

000 001 002 003 004 005 ACTION DEPENDENCY GRAPHS FOR GLOBALLY OPTI- 006 MAL COORDINATED REINFORCEMENT LEARNING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 Action-dependent policies, which condition decisions on both states and other
028 agents' actions, provide a powerful alternative to independent policies in multi-
029 agent reinforcement learning. Most existing studies have focused on auto-regressive
030 formulations, where each agent's policy depends on the actions of all preceding
031 agents. However, this approach suffers from severe scalability limitations as the
032 number of agents grows. In contrast, sparse dependency structures, where each
033 agent relies only on a subset of other agents, remain largely unexplored and lack
034 rigorous theoretical foundations. To address this gap, we introduce the action
035 dependency graph (ADG) to model sparse inter-agent action dependencies. We
036 prove that action-dependent policies can converge to solutions stronger than Nash
037 equilibria, which often trap independent policies, and we refer to such solutions
038 as G_d -locally optimal policies. Furthermore, within coordination graph (CG)
039 structured problems, we show that a G_d -locally optimal policy attains global
040 optimality when the ADG satisfies specific CG-induced conditions. To substantiate
041 our theory, we develop a tabular policy iteration algorithm that converges exactly
042 as predicted. We further extend a standard deep MARL method to incorporate
043 action-dependent policies, confirming the practical relevance of our framework.
044

045 1 INTRODUCTION

046 Achieving effective multi-agent reinforcement learning (MARL) in fully cooperative environments
047 requires agents to coordinate their actions to maximize collective performance. Most existing MARL
048 methods rely on independent policies (Zhang et al., 2021; Oroojlooy & Hajinezhad, 2023), where
049 each agent makes decisions based solely on its state or observation. Although computationally
050 tractable and scalable, these completely decentralized policies are often suboptimal (Fu et al., 2022).
051 The primary limitation lies in their tendency to converge to one of many Nash equilibrium solutions
052 (Ye et al., 2022), which may not correspond to the globally optimal solution.

053 The emergence of action-dependent policies (Fu et al., 2022) offers a promising solution to this
054 challenge. By incorporating the actions of other agents into an agent's decision-making process,
055 action-dependent policies enable more effective cooperation and achieve superior performance
056 compared to independent policies. We introduce the action dependency graph (ADG), a directed
057 acyclic graph, to represent the action dependencies required for agents to make decisions. Theoretical
058 studies (Bertsekas, 2021; Chen & Zhang, 2023) demonstrate that policies with auto-regressive forms,
059 associated with fully dense ADGs—where replacing each directed edge with an undirected edge
060 yields a complete graph—guarantee global optimality. However, fully dense ADGs pose substantial
061 scalability issues, as they require a high degree of interdependence and coordination.

062 Sparse ADGs, which involve fewer inter-agent dependencies, offer a more scalable alternative. This
063 leads to a critical question: can action-dependent policies with sparse ADGs still guarantee global
064 optimality? To answer this question, we build on the framework of coordinated reinforcement
065 learning (Guestrin et al., 2002), where the cooperative relationship between agents is described by
066 a coordination graph (CG). We find that global optimality can still be achieved using an action-
067 dependent policy with a sparse ADG, provided that a specific relationship between the ADG and the
068 CG is satisfied.

069 The contributions of this paper are summarized as follows. (i) We introduce the notion of a G_d -
070 locally optimal policy, which differs from the Nash equilibrium and more precisely characterizes
071

054 the convergence behavior of action-dependent policies. (ii) We establish a theoretical framework
 055 that unifies coordination graphs with action-dependent policies and derive optimality conditions for
 056 sparse ADGs. To the best of our knowledge, this is the first work to seamlessly integrate these two
 057 perspectives. (iii) We design a policy iteration algorithm that, grounded in our theory, guarantees
 058 convergence of action-dependent policies to a G_d -locally optimal policy, and further to a globally
 059 optimal policy under the optimality conditions.

060 2 RELATED WORK

061 **Independent policy.** The majority of the literature on MARL represents the joint policy as the
 062 Cartesian product of independent individual policies. Value-based methods such as IQL (Tan, 1993),
 063 VDN (Sunehag et al., 2018), QMIX (Rashid et al., 2018), and QTRAN (Son et al., 2019) employ local
 064 value functions that depend only on the state or observation of each agent. Similarly, policy-based
 065 methods such as MADDPG (Lowe et al., 2017), COMA (Foerster et al., 2018), MAAC (Iqbal & Sha,
 066 2019), and MAPPO (Yu et al., 2022) directly adopt independent policies. These approaches often fail
 067 to achieve global optimality, as they are not able to cover all strategy modes (Fu et al., 2022).

068 **Coordination graph.** Some value-based methods (Böhmer et al., 2020; Castellini et al., 2021; Li
 069 et al., 2021; Wang et al., 2022b) recognize that the limitation of independent policies is due to a
 070 game-theoretic pathology known as relative overgeneralization (Panait et al., 2006). To mitigate this,
 071 they employ a higher-order value decomposition framework by introducing the coordination graph
 072 (CG) (Guestrin et al., 2002). In this graph, the vertices represent agents, and the edges correspond to
 073 pairwise interactions between agents in the local value functions. While CGs improve cooperation by
 074 considering inter-agent dependencies, the resulting joint policy cannot be decomposed into individual
 075 policies. Consequently, decision-making algorithms still require intensive computation, such as
 076 Max-Plus (Rogers et al., 2011) or Variable Elimination (VE) (Bertele & Brioschi, 1972). When
 077 the CG is dense, these computations may become prohibitively time consuming, making the policy
 078 difficult to execute in real time.

079 **Action-dependent policy.** In contrast to independent policies, action-dependent policies (Wang et al.,
 080 2022a; Ruan et al., 2022; Li et al., 2023; 2024) incorporate not only the state, but also the actions
 081 of other agents into an agent’s decision-making process. The action dependencies among agents
 082 can be represented by a directed acyclic graph, which we refer to as the action dependency graph
 083 (ADG). In some literature, the action-dependent policy is also referred to as Bayesian policy (Chen
 084 & Zhang, 2023) or auto-regressive policy (Fu et al., 2022). Moreover, the use of action-dependent
 085 policies can be viewed as a mechanism to leverage communications for enhancing cooperation (Zhou
 086 et al., 2023; Duan et al., 2024; Jing et al., 2024). Some approaches (Bertsekas, 2021; Ye et al., 2022;
 087 Wen et al., 2022) transform a multi-agent MDP into a single-agent MDP with a sequential structure,
 088 enabling each agent to consider the actions of all previously decided agents during decision-making.
 089 This transformation ensures the convergent joint policy to be globally optimal (Bertsekas, 2021).
 090 However, the fully dense ADG makes these methods computationally expensive and impractical for
 091 large-scale systems. For more general ADGs, existing theories can only guarantee convergence to a
 092 Nash equilibrium solution (Chen & Zhang, 2023). Currently, no theoretical evidence demonstrates the
 093 superiority of action-dependent policies with sparse dependency graphs over independent policies.

094 3 PRELIMINARY

095 We formulate the cooperative multi-agent reinforcement learning problem as a *Multi-Agent Markov*
 096 *Decision Process* (MAMDP), represented by the tuple $\langle \mathcal{N}, \mathcal{S}, \mathcal{A}, P, r, \gamma \rangle$, where $\mathcal{N} = \{1, \dots, n\}$
 097 denotes the set of agents, \mathcal{S} is the finite state space, $\mathcal{A} = \prod_{i=1}^n \mathcal{A}_i$ is the joint action space formed by
 098 the Cartesian product of each agent’s finite action space, $P : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \rightarrow [0, 1]$ is the transition
 099 kernel, $r : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ is the reward function, and $\gamma \in [0, 1]$ is the discount factor.

100 We consider policies of the deterministic form $\pi : \mathcal{S} \rightarrow \mathcal{A}$. The state value function and state-action
 101 value function induced by a policy π are

$$102 V^\pi(s) := \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t r(s^t, a^t) \middle| s^0 = s \right], Q^\pi(s, a) := \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t r(s^t, a^t) \middle| s^0 = s, a^0 = a \right], \quad (1)$$

108 where the expectation \mathbb{E} is taken over all random variables s^t induced by π and P . For any function
 109 $V \in \mathcal{R}(\mathcal{S})$, where $\mathcal{R}(\mathcal{S})$ denotes the set of real-valued functions $J : \mathcal{S} \rightarrow \mathbb{R}$, we define
 110

$$111 \quad Q^V(s, a) := r(s, a) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V(s'). \quad (2)$$

112 The Bellman operator $\mathcal{T}_\pi : \mathcal{R}(\mathcal{S}) \rightarrow \mathcal{R}(\mathcal{S})$ and the Bellman optimality operator $\mathcal{T} : \mathcal{R}(\mathcal{S}) \rightarrow \mathcal{R}(\mathcal{S})$
 113 are given by
 114

$$115 \quad \mathcal{T}_\pi V(s) = Q^V(s, \pi(s)), \quad \mathcal{T} V(s) = \max_{a \in \mathcal{A}} Q^V(s, a). \quad (3)$$

116 The value function V^π is the unique fixed point of \mathcal{T}_π , and the optimal value function V^* is the
 117 unique fixed point of \mathcal{T} .

119 3.1 COORDINATION GRAPH

120 In many practical scenarios such as sensor networks
 121 (Zhang & Lesser, 2011), wind farms (Bargiacchi
 122 et al., 2018), mobile networks (Bouton et al., 2021),
 123 etc., the Q -function can be approximated as the sum
 124 of local value functions, each depending on the states
 125 and actions of a subset of agents. A widely used
 126 approach to representing this decomposition is the
 127 use of the *coordination graph* (CG) (Guestrin et al.,
 128 2002), which captures the pairwise coordination
 129 relationships between agents. Formally, we define a CG
 130 as follows.

131 **Definition 3.1** (Coordination Graph). An undirected
 132 graph¹ $G_c = (\mathcal{N}, \mathcal{E}_c)$ is a CG under state $s \in \mathcal{S}$ of a value function $Q^\pi : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$, if there exists
 133 a local value function $Q_{ij}^\pi : \mathcal{S} \times \mathcal{A}_i \times \mathcal{A}_j \rightarrow \mathbb{R}$ for every edge $(i, j) \in \mathcal{E}_c$, and a local value function
 134 $Q_i^\pi : \mathcal{S} \times \mathcal{A}_i \rightarrow \mathbb{R}$ for every vertex $i \in \mathcal{N}$, such that for any $a \in \mathcal{A}$, the following decomposition
 135 holds:

$$136 \quad Q^\pi(s, a) = \sum_{i \in \mathcal{N}} Q_i^\pi(s, a_i) + \sum_{(i, j) \in \mathcal{E}_c} Q_{ij}^\pi(s, a_i, a_j). \quad (4)$$

137 **Remark 3.2.** If G_c is a subgraph of G'_c , and G_c is a CG of Q^π , then G'_c is also a CG of Q^π . Therefore,
 138 multiple CGs may correspond to the same value function Q^π .

