to the joint action (0, 0, 0) with reward r(0, 0, 0) = 2, which exceeds r(1, 1, 1) = 1.2. Thus,
agent 1 is incentivized to choose action 0, driving the system toward the globally optimal policy.

4.3 OPTIMALITY GUARANTEE

The coordination polymatrix game example demonstrates that action-dependent policies can converge
to solutions stronger than Nash equilibria. Such solutions are relatively rare in the policy space and
are therefore more likely to be globally optimal. We refer to them as Gd-locally optimal policies.
Definition 4.3 (Gd-locally Optimal). Let Gd = (N , Ed) be a DAG. A joint policy π is Gd-locally
optimal under s ∈ S if, for any aNd(i) ∈ ANd(i), the following holds:

Qπ(s, πN ,Nd(i)(s, aNd(i))) = max
ai∈Ai

Qπ(s, π(<i),Nd(i)(s, aNd(i)), ai, π(>i),Nd[i](s, aNd[i])). (10)

Dense ADG

4

3

2 5

1

4

3

2 5

1

Sparse ADG

4

3

2 1

5

4

3

2 1

5

Sparse ADG

4

3

2 1

5

CG

Figure 3: Different index orders of agents result in
different sparsity of the ADG.

When Gd is empty (i.e., independent poli-
cies), the notion of Gd-local optimality co-
incides with agent-by-agent optimality. As
more edges are added to Gd, condition (10)
becomes increasingly restrictive. In the ex-
treme case where Gd is a fully dense DAG
with edge set Ed = {(i, j) ∈ N × N :
i < j}, a Gd-locally optimal policy aligns
with the globally optimal policy. In gen-
eral, a joint policy with ADG Gd tends to
converge to a Gd-locally optimal solution,
as discussed in the next section. Thus, the
most straightforward way to avoid subopti-
mality is to adopt a fully dense ADG. However, the computational cost of training and executing such
policies grows rapidly with the number of agents, limiting scalability. In fact, if the CG structure can
be exploited, even some sparse ADGs suffice to guarantee global optimality. We now introduce a
graph condition that links the CG and ADG, ensuring that every Gd-locally optimal policy is also
globally optimal.
Theorem 4.4 (Optimality of ADG, proof in Appendix C). Let s ∈ S, and let Gd(s) be a DAG and
Gc(s) be the CG of Qπ under state s. Suppose that for every s ∈ S, the policy π is Gd(s)-locally
optimal and the following holds:

NGd(s)(i) ⊇ NGc(s)(≥ i), ∀i ∈ N . (11)

Then π is globally optimal.
Remark 4.5. We write Gd(s) and Gc(s) to emphasize that the theorem can apply to problems where
the CG may vary across states. For brevity, unless otherwise specified, we assume a fixed CG across
all states and denote it by Gc, with the corresponding fixed ADG denoted by Gd. Nevertheless, all
subsequent results can immediately extend directly to state-dependent CG settings.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

CG ADG

1 4321 432 1 4321 432

1

43

2 1

43

2 1

43

2 1

43

2

4

3

2

1

4

3

2

1

4

3

2

1

4

3

2

1

Figure 4: ADGs generated by Algorithm 2 for CG
topologies: line, ring, and star.

This theorem indicates that the ADG can be de-
signed from the CG to guarantee that Gd-local
optimality implies global optimality. Two spe-
cial cases illustrate this principle: (i) When both
Gc and Gd are empty, condition (11) reduces
to Nd(i) = Nc(≥ i) = ∅, in which case the
Q-function admits a VDN decomposition and
any Nash equilibrium is globally optimal, con-
sistent with Dou et al. (2022). (ii) When Gc is
complete and Gd is fully dense, condition (11)
is also satisfied. Thus, for any CG, a fully dense
ADG guarantees global optimality, since every
CG is a subgraph of the complete graph.

If the agent indices are predetermined, replacing
the superset relationship with an equality in con-
dition (11) uniquely yields the sparsest ADG.
However, the choice of index order strongly in-
fluences the sparsity of Gd, as shown in Figure 3.
Determining the optimal index order is analogous to finding the optimal elimination order in variable
elimination (VE), an NP-complete problem (Kok & Vlassis, 2006). Despite this complexity, practical
heuristics such as the greedy algorithm described in Appendix E (Algorithm 2) can be employed.
Figure 4 illustrates the resulting ADGs for several simple CG topologies.

5 CONVERGENCE OF ACTION-DEPENDENT POLICY

5.1 CONVERGENCE TO Gd-LOCALLY OPTIMAL POLICY

In this section, we introduce a policy iteration algorithm for MARL in the tabular setting. This
algorithm highlights the advantage of employing action-dependent policies, enabling convergence to
a Gd-locally optimal policy rather than merely an agent-by-agent optimal one.

Our approach extends the multi-agent policy iteration (MPI) framework proposed in Bertsekas (2021),
which decomposes the joint policy update step of standard policy iteration (PI) (Sutton, 2018) into
sequential updates of individual agents’ policies, thereby mitigating the computational complexity of
PI. However, MPI guarantees convergence only to an agent-by-agent optimal policy, which is often
suboptimal. To address this limitation, we propose Algorithm 1, which incorporates action-dependent
policies into the MPI framework and ensures convergence to a Gd-locally optimal policy.

Algorithm 1 Action-Dependent Multi-Agent Policy Iteration

Initialize policies π1
i , i ∈ N , with ADG Gd under every s ∈ S

for k = 1, 2, . . . do
// Policy Evaluation
Compute V πk

by solving V = TπkV and derive Qπk

from V πk

// Policy Improvement
for i = 1, 2, . . . , n do

Update πk+1
i for every (s, a<i) pair by

πk+1
i (s, a<i)← argmax

ai

Qπk

(s, πk+1
(<i),Nd(i)

(s, aNd(i)), ai, π
k
(>i),Nd[i]

(s, aNd[i])). (12)

end for
end for

Since the policies of agents in (< i) are always updated before agent i, the update rule (12) can
always be applied in succession. Since the image set of argmax may have multiple values, we
arbitrarily select one of them. Specifically, if πk

i (s, a<i) is already in the image set, then we prioritize
selecting πk

i (s, a<i). Note that while the update is specified for every (s, a<i) pair, the argmax in
(12) only depends on (s, aNd(i)), so the actual computation only needs to be performed for every

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(s, aNd(i)) pair. When update rule no longer changes πk
i for any (s, a<i), the algorithm reaches

convergence. The following theorem describes the convergence property:

Theorem 5.1 (Convergence of Algorithm 1, proof in Appendix D). Let {πk}∞k=1 be the policy
sequence generated by Algorithm 1. Then {πk}∞k=1 converges to a Gd-locally optimal policy in a
finite number of steps.

It is straightforward to verify that once all individual policies converge, the joint policy is Gd-locally
optimal. Thus, the main challenge in proving this theorem lies in establishing convergence of all
individual policies. Chen & Zhang (2023) studied action-dependent policies in the policy gradient
method and encountered a similar issue, which they bypassed by assuming that individual policies
always converge. In contrast, we show that the joint policy converges regardless of whether individual
policies converge directly (see Appendix Lemma D.1). Although convergence of the joint policy does
not automatically imply Gd-local optimality, we can inductively establish that all individual policies
converge from the convergence of the joint policy (see Appendix Lemma D.6). Therefore, our policy
iteration method does not require additional assumptions and provides a complete resolution to this
challenge.

5.2 CONVERGENCE TO GLOBALLY OPTIMAL POLICY

When the CG of an MDP is fixed, independent of both the state and the joint policy (e.g., polymatrix
games), we can construct an ADG that satisfies (11) based on the CG, and then apply Algorithm 1 to
update policies under this ADG. Upon convergence, Theorem 5.1 ensures that the resulting policy is
Gd-locally optimal, and by Theorem 4.4, it is also globally optimal.

Corollary 5.2. Assume Gc is the CG of the state-action value function Qπ for all policies π and
states s. Let {πk}∞k=1 be the policy sequence generated by Algorithm 1 with an ADG Gd. If Gc and
Gd satisfy (11), then {πk}∞k=1 converges to a globally optimal policy in a finite number of steps.

In more general scenarios, the CG may be dynamic. To guarantee convergence to an optimal solution,
the ADG must also evolve accordingly. Such changes in the CG are typically driven by both the
state and the joint policy. We denote this dependence by Gc(s, π). For state-dependent changes,
it suffices to design a distinct ADG for each state, ensuring that Equation (11) remains valid. In
contrast, for policy-dependent changes, the ADG should be updated after each policy iteration to
preserve convergence to the globally optimal policy. A key challenge arises here: directly modifying
the ADG may alter the structural dependencies of individual policies. For instance, under one ADG,
agent i may depend only on the action of agent j, whereas under another ADG it may additionally
depend on the actions of both j and k. If the policy of agent i lacks the interface to accommodate
these additional dependencies, direct modification of the ADG becomes infeasible.

To address this issue, we could employ an indirect construction. Specifically, we build a set of
individual policies such that, although their functional forms may differ before and after the ADG
update, their induced joint policies remain identical. For deterministic policies, this construction is
straightforward. Given a joint policy π̃ with independent components π̃(s) = (π̃1(s), . . . , π̃n(s)),
we define a set of action-dependent policies {πi}i∈N with new ADG such that,

π1(s)← π̃1(s), π2(s, π1(s))← π̃2(s), . . . , πn(s, π̃1(s), . . . , π̃n−1(s))← π̃n(s). (13)

This guarantees that the joint policies before and after the ADG update are equivalent. Consequently,
if the CG changes after (12), we reconstruct the new policy πk+1

i according to (13). This ensures
that the ADG and CG continue to satisfy Equation (11), thereby allowing Algorithm 1 to achieve the
optimal solution.

Corollary 5.3 (Proof in Appendix D). Assume Gc(s, π) is the CG of the state-action value Qπ for
joint policy π and state s. Let {πk}∞k=1 be the policy sequence generated by Algorithm 1, with policy
reconstruction according to (13) upon CG change. Then {πk}∞k=1 converges to a globally optimal
policy in a finite number of steps.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

6 EXPERIMENTS

6.1 COORDINATION POLYMATRIX GAMES

To validate our theoretical results, we evaluate Algorithm 1 on polymatrix games with CGs of
different topologies: star (5 agents), ring (5 agents), tree (7 agents), and mesh (9 agents). The payoff
matrices are randomly generated, with the maximum reward set equal to the number of CG edges.
We compare three ADG types: sparse (generated by Algorithm 2 to satisfy (11)), fully dense, and
empty. Additional experimental details are provided in Appendix F. Figure 5 reports the learning
curves averaged over 100 runs. Both sparse and dense ADGs consistently reach the reward upper
bound, with their learning curves being very close. In contrast, empty ADGs often become trapped in
suboptimal Nash equilibria.

0 20 40 60 80
Iteration

2.0

2.5

3.0

3.5

4.0

R
ew

ar
d

Star Graph

empty ADG
sparse ADG
dense ADG

0 20 40 60 80
Iteration

2.5

3.0

3.5

4.0

4.5

5.0

Ring Graph

empty ADG
sparse ADG
dense ADG

0 20 40 60 80
Iteration

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Tree Graph

empty ADG
sparse ADG
dense ADG

0 20 40 60 80
Iteration

7

8

9

10

11

12

Mesh Graph

empty ADG
sparse ADG
dense ADG

Figure 5: Results of coordination polymatrix game.

To assess computational efficiency, Figure 6 (right) shows the average per-iteration runtime across
100 experiments when each agent has two actions. As runtime is primarily determined by policy
dimension and dimensions of dense ADG policies are independent of CG structure, their curves
nearly overlap. Due to exponential growth in policy dimension, dense ADGs incur substantially
higher costs as agent number increases, whereas sparse ADGs maintain scalability.

0 10000 20000 30000 40000 50000 60000 70000 80000
Step

6

8

10

12

14

16

18

R
ew

ar
d

empty ADG
sparse ADG
dense ADG

4 6 8 10 12 14
Number of Agents

10
3

10
2

10
1

10
0

Ite
ra

tio
n

Ti
m

e
(s

ec
on

ds
) [

Lo
g

Sc
al

e] Ring Sparse
Star Sparse
Tree Sparse
Ring Dense
Star Dense
Tree Dense

Figure 6: Results of MAPPO on star CG (left) and average time per iteration (right).

We also extend the MAPPO algorithm to incorporate action-dependent policies to examine the
convergence of action-dependent policies under more practical learning settings. Specifically, we
transform the independent policy πθi(ai|s) into the action-dependent form πθi(ai|s, aNd(i)). This
requires a corresponding modification of the optimization objective to properly handle the action-
dependent policy. Consider MAPPO (Yu et al., 2022), where the original objective is

L(θ) = Es∼D,a∼πθold

[
n∑

i=1

min
(
rθi(ai, s)Aπθold

(s, a), clip(rθi(ai, s), 1± ε)Aπθold
(s, a)

)]
,

where rθi(ai, s) =
πθi

(ai|s)
πθi,old

(ai|s) , andD denotes the distribution in the replay buffer. To adapt this objec-

tive for action-dependent policies, we replace rθi(ai, s) with rθi(ai, s, aNd(i)) =
πθi

(ai|s,aNd(i))

πθi,old
(ai|s,aNd(i))

.

Figure 6 (left) presents results of the extended MAPPO on polymatrix games with a star CG, using
fixed payoff matrices (maximum reward 20) and 10 random seeds. As the value of the largest

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

suboptimal point is 18, both sparse and dense ADGs successfully escape all suboptimal points. The
slight deviations from the maximum reward are primarily attributed to exploratory behavior caused
by entropy regularization. These results demonstrate that even in non-tabular settings parameterized
by neural networks, Theorem 4.4 provides a reliable design principle for sparse ADGs. In future
work, we also plan to provide a rigorous theoretical analysis to substantiate these empirical findings.

6.2 ATSC

Figure 7: 3x3 road network.

To further examine practical applicability, we evaluate the extended
MAPPO on adaptive traffic signal control (ATSC) problem, a bench-
mark with a natural coordination structure. Experiments are conducted
on 2x2 (4 agents), 3x3 (9 agents), and 4x4 (16 agents) road networks
using the Simulation of Urban Mobility (SUMO) platform Lopez et al.
(2018) and SUMO-RL Alegre (2019). The CG is defined by adjacency
between intersections, and sparse ADGs are derived with Algorithm 2.
Detailed experimental protocols and hyperparameters are given in
Appendix F.

As shown in Figure 8, sparse ADGs achieve performance comparable
to dense ADGs, and both outperform empty ADGs. This indicates
that even with approximate CG structures, sparse ADGs retain the
efficiency of action-dependent policies without sacrificing optimality.

0 50000 100000 150000 200000
Step

7500

7000

6500

6000

5500

5000

4500

4000

Ep
is

od
ic

 R
et

ur
n

2x2 Grid

empty ADG
sparse ADG
dense ADG

0 50000 100000 150000 200000
Step

30000

28000

26000

24000

22000

20000

18000

Ep
is

od
ic

 R
et

ur
n

3x3 Grid

empty ADG
sparse ADG
dense ADG

0 50000 100000 150000 200000
Step

38000

36000

34000

32000

30000

28000

26000

24000

22000

Ep
is

od
ic

 R
et

ur
n

4x4 Grid

empty ADG
sparse ADG
dense ADG

Figure 8: Results of ATSC.

7 CONCLUSION

In this work, we established a theoretical framework for action-dependent policies in multi-agent
reinforcement learning by introducing the ADG and the notion of Gd-locally optimal policies. We
further identified conditions under which these policies coincide with globally optimal solutions in
coordination graph structured problems, and proposed a policy iteration algorithm with guaranteed
convergence. Finally, we validated our theory and demonstrated its practical potential through
experiments on polymatrix games and adaptive traffic signal control. Recognizing that complex
environments may involve unknown CGs, hypergraph CGs, we aim to explore the adaptability and
potential of ADGs in these challenging settings in future research.

REFERENCES

Lucas N. Alegre. SUMO-RL. https://github.com/LucasAlegre/sumo-rl, 2019.

Eugenio Bargiacchi, Timothy Verstraeten, Diederik Roijers, Ann Nowé, and Hado Hasselt. Learning
to coordinate with coordination graphs in repeated single-stage multi-agent decision problems. In
International Conference on Machine Learning, pp. 482–490. PMLR, 2018.

Umberto Bertele and Francesco Brioschi. Nonserial dynamic programming. Academic Press, Inc.,
1972.

9

https://github.com/LucasAlegre/sumo-rl

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Dimitri Bertsekas. Multiagent reinforcement learning: Rollout and policy iteration. IEEE/CAA
Journal of Automatica Sinica, 8(2):249–272, 2021.

Ashmita Bhattacharya and Malyaban Bal. Multi-agent decision s4: Leveraging state space models
for offline multi-agent reinforcement learning, 2025.

Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. Deep coordination graphs. In International
Conference on Machine Learning, pp. 980–991. PMLR, 2020.

Maxime Bouton, Hasan Farooq, Julien Forgeat, Shruti Bothe, Meral Shirazipour, and Per Karls-
son. Coordinated reinforcement learning for optimizing mobile networks. arXiv preprint
arXiv:2109.15175, 2021.

Yang Cai and Constantinos Daskalakis. On minmax theorems for multiplayer games. In Proceedings
of the 20nd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 217–234. SIAM, 2011.

Jacopo Castellini, Frans A Oliehoek, Rahul Savani, and Shimon Whiteson. Analysing factorizations
of action-value networks for cooperative multi-agent reinforcement learning. Autonomous Agents
and Multi-Agent Systems, 35(2):25, 2021.