139 Without loss of generality, we assume that G_c is connected; otherwise, the problem can be decomposed
 140 into independent subproblems depending on the connected components of G_c . In a connected
 141 graph, each vertex is involved in an edge, allowing the local value functions associated with vertices
 142 to be merged into those local value functions associated with edges, yielding:

$$144 \quad Q^\pi(s, a) = \sum_{(i, j) \in \mathcal{E}_c} Q_{ij}^\pi(s, a_i, a_j). \quad (5)$$

145 Figure 1 (a) shows a CG where Q^π can be decomposed as:

$$146 \quad Q^\pi(s, a) = Q_{12}^\pi(s, a_1, a_2) + Q_{13}^\pi(s, a_1, a_3) + Q_{23}^\pi(s, a_2, a_3). \quad (6)$$

147 Throughout this paper, we focus on a MAMDP structured by a CG.

150 3.2 NOTATIONS

151 In the paper, we frequently use sets as subscripts in expressions. Let $S \subseteq \mathcal{N}$, and denote its elements
 152 in ascending order as $S = \{s_1, s_2, \dots, s_k\}$. For a space, such as \mathcal{A}_S , we define $\mathcal{A}_S := \prod_{i \in S} \mathcal{A}_i :=$
 153 $\prod_{i=1}^k \mathcal{A}_{s_i}$. For a vector, such as a_S , we define $a_S := (a_{s_1}, a_{s_2}, \dots, a_{s_k})$, $a_{s_i} \in \mathcal{A}_{s_i}$. The notation
 154 $< i$ indicates the set of agents with indices smaller than i , similarly for $\leq i$, $> i$, and $\geq i$. For an
 155 undirected graph G_c , $N_{G_c}(i)$ denotes the neighbor of vertex i . When there is no ambiguity, we
 156 abbreviate $N_{G_c}(i)$ as $N_c(i)$. $N_c[t] := N_c(i) \cup i$, and $N_c(S)$ denotes the neighbors of a set S , that
 157 is, $N_c(S) = \bigcup_{i \in S} N_c(i) \setminus S$. For a directed graph G_d , $N_{G_d}(i)$ denotes the parent set of vertex i .
 158 Likewise, we abbreviate $N_{G_d}(i)$ as $N_d(i)$. Similarly, $N_d[i] := N_d(i) \cup i$, and $N_d(S)$ denotes the set
 159 of all parent nodes of vertices in S .

160 ¹In this paper, the vertices and edges of the graph are represented by agent indices and index pairs.
 161

162 Figure 1: A coordination graph (a) and an
 163 action dependency graph (b).

162 4 ADG WITH OPTIMALITY GUARANTEE
163164 4.1 ACTION DEPENDENCY GRAPH
165

166 In MARL, a deterministic joint policy $\pi(s)$ is a vector-valued mapping from states to actions,
167 where each component corresponds to an individual action. Thus, $\pi(s)$ can always be written as a
168 collection of independent policies $(\pi_1(s), \pi_2(s), \dots, \pi_n(s))$. In this sense, the independent policies is
169 expressive enough to represent any joint deterministic policy, including an optimal one. However, this
170 does not imply that independent learning can converge to the optimal joint policy, since independent
171 policies cannot capture coordinated behaviors that rely on correlated actions across agents. The
172 absence of such correlations may cause independent learners to converge to suboptimal points.

173 To address this limitation, we introduce a broader class of policies, termed *action-dependent policies*,
174 whose inputs include not only the state but also the actions of other agents. Formally, specifying
175 action-dependent policies requires determining the order in which actions are generated. Without loss
176 of generality, we assume that actions are output according to agent indices. In this case, the general
177 form of agent i 's policy is $\pi_i : \mathcal{S} \times \mathcal{A}_{<i} \rightarrow \mathcal{A}_i$. Since some policies may not depend on the actions
178 of all preceding agents, we use a *dependency set* to represent this sparse dependency relation.

179 **Definition 4.1** (Dependency Set). Let $C \subseteq (< i)$ be the dependency set of agent i 's policy π_i under
180 state $s \in \mathcal{S}$. Then, for any $a_C \in \mathcal{A}_C$, $a'_{(<i) \setminus C} \in \mathcal{A}_{(<i) \setminus C}$, it holds that

$$181 \pi_i(s, a_C, a'_{(<i) \setminus C}) = \pi_i(s, a_C, a_{(<i) \setminus C}).$$

183 If C is the dependency set of agent i , then the policy of agent i depends only on the actions of agents
184 in C . For convenience, depending on the context, we sometimes write $\pi_i(s, a_{<i})$ as $\pi_i(s, a_C)$. For a
185 joint policy, the overall action dependency structure can be represented as a directed acyclic graph
186 (DAG).

187 **Definition 4.2** (Action Dependency Graph (ADG)). The DAG $G_d = (\mathcal{N}, \mathcal{E}_d)$ is the Action Depen-
188 dency Graph of the joint policy π under state $s \in \mathcal{S}$ if, for any $i \in \mathcal{N}$, $N_d(i)$ is the dependency set of
189 π_i under state s .

190 The acyclic nature of the ADG guarantees that dependencies do not form cycles, which would
191 otherwise cause decision-making deadlocks and render the policy infeasible. Figure 1(b) illustrates
192 the ADG of a joint policy π with the following form:

$$194 \pi(s) = (\pi_1(s), \pi_2(s, \pi_1(s)), \pi_3(s, \pi_2(s, \pi_1(s)), \pi_1(s))). \quad (7)$$

195 From (7), it is evident that expressing the components of a joint policy directly in terms of action-
196 dependent policies becomes cumbersome. To streamline such representations, we recursively define
197 the following policy notation:

$$199 \pi_{i,C}(s, a_C) = \begin{cases} a_i & \text{if } i \in C, \\ \pi_i(s, \pi_{<i,C}(s, a_C)) & \text{otherwise,} \end{cases} \quad (8)$$

202 where $\pi_{<i,C} = (\pi_{1,C}, \dots, \pi_{i-1,C})$. The key difference between $\pi_{i,C}$ and action-dependent policy π_i
203 is that the former's actions in $(< i) \setminus C$ are already determined by $\pi_{<i,C}$, and therefore $\pi_{i,C}$ depends
204 only on the actions in C . A special case is $\pi_{i,\emptyset}$, where no other agent's action is involved. In this
205 case, $\pi_{i,\emptyset}$ is exactly the standard independent policy, and (7) can be rewritten concisely as

$$206 \pi(s) = (\pi_{1,\emptyset}(s), \pi_{2,\emptyset}(s), \pi_{3,\emptyset}(s)). \quad (9)$$

208 4.2 COORDINATION POLYMATRIX GAME
209

210 A key reason why independent policies often converge to locally optimal solutions is the existence
211 of Nash equilibrium policies (Zhang et al., 2022; Kuba et al., 2022), also known as agent-by-agent
212 optimal policies (Bertsekas, 2021). In this subsection, we illustrate the suboptimality of Nash
213 equilibria through an example of *coordination polymatrix game* (Cai & Daskalakis, 2011), and
214 demonstrate how action-dependent policies can overcome this limitation.

215 A coordination polymatrix game can be viewed as a single-step decision problem, formulated by
a MAMDP tuple $\langle \mathcal{N}, \mathcal{S}, \mathcal{A}, P, r, \gamma \rangle$, with $\mathcal{S} = \emptyset$ and $\gamma = 0$. In addition, the game is equipped

216 with an undirected graph $G_c = (\mathcal{N}, \mathcal{E}_c)$ and a set of pairwise payoff functions $\{r_{ij}\}_{(i,j) \in \mathcal{E}_c}$, which
 217 together determine the global reward $r(a) = \sum_{(i,j) \in \mathcal{E}_c} r_{ij}(a_i, a_j)$. In this setting, r is equivalent to
 218 the (state)-action value function $Q : \mathcal{A} \rightarrow \mathbb{R}$, and G_c serves as the CG of Q . Figure 2 illustrates a
 219 polymatrix game with three agents, each having two possible actions, $\mathcal{A}_i = \{0, 1\}$, $i = 1, 2, 3$. The
 220 payoff matrices specify the reward for each agent pair; for example, if agents 1 and 2 both choose
 221 action 0, they receive a payoff of 1 together.

222 For independent policies, the joint policies $\pi =$
 223 $(1, 1, 1)$ and $\pi = (0, 0, 0)$ are both Nash equi-
 224 libria. However, only $\pi = (0, 0, 0)$ is globally
 225 optimal. Although $\pi = (1, 1, 1)$ is suboptimal,
 226 no single agent has an incentive to deviate uni-
 227 laterally, since any individual deviation reduces
 228 the total reward.

229 Now consider action-dependent policies with an
 230 ADG G_d whose edge set is $\mathcal{E}_d = \{(1, 2), (2, 3)\}$.
 231 Suppose the policies are given by $\pi_1 = 1$,

232 $\pi_2(0) = 0, \pi_2(1) = 1, \pi_3(0) = 0$, and $\pi_3(1) = 1$. This corresponds to the same joint policy
 233 $\pi = (1, 1, 1)$. However, if agent 1 switches its action to 0, agents 2 and 3 will also switch to 0,
 234 leading to the joint action $(0, 0, 0)$ with reward $r(0, 0, 0) = 2$, which exceeds $r(1, 1, 1) = 1.2$. Thus,
 235 agent 1 is incentivized to choose action 0, driving the system toward the globally optimal policy.

237 4.3 OPTIMALITY GUARANTEE

238 The coordination polymatrix game example demonstrates that action-dependent policies can converge
 239 to solutions stronger than Nash equilibria. Such solutions are relatively rare in the policy space and
 240 are therefore more likely to be globally optimal. We refer to them as G_d -locally optimal policies.

241 **Definition 4.3** (G_d -locally Optimal). Let $G_d = (\mathcal{N}, \mathcal{E}_d)$ be a DAG. A joint policy π is G_d -locally
 242 optimal under $s \in \mathcal{S}$ if, for any $a_{N_d(i)} \in \mathcal{A}_{N_d(i)}$, the following holds:

$$244 Q^\pi(s, \pi_{\mathcal{N}, N_d(i)}(s, a_{N_d(i)})) = \max_{a_i \in \mathcal{A}_i} Q^\pi(s, \pi_{(<i), N_d(i)}(s, a_{N_d(i)}), a_i, \pi_{(>i), N_d[i]}(s, a_{N_d[i]})). \quad (10)$$

246 When G_d is empty (i.e., independent poli-
 247 cies), the notion of G_d -local optimality co-
 248 incides with agent-by-agent optimality. As
 249 more edges are added to G_d , condition (10)
 250 becomes increasingly restrictive. In the ex-
 251 treme case where G_d is a fully dense DAG
 252 with edge set $\mathcal{E}_d = \{(i, j) \in \mathcal{N} \times \mathcal{N} : i < j\}$, a G_d -locally optimal policy aligns
 253 with the globally optimal policy. In gen-
 254 eral, a joint policy with ADG G_d tends to
 255 converge to a G_d -locally optimal solution,
 256 as discussed in the next section. Thus, the
 257 most straightforward way to avoid subopti-
 258 mality is to adopt a fully dense ADG. However, the computational cost of training and executing such
 259 policies grows rapidly with the number of agents, limiting scalability. In fact, if the CG structure can
 260 be exploited, even some sparse ADGs suffice to guarantee global optimality. We now introduce a
 261 graph condition that links the CG and ADG, ensuring that every G_d -locally optimal policy is also
 262 globally optimal.