Dingyang Chen and Qi Zhang. Context-aware bayesian network actor-critic methods for cooperative
multi-agent reinforcement learning. In International Conference on Machine Learning, pp. 5327–
5350. PMLR, 2023.

Zehao Dou, Jakub Grudzien Kuba, and Yaodong Yang. Understanding value decomposition algo-
rithms in deep cooperative multi-agent reinforcement learning. arXiv preprint arXiv:2202.04868,
2022.

Wei Duan, Jie Lu, and Junyu Xuan. Group-aware coordination graph for multi-agent reinforce-
ment learning. In Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence, pp. 3926–3934, 2024.

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Wei Fu, Chao Yu, Zelai Xu, Jiaqi Yang, and Yi Wu. Revisiting some common practices in cooperative
multi-agent reinforcement learning. In International Conference on Machine Learning, pp. 6863–
6877. PMLR, 2022.

Carlos Guestrin, Michail G Lagoudakis, and Ronald Parr. Coordinated reinforcement learning. In
Proceedings of the 19th International Conference on Machine Learning, pp. 227–234, 2002.

Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 2961–2970. PMLR, 2019.

Gangshan Jing, He Bai, Jemin George, Aranya Chakrabortty, and Piyush K. Sharma. Distributed mul-
tiagent reinforcement learning based on graph-induced local value functions. IEEE Transactions
on Automatic Control, 69(10):6636–6651, 2024.

Jelle R Kok and Nikos Vlassis. Collaborative multiagent reinforcement learning by payoff propagation.
Journal of Machine Learning Research, 7, 2006.

JG Kuba, R Chen, M Wen, Y Wen, F Sun, J Wang, and Y Yang. Trust region policy optimisation in
multi-agent reinforcement learning. In International Conference on Learning Representations, pp.
1046, 2022.

Chuming Li, Jie Liu, Yinmin Zhang, Yuhong Wei, Yazhe Niu, Yaodong Yang, Yu Liu, and Wanli
Ouyang. Ace: Cooperative multi-agent q-learning with bidirectional action-dependency. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 8536–8544, 2023.

Sheng Li, Jayesh K Gupta, Peter Morales, Ross Allen, and Mykel J Kochenderfer. Deep implicit co-
ordination graphs for multi-agent reinforcement learning. In Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems, pp. 764–772, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhiyuan Li, Wenshuai Zhao, Lijun Wu, and Joni Pajarinen. Backpropagation through agents. In
Proceedings of the AAAI Conference on Artificial Intelligence, pp. 13718–13726, 2024.

Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang Flötteröd,
Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter Wagner, and Evamarie Wießner. Mi-
croscopic traffic simulation using sumo. In The 21st IEEE International Conference on Intelligent
Transportation Systems. IEEE, 2018.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in Neural Information
Processing Systems, 30, 2017.

Afshin Oroojlooy and Davood Hajinezhad. A review of cooperative multi-agent deep reinforcement
learning. Applied Intelligence, 53(11):13677–13722, 2023.

Liviu Panait, Sean Luke, and R Paul Wiegand. Biasing coevolutionary search for optimal multiagent
behaviors. IEEE Transactions on Evolutionary Computation, 10(6):629–645, 2006.

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht. Benchmarking
multi-agent deep reinforcement learning algorithms in cooperative tasks. In Proceedings of the
Neural Information Processing Systems Track on Datasets and Benchmarks (NeurIPS), 2021.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shi-
mon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforcement
learning. In International Conference on Machine Learning, pp. 4295–4304. PMLR, 2018.

Alex Rogers, Alessandro Farinelli, Ruben Stranders, and Nicholas R Jennings. Bounded approximate
decentralised coordination via the max-sum algorithm. Artificial Intelligence, 175(2):730–759,
2011.

Jingqing Ruan, Yali Du, Xuantang Xiong, Dengpeng Xing, Xiyun Li, Linghui Meng, Haifeng Zhang,
Jun Wang, and Bo Xu. Gcs: Graph-based coordination strategy for multi-agent reinforcement learn-
ing. In Proceedings of the 21st International Conference on Autonomous Agents and Multiagent
Systems, pp. 1128–1136, 2022.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning to
factorize with transformation for cooperative multi-agent reinforcement learning. In International
Conference on Machine Learning, pp. 5887–5896. PMLR, 2019.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning based on team reward. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, pp. 2085–2087, 2018.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings
of the 10th International Conference on Machine Learning, pp. 330–337, 1993.

Jiangxing Wang, Deheng Ye, and Zongqing Lu. More centralized training, still decentralized
execution: Multi-agent conditional policy factorization. arXiv preprint arXiv:2209.12681, 2022a.

Tonghan Wang, Liang Zeng, Weijun Dong, Qianlan Yang, Yang Yu, and Chongjie Zhang. Context-
aware sparse deep coordination graphs. In International Conference on Learning Representations,
2022b.

Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang. Multi-
agent reinforcement learning is a sequence modeling problem. Advances in Neural Information
Processing Systems, 35:16509–16521, 2022.

Jianing Ye, Chenghao Li, Jianhao Wang, Qianchuan Zhao, and Chongjie Zhang. Towards global
optimality in cooperative MARL with sequential transformation, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611–24624, 2022.

Chongjie Zhang and Victor Lesser. Coordinated multi-agent reinforcement learning in networked
distributed POMDPs. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 25,
pp. 764–770, 2011.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
overview of theories and algorithms. Handbook of Reinforcement Learning and Control, pp.
321–384, 2021.

Runyu Zhang, Jincheng Mei, Bo Dai, Dale Schuurmans, and Na Li. On the global convergence rates
of decentralized softmax gradient play in markov potential games. Advances in Neural Information
Processing Systems, 35:1923–1935, 2022.

Yihe Zhou, Shunyu Liu, Yunpeng Qing, Kaixuan Chen, Tongya Zheng, Yanhao Huang, Jie Song, and
Mingli Song. Is centralized training with decentralized execution framework centralized enough
for MARL? arXiv preprint arXiv:2305.17352, 2023.

APPENDIX

A THE USE OF LARGE LANGUAGE MODELS

We used LLMs for improving the grammar and clarity of the manuscript. All scientific content, ideas,
and analysis are original and authored by the listed contributors.

B MATHEMATICAL PRELIMINARIES

In the appendix, we first reformulate the MAMDP as a sequentially expanded MDP (SEMDP)
(Ye et al., 2022; Li et al., 2023; Bhattacharya & Bal, 2025), and then establish our proofs on this
reformulation. The SEMDP transforms a multi-agent system into a single-agent MDP by expanding
the state space. Importantly, the SEMDP reformulation is non-essential: it does not introduce any new
assumptions, and our results can still be proven directly under the MAMDP formulation. However,
introducing the SEMDP greatly simplifies the notation used in the proofs.

Given an MAMDP ⟨N ,S,A, P̃ , r̃, γn⟩, we construct a SEMDP denoted by ⟨N ,S,A, P, r, γ⟩, where

• S is identical to the state space in the MAMDP;
• A =

∏n
i=1Ai is identical to the joint action space in the MAMDP;

• Z =
⋃

i∈N Zi is the expanded state space, where Zi = S ×
∏i−1

j=1Aj is the individual
expanded state space for agent i;

• P : Z × Z ×
⋃

i∈N Ai → [0, 1] is the transition kernel of the SEMDP;

• r :
⋃

i∈N (Zi ×Ai)→ R is the reward function of the SEMDP;

The SEMDP transition kernel is defined as

P ((s, a≤i)|(s, a<i), ai) = 1, ∀s ∈ S, a≤i ∈ A≤i, 0 < i < n, (14)

P (s′|(s, a<n), an) = P̃ (s′|s, a), ∀s ∈ S, a≤n ∈ A≤n. (15)
The reward function is defined as

r((s, a<i); ai) = 0, ∀s ∈ S, a≤i ∈ A≤i, 0 < i < n, (16)

r((s, a<n); an) = r̃(s, a), ∀s ∈ S, a ∈ A. (17)

In the appendix, the joint policy in the SEMDP is denoted by π : Z →
⋃

i∈N A, where

π(s, a<i) ∈ Ai, ∀s ∈ S, a<i ∈ A<i.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

The individual policy of agent i is defined as πi := π|Zi
, which restricts the function to Zi. This

formulation is identical to the individual policy in the MAMDP. To distinguish between the joint
policies in MAMDP and SEMDP, we rewrite the joint policy in the MAMDP as π̂ := πk

N ,∅ =

(π1,∅, . . . , πn,∅).

In the SEMDP, the state value function takes the form V : Z → R, and the state-action value function
takes the form Q :

⋃
i∈N (Zi ×Ai)→ R. For any V ∈ R(Z), we define

QV (s, a<i; ai) := r(s, a<i; ai) + γ
∑
z′∈Z

P (z′ | (s, a<i), ai)V (z′). (18)

The Bellman operator Tπ and the optimal Bellman operator T are given by

TπV (z) = QV (s, a<i;πi(s, a<i)), T V (z) = max
ai

QV (s, a<i; ai). (19)

The state value function V π is the fixed point of Tπ , and the state-action value function is Qπ := QV π

.
The optimal state value function V ∗ is the fixed point of T , and Q∗ := QV ∗

. The semicolon in Q
and r highlights the action dependence. However, Q(s, a<n; an) can also be regarded as the value
function of the full joint action and thus is sometimes written simply as Q(s, a).

Proposition B.1. We summarize several fundamental properties of the SEMDP:

1. V π̂(s) = γ1−nV π(s), Qπ̂(s, a) = γ1−nQπ(s, a), where V π̂ and Qπ̂ denotes the state and
state-action value function in the original MAMDP.

2. Qπ(s, a<i; ai) = γV π(s, a≤i), 1 ≤ i < n.

3. Qπ(s, a<i; ai) = γn−iQπ(s, π(<n),(≤i)(s, a≤i);πn,(≤i)(s, a≤i)), 1 ≤ i < n.

Proof. (i) We expand the definition of V π̂ in the MAMDP:

V π̂(s) = E

[∞∑
t=0

γntr(st, π̂(st))

∣∣∣∣∣st+1 ∼ P (·|st, π̂(st)), s0 = s

]

= E

[∞∑
t=0

n∑
i=1

γnt+i−nr(st, π<i,∅(st);πi,∅(st))

∣∣∣∣∣st+1 ∼ P (·|st, π̂(st)), s0 = s

]

= E

[
γ1−n

∞∑
t=0

n∑
i=1

γnt+i−1r(st, π<i,∅(st);πi,∅(st))

∣∣∣∣∣st+1 ∼ P (·|st, π̂(st)), s0 = s

]

= γ1−nE

[∞∑
t′=0

γt′r(zt′ ;π(zt′))

∣∣∣∣∣zt′+1 ∼ P (·|zt′ , π(zt′)), z0 = s

]
= γ1−nV π(s)

Similarly, we can derive that Qπ̂(s) = γ1−nQπ(s).

(ii) For 1 ≤ i < n, we compute:

Qπ(s, a<i; ai) = r(s, a<i; ai) + γ
∑
z′∈Z

P (z′ | (s, a<i), ai)V
π(z′)

= γV π(s, a≤i).

(iii) Repeatedly unrolling the recursion yields:

Qπ(s, a<i; ai) = γV π(s, a≤i)

= γQπ(s, a≤i;πi+1,(≤i)(s, a≤i))

= · · · = γn−iQπ(s, π(<n),(≤i)(s, a≤i);πn,(≤i)(s, a≤i)).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

From Proposition B.1(i), we see that the value functions in the SEMDP and the MAMDP are
equivalent up to a constant factor. Therefore, it can be easily verified that (1) an optimal policy in
the SEMDP remains optimal in the original MAMDP, (2) Qπ and Qπ̂ have the same CG, and (3) in
update rule (12), replacing the Q-function with its SEMDP counterpart does not affect the update
outcome:

πk+1
i (s, a<i)← argmax

ai

Qπk

(s, πk+1
(<i),Nd(i)

(s, aNd(i)); ai). (20)

C PROOF OF OPTIMALITY

In the appendix, we generalize the concept of the dependency set to more general functions to simplify
the description of subsequent proofs.
Definition C.1 (Dependency Set). Let f : AS → Y be a mapping defined on the joint action space
of a subset of agents S ⊆ N . A subset C ⊆ S is called a dependency set of f if for any s ∈ S,
aC ∈ AC , a′S\C , aS\C ∈ AS\C , the following holds:

f(aC , a
′
S\C) = f(aC , aS\C).

For notational convenience, we may permute the order of variables when writing a function, but the
evaluation of the function always follows the ordering of variables according to their agent indices.

Since the form of the Q-function changes in the SEMDP setting, we restate the definition of Gd-
locally optimal policies for SEMDPs. Note that, according to Proposition B.1 (i) and (iii), this
definition is equivalent to the one given in the main text.
Definition C.2 (Gd-locally Optimal in SEMDP). Let Gd be a DAG. A joint policy π is Gd-locally
optimal under s ∈ S if, for any aNd(i) ∈ ANd(i), the following holds:

Qπ(s, π(<i),Nd(i)(s, aNd(i));πi,Nd(i)(s, aNd(i))) = max
ai

Qπ(s, π(<i),Nd(i)(s, aNd(i)); ai). (21)

Lemma C.3. For any fixed s ∈ S, let Gd be a DAG. Suppose a joint policy π is Gd-locally optimal
at s. If for every i ∈ N , the set Si is the dependency set of the function argmaxai

Qπ(s, a(<i); ai)
with respect to a(<i) at s, and if Nd(i) ⊇ Si, then π is globally optimal.

Proof. Fix any s ∈ S. Since π is Gd-locally optimal, we have

πi(s, a<i) ∈ argmax
ai

Qπ(s, π(<i),Nd(i)(s, aNd(i)); ai)

= argmax
ai

Qπ(s, aNd(i), π(<i)\Nd(i),Nd(i)(s, aNd(i)); ai).
(22)

Because Nd(i) ⊇ Si, where Si is the dependency set of argmaxai
Qπ(s, a(<i); ai), it follows that

πi(s, a<i) ∈ argmax
ai

Qπ(s, a<i; ai), ∀a<i ∈ A<i. (23)

Therefore,
V π(s, a<i) = TπV π(s, a<i) = Qπ(s; a<i;πi(s, a<i))

= max
ai

Qπ(s; a<i; ai) = T V π(s, a<i),
(24)

which shows that V π is a fixed point of T . Hence, π is globally optimal.

Lemma C.4. Let Q be a state–action value function, and let Gc = (N , Ec) be the CG of Q at state s.
Then for any i ∈ N , there exist functions Q1 : S ×ANc[≥i] → R and Q2 : S ×A<i → R such that

Q(s, a) = Q1(s, aNc[≥i]) +Q2(s, a<i), ∀s ∈ S, a ∈ A, (25)

where Nc[≥ i] := Nc(≥ i) ∪ (≥ i).

Proof. Decomposing Q according to the structure of Gc yields

Q(s, a) =

 ∑
(j,k)∈Ec[≥i,<i]

+
∑

(j,k)∈Ec[≥i]

+
∑

(j,k)∈Ec[<i]

Qjk(s, aj , ak), (26)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where Ec[≥ i, < i] denotes the subset of Ec containing edges between vertices in the sets ≥ i and < i,
and Ec[≥ i] := Ec[≥ i,≥ i] containing edges within the set ≥ i. Noting that Ec[≥ i, < i] = Ec[≥
i,Nc(≥ i)], thus, we can rewrite:

Q(s, a) =
(∑

(j,k)∈Ec[≥i,Nc(≥i)]

+
∑

(j,k)∈Ec[≥i]

+
∑

(j,k)∈Ec[Nc(≥i)]

+
∑

(j,k)∈Ec[<i]\Ec[Nc(≥i)]

)
Qjk(s, aj , ak).

(27)
Define

Q1(s, aNc[≥i]) :=
(∑

(j,k)∈Ec[≥i,Nc(≥i)]

+
∑

(j,k)∈Ec[≥i]

+
∑

(j,k)∈Ec[Nc(≥i)]

)
Qjk(s, aj , ak), (28)

and
Q2(s, a<i) :=

∑
(j,k)∈Ec[<i]\Ec[Nc(≥i)]

Qjk(s, aj , ak). (29)

Then (25) follows.

Proof of Theorem 4.4

Proof. For any fixed state s, we abbreviate Nc(i) = NGc(s)(i) and Nd(i) = NGd(s)(i). We proceed
by induction.

Base case: We aim to show that

max
an

Qπ(s, a<n; an) = Qπ(s, a<n;πn(s, a<n)), (30)

and that Nc(≥ n) is the dependency set of argmaxan
Qπ(s, a<n; an).

By Lemma C.4, there exist functions Q1 and Q2 such that

Qπ(s, a<n; an) = Q1(s, aNc[n]) +Q2(s, a<n). (31)

Consider
Qπ(s, a(<n)\Nc(n), aNc(n); an)−Qπ(s, a′(<n)\Nc(n)

, aNc(n); an)

=Q2(s, a(<n)\Nc(n), aNc(n))−Q2(s, a
′
(<n)\Nc(n)

, aNc(n)),
(32)

which is independent of an. Thus, the maximizing an is unaffected by a<n\Nc(n), implying that

argmax
an

Qπ(s, a<n\Nc(n), aNc(n); an) = argmax
an

Qπ(s, a′<n\Nc(n)
, aNc(n); an). (33)

Therefore, Nc(n) = Nc(≥ n) forms the dependency set of argmaxan
Qπ(s, a<n; an). Since π is

Gd-locally optimal and Nd(n) ⊇ Nc(≥ n), it follows that

πn(s, a<n) ∈ argmax
an

Qπ(s, a<n; an), (34)

and hence
max
an

Qπ(s, a<n; an) = Qπ(s, a<n;πn(s, a<n)). (35)

Induction step: Assume for some i+ 1 that

max
a≥i+1

Qπ(s, a<n; an) = Qπ(s, π(<n),(<i+1)(s, a<i+1);πn,(<i+1)(s, a<i+1)), (36)

and that Nc(≥ i+ 1) is the dependency set of argmaxai+1
Qπ(s, a<(i+1); ai+1). We now prove the

case for i.