263 **Theorem 4.4** (Optimality of ADG, proof in Appendix C). *Let $s \in \mathcal{S}$, and let $G_d(s)$ be a DAG and
 264 $G_c(s)$ be the CG of Q^π under state s . Suppose that for every $s \in \mathcal{S}$, the policy π is $G_d(s)$ -locally
 265 optimal and the following holds:*

$$266 N_{G_d(s)}(i) \supseteq N_{G_c(s)}(\geq i), \quad \forall i \in \mathcal{N}. \quad (11)$$

267 Then π is globally optimal.

268 **Remark 4.5.** We write $G_d(s)$ and $G_c(s)$ to emphasize that the theorem can apply to problems where
 269 the CG may vary across states. For brevity, unless otherwise specified, we assume a fixed CG across

Figure 2: A polymatrix game on a line CG.

Figure 3: Different index orders of agents result in different sparsity of the ADG.

270 all states and denote it by G_c , with the corresponding fixed ADG denoted by G_d . Nevertheless, all
271 subsequent results can immediately extend directly to state-dependent CG settings.
272

273 This theorem indicates that the ADG can be de-
274 signed from the CG to guarantee that G_d -local
275 optimality implies global optimality. Two spe-
276 cial cases illustrate this principle: (i) When both
277 G_c and G_d are empty, condition (11) reduces
278 to $N_d(i) = N_c(\geq i) = \emptyset$, in which case the
279 Q -function admits a VDN decomposition and
280 any Nash equilibrium is globally optimal, con-
281 sistent with Dou et al. (2022). (ii) When G_c is
282 complete and G_d is fully dense, condition (11)
283 is also satisfied. Thus, for any CG, a fully dense
284 ADG guarantees global optimality, since every
285 CG is a subgraph of the complete graph.

286 If the agent indices are predetermined, replacing
287 the superset relationship with an equality in con-
288 dition (11) uniquely yields the sparsest ADG.
289 However, the choice of index order strongly in-
290 fluences the sparsity of G_d , as shown in Figure 3.
291 Determining the optimal index order is anal-
292 ogous to finding the optimal elimination order in variable elimination (VE), an NP-complete problem
293 (Kok & Vlassis, 2006). Despite this complexity, practical heuristics such as the greedy algorithm
294 described in Appendix E (Algorithm 2) can be employed. Figure 4 illustrates the resulting ADGs for
several simple CG topologies.

Figure 4: ADGs generated by Algorithm 2 for CG topologies: line, ring, and star.

5 CONVERGENCE OF ACTION-DEPENDENT POLICY

5.1 CONVERGENCE TO G_d -LOCALLY OPTIMAL POLICY

In this section, we introduce a policy iteration algorithm for MARL in the tabular setting. This algorithm highlights the advantage of employing action-dependent policies, enabling convergence to a G_d -locally optimal policy rather than merely an agent-by-agent optimal one.

Our approach extends the multi-agent policy iteration (MPI) framework proposed in Bertsekas (2021), which decomposes the joint policy update step of standard policy iteration (PI) (Sutton, 2018) into sequential updates of individual agents' policies, thereby mitigating the computational complexity of PI. However, MPI guarantees convergence only to an agent-by-agent optimal policy, which is often suboptimal. To address this limitation, we propose Algorithm 1, which incorporates action-dependent policies into the MPI framework and ensures convergence to a G_d -locally optimal policy.

Algorithm 1 Action-Dependent Multi-Agent Policy Iteration

```

313 Initialize policies  $\pi_i^1$ ,  $i \in \mathcal{N}$ , with ADG  $G_d$  under every  $s \in \mathcal{S}$ 
314 for  $k = 1, 2, \dots$  do
315   // Policy Evaluation
316   Compute  $V^{\pi^k}$  by solving  $V = \mathcal{T}_{\pi^k} V$  and derive  $Q^{\pi^k}$  from  $V^{\pi^k}$ 
317   // Policy Improvement
318   for  $i = 1, 2, \dots, n$  do
319     Update  $\pi_i^{k+1}$  for every  $(s, a_{<i})$  pair by
320     
$$\pi_i^{k+1}(s, a_{<i}) \leftarrow \arg \max_{a_i} Q^{\pi^k}(s, \pi_{(<i), N_d(i)}^{k+1}(s, a_{N_d(i)}), a_i, \pi_{(>i), N_d[i]}^k(s, a_{N_d[i]})). \quad (12)$$

321   end for
322 end for

```

324 Since the policies of agents in ($< i$) are always updated before agent i , the update rule (12) can
 325 always be applied in succession. Since the image set of $\arg \max$ may have multiple values, we
 326 arbitrarily select one of them. Specifically, if $\pi_i^k(s, a_{<i})$ is already in the image set, then we prioritize
 327 selecting $\pi_i^k(s, a_{<i})$. Note that while the update is specified for every $(s, a_{<i})$ pair, the $\arg \max$ in
 328 (12) only depends on $(s, a_{N_d(i)})$, so the actual computation only needs to be performed for every
 329 $(s, a_{N_d(i)})$ pair. When update rule no longer changes π_i^k for any $(s, a_{<i})$, the algorithm reaches
 330 convergence. The following theorem describes the convergence property:

331 **Theorem 5.1** (Convergence of Algorithm 1, proof in Appendix D). *Let $\{\pi^k\}_{k=1}^\infty$ be the policy
 332 sequence generated by Algorithm 1. Then $\{\pi^k\}_{k=1}^\infty$ converges to a G_d -locally optimal policy in a
 333 finite number of steps.*

335 It is straightforward to verify that once all individual policies converge, the joint policy is G_d -locally
 336 optimal. Thus, the main challenge in proving this theorem lies in establishing convergence of all
 337 individual policies. Chen & Zhang (2023) studied action-dependent policies in the policy gradient
 338 method and encountered a similar issue, which they bypassed by assuming that individual policies
 339 always converge. In contrast, we show that the joint policy converges regardless of whether individual
 340 policies converge directly (see Appendix Lemma D.1). Although convergence of the joint policy does
 341 not automatically imply G_d -local optimality, we can inductively establish that all individual policies
 342 converge from the convergence of the joint policy (see Appendix Lemma D.6). Therefore, our policy
 343 iteration method does not require additional assumptions and provides a complete resolution to this
 344 challenge.

345 5.2 CONVERGENCE TO GLOBALLY OPTIMAL POLICY

347 When the CG of an MDP is fixed, independent of both the state and the joint policy (e.g., polymatrix
 348 games), we can construct an ADG that satisfies (11) based on the CG, and then apply Algorithm 1 to
 349 update policies under this ADG. Upon convergence, Theorem 5.1 ensures that the resulting policy is
 350 G_d -locally optimal, and by Theorem 4.4, it is also globally optimal.

351 **Corollary 5.2.** *Assume G_c is the CG of the state-action value function Q^π for all policies π and
 352 states s . Let $\{\pi^k\}_{k=1}^\infty$ be the policy sequence generated by Algorithm 1 with an ADG G_d . If G_c and
 353 G_d satisfy (11), then $\{\pi^k\}_{k=1}^\infty$ converges to a globally optimal policy in a finite number of steps.*

354 In more general scenarios, the CG may be dynamic. To guarantee convergence to an optimal solution,
 355 the ADG must also evolve accordingly. Such changes in the CG are typically driven by both the
 356 state and the joint policy. We denote this dependence by $G_c(s, \pi)$. For state-dependent changes,
 357 it suffices to design a distinct ADG for each state, ensuring that Equation (11) remains valid. In
 358 contrast, for policy-dependent changes, the ADG should be updated after each policy iteration to
 359 preserve convergence to the globally optimal policy. A key challenge arises here: directly modifying
 360 the ADG may alter the structural dependencies of individual policies. For instance, under one ADG,
 361 agent i may depend only on the action of agent j , whereas under another ADG it may additionally
 362 depend on the actions of both j and k . If the policy of agent i lacks the interface to accommodate
 363 these additional dependencies, direct modification of the ADG becomes infeasible.

364 To address this issue, we could employ an indirect construction. Specifically, we build a set of
 365 individual policies such that, although their functional forms may differ before and after the ADG
 366 update, their induced joint policies remain identical. For deterministic policies, this construction is
 367 straightforward. Given a joint policy $\tilde{\pi}$ with independent components $\tilde{\pi}(s) = (\tilde{\pi}_1(s), \dots, \tilde{\pi}_n(s))$,
 368 we define a set of action-dependent policies $\{\pi_i\}_{i \in \mathcal{N}}$ with new ADG such that,

$$369 \pi_1(s) \leftarrow \tilde{\pi}_1(s), \quad \pi_2(s, \pi_1(s)) \leftarrow \tilde{\pi}_2(s), \quad \dots, \quad \pi_n(s, \tilde{\pi}_1(s), \dots, \tilde{\pi}_{n-1}(s)) \leftarrow \tilde{\pi}_n(s). \quad (13)$$

371 This guarantees that the joint policies before and after the ADG update are equivalent. Consequently,
 372 if the CG changes after (12), we reconstruct the new policy π_i^{k+1} according to (13). This ensures
 373 that the ADG and CG continue to satisfy Equation (11), thereby allowing Algorithm 1 to achieve the
 374 optimal solution.

375 **Corollary 5.3** (Proof in Appendix D). *Assume $G_c(s, \pi)$ is the CG of the state-action value Q^π for
 376 joint policy π and state s . Let $\{\pi^k\}_{k=1}^\infty$ be the policy sequence generated by Algorithm 1, with policy
 377 reconstruction according to (13) upon CG change. Then $\{\pi^k\}_{k=1}^\infty$ converges to a globally optimal
 378 policy in a finite number of steps.*

378
379

6 EXPERIMENTS

380
381

6.1 COORDINATION POLYMATRIZ GAMES

382
383
384
385
386
387
388
389

To validate our theoretical results, we evaluate Algorithm 1 on polymatrix games with CGs of different topologies: star (5 agents), ring (5 agents), tree (7 agents), and mesh (9 agents). The payoff matrices are randomly generated, with the maximum reward set equal to the number of CG edges. We compare three ADG types: sparse (generated by Algorithm 2 to satisfy (11)), fully dense, and empty. Additional experimental details are provided in Appendix F. Figure 5 reports the learning curves averaged over 100 runs. Both sparse and dense ADGs consistently reach the reward upper bound, with their learning curves being very close. In contrast, empty ADGs often become trapped in suboptimal Nash equilibria.

390
391
392
393
394
395
396
397
398399
400

Figure 5: Results of coordination polymatrix game.

401
402
403
404
405
406

To assess computational efficiency, Figure 6 (right) shows the average per-iteration runtime across 100 experiments when each agent has two actions. Shaded areas represent the 95% confidence intervals computed over multiple independent runs (similarly hereafter). As runtime is primarily determined by policy dimension and dimensions of dense ADG policies are independent of CG structure, their curves nearly overlap. Due to exponential growth in policy dimension, dense ADGs incur substantially higher costs as agent number increases, whereas sparse ADGs maintain scalability.

407
408
409
410
411
412
413
414
415
416
417418
419

Figure 6: Results of MAPPO on star CG (left) and average time per iteration (right).