By Lemma C.4 and Proposition B.1 (iii), there exist functions Q1 and Q2 such that

Qπ(s, a<i; ai) = γn−iQπ(s, π(<n),(≤i)(s, a≤i);πn,(≤i)(s, a≤i))

= Q1(s, πNc[≥i],(≤i)(s, a≤i)) +Q2(s, π(<i),(<i)(s, a<i)).
(37)

From Equation (36), we obtain

π(≥i+1),(≤i)(s, a≤i) ∈ argmax
a≥i+1

Q1(s, aNc[≥i]), (38)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

and hence
Q1(s, ai, aNc(≥i), π(≥i+1),(≤i)(s, aNc(≥i), a(<i)\Nc(≥i)))

= max
a≥i+1

Q1(s, aNc[≥i])

= Q1(s, ai, aNc(≥i), π(≥i+1),(≤i)(s, aNc(≥i), a
′
(<i)\Nc(≥i))).

(39)

Following the same argument as in (32),

Qπ(s, aNc(≥i), a(<i)\Nc(≥i); ai)−Qπ(s, aNc(≥i), a
′
(<i)\Nc(≥i); ai)

=Q1(s, πNc(≥i),(<i)(s, aNc(≥i), a(<i)\Nc(≥i)), ai) +Q2(s, π(<i),(<i)(s, aNc(≥i), a(<i)\Nc(≥i)))

−Q1(s, πNc(≥i),(<i)(s, aNc(≥i), a
′
(<i)\Nc(≥i)), ai)−Q2(s, π(<i),(<i)(s, aNc(≥i), a

′
(<i)\Nc(≥i)))

=Q2(s, π(<i),(<i)(s, aNc(≥i), a(<i)\Nc(≥i)))−Q2(s, π(<i),(<i)(s, aNc(≥i), a
′
(<i)\Nc(≥i))).

(40)
Therefore,

argmax
ai

Qπ(s, aNc(≥i), a(<i)\Nc(≥i); ai) = argmax
ai

Qπ(s, aNc(≥i), a
′
(<i)\Nc(≥i); ai), (41)

which implies that Nc(≥ i) is the dependency set of argmaxai
Qπ(s, a<i; ai). Moreover, since π is

Gd-locally optimal and Nd(i) ⊇ Nc(≥ i), it follows that

πi(s, a<i) ∈ argmax
ai

Qπ(s, π(<i),Nd(i)(s, aNd(i)); ai)

= argmax
ai

Qπ(s, aNc(≥i), π(<i)\Nc(≥i),Nd(i)(s, aNd(i)); ai)

= argmax
ai

Qπ(s, a<i; ai).

(42)

Consequently, by Proposition B.1 (iii), it holds that

Qπ(s, π(<n),(<i)(s, a<i);πn,(<i)(s, a<i))

=γi−nQπ(s, a<i;πi(s, a<i))

=max
ai

γi−nQπ(s, a<i; ai)

=max
ai

Qπ(s, π(<n),(<i+1)(s, a<i+1);πn,(<i+1)(s, a<i+1))

=max
ai

max
a≥i+1

Qπ(s, a<n; an) = max
a≥i

Qπ(s, a<n; an).

(43)

Conclusion: By induction, for any given s, Nc(≥ i) is the dependency set of
argmaxai

Qπ(s, a<i; ai) for all i ∈ N . Together with the condition Nd(i) ⊇ Nc(≥ i), Lemma C.3
guarantees that π is globally optimal.

D PROOF OF CONVERGENCE

We first prove that the joint policy πk
N ,∅(s) in MAMDP converges.

Lemma D.1. Let {πk}∞k=1 be the policy sequence generated by Algorithm 1. Then both V πk

(s) and
πk
N ,∅(s) converge within a finite number of steps.

Proof. From the update rule (20), for any s ∈ S, 0 ≤ i ≤ n, we have

Tπk+1V πk

(s, πk+1
<i,∅(s)) = Qπk

(s, πk+1
<i,∅(s);π

k+1
i (s, πk+1

<i,∅(s)))

≥ Qπk

(s, πk+1
<i,∅(s);π

k
i (s, π

k+1
<i,∅(s)))

= V πk

(s, πk+1
<i,∅(s)).

(44)

We now proceed by induction. Assume that

T j
πk+1V

πk

(s, πk+1
<i,∅(s)) ≥ T

j−1
πk+1V

πk

(s, πk+1
<i,∅(s)), ∀s ∈ S, 0 ≤ i ≤ n. (45)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

We now prove that

T j+1
πk+1V

πk

(s, πk+1
<i,∅(s)) ≥ T

j
πk+1V

πk

(s, πk+1
<i,∅(s)), ∀s ∈ S, 0 ≤ i ≤ n. (46)

When i < n,
T j+1
πk+1V

πk

(s, πk+1
<i,∅(s)) = γT j

πk+1V
πk

(s, πk+1
<i+1,∅(s))

≥ γT j−1
πk+1V

πk

(s, πk+1
<i+1,∅(s))

= T j
πk+1V

πk

(s, πk+1
<i,∅(s)).

(47)

When i = n,

T j+1
πk+1V

πk

(s, πk+1
<n,∅(s)) = r(s, πk+1

≤n,∅(s)) + γ
∑
s′

P (s′|s, πk+1
≤n,∅(s))T

i
πk+1V

πk

(s′)

≥ r(s, πk+1
≤n,∅(s)) + γ

∑
s′

P (s′|s, πk+1
≤n,∅(s))T

i−1
πk+1V

πk

(s′)

= T j
πk+1V

πk

(s, πk+1
<n,∅(s)).

(48)

Thus,

V πk+1

(s, πk+1
<i,∅(s)) = lim

j→∞
T j
πk+1V

πk

(s, πk+1
<i,∅(s)) ≥ V πk

(s, πk+1
<i,∅(s)) ≥ V πk

(s, πk
<i,∅(s)).

(49)
By the monotone convergence theorem, V πk

(s, πk
<i,∅(s)) converges. Since the policy space is finite,

V πk

(s, πk
<i,∅(s)), ∀ i ∈ N , s ∈ S converges within a finite number of steps.

Next, we prove by contradiction that πk
N ,∅(s) also converges. Suppose that for some M , V πk

(s) has
already converged when k ≥ M . Assume that for k ≥ M , πk

N ,∅(s) ̸= πk+1
N ,∅(s). Let i be the first

index such that πk
i,∅(s) ̸= πk+1

i,∅ (s) while πk
<i,∅(s) = πk+1

<i,∅(s). Then

V πk+1

(s) = γV πk+1

(s, πk+1
<2,∅(s)) = · · · = γn−1V πk+1

(s, πk+1
<n,∅(s))

= γn−1

(
r(s, πk+1

≤n,∅(s)) + γ
∑
s′

P (s′|s, πk+1
≤n,∅(s))V

πk+1

(s′)

)

= γn−1

(
r(s, πk+1

≤n,∅(s)) + γ
∑
s′

P (s′|s, πk+1
≤n,∅(s))V

πk

(s′)

)
= γn−1Qπk (

s, πk+1
<n,∅(s);π

k+1
n (s, πk+1

<n,∅(s))
)

≥ γn−1Qπk (
s, πk+1

<n,∅(s);π
k
n(s, π

k+1
<n,∅(s))

)
= γn−2Qπk (

s, πk+1
<n−1,∅(s);π

k+1
n−1(s, π

k+1
<n−1,∅(s))

)
≥ · · · ≥ γi−1Qπk

(s, πk+1
<i,∅(s);π

k+1
i (s, πk+1

<i,∅(s)))

> γi−1Qπk

(s, πk
<i,∅(s);π

k
i (s, π

k
<i,∅(s)))

= γi−1V πk

(s, πk
<i,∅(s)) = V πk

(s).

(50)

The first equality follows from Proposition B.1 (ii). The third equality uses the fact that V πk

(s) has
already converged. The strict inequality follows from the update rule, which preferentially selects the
pre-update policy.

Hence V πk+1

(s) > V πk

(s), contradicting the assumption that V πk

(s) has converged. Therefore,
πk
N ,∅(s) = πk+1

N ,∅(s) for k ≥M , implying that the joint policy πk
N ,∅(s) also converges.