420
421
422
423
424
425
426
427
428
429

We also extend the MAPPO algorithm to incorporate action-dependent policies to examine the convergence of action-dependent policies under more practical learning settings. Nevertheless, ADGs are not tailored to any specific MARL algorithm. Any method that includes an actor module can be adapted to the action-dependent policy. For algorithms based on independent actor, one can simply replace the independent actor with an action-dependent actor following the ADG structure. For auto-regressive actor, the adaptation amounts to removing action information that lies outside the ADG. For MAPPO, we transform the independent policy $\pi_{\theta_i}(a_i|s)$ into the action-dependent form $\pi_{\theta_i}(a_i|s, a_{N_d(i)})$. This requires a corresponding modification of the optimization objective to properly handle the action-dependent policy. Consider MAPPO (Yu et al., 2022), where the original objective is

430
431

$$\mathcal{L}(\theta) = \mathbb{E}_{s \sim \mathcal{D}, a \sim \pi_{\theta_{\text{old}}}} \left[\sum_{i=1}^n \min \left(r_{\theta_i}(a_i, s) A_{\pi_{\theta_{\text{old}}}}(s, a), \text{clip}(r_{\theta_i}(a_i, s), 1 \pm \varepsilon) A_{\pi_{\theta_{\text{old}}}}(s, a) \right) \right],$$

432 where $r_{\theta_i}(a_i, s) = \frac{\pi_{\theta_i}(a_i|s)}{\pi_{\theta_{i,\text{old}}}(a_i|s)}$, and \mathcal{D} denotes the distribution in the replay buffer. To adapt this objec-
 433 tive for action-dependent policies, we replace $r_{\theta_i}(a_i, s)$ with $r_{\theta_i}(a_i, s, a_{N_d(i)}) = \frac{\pi_{\theta_i}(a_i|s, a_{N_d(i)})}{\pi_{\theta_{i,\text{old}}}(a_i|s, a_{N_d(i)})}$.
 434

435 Figure 6 (left) presents results of the extended MAPPO on polymatrix games with a star CG, using
 436 fixed payoff matrices (maximum reward 20) and 10 random seeds. As the value of the largest
 437 suboptimal point is 18, both sparse and dense ADGs successfully escape all suboptimal points. The
 438 slight deviations from the maximum reward are primarily attributed to exploratory behavior caused
 439 by entropy regularization. These results demonstrate that even in non-tabular settings parameterized
 440 by neural networks, Theorem 4.4 provides a reliable design principle for sparse ADGs. In future
 441 work, we also plan to provide a rigorous theoretical analysis to substantiate these empirical findings.
 442

443 6.2 ATSC

444 To further examine practical applicability, we evaluate the extended
 445 MAPPO on adaptive traffic signal control (ATSC) problem, a bench-
 446 mark with a natural coordination structure. Experiments are conducted
 447 on 2x2 (4 agents), 3x3 (9 agents), and 4x4 (16 agents) road networks
 448 using the Simulation of Urban Mobility (SUMO) platform Lopez et al.
 449 (2018) and SUMO-RL Alegre (2019). The CG is defined by adjacency
 450 between intersections, and sparse ADGs are derived with Algorithm 2.
 451 To verify the computational efficiency improvement of sparse ADGs
 452 in deep learning settings, we measure the FLOPs required for a single
 453 forward pass of the action-dependent policy employed in the ATSC,
 454 as presented in Table 1. Detailed experimental protocols and hyperpa-
 455 rameters are given in Appendix F.

456 As shown in Figure 8, sparse ADGs achieve performance comparable to dense ADGs, and both
 457 outperform empty ADGs. This indicates that even with approximate CG structures, sparse ADGs
 458 retain the efficiency of action-dependent policies without sacrificing optimality.
 459

460 Table 1: FLOPs of a single forward pass in ATSC.

462 environment	463 dense ADG	464 sparse ADG
463 2x2grid	45312	42496
464 3x3grid	140112	104832
465 4x4grid	412672	232448

Figure 7: 3x3 road network.

Figure 8: Results of ATSC.

477 7 CONCLUSION

478 In this work, we established a theoretical framework for action-dependent policies in multi-agent
 479 reinforcement learning by introducing the ADG and the notion of G_d -locally optimal policies. We
 480 further identified conditions under which these policies coincide with globally optimal solutions in
 481 coordination graph structured problems, and proposed a policy iteration algorithm with guaranteed
 482 convergence. Finally, we validated our theory and demonstrated its practical potential through
 483 experiments on polymatrix games and adaptive traffic signal control. Recognizing that complex
 484 environments may involve unknown CGs, hypergraph CGs, we aim to explore the adaptability and
 485 potential of ADGs in these challenging settings in future research.

486 REFERENCES
487

488 Lucas N. Alegre. SUMO-RL. <https://github.com/LucasAlegre/sumo-rl>, 2019.

489 Eugenio Bargiacchi, Timothy Verstraeten, Diederik Roijers, Ann Nowé, and Hado Hasselt. Learning
490 to coordinate with coordination graphs in repeated single-stage multi-agent decision problems. In
491 *International Conference on Machine Learning*, pp. 482–490. PMLR, 2018.

492

493 Umberto Bertele and Francesco Brioschi. *Nonserial dynamic programming*. Academic Press, Inc.,
494 1972.

495 Dimitri Bertsekas. Multiagent reinforcement learning: Rollout and policy iteration. *IEEE/CAA
496 Journal of Automatica Sinica*, 8(2):249–272, 2021.

497

498 Ashmita Bhattacharya and Malyaban Bal. Multi-agent decision s4: Leveraging state space models
499 for offline multi-agent reinforcement learning, 2025.

500

501 Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. Deep coordination graphs. In *International
502 Conference on Machine Learning*, pp. 980–991. PMLR, 2020.

503

504 Maxime Bouton, Hasan Farooq, Julien Forgeat, Shruti Bothe, Meral Shirazipour, and Per Karls-
505 son. Coordinated reinforcement learning for optimizing mobile networks. *arXiv preprint
arXiv:2109.15175*, 2021.

506

507 Yang Cai and Constantinos Daskalakis. On minmax theorems for multiplayer games. In *Proceedings
508 of the 20nd Annual ACM-SIAM Symposium on Discrete Algorithms*, pp. 217–234. SIAM, 2011.

509

510 Jacopo Castellini, Frans A Oliehoek, Rahul Savani, and Shimon Whiteson. Analysing factorizations
511 of action-value networks for cooperative multi-agent reinforcement learning. *Autonomous Agents
and Multi-Agent Systems*, 35(2):25, 2021.

512

513 Dingyang Chen and Qi Zhang. Context-aware bayesian network actor-critic methods for cooperative
514 multi-agent reinforcement learning. In *International Conference on Machine Learning*, pp. 5327–
515 5350. PMLR, 2023.

516

517 Zehao Dou, Jakub Grudzien Kuba, and Yaodong Yang. Understanding value decomposition algo-
518 rithms in deep cooperative multi-agent reinforcement learning. *arXiv preprint arXiv:2202.04868*,
519 2022.

520

521 Wei Duan, Jie Lu, and Junyu Xuan. Group-aware coordination graph for multi-agent reinfor-
522 cements learning. In *Proceedings of the Thirty-Third International Joint Conference on Artificial
Intelligence*, pp. 3926–3934, 2024.

523

524 Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.
525 Counterfactual multi-agent policy gradients. In *Proceedings of the AAAI Conference on Artificial
Intelligence*, volume 32, 2018.

526

527 Wei Fu, Chao Yu, Zelai Xu, Jiaqi Yang, and Yi Wu. Revisiting some common practices in cooperative
528 multi-agent reinforcement learning. In *International Conference on Machine Learning*, pp. 6863–
529 6877. PMLR, 2022.

530

531 Carlos Guestrin, Michail G Lagoudakis, and Ronald Parr. Coordinated reinforcement learning. In
532 *Proceedings of the 19th International Conference on Machine Learning*, pp. 227–234, 2002.

533

534 Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In *Inter-
535 national Conference on Machine Learning*, pp. 2961–2970. PMLR, 2019.

536

537 Gangshan Jing, He Bai, Jemin George, Aranya Chakrabortty, and Piyush K. Sharma. Distributed mul-
538 tiagent reinforcement learning based on graph-induced local value functions. *IEEE Transactions
on Automatic Control*, 69(10):6636–6651, 2024.

539

Jelle R Kok and Nikos Vlassis. Collaborative multiagent reinforcement learning by payoff propagation.
Journal of Machine Learning Research, 7, 2006.

540 JG Kuba, R Chen, M Wen, Y Wen, F Sun, J Wang, and Y Yang. Trust region policy optimisation in
 541 multi-agent reinforcement learning. In *International Conference on Learning Representations*, pp.
 542 1046, 2022.

543

544 Chuming Li, Jie Liu, Yinmin Zhang, Yuhong Wei, Yazhe Niu, Yaodong Yang, Yu Liu, and Wanli
 545 Ouyang. Ace: Cooperative multi-agent q-learning with bidirectional action-dependency. In
 546 *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 8536–8544, 2023.

547

548 Sheng Li, Jayesh K Gupta, Peter Morales, Ross Allen, and Mykel J Kochenderfer. Deep implicit co-
 549 ordination graphs for multi-agent reinforcement learning. In *Proceedings of the 20th International
 550 Conference on Autonomous Agents and MultiAgent Systems*, pp. 764–772, 2021.

551

552 Zhiyuan Li, Wenshuai Zhao, Lijun Wu, and Joni Pajarinen. Backpropagation through agents. In
 553 *Proceedings of the AAAI Conference on Artificial Intelligence*, pp. 13718–13726, 2024.

554

555 Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang Flötteröd,
 556 Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter Wagner, and Evamarie Wießner. Mi-
 557 croscopic traffic simulation using sumo. In *The 21st IEEE International Conference on Intelligent
 558 Transportation Systems*. IEEE, 2018.

559

560 Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent
 561 actor-critic for mixed cooperative-competitive environments. *Advances in Neural Information
 562 Processing Systems*, 30, 2017.

563

564 Frans Oliehoek. *Value-based planning for teams of agents in stochastic partially observable environ-
 565 ments*. Amsterdam University Press, 2010.

566

567 Afshin Oroojlooy and Davood Hajinezhad. A review of cooperative multi-agent deep reinforcement
 568 learning. *Applied Intelligence*, 53(11):13677–13722, 2023.

569

570 Liviu Panait, Sean Luke, and R Paul Wiegand. Biasing coevolutionary search for optimal multiagent
 571 behaviors. *IEEE Transactions on Evolutionary Computation*, 10(6):629–645, 2006.

572

573 Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht. Benchmarking
 574 multi-agent deep reinforcement learning algorithms in cooperative tasks. In *Proceedings of the
 575 Neural Information Processing Systems Track on Datasets and Benchmarks (NeurIPS)*, 2021.

576

577 Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shi-
 578 mon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforcement
 579 learning. In *International Conference on Machine Learning*, pp. 4295–4304. PMLR, 2018.

580

581 Alex Rogers, Alessandro Farinelli, Ruben Stranders, and Nicholas R Jennings. Bounded approximate
 582 decentralised coordination via the max-sum algorithm. *Artificial Intelligence*, 175(2):730–759,
 583 2011.

584

585 Jingqing Ruan, Yali Du, Xuantang Xiong, Dengpeng Xing, Xiyun Li, Linghui Meng, Haifeng Zhang,
 586 Jun Wang, and Bo Xu. Gcs: Graph-based coordination strategy for multi-agent reinforcement learn-
 587 ing. In *Proceedings of the 21st International Conference on Autonomous Agents and Multiagent
 588 Systems*, pp. 1128–1136, 2022.

589

590 Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning to
 591 factorize with transformation for cooperative multi-agent reinforcement learning. In *International
 592 Conference on Machine Learning*, pp. 5887–5896. PMLR, 2019.

593

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
 594 Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
 595 networks for cooperative multi-agent learning based on team reward. In *Proceedings of the 17th
 596 International Conference on Autonomous Agents and MultiAgent Systems*, pp. 2085–2087, 2018.

597

Richard S Sutton. Reinforcement learning: An introduction. *A Bradford Book*, 2018.

Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In *Proceedings
 598 of the 10th International Conference on Machine Learning*, pp. 330–337, 1993.

594 Jiangxing Wang, Deheng Ye, and Zongqing Lu. More centralized training, still decentralized
 595 execution: Multi-agent conditional policy factorization. *arXiv preprint arXiv:2209.12681*, 2022a.
 596

597 Tonghan Wang, Liang Zeng, Weijun Dong, Qianlan Yang, Yang Yu, and Chongjie Zhang. Context-
 598 aware sparse deep coordination graphs. In *International Conference on Learning Representations*,
 599 2022b.

600 Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang. Multi-
 601 agent reinforcement learning is a sequence modeling problem. *Advances in Neural Information
 602 Processing Systems*, 35:16509–16521, 2022.

603 Jianing Ye, Chenghao Li, Jianhao Wang, Qianchuan Zhao, and Chongjie Zhang. Towards global
 604 optimality in cooperative MARL with sequential transformation, 2022.

605

606 Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
 607 surprising effectiveness of ppo in cooperative multi-agent games. *Advances in Neural Information
 608 Processing Systems*, 35:24611–24624, 2022.

609 Chongjie Zhang and Victor Lesser. Coordinated multi-agent reinforcement learning in networked
 610 distributed POMDPs. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 25,
 611 pp. 764–770, 2011.

612

613 Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective
 614 overview of theories and algorithms. *Handbook of Reinforcement Learning and Control*, pp.
 615 321–384, 2021.

616 Runyu Zhang, Jincheng Mei, Bo Dai, Dale Schuurmans, and Na Li. On the global convergence rates
 617 of decentralized softmax gradient play in markov potential games. *Advances in Neural Information
 618 Processing Systems*, 35:1923–1935, 2022.

619

620 Yihe Zhou, Shunyu Liu, Yunpeng Qing, Kaixuan Chen, Tongya Zheng, Yanhao Huang, Jie Song, and
 621 Mingli Song. Is centralized training with decentralized execution framework centralized enough
 622 for MARL? *arXiv preprint arXiv:2305.17352*, 2023.

623

624 APPENDIX

626 A THE USE OF LARGE LANGUAGE MODELS

628 We used LLMs for improving the grammar and clarity of the manuscript. All scientific content, ideas,
 629 and analysis are original and authored by the listed contributors.

631 B MATHEMATICAL PRELIMINARIES

633 In the appendix, we first reformulate the MAMDP as a sequentially expanded MDP (SEMDP)
 634 (Ye et al., 2022; Li et al., 2023; Bhattacharya & Bal, 2025), and then establish our proofs on this
 635 reformulation. The SEMDP transforms a multi-agent system into a single-agent MDP by expanding
 636 the state space. Importantly, the SEMDP reformulation is non-essential: it does not introduce any new
 637 assumptions, and our results can still be proven directly under the MAMDP formulation. However,
 638 introducing the SEMDP greatly simplifies the notation used in the proofs.

639 Given an MAMDP $\langle \mathcal{N}, \mathcal{S}, \mathcal{A}, \tilde{P}, \tilde{r}, \gamma^n \rangle$, we construct a SEMDP denoted by $\langle \mathcal{N}, \mathcal{S}, \mathcal{A}, P, r, \gamma \rangle$, where

641

- \mathcal{S} is identical to the state space in the MAMDP;

642

- $\mathcal{A} = \prod_{i=1}^n \mathcal{A}_i$ is identical to the joint action space in the MAMDP;

643

- $\mathcal{Z} = \bigcup_{i \in \mathcal{N}} \mathcal{Z}_i$ is the expanded state space, where $\mathcal{Z}_i = \mathcal{S} \times \prod_{j=1}^{i-1} \mathcal{A}_j$ is the individual
 644 expanded state space for agent i ;

645

- $P : \mathcal{Z} \times \mathcal{Z} \times \bigcup_{i \in \mathcal{N}} \mathcal{A}_i \rightarrow [0, 1]$ is the transition kernel of the SEMDP;

646

- $r : \bigcup_{i \in \mathcal{N}} (\mathcal{Z}_i \times \mathcal{A}_i) \rightarrow \mathbb{R}$ is the reward function of the SEMDP;

647

648 The SEMDP transition kernel is defined as
 649

$$650 \quad P((s, a_{\leq i}) | (s, a_{<i}), a_i) = 1, \quad \forall s \in \mathcal{S}, a_{\leq i} \in \mathcal{A}_{\leq i}, 0 < i < n, \quad (14)$$

$$651 \quad 652 \quad P(s' | (s, a_{<n}), a_n) = \tilde{P}(s' | s, a), \quad \forall s \in \mathcal{S}, a_{\leq n} \in \mathcal{A}_{\leq n}. \quad (15)$$

653 The reward function is defined as
 654

$$655 \quad r((s, a_{<i}); a_i) = 0, \quad \forall s \in \mathcal{S}, a_{\leq i} \in \mathcal{A}_{\leq i}, 0 < i < n, \quad (16)$$

$$656 \quad r((s, a_{<n}); a_n) = \tilde{r}(s, a), \quad \forall s \in \mathcal{S}, a \in \mathcal{A}. \quad (17)$$

658 In the appendix, the joint policy in the SEMDP is denoted by $\pi : \mathcal{Z} \rightarrow \bigcup_{i \in \mathcal{N}} \mathcal{A}$, where
 659

$$660 \quad \pi(s, a_{<i}) \in \mathcal{A}_i, \quad \forall s \in \mathcal{S}, a_{<i} \in \mathcal{A}_{<i}.$$

661 The individual policy of agent i is defined as $\pi_i := \pi|_{\mathcal{Z}_i}$, which restricts the function to \mathcal{Z}_i . This
 662 formulation is identical to the individual policy in the MAMDP. To distinguish between the joint
 663 policies in MAMDP and SEMDP, we rewrite the joint policy in the MAMDP as $\hat{\pi} := \pi_{\mathcal{N}, \emptyset}^k =$
 664 $(\pi_{1, \emptyset}, \dots, \pi_{n, \emptyset})$.
 665

666 In the SEMDP, the state value function takes the form $V : \mathcal{Z} \rightarrow \mathbb{R}$, and the state-action value function
 667 takes the form $Q : \bigcup_{i \in \mathcal{N}} (\mathcal{Z}_i \times \mathcal{A}_i) \rightarrow \mathbb{R}$. For any $V \in \mathcal{R}(\mathcal{Z})$, we define
 668

$$669 \quad Q^V(s, a_{<i}; a_i) := r(s, a_{<i}; a_i) + \gamma \sum_{z' \in \mathcal{Z}} P(z' | (s, a_{<i}), a_i) V(z'). \quad (18)$$

670 The Bellman operator \mathcal{T}_π and the optimal Bellman operator \mathcal{T} are given by
 671

$$672 \quad \mathcal{T}_\pi V(z) = Q^V(s, a_{<i}; \pi_i(s, a_{<i})), \quad \mathcal{T} V(z) = \max_{a_i} Q^V(s, a_{<i}; a_i). \quad (19)$$

673 The state value function V^π is the fixed point of \mathcal{T}_π , and the state-action value function is $Q^\pi := Q^{V^\pi}$.
 674 The optimal state value function V^* is the fixed point of \mathcal{T} , and $Q^* := Q^{V^*}$. The semicolon in Q
 675 and r highlights the action dependence. However, $Q(s, a_{<n}; a_n)$ can also be regarded as the value
 676 function of the full joint action and thus is sometimes written simply as $Q(s, a)$.
 677

678 **Proposition B.1.** *We summarize several fundamental properties of the SEMDP:*
 679

- 680 1. $V^{\hat{\pi}}(s) = \gamma^{1-n} V^\pi(s)$, $Q^{\hat{\pi}}(s, a) = \gamma^{1-n} Q^\pi(s, a)$, where $V^{\hat{\pi}}$ and $Q^{\hat{\pi}}$ denotes the state and
 681 state-action value function in the original MAMDP.
- 683 2. $Q^\pi(s, a_{<i}; a_i) = \gamma V^\pi(s, a_{\leq i})$, $1 \leq i < n$.
- 685 3. $Q^\pi(s, a_{<i}; a_i) = \gamma^{n-i} Q^\pi(s, \pi_{(<n), (\leq i)}(s, a_{\leq i}); \pi_{n, (\leq i)}(s, a_{\leq i}))$, $1 \leq i < n$.

687 *Proof.* (i) We expand the definition of $V^{\hat{\pi}}$ in the MAMDP:

$$\begin{aligned} 688 \quad V^{\hat{\pi}}(s) &= \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^{nt} r(s_t, \hat{\pi}(s_t)) \middle| s_{t+1} \sim P(\cdot | s_t, \hat{\pi}(s_t)), s_0 = s \right] \\ 689 \\ 690 &= \mathbb{E} \left[\sum_{t=0}^{\infty} \sum_{i=1}^n \gamma^{nt+i-n} r(s_t, \pi_{<i, \emptyset}(s_t); \pi_{i, \emptyset}(s_t)) \middle| s_{t+1} \sim P(\cdot | s_t, \hat{\pi}(s_t)), s_0 = s \right] \\ 691 \\ 692 &= \mathbb{E} \left[\gamma^{1-n} \sum_{t=0}^{\infty} \sum_{i=1}^n \gamma^{nt+i-1} r(s_t, \pi_{<i, \emptyset}(s_t); \pi_{i, \emptyset}(s_t)) \middle| s_{t+1} \sim P(\cdot | s_t, \hat{\pi}(s_t)), s_0 = s \right] \\ 693 \\ 694 &= \gamma^{1-n} \mathbb{E} \left[\sum_{t'=0}^{\infty} \gamma^{t'} r(z_{t'}, \pi(z_{t'})) \middle| z_{t'+1} \sim P(\cdot | z_{t'}, \pi(z_{t'})), z_0 = s \right] \\ 695 \\ 696 &= \gamma^{1-n} V^\pi(s) \end{aligned}$$

700 Similarly, we can derive that $Q^{\hat{\pi}}(s) = \gamma^{1-n} Q^\pi(s)$.
 701

702 (ii) For $1 \leq i < n$, we compute:

$$\begin{aligned} 704 \quad Q^\pi(s, a_{<i}; a_i) &= r(s, a_{<i}; a_i) + \gamma \sum_{z' \in \mathcal{Z}} P(z' | (s, a_{<i}), a_i) V^\pi(z') \\ 705 \\ 706 \quad &= \gamma V^\pi(s, a_{\leq i}). \end{aligned}$$

707 (iii) Repeatedly unrolling the recursion yields:

$$\begin{aligned} 709 \quad Q^\pi(s, a_{<i}; a_i) &= \gamma V^\pi(s, a_{\leq i}) \\ 710 \\ 711 \quad &= \gamma Q^\pi(s, a_{\leq i}; \pi_{i+1, (\leq i)}(s, a_{\leq i})) \\ 712 \\ 713 \quad &= \dots = \gamma^{n-i} Q^\pi(s, \pi_{(<n), (\leq i)}(s, a_{\leq i}); \pi_{n, (\leq i)}(s, a_{\leq i})). \end{aligned}$$

□

714 From Proposition B.1(i), we see that the value functions in the SEMDP and the MAMDP are
715 equivalent up to a constant factor. Therefore, it can be easily verified that (1) an optimal policy in
716 the SEMDP remains optimal in the original MAMDP, (2) Q^π and $Q^{\hat{\pi}}$ have the same CG, and (3) in
717 update rule (12), replacing the Q -function with its SEMDP counterpart does not affect the update
718 outcome:

$$719 \quad \pi_i^{k+1}(s, a_{<i}) \leftarrow \arg \max_{a_i} Q^{\pi^k}(s, \pi_{(<i), N_d(i)}^{k+1}(s, a_{N_d(i)}); a_i). \quad (20)$$

721 C PROOF OF OPTIMALITY

722 In the appendix, we generalize the concept of the dependency set to more general functions to simplify
723 the description of subsequent proofs.