In order to deduce the convergence of individual policies from the convergence of πk
N ,∅(s), we

employ induction. To make the induction work properly, we need to construct a special ordering.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Definition D.2. Let C = P({1, 2, . . . , n − 1}), where P denotes the power set. We introduce a
binary relation < on C as follows:

A < B ⇐⇒ min(A \B) > min(B \A), A,B ∈ C. (51)

For the case involving the empty set, we define min∅ := n.
Lemma D.3. For any A,B ∈ C, the following holds:

A < B ⇐⇒ min(A∆B) ∈ B \A,

where ∆ denotes the symmetric difference, i.e., A∆B := (A \B) ∪ (B \A).

Proof. We first prove the direction ”⇐”. Let k = min(A∆B) ∈ B\A. Since A\B ⊆ A∆B, we have
min(A∆B) ≤ min(A\B). Moreover, because k ∈ B\A, it follows that min(A∆B) = min(B\A).
Since (B\A)∩(A\B) = ∅, we obtain min(A∆B) < min(A\B). Thus, min(B\A) < min(A\B),
i.e., A < B.

Conversely, assume A < B. Then min(B \A) < min(A \B). Hence,

min(A∆B) = min{min(B \A),min(A \B)} = min(B \A). (52)

Therefore, min(A∆B) ∈ B \A.

Proposition D.4. The binary relation < on C is a strict total order.

Proof. Irreflexivity and asymmetry are immediate. We now prove that < is connected and transitive.

(Connectedness): Let A,B ∈ C with A ̸= B. We distinguish three cases:

(i) If A ⊊ B, then B \ A ̸= ∅. Hence min(B \ A) ≤ n− 1 and min(A \ B) = n > min(B \ A),
so A < B.

(ii) If B ⊊ A, by symmetry we obtain B < A.

(iii) If A ⊈ B and B ⊈ A, then min(A \B) ̸= min(B \A). Thus, either A < B or B < A.

(Transitivity): Let A,B,C ∈ C with A < B and B < C.

If A = ∅, then clearly A < C. Otherwise, set k1 = min(A∆B) and k2 = min(B∆C). By
Lemma D.3, we have k1 ∈ B \A and k2 ∈ C \B. We analyze three cases:

(i) If k1 < k2, then k1 /∈ B∆C. Since k1 ∈ B, it follows that k1 ∈ B ∩C. Moreover, as k1 ∈ B \A,
we have k1 ∈ C \A. Now, we only need to show k1 = min(A∆C). For all i < k1 with i ∈ A ∪B,
we have i /∈ A∆B, hence i ∈ A∩B. Since k1 < k2, we also get i ∈ A∩B∩C, implying i /∈ A∆C.
Thus k1 = min(A∆C), and by Lemma D.3, A < C.

(ii) If k2 < k1, then by symmetry, k2 = min(A∆C) and k2 ∈ C \A. Hence A < C.

(iii) If k1 = k2, then k1 ∈ B \A and k1 ∈ C \B simultaneously, which is a contradiction. Thus this
case cannot occur.

Therefore, < is transitive.

After defining the strict total order <, we arrange the elements of C in ascending order as C =
{C1, C2, . . . , C|C|}.
Lemma D.5. Let Cm ∈ C and Cm ̸= ∅. Let Gd be the ADG of π under state s. If Nd(i) ⊉ Cm, i ∈
N , denote k = min(Cm \Nd(i)), and define

Cj = A ∪B := {x ∈ Cm | x < k} ∪ {x ∈ {1, . . . , n− 1} | x > k}. (53)

Then we have j < m. Furthermore, if i ̸= k, the following holds:

πi,Cj
(s, πCj ,Cm

(s, aCm
)) = πi,Cm

(s, aCm
). (54)

Proof. We first verify that j < m. Since Nd(i) ⊉ Cm, we have Cm \Nd(i) ̸= ∅, and hence k < n.
By construction of Cj , min(Cm \ Cj) = k. Therefore,

min(Cj∆Cm) = min{min(Cj \ Cm),min(Cm \ Cj)} = min{min(Cj \ Cm), k}. (55)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Because min(Cj \Cm) > k, we obtain min(Cj∆Cm) = k ∈ Cm \Cj . By Lemma D.3, this implies
Cj < Cm, i.e., j < m.

When i ∈ Cm, since i ̸= k, we have i ∈ Cm ∩ Cj , and therefore

πi,Cj
(s, πCj ,Cm

(s, aCm
)) = ai = πi,Cm

(s, aCm
). (56)

When i /∈ Cm, we consider the two cases k = 1 and k > 1 respectively.

(i) k = 1.

In this case, Cj = {2, 3, . . . , n− 1}. We analyze the construction of πi,Cj
(s, aCj

):

πi,Cj
(s, aCj

) =πi(s, π(<i),Cj
(s, aCj

))

=πi(s, π1,Cj
(s, aCj

), π(<i)∩Cj ,Cj
(s, aCj

))

=πi(s, π1(s), a(<i)∩Cj
)

=πi(s, π1(s), a(<i)∩(Cm\{1}), a(<i)\Cm
).

(57)

Substituting πCj ,Cm
(s, aCm

) into aCj
, we obtain

πi,Cj
(s, πCj ,Cm

(s, aCm
))

=πi(s, π(<i),Cj
(s, aCj

))
∣∣
aCj

=πCj,Cm (s,aCm)

=πi(s, π1(s), a(<i)∩(Cm\{1}), π(<i)\Cm,Cm
(s, aCm

)).

(58)

Since 1 /∈ Nd(i), πi does not depend on a1. Thus, replacing π1(s) with a1, we obtain

πi,Cj (s, πCj ,Cm(s, aCm))

=πi(s, a1, a(<i)∩(Cm\{1}), π(<i)\Cm,Cm
(s, aCm

))

=πi(s, a(<i)∩Cm
, π(<i)\Cm,Cm

(s, aCm))

=πi,Cm
(s, aCm

).

(59)

(ii) k > 1.

We proceed by induction to prove that

πℓ,Cj (s, πCj ,Cm(s, aCm)) = πℓ,Cm(s, aCm), ∀ 1 ≤ ℓ < k. (60)

For ℓ = 1, since 1 < k, we have 1 ∈ Cm ∩ Cj . Thus,

π1,Cj
(s, πCj ,Cm

(s, aCm
)) = a1 = π1,Cm

(s, aCm
). (61)

Assume the statement (60) holds for all indices less than ℓ. For ℓ < k, note that (< ℓ) ∩ Cm = (<
ℓ) ∩ Cj and (< ℓ) \ Cm = (< ℓ) \ Cj . Therefore,

πℓ,Cj (s, πCj ,Cm(s, aCm))

=πℓ(s, a(<ℓ)∩Cj
, π(<ℓ)\Cj ,Cj

(s, aCj
))
∣∣
aCj

=πCj,Cm (s,aCm)

=πℓ(s, a(<ℓ)∩Cm
, π(<ℓ)\Cm,Cj

(s, πCj ,Cm
(s, aCm

))).

(62)

By the induction hypothesis,

π(<ℓ)\Cm,Cj
(s, πCj ,Cm

(s, aCm
)) = π(<ℓ)\Cm,Cm

(s, aCm
), (63)

which yields

πℓ,Cj
(s, πCj ,Cm

(s, aCm
)) = πℓ(s, a(<ℓ)∩Cm

, π(<ℓ)\Cm,Cm
(s, aCm

)) = πℓ,Cm
(s, aCm

). (64)

Finally, similar to (58), analyzing the construction of πi,Cj (s, aCj) gives

πi,Cj (s, πCj ,Cm(s, aCm))

=πi(s, π<i,Cj
(s, aCj

))
∣∣
aCj

=πCj,Cm (s,aCm)

=πi(s, a(<i)∩Cm
, π(<k)\Cm,Cj

(s, πCj ,Cm
(s, aCm

)), πk,Cj
(s, πCj ,Cm

(s, aCm
)), πCj\Cm,Cm

(s, aCm
)).

(65)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Since k /∈ Nd(i), we can replace πk,Cj
(s, πCj ,Cm

(s, aCm
)) by πk,Cm

(s, aCm
), yielding

πi,Cj
(s, πCj ,Cm

(s, aCm
))

=πi(s, a(<i)∩Cm
, π(<k)\Cm,Cm

(s, aCm
), πk,Cm

(s, aCm
), πCj\Cm,Cm

(s, aCm
))

=πi(s, a(<i)∩Cm
, π(<i)\Cm,Cm

(s, aCm
))

=πi,Cm(s, aCm).

(66)

Lemma D.6. Let {πk}∞k=1 be the policy sequence generated by Algorithm 1. Then for every Cm ∈ C,
πk
N ,Cm

converges within a finite number of steps.

Proof. We proceed by induction.

Base case: Consider C1 = ∅. By Lemma D.1, we directly obtain that πk
N ,C1

converges in finitely
many steps.