724 **Definition C.1** (Dependency Set). Let $f : \mathcal{A}_S \rightarrow \mathcal{Y}$ be a mapping defined on the joint action space
725 of a subset of agents $S \subseteq \mathcal{N}$. A subset $C \subseteq S$ is called a dependency set of f if for any $s \in S$,
726 $a_C \in \mathcal{A}_C$, $a'_{S \setminus C} \in \mathcal{A}_{S \setminus C}$, the following holds:

$$727 \quad f(a_C, a'_{S \setminus C}) = f(a_C, a_{S \setminus C}).$$

728 For notational convenience, we may permute the order of variables when writing a function, but the
729 evaluation of the function always follows the ordering of variables according to their agent indices.

730 Since the form of the Q -function changes in the SEMDP setting, we restate the definition of G_d -
731 locally optimal policies for SEMDPs. Note that, according to Proposition B.1 (i) and (iii), this
732 definition is equivalent to the one given in the main text.

733 **Definition C.2** (G_d -locally Optimal in SEMDP). Let G_d be a DAG. A joint policy π is G_d -locally
734 optimal under $s \in \mathcal{S}$ if, for any $a_{N_d(i)} \in \mathcal{A}_{N_d(i)}$, the following holds:

$$735 \quad Q^\pi(s, \pi_{(<i), N_d(i)}(s, a_{N_d(i)}); \pi_{i, N_d(i)}(s, a_{N_d(i)})) = \max_{a_i} Q^\pi(s, \pi_{(<i), N_d(i)}(s, a_{N_d(i)}); a_i). \quad (21)$$

736 **Lemma C.3.** For any fixed $s \in \mathcal{S}$, let G_d be a DAG. Suppose a joint policy π is G_d -locally optimal
737 at s . If for every $i \in \mathcal{N}$, the set S_i is the dependency set of the function $\arg \max_{a_i} Q^\pi(s, a_{(<i)}; a_i)$
738 with respect to $a_{(<i)}$ at s , and if $N_d(i) \supseteq S_i$, then π is globally optimal.

739 *Proof.* Fix any $s \in \mathcal{S}$. Since π is G_d -locally optimal, we have

$$\begin{aligned} 740 \quad \pi_i(s, a_{<i}) &\in \arg \max_{a_i} Q^\pi(s, \pi_{(<i), N_d(i)}(s, a_{N_d(i)}); a_i) \\ 741 \\ 742 \quad &= \arg \max_{a_i} Q^\pi(s, a_{N_d(i)}, \pi_{(<i) \setminus N_d(i), N_d(i)}(s, a_{N_d(i)}); a_i). \end{aligned} \quad (22)$$

743 Because $N_d(i) \supseteq S_i$, where S_i is the dependency set of $\arg \max_{a_i} Q^\pi(s, a_{(<i)}; a_i)$, it follows that

$$744 \quad \pi_i(s, a_{<i}) \in \arg \max_{a_i} Q^\pi(s, a_{<i}; a_i), \quad \forall a_{<i} \in \mathcal{A}_{<i}. \quad (23)$$

745 Therefore,

$$\begin{aligned} 746 \quad V^\pi(s, a_{<i}) &= \mathcal{T}_\pi V^\pi(s, a_{<i}) = Q^\pi(s; a_{<i}; \pi_i(s, a_{<i})) \\ 747 \\ 748 \quad &= \max_{a_i} Q^\pi(s; a_{<i}; a_i) = \mathcal{T} V^\pi(s, a_{<i}), \end{aligned} \quad (24)$$

749 which shows that V^π is a fixed point of \mathcal{T} . Hence, π is globally optimal. □

756 **Lemma C.4.** Let Q be a state-action value function, and let $G_c = (\mathcal{N}, \mathcal{E}_c)$ be the CG of Q at state s .
 757 Then for any $i \in \mathcal{N}$, there exist functions $Q_1 : \mathcal{S} \times \mathcal{A}_{N_c[\geq i]} \rightarrow \mathbb{R}$ and $Q_2 : \mathcal{S} \times \mathcal{A}_{< i} \rightarrow \mathbb{R}$ such that
 758

$$759 \quad Q(s, a) = Q_1(s, a_{N_c[\geq i]}) + Q_2(s, a_{< i}), \quad \forall s \in \mathcal{S}, a \in \mathcal{A}, \quad (25)$$

760 where $N_c[\geq i] := N_c(\geq i) \cup (\geq i)$.
 761

762 *Proof.* Decomposing Q according to the structure of G_c yields
 763

$$764 \quad Q(s, a) = \left(\sum_{(j,k) \in \mathcal{E}_c[\geq i, < i]} + \sum_{(j,k) \in \mathcal{E}_c[\geq i]} + \sum_{(j,k) \in \mathcal{E}_c[< i]} \right) Q_{jk}(s, a_j, a_k), \quad (26)$$

765 where $\mathcal{E}_c[\geq i, < i]$ denotes the subset of \mathcal{E}_c containing edges between vertices in the sets $\geq i$ and $< i$,
 766 and $\mathcal{E}_c[\geq i] := \mathcal{E}_c[\geq i, \geq i]$ containing edges within the set $\geq i$. Noting that $\mathcal{E}_c[\geq i, < i] = \mathcal{E}_c[\geq i, N_c(\geq i)]$, thus, we can rewrite:
 767

$$768 \quad Q(s, a) = \left(\sum_{(j,k) \in \mathcal{E}_c[\geq i, N_c(\geq i)]} + \sum_{(j,k) \in \mathcal{E}_c[\geq i]} + \sum_{(j,k) \in \mathcal{E}_c[N_c(\geq i)]} + \sum_{(j,k) \in \mathcal{E}_c[< i] \setminus \mathcal{E}_c[N_c(\geq i)]} \right) Q_{jk}(s, a_j, a_k). \quad (27)$$

769 Define
 770

$$771 \quad Q_1(s, a_{N_c[\geq i]}) := \left(\sum_{(j,k) \in \mathcal{E}_c[\geq i, N_c(\geq i)]} + \sum_{(j,k) \in \mathcal{E}_c[\geq i]} + \sum_{(j,k) \in \mathcal{E}_c[N_c(\geq i)]} \right) Q_{jk}(s, a_j, a_k), \quad (28)$$

772 and
 773

$$774 \quad Q_2(s, a_{< i}) := \sum_{(j,k) \in \mathcal{E}_c[< i] \setminus \mathcal{E}_c[N_c(\geq i)]} Q_{jk}(s, a_j, a_k). \quad (29)$$

775 Then (25) follows. \square
 776

777 Proof of Theorem 4.4

778 *Proof.* For any fixed state s , we abbreviate $N_c(i) = N_{G_c(s)}(i)$ and $N_d(i) = N_{G_d(s)}(i)$. We proceed
 779 by induction.

780 **Base case:** We aim to show that
 781

$$782 \quad \max_{a_n} Q^\pi(s, a_{< n}; a_n) = Q^\pi(s, a_{< n}; \pi_n(s, a_{< n})), \quad (30)$$

783 and that $N_c(\geq n)$ is the dependency set of $\arg \max_{a_n} Q^\pi(s, a_{< n}; a_n)$.
 784

785 By Lemma C.4, there exist functions Q_1 and Q_2 such that
 786

$$787 \quad Q^\pi(s, a_{< n}; a_n) = Q_1(s, a_{N_c[n]}) + Q_2(s, a_{< n}). \quad (31)$$

788 Consider
 789

$$790 \quad \begin{aligned} & Q^\pi(s, a_{(< n) \setminus N_c(n)}, a_{N_c(n)}; a_n) - Q^\pi(s, a'_{(< n) \setminus N_c(n)}, a_{N_c(n)}; a_n) \\ & = Q_2(s, a_{(< n) \setminus N_c(n)}, a_{N_c(n)}) - Q_2(s, a'_{(< n) \setminus N_c(n)}, a_{N_c(n)}), \end{aligned} \quad (32)$$

791 which is independent of a_n . Thus, the maximizing a_n is unaffected by $a_{< n \setminus N_c(n)}$, implying that
 792

$$793 \quad \arg \max_{a_n} Q^\pi(s, a_{< n \setminus N_c(n)}, a_{N_c(n)}; a_n) = \arg \max_{a_n} Q^\pi(s, a'_{< n \setminus N_c(n)}, a_{N_c(n)}; a_n). \quad (33)$$

794 Therefore, $N_c(n) = N_c(\geq n)$ forms the dependency set of $\arg \max_{a_n} Q^\pi(s, a_{< n}; a_n)$. Since π is
 795 G_d -locally optimal and $N_d(n) \supseteq N_c(\geq n)$, it follows that

$$796 \quad \pi_n(s, a_{< n}) \in \arg \max_{a_n} Q^\pi(s, a_{< n}; a_n), \quad (34)$$

797 and hence
 798

$$799 \quad \max_{a_n} Q^\pi(s, a_{< n}; a_n) = Q^\pi(s, a_{< n}; \pi_n(s, a_{< n})). \quad (35)$$

810 **Induction step:** Assume for some $i + 1$ that
811

$$812 \max_{a_{\geq i+1}} Q^\pi(s, a_{<n}; a_n) = Q^\pi(s, \pi_{(<n), (<i+1)}(s, a_{<i+1}); \pi_{n, (<i+1)}(s, a_{<i+1})), \quad (36)$$

814 and that $N_c(\geq i + 1)$ is the dependency set of $\arg \max_{a_{i+1}} Q^\pi(s, a_{<(i+1)}; a_{i+1})$. We now prove the
815 case for i .

816 By Lemma C.4 and Proposition B.1 (iii), there exist functions Q_1 and Q_2 such that
817

$$818 \begin{aligned} Q^\pi(s, a_{<i}; a_i) &= \gamma^{n-i} Q^\pi(s, \pi_{(<n), (\leq i)}(s, a_{\leq i}); \pi_{n, (\leq i)}(s, a_{\leq i})) \\ 819 &= Q_1(s, \pi_{N_c[\geq i], (\leq i)}(s, a_{\leq i})) + Q_2(s, \pi_{(<i), (<i)}(s, a_{<i})). \end{aligned} \quad (37)$$

821 From Equation (36), we obtain
822

$$823 \pi_{(\geq i+1), (\leq i)}(s, a_{\leq i}) \in \arg \max_{a_{\geq i+1}} Q_1(s, a_{N_c[\geq i]}), \quad (38)$$

825 and hence
826

$$827 \begin{aligned} Q_1(s, a_i, a_{N_c(\geq i)}, \pi_{(\geq i+1), (\leq i)}(s, a_{N_c(\geq i)}, a_{(<i) \setminus N_c(\geq i)})) \\ 828 &= \max_{a_{\geq i+1}} Q_1(s, a_{N_c[\geq i]}) \\ 829 &= Q_1(s, a_i, a_{N_c(\geq i)}, \pi_{(\geq i+1), (\leq i)}(s, a_{N_c(\geq i)}, a'_{(<i) \setminus N_c(\geq i)})). \end{aligned} \quad (39)$$

831 Following the same argument as in (32),
832

$$833 \begin{aligned} Q^\pi(s, a_{N_c(\geq i)}, a_{(<i) \setminus N_c(\geq i)}; a_i) &- Q^\pi(s, a_{N_c(\geq i)}, a'_{(<i) \setminus N_c(\geq i)}; a_i) \\ 834 &= Q_1(s, \pi_{N_c(\geq i), (<i)}(s, a_{N_c(\geq i)}, a_{(<i) \setminus N_c(\geq i)}), a_i) + Q_2(s, \pi_{(<i), (<i)}(s, a_{N_c(\geq i)}, a_{(<i) \setminus N_c(\geq i)})) \\ 835 &\quad - Q_1(s, \pi_{N_c(\geq i), (<i)}(s, a_{N_c(\geq i)}, a'_{(<i) \setminus N_c(\geq i)}), a_i) - Q_2(s, \pi_{(<i), (<i)}(s, a_{N_c(\geq i)}, a'_{(<i) \setminus N_c(\geq i)})) \\ 836 &= Q_2(s, \pi_{(<i), (<i)}(s, a_{N_c(\geq i)}, a_{(<i) \setminus N_c(\geq i)})) - Q_2(s, \pi_{(<i), (<i)}(s, a_{N_c(\geq i)}, a'_{(<i) \setminus N_c(\geq i)})). \end{aligned} \quad (40)$$

838 Therefore,

$$840 \arg \max_{a_i} Q^\pi(s, a_{N_c(\geq i)}, a_{(<i) \setminus N_c(\geq i)}; a_i) = \arg \max_{a_i} Q^\pi(s, a_{N_c(\geq i)}, a'_{(<i) \setminus N_c(\geq i)}; a_i), \quad (41)$$

843 which implies that $N_c(\geq i)$ is the dependency set of $\arg \max_{a_i} Q^\pi(s, a_{<i}; a_i)$. Moreover, since π is
844 G_d -locally optimal and $N_d(i) \supseteq N_c(\geq i)$, it follows that

$$845 \begin{aligned} \pi_i(s, a_{<i}) &\in \arg \max_{a_i} Q^\pi(s, \pi_{(<i), N_d(i)}(s, a_{N_d(i)}); a_i) \\ 846 &= \arg \max_{a_i} Q^\pi(s, a_{N_c(\geq i)}, \pi_{(<i) \setminus N_c(\geq i), N_d(i)}(s, a_{N_d(i)}); a_i) \\ 847 &= \arg \max_{a_i} Q^\pi(s, a_{<i}; a_i). \end{aligned} \quad (42)$$

851 Consequently, by Proposition B.1 (iii), it holds that
852

$$853 \begin{aligned} Q^\pi(s, \pi_{(<n), (<i)}(s, a_{<i}); \pi_{n, (<i)}(s, a_{<i})) \\ 854 &= \gamma^{i-n} Q^\pi(s, a_{<i}; \pi_i(s, a_{<i})) \\ 855 &= \max_{a_i} \gamma^{i-n} Q^\pi(s, a_{<i}; a_i) \\ 856 &= \max_{a_i} Q^\pi(s, \pi_{(<n), (<i+1)}(s, a_{<i+1}); \pi_{n, (<i+1)}(s, a_{<i+1})) \\ 857 &= \max_{a_i} \max_{a_{\geq i+1}} Q^\pi(s, a_{<n}; a_n) = \max_{a_{\geq i}} Q^\pi(s, a_{<n}; a_n). \end{aligned} \quad (43)$$

862 **Conclusion:** By induction, for any given s , $N_c(\geq i)$ is the dependency set of
863 $\arg \max_{a_i} Q^\pi(s, a_{<i}; a_i)$ for all $i \in \mathcal{N}$. Together with the condition $N_d(i) \supseteq N_c(\geq i)$, Lemma C.3
864 guarantees that π is globally optimal. \square

864 D PROOF OF CONVERGENCE
865866 We first prove that the joint policy $\pi_{\mathcal{N}, \emptyset}^k(s)$ in MAMDP converges.
867868 **Lemma D.1.** *Let $\{\pi^k\}_{k=1}^\infty$ be the policy sequence generated by Algorithm 1. Then both $V^{\pi^k}(s)$ and
869 $\pi_{\mathcal{N}, \emptyset}^k(s)$ converge within a finite number of steps.*
870871
872
873 *Proof.* From the update rule (20), for any $s \in \mathcal{S}, 0 \leq i \leq n$, we have
874

875
876
$$\begin{aligned} \mathcal{T}_{\pi^{k+1}} V^{\pi^k}(s, \pi_{<i, \emptyset}^{k+1}(s)) &= Q^{\pi^k}(s, \pi_{<i, \emptyset}^{k+1}(s); \pi_i^{k+1}(s, \pi_{<i, \emptyset}^{k+1}(s))) \\ 877 &\geq Q^{\pi^k}(s, \pi_{<i, \emptyset}^{k+1}(s); \pi_i^k(s, \pi_{<i, \emptyset}^{k+1}(s))) \\ 878 &= V^{\pi^k}(s, \pi_{<i, \emptyset}^{k+1}(s)). \end{aligned} \tag{44}$$

879
880

881 We now proceed by induction. Assume that
882

883
884
$$\mathcal{T}_{\pi^{k+1}}^j V^{\pi^k}(s, \pi_{<i, \emptyset}^{k+1}(s)) \geq \mathcal{T}_{\pi^{k+1}}^{j-1} V^{\pi^k}(s, \pi_{<i, \emptyset}^{k+1}(s)), \quad \forall s \in \mathcal{S}, 0 \leq i \leq n. \tag{45}$$

885

886 We now prove that
887

888
889
$$\mathcal{T}_{\pi^{k+1}}^{j+1} V^{\pi^k}(s, \pi_{<i, \emptyset}^{k+1}(s)) \geq \mathcal{T}_{\pi^{k+1}}^j V^{\pi^k}(s, \pi_{<i, \emptyset}^{k+1}(s)), \quad \forall s \in \mathcal{S}, 0 \leq i \leq n. \tag{46}$$

890

891 When $i < n$,
892

893
894
$$\begin{aligned} \mathcal{T}_{\pi^{k+1}}^{j+1} V^{\pi^k}(s, \pi_{<i, \emptyset}^{k+1}(s)) &= \gamma \mathcal{T}_{\pi^{k+1}}^j V^{\pi^k}(s, \pi_{<i+1, \emptyset}^{k+1}(s)) \\ 895 &\geq \gamma \mathcal{T}_{\pi^{k+1}}^{j-1} V^{\pi^k}(s, \pi_{<i+1, \emptyset}^{k+1}(s)) \\ 896 &= \mathcal{T}_{\pi^{k+1}}^j V^{\pi^k}(s, \pi_{<i, \emptyset}^{k+1}(s)). \end{aligned} \tag{47}$$

897

898 When $i = n$,
899

900
901
$$\begin{aligned} \mathcal{T}_{\pi^{k+1}}^{j+1} V^{\pi^k}(s, \pi_{<n, \emptyset}^{k+1}(s)) &= r(s, \pi_{<n, \emptyset}^{k+1}(s)) + \gamma \sum_{s'} P(s'|s, \pi_{<n, \emptyset}^{k+1}(s)) \mathcal{T}_{\pi^{k+1}}^j V^{\pi^k}(s') \\ 902 &\geq r(s, \pi_{<n, \emptyset}^{k+1}(s)) + \gamma \sum_{s'} P(s'|s, \pi_{<n, \emptyset}^{k+1}(s)) \mathcal{T}_{\pi^{k+1}}^{j-1} V^{\pi^k}(s') \\ 903 &= \mathcal{T}_{\pi^{k+1}}^j V^{\pi^k}(s, \pi_{<n, \emptyset}^{k+1}(s)). \end{aligned} \tag{48}$$

904
905
906
907

908 Thus,
909

910
911
$$V^{\pi^{k+1}}(s, \pi_{<i, \emptyset}^{k+1}(s)) = \lim_{j \rightarrow \infty} \mathcal{T}_{\pi^{k+1}}^j V^{\pi^k}(s, \pi_{<i, \emptyset}^{k+1}(s)) \geq V^{\pi^k}(s, \pi_{<i, \emptyset}^{k+1}(s)) \geq V^{\pi^k}(s, \pi_{<i, \emptyset}^k(s)). \tag{49}$$

912

913 By the monotone convergence theorem, $V^{\pi^k}(s, \pi_{<i, \emptyset}^k(s))$ converges. Since the policy space is finite,
914 $V^{\pi^k}(s, \pi_{<i, \emptyset}^k(s)), \forall i \in \mathcal{N}, s \in \mathcal{S}$ converges within a finite number of steps.
915916 Next, we prove by contradiction that $\pi_{\mathcal{N}, \emptyset}^k(s)$ also converges. Suppose that for some M , $V^{\pi^k}(s)$ has
917 already converged when $k \geq M$. Assume that for $k \geq M$, $\pi_{\mathcal{N}, \emptyset}^k(s) \neq \pi_{\mathcal{N}, \emptyset}^{k+1}(s)$. Let i be the first

918 index such that $\pi_{i,\emptyset}^k(s) \neq \pi_{i,\emptyset}^{k+1}(s)$ while $\pi_{<i,\emptyset}^k(s) = \pi_{<i,\emptyset}^{k+1}(s)$. Then
 919

$$\begin{aligned}
 920 \quad V^{\pi^{k+1}}(s) &= \gamma V^{\pi^{k+1}}(s, \pi_{<2,\emptyset}^{k+1}(s)) = \dots = \gamma^{n-1} V^{\pi^{k+1}}(s, \pi_{<n,\emptyset}^{k+1}(s)) \\
 921 \quad &= \gamma^{n-1} \left(r(s, \pi_{\leq n,\emptyset}^{k+1}(s)) + \gamma \sum_{s'} P(s'|s, \pi_{\leq n,\emptyset}^{k+1}(s)) V^{\pi^{k+1}}(s') \right) \\
 922 \quad &= \gamma^{n-1} \left(r(s, \pi_{\leq n,\emptyset}^{k+1}(s)) + \gamma \sum_{s'} P(s'|s, \pi_{\leq n,\emptyset}^{k+1}(s)) V^{\pi^k}(s') \right) \\
 923 \quad &= \gamma^{n-1} Q^{\pi^k}(s, \pi_{<n,\emptyset}^{k+1}(s); \pi_n^{k+1}(s, \pi_{<n,\emptyset}^{k+1}(s))) \\
 924 \quad &\geq \gamma^{n-1} Q^{\pi^k}(s, \pi_{<n,\emptyset}^{k+1}(s); \pi_n^k(s, \pi_{<n,\emptyset}^{k+1}(s))) \\
 925 \quad &= \gamma^{n-2} Q^{\pi^k}(s, \pi_{<n-1,\emptyset}^{k+1}(s); \pi_{n-1}^{k+1}(s, \pi_{<n-1,\emptyset}^{k+1}(s))) \\
 926 \quad &\geq \dots \geq \gamma^{i-1} Q^{\pi^k}(s, \pi_{<i,\emptyset}^{k+1}(s); \pi_i^{k+1}(s, \pi_{<i,\emptyset}^{k+1}(s))) \\
 927 \quad &> \gamma^{i-1} Q^{\pi^k}(s, \pi_{<i,\emptyset}^k(s); \pi_i^k(s, \pi_{<i,\emptyset}^k(s))) \\
 928 \quad &= \gamma^{i-1} V^{\pi^k}(s, \pi_{<i,\emptyset}^k(s)) = V^{\pi^k}(s).
 \end{aligned} \tag{50}$$

937 The first equality follows from Proposition B.1 (ii). The third equality uses the fact that $V^{\pi^k}(s)$ has
 938 already converged. The strict inequality follows from the update rule, which preferentially selects the
 939 pre-update policy.