Induction step: Assume that πk
N ,Cj

has already converged for all j < m when k ≥ M . We now
prove that πk

N ,Cm
also converges in finitely many steps.

We first show that, when k ≥M , for any maxCm < i ≤ n, the following inequality holds:

Qπk

(s, πk+1
<i,Cm

(s, aCm
);πk+1

i,Cm
(s, aCm

)) ≥ γ−1Qπk

(s, πk+1
<i−1,Cm

(s, aCm
);πk+1

i−1,Cm
(s, aCm

)).
(67)

(i): If Nd(i) ⊇ Cm, then by the update rule,

Qπk

(s, πk+1
<i,Cm

(s, aCm);πk+1
i,Cm

(s, aCm))

= Qπk

(s, πk+1
<i,Cm

(s, aCm
);πk+1

i (s, πk+1
<i,Cm

(s, aCm
)))

≥ Qπk

(s, πk+1
<i,Cm

(s, aCm
);πk

i (s, π
k+1
<i,Cm

(s, aCm
)))

= γ−1Qπk

(s, πk+1
<i−1,Cm

(s, aCm
);πk+1

i−1 (s, π
k+1
<i−1,Cm

(s, aCm
))).

(68)

(ii): If Nd(i) ⊉ Cm, we then construct Cj = {x ∈ Cm | x < k′} ∪ {x ∈ {1, . . . , n− 1} | x > k′}
with k′ = min(Cm \ Nd(i)) according to Lemma D.5. Since i > maxCm, we have i ̸= k′,
and therefore πk

i,Cm
(s, aCm) = πk

i,Cj
(s, πk

Cj ,Cm
(s, aCm)). By the induction hypothesis, πk

N ,Cj
has

already converged. Hence,

πk+1
i,Cm

(s, aCm) = πk+1
i,Cj

(s, πk+1
Cj ,Cm

(s, aCm))

= πk
i,Cj

(s, πk+1
Cj ,Cm

(s, aCm
))

= πk
i (s, π

k
<i,Cj

(s, aCj
))
∣∣
aCj

=πk+1
Cj,Cm

(s,aCm)

= πk
i (s, π

k
<i,Cj

(s, πk+1
Cj ,Cm

(s, aCm
))).

(69)

We examine each component of πk+1
<i,Cj

(s, πk+1
Cj ,Cm

(s, aCm
)). If x ∈ (< i) and x = k′, since k′ /∈

Nd(i), then πk
i is independent of ax, so we replace πk

x,Cj
(s, πk+1

Cj ,Cm
(s, aCm)) with πk+1

x,Cm
(s, aCm)

in (69). If x ̸= k′, then we again apply Lemma D.5 and the induction hypothesis to obtain

πk
x,Cj

(s, πk+1
Cj ,Cm

(s, aCm)) = πk+1
x,Cj

(s, πk+1
Cj ,Cm

(s, aCm)) = πk+1
x,Cm

(s, aCm). (70)

Thus,

πk+1
i,Cm

(s, aCm) = πk
i (s, π

k
<i,Cj

(s, πk+1
Cj ,Cm

(s, aCm))) = πk
i (s, π

k+1
<i,Cm

(s, aCm)). (71)

Therefore,
Qπk

(s, πk+1
<i,Cm

(s, aCm
);πk+1

i,Cm
(s, aCm

))

= Qπk

(s, πk+1
<i,Cm

(s, aCm
);πk

i (s, π
k+1
<i,Cm

(s, aCm
)))

= γ−1Qπk

(s, πk+1
<i−1,Cm

(s, aCm
);πk+1

i−1 (s, π
k+1
<i−1,Cm

(s, aCm
))).

(72)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Next, we prove

Qπk

(s, πk+1
<maxCm,Cm

(s, aCm);πk+1
maxCm,Cm

(s, aCm
)) = Qπk

(s, πk
<maxCm,Cm

(s, aCm
);πk

maxCm,Cm
(s, aCm

)).
(73)

We examine each component of πk+1
≤maxCm,Cm

(s, aCm
).

(iii): If i ∈ Cm, then πk
i,Cm

(s, aCm) = ai = πk+1
i,Cm

(s, aCm).

(iv): If i /∈ Cm, let Cj = Cm ∩ (< i). Since i < maxCm, we have Cj ⊊ Cm, and by Definition D.2,
j < m. By the induction hypothesis, πk

i,Cj
has converged. As πk

≤i depends only on the first i − 1

agents, it follows that πk
i,Cm

= πk
i,Cj

. Therefore,

πk
i,Cm

(s, aCm) = πk
i,Cj

(s, aCj) = πk+1
i,Cj

(s, aCj) = πk+1
i,Cm

(s, aCm). (74)

Thus, πk+1
≤maxCm,Cm

(s, aCm
) = πk

≤maxCm,Cm
(s, aCm

), and hence (73) holds.

Now,
Qπk+1

(s, πk+1
<n,Cm

(s, aCm);πk+1
n,Cm

(s, aCm))

= Qπk

(s, πk+1
<n,Cm

(s, aCm
);πk+1

n,Cm
(s, aCm

))

≥ · · · ≥ γmaxCm−nQπk

(s, πk+1
<maxCm,Cm

(s, aCm
);πk+1

maxCm,Cm
(s, aCm

))

= γmaxCm−nQπk

(s, πk
<maxCm,Cm

(s, aCm
);πk

maxCm,Cm
(s, aCm

))

= Qπk

(s, πk
<n,Cm

(s, aCm);πk
n,Cm

(s, aCm)).

(75)

Here, the second line follows from Lemma D.1, which ensures that V πk

(s) has converged, and hence
Qπk

(s, a) have converged; the third line follows from (67); the fourth line from (73).

Equation (75) shows that Qπk

(s, πk
<n,Cm

(s, aCm
);πk

n,Cm
(s, aCm

)) is monotonically non-decreasing,
and thus converges in finitely many steps.

Let k ≥ M ′ ≥ M be such that Qπk

(s, πk
<n,Cm

(s, aCm
);πk

n,Cm
(s, aCm

)) has converged. We now
prove by contradiction that πk

N ,Cm
must also converge.

Suppose for k ≥M ′, πk
N ,Cm

(s) ̸= πk+1
N ,Cm

(s). Let i be the smallest index where they differ, i.e.,

πk
i,Cm

(s) ̸= πk+1
i,Cm

(s), πk
<i,Cm

(s) = πk+1
<i,Cm

(s). (76)

By the analyses in (iii) and (iv), i must satisfy i > maxCm. If Nd(i) ⊉ Cm, then by (ii),

πk+1
i,Cm

(s, aCm
) = πk

i (s, π
k+1
<i,Cm

(s, aCm
)) = πk

i (s, π
k
<i,Cm

(s, aCm
)) = πk

i,Cm
(s, aCm

), (77)

contradicting πk
i,Cm

(s) ̸= πk+1
i,Cm

(s). Therefore, it must be that Nd(i) ⊇ Cm.

Qπk+1

(s, πk+1
<n,Cm

(s, aCm
);πk+1

n,Cm
(s, aCm

))

= Qπk

(s, πk+1
<n,Cm

(s, aCm
);πk+1

n,Cm
(s, aCm

))

≥ γi−nQπk

(s, πk+1
<i,Cm

(s, aCm
);πk+1

i,Cm
(s, aCm

))

= γi−nQπk

(s, πk
<i,Cm

(s, aCm
);πk+1

i (s, πk
<i,Cm

(s, aCm
)))

> γi−nQπk

(s, πk
<i,Cm

(s, aCm);πk
i (s, π

k
<i,Cm

(s, aCm)))

= Qπk

(s, πk
<n,Cm

(s, aCm
);πk

n,Cm
(s, aCm

)).

(78)

The second line uses the fact that Qπk

(s, a) has converged; the third line is by the update rule; the
fifth line follows from the update rule, which preferentially selects the pre-update policy.

Equation (78) contradicts the fact that Qπk

(s, πk
<n,Cm

(s, aCm);πk
n,Cm

(s, aCm)) has already con-
verged. Therefore, for all k ≥M ′, πk

N ,Cm
(s) = πk+1

N ,Cm
(s), i.e., πk

N ,Cm
converges in finitely many

steps.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof of Theorem 5.1

Proof. According to Lemma D.6, we have that πk
i = πk

i,<i converges in a finite number of steps. Let
π be the limit point of the sequence {πk}∞k=1. From the update rule, it follows that

Qπ(s, π(<i),Nd(i)(s, aNd(i));πi,Nd(i)(s, aNd(i))) = max
ai

Qπ(s, π(<i),Nd(i)(s, aNd(i)); ai). (79)

Therefore, the limit point of {πk}∞k=1 is a Gd-locally optimal policy.

Proof of Corollary 5.3

Proof. From the analysis in Lemma D.1, we know that V πk

(s) is monotonically non-decreasing.
Hence, V πk

(s) also converges within a finite number of steps.

Suppose that for k ≥ M , V πk

(s) has already converged. Assume further that Gc(s, π̂
k+1) ̸=

Gc(s, π̂
k) when k ≥M . This implies π̂k+1 ̸= π̂k. From the contradiction argument in Lemma D.1,

it follows that
V πk+1

(s) = V π̂k+1

(s) > V π̂k

(s) = V πk

(s), (80)

which contradicts the assumption that V πk

(s) has already converged. Therefore, it must hold that
Gc(s, π̂

k+1) = Gc(s, π̂
k) for all k ≥M .

Consequently, when k ≥ M , the dynamic CG eventually stabilizes into a static CG. During this
stabilization stage, the update process reduces to Algorithm 1. By Theorem 5.1, πk converges within
a finite number of steps. Let π be the limit point of {πk}∞k=1. Then π is a Gd-locally optimal policy.
Furthermore, since the ADG satisfies condition (11), it follows from Theorem 4.4 that π is globally
optimal.

E CONSTRUCTION OF ACTION DEPENDENCY GRAPHS

To elucidate the construction of ADGs, we present Algorithm 2 that efficiently derives an ADG from
a given CG such that the condition (11) is satisfied.

Algorithm 2 Greedy Algorithm: Finding a Sparse ADG

Input: A CG Gc

Output: An ADG Gd = (N , Ed)
Initialize an empty graph Gd = (N , Ed) with all vertices unindexed
for i = 0 to n− 1 do

Assign index n− i to a vertex among the unindexed ones, such that the size of Nc((n− i)[+])
is minimized

end for
Construct the edge set Ed by adding edges (j, i) for each vertex i ∈ N and each j ∈ Nc(i

[+]) as
specified in (11)

F EXPERIMENTAL DETAILS

Setup of Coordination Polymatrix Game. In matrix cooperative games, different CGs and their
corresponding sparse ADGs are shown in Figure 9. For policy iteration methods, we randomly
generate the parameters of the payoff matrices, while fixing the maximum reward to be equal to the
number of edges in the CG. Moreover, the maximum reward is obtained when all agents choose
action 1. For the MAPPO method, we use fixed payoff matrices, with the exact parameters provided
in Table 1 to Table 4.

Setup of ATSC. In the ATSC environment, we conduct experiments on the maps 2x2grid,
3x3grid, and RESCO/grid4x4 provided by SUMO-RL. Based on the road network connectivity,
we design corresponding CGs, with their adjacency lists for CGs and sparse ADGs reported in Table 5

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

1

5

42

3

1

5

42

3

CG of Star

Sparse ADG of Star

4

1

25

3

CG of Ring

Sparse ADG of Ring

5 64

CG of Mesh

Sparse ADG of Mesh

5

1

74

CG of Tree

Sparse ADG of Tree

4

1

25

3

2 31

8 97

5 64

2 31

8 97

32

6

5

1

74

32

6

①

②

③

④
①

②

③

④

⑤

① ②

③ ④ ⑤

⑧ ⑨ ⑩

⑥ ⑦

⑪ ⑫

① ②

③ ④ ⑤ ⑥

Figure 9: The CG and sparse ADG of polymatrix coordination game.

Table 1: 1⃝ in Star

a1\a2 0 1 2 3 4
0 3.5 5.0 0.5 0.5 0.5
1 0.5 3.5 6.0 0.5 0.5
2 0.5 0.5 3.5 0.5 0.5
3 0.5 0.5 0.5 3.25 0.5
4 0.5 0.5 0.5 0.5 3.0

Table 2: 2⃝ in Star

a1\a3 0 1 2 3 4
0 3.5 0.5 5.0 0.5 0.5
1 0.5 3.5 6.0 0.5 0.5
2 0.5 0.5 3.5 0.5 0.5
3 0.5 0.5 0.5 3.25 0.5
4 0.5 0.5 0.5 0.5 3.0

Table 3: 3⃝ in Star

a1\a4 0 1 2 3 4
0 3.5 0.5 0.5 5.0 0.5
1 0.5 3.5 6.0 0.5 0.5
2 0.5 0.5 3.5 0.5 0.5
3 0.5 0.5 0.5 3.25 0.5
4 0.5 0.5 0.5 0.5 3.0

Table 4: 4⃝ in Star

a1\a5 0 1 2 3 4
0 3.5 0.5 0.5 0.5 5.0
1 0.0 0.0 0.0 0.0 0.0
2 0.5 0.5 3.5 0.5 0.5
3 0.5 0.5 0.5 3.25 0.5
4 0.5 0.5 0.5 0.5 3.0

to Table 10. To increase task difficulty and highlight the benefits of cooperation, we follow the idea of
Li et al. (2021); Böhmer et al. (2020) to modify the reward function. Specifically, instead of assigning
each agent its own queue reward, we redefine the reward as the minimum individual reward among
its CG neighbors, thereby emphasizing the performance gap induced by cooperation.

Table 5: CG of 2x2grid

Vertex Neighbors
0 1, 2
1 0, 3
2 0, 3
3 1, 2

Table 6: Sparse ADG of 2x2grid

Vertex Parent nodes
0
1 0
2 1, 0
3 2, 1

Experimental Hyperparameters. Our implementation of MAPPO is based on the open-source EPy-
MARL framework Papoudakis et al. (2021), employing the Adam optimizer for training. We use the
same hyperparameters across experiments under different ADGs, with a few critical hyperparameters

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 7: CG of 3x3grid

Vertex Neighbors
0 1, 3
1 0, 2, 4
2 1, 5
3 0, 4, 6
4 1, 3, 5, 7
5 2, 4, 8
6 3, 7
7 4, 6, 8
8 5, 7

Table 8: Sparse ADG of 3x3grid

Vertex Parent nodes
0
1 0
2 1, 0
3 2, 1, 0
4 3, 2, 1
5 4, 3, 2
6 5, 4, 3
7 6, 5, 4
8 7, 5

Table 9: CG of 4x4grid

Vertex Neighbors
0 1, 4
1 0, 2, 5
2 1, 3, 6
3 2, 7
4 0, 5, 8
5 1, 4, 6, 9
6 2, 5, 7, 10
7 3, 6, 11
8 4, 9, 12
9 5, 8, 10, 13
10 6, 9, 11, 14
11 7, 10, 15
12 8, 13
13 9, 12, 14
14 10, 13, 15
15 11, 14

Table 10: Sparse ADG of 4x4grid

Vertex Parent nodes
0
1 0
2 0, 1
3 0, 1, 2
4 0, 1, 2, 3
5 1, 2, 3, 4
6 2, 3, 4, 5
7 3, 4, 5, 6
8 4, 5, 6, 7
9 5, 6, 7, 8
10 6, 7, 8, 9
11 7, 8, 9, 10
12 8, 9, 10, 11
13 9, 10, 11, 12
14 10, 11, 13
15 11, 14

adjusted to fit each environment. These modified values are reported in Table 11, while any unlisted
parameters follow the default EPyMARL configuration.

Table 11: Experimental Hyperparameters

learning rate weight decay buffer size batch size entropy coefficient

ATSC 0.0004 0.0001 8 8 0.02
Polymatrix Game 0.0004 0.0001 16 8 0.1

Neural Network Architecture. For MAPPO with empty ADGs, we adopt the default MLP config-
urations specified in Papoudakis et al. (2021); Böhmer et al. (2020). For MAPPO with sparse and
dense ADGs, we modify the agent network architecture as follows.

Let oi ∈ Rdo denote the observational features of agent i, and ai ∈ Rda the action features of agent i.
The first-layer hidden features are computed as:

h1
oi = ReLU(W1oi + b1), h1

ai
= ReLU(W2ai + b2),

where W1 ∈ R64×do , W2 ∈ R64×da and b1, b2 ∈ R64 are the weights and biases, respectively.

Next, we take the average of h1
ai

over the dependency set Nd(i):

h2
ai

=
1

|Nd(i)|
∑

i∈Nd(i)

h1
ai
.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

We then concatenate the two feature vectors and obtain

h3 = [h1
oi , h

2
ai
],

which is fed into a multilayer perceptron:

h4 = ReLU(W3h
3 + b3), z = W4h

4 + b4,

where W3 ∈ R64×128, W4 ∈ Rdaction×64, b3 ∈ R64, and b4 ∈ Rdaction . The final output is z.

25

	Introduction
	Related Work
	Preliminary
	Coordination Graph
	Notations

	ADG with Optimality Guarantee
	Action Dependency Graph
	Coordination Polymatrix Game
	Optimality Guarantee

	Convergence of action-dependent policy
	Convergence to Gd-locally optimal policy
	Convergence to globally optimal policy

	Experiments
	Coordination Polymatrix Games
	ATSC

	Conclusion
	The Use of Large Language Models
	Mathematical Preliminaries
	Proof of Optimality
	Proof of Convergence
	Construction of Action Dependency Graphs
	Experimental Details