940 Hence $V^{\pi^{k+1}}(s) > V^{\pi^k}(s)$, contradicting the assumption that $V^{\pi^k}(s)$ has converged. Therefore,
 941 $\pi_{\mathcal{N},\emptyset}^k(s) = \pi_{\mathcal{N},\emptyset}^{k+1}(s)$ for $k \geq M$, implying that the joint policy $\pi_{\mathcal{N},\emptyset}^k(s)$ also converges. \square
 942

943 In order to deduce the convergence of individual policies from the convergence of $\pi_{\mathcal{N},\emptyset}^k(s)$, we
 944 employ induction. To make the induction work properly, we need to construct a special ordering.
 945

946 **Definition D.2.** Let $\mathcal{C} = \mathcal{P}(\{1, 2, \dots, n-1\})$, where \mathcal{P} denotes the power set. We introduce a
 947 binary relation $<$ on \mathcal{C} as follows:

$$A < B \iff \min(A \setminus B) > \min(B \setminus A), \quad A, B \in \mathcal{C}. \tag{51}$$

948 For the case involving the empty set, we define $\min \emptyset := n$.
 949

950 **Lemma D.3.** For any $A, B \in \mathcal{C}$, the following holds:

$$A < B \iff \min(A \Delta B) \in B \setminus A,$$

951 where Δ denotes the symmetric difference, i.e., $A \Delta B := (A \setminus B) \cup (B \setminus A)$.
 952

953 *Proof.* We first prove the direction " \Leftarrow ". Let $k = \min(A \Delta B) \in B \setminus A$. Since $A \setminus B \subseteq A \Delta B$, we have
 954 $\min(A \Delta B) \leq \min(A \setminus B)$. Moreover, because $k \in B \setminus A$, it follows that $\min(A \Delta B) = \min(B \setminus A)$.
 955 Since $(B \setminus A) \cap (A \setminus B) = \emptyset$, we obtain $\min(A \Delta B) < \min(A \setminus B)$. Thus, $\min(B \setminus A) < \min(A \setminus B)$,
 956 i.e., $A < B$.
 957

958 Conversely, assume $A < B$. Then $\min(B \setminus A) < \min(A \setminus B)$. Hence,
 959

$$\min(A \Delta B) = \min\{\min(B \setminus A), \min(A \setminus B)\} = \min(B \setminus A). \tag{52}$$

960 Therefore, $\min(A \Delta B) \in B \setminus A$. \square
 961

962 **Proposition D.4.** The binary relation $<$ on \mathcal{C} is a strict total order.
 963

964 *Proof.* Irreflexivity and asymmetry are immediate. We now prove that $<$ is connected and transitive.
 965

966 *(Connectedness):* Let $A, B \in \mathcal{C}$ with $A \neq B$. We distinguish three cases:
 967

968 (i) If $A \subsetneq B$, then $B \setminus A \neq \emptyset$. Hence $\min(B \setminus A) \leq n-1$ and $\min(A \setminus B) = n > \min(B \setminus A)$,
 969 so $A < B$.
 970

971 (ii) If $B \subsetneq A$, by symmetry we obtain $B < A$.
 972

972 (iii) If $A \not\subseteq B$ and $B \not\subseteq A$, then $\min(A \setminus B) \neq \min(B \setminus A)$. Thus, either $A < B$ or $B < A$.
 973
 974 (Transitivity): Let $A, B, C \in \mathcal{C}$ with $A < B$ and $B < C$.
 975 If $A = \emptyset$, then clearly $A < C$. Otherwise, set $k_1 = \min(A \Delta B)$ and $k_2 = \min(B \Delta C)$. By
 976 Lemma D.3, we have $k_1 \in B \setminus A$ and $k_2 \in C \setminus B$. We analyze three cases:
 977
 978 (i) If $k_1 < k_2$, then $k_1 \notin B \Delta C$. Since $k_1 \in B$, it follows that $k_1 \in B \cap C$. Moreover, as $k_1 \in B \setminus A$,
 979 we have $k_1 \in C \setminus A$. Now, we only need to show $k_1 = \min(A \Delta C)$. For all $i < k_1$ with $i \in A \cup B$,
 980 we have $i \notin A \Delta B$, hence $i \in A \cap B$. Since $k_1 < k_2$, we also get $i \in A \cap B \cap C$, implying $i \notin A \Delta C$.
 981 Thus $k_1 = \min(A \Delta C)$, and by Lemma D.3, $A < C$.
 982
 983 (ii) If $k_2 < k_1$, then by symmetry, $k_2 = \min(A \Delta C)$ and $k_2 \in C \setminus A$. Hence $A < C$.
 984
 985 (iii) If $k_1 = k_2$, then $k_1 \in B \setminus A$ and $k_1 \in C \setminus B$ simultaneously, which is a contradiction. Thus this
 986 case cannot occur.
 987
 988 Therefore, $<$ is transitive. \square
 989

987 After defining the strict total order $<$, we arrange the elements of \mathcal{C} in ascending order as $\mathcal{C} =$
 988 $\{C_1, C_2, \dots, C_{|\mathcal{C}|}\}$.
 989

990 **Lemma D.5.** *Let $C_m \in \mathcal{C}$ and $C_m \neq \emptyset$. Let G_d be the ADG of π under state s . If $N_d(i) \not\supseteq C_m$, $i \in$
 991 \mathcal{N} , denote $k = \min(C_m \setminus N_d(i))$, and define*

$$992 \quad C_j = A \cup B := \{x \in C_m \mid x < k\} \cup \{x \in \{1, \dots, n-1\} \mid x > k\}. \quad (53)$$

993 Then we have $j < m$. Furthermore, if $i \neq k$, the following holds:

$$994 \quad \pi_{i,C_j}(s, \pi_{C_j, C_m}(s, a_{C_m})) = \pi_{i,C_m}(s, a_{C_m}). \quad (54)$$

996 *Proof.* We first verify that $j < m$. Since $N_d(i) \not\supseteq C_m$, we have $C_m \setminus N_d(i) \neq \emptyset$, and hence $k < n$.
 997 By construction of C_j , $\min(C_m \setminus C_j) = k$. Therefore,

$$999 \quad \min(C_j \Delta C_m) = \min\{\min(C_j \setminus C_m), \min(C_m \setminus C_j)\} = \min\{\min(C_j \setminus C_m), k\}. \quad (55)$$

1000 Because $\min(C_j \setminus C_m) > k$, we obtain $\min(C_j \Delta C_m) = k \in C_m \setminus C_j$. By Lemma D.3, this implies
 1001 $C_j < C_m$, i.e., $j < m$.

1002 When $i \in C_m$, since $i \neq k$, we have $i \in C_m \cap C_j$, and therefore

$$1004 \quad \pi_{i,C_j}(s, \pi_{C_j, C_m}(s, a_{C_m})) = a_i = \pi_{i,C_m}(s, a_{C_m}). \quad (56)$$

1005 When $i \notin C_m$, we consider the two cases $k = 1$ and $k > 1$ respectively.

1007 (i) $k = 1$.

1008 In this case, $C_j = \{2, 3, \dots, n-1\}$. We analyze the construction of $\pi_{i,C_j}(s, a_{C_j})$:

$$1010 \quad \begin{aligned} \pi_{i,C_j}(s, a_{C_j}) &= \pi_i(s, \pi_{(<i), C_j}(s, a_{C_j})) \\ 1011 &= \pi_i(s, \pi_{1,C_j}(s, a_{C_j}), \pi_{(<i) \cap C_j, C_j}(s, a_{C_j})) \\ 1012 &= \pi_i(s, \pi_1(s), a_{(<i) \cap C_j}) \\ 1013 &= \pi_i(s, \pi_1(s), a_{(<i) \cap (C_m \setminus \{1\})}, a_{(<i) \setminus C_m}). \end{aligned} \quad (57)$$

1015 Substituting $\pi_{C_j, C_m}(s, a_{C_m})$ into a_{C_j} , we obtain

$$1016 \quad \begin{aligned} \pi_{i,C_j}(s, \pi_{C_j, C_m}(s, a_{C_m})) \\ 1017 &= \pi_i(s, \pi_{(<i), C_j}(s, a_{C_j})) \big|_{a_{C_j}=\pi_{C_j, C_m}(s, a_{C_m})} \\ 1018 &= \pi_i(s, \pi_1(s), a_{(<i) \cap (C_m \setminus \{1\})}, \pi_{(<i) \setminus C_m, C_m}(s, a_{C_m})). \end{aligned} \quad (58)$$

1020 Since $1 \notin N_d(i)$, π_i does not depend on a_1 . Thus, replacing $\pi_1(s)$ with a_1 , we obtain

$$1022 \quad \begin{aligned} \pi_{i,C_j}(s, \pi_{C_j, C_m}(s, a_{C_m})) \\ 1023 &= \pi_i(s, a_1, a_{(<i) \cap (C_m \setminus \{1\})}, \pi_{(<i) \setminus C_m, C_m}(s, a_{C_m})) \\ 1024 &= \pi_i(s, a_{(<i) \cap C_m}, \pi_{(<i) \setminus C_m, C_m}(s, a_{C_m})) \\ 1025 &= \pi_{i,C_m}(s, a_{C_m}). \end{aligned} \quad (59)$$

1026 (ii) $k > 1$.

1027 We proceed by induction to prove that

1029
$$\pi_{\ell, C_j}(s, \pi_{C_j, C_m}(s, a_{C_m})) = \pi_{\ell, C_m}(s, a_{C_m}), \quad \forall 1 \leq \ell < k. \quad (60)$$

1030

1031 For $\ell = 1$, since $1 < k$, we have $1 \in C_m \cap C_j$. Thus,

1032
$$\pi_{1, C_j}(s, \pi_{C_j, C_m}(s, a_{C_m})) = a_1 = \pi_{1, C_m}(s, a_{C_m}). \quad (61)$$

1033

1034 Assume the statement (60) holds for all indices less than ℓ . For $\ell < k$, note that $(< \ell) \cap C_m = (< \ell) \cap C_j$ and $(< \ell) \setminus C_m = (< \ell) \setminus C_j$. Therefore,

1036
$$\begin{aligned} & \pi_{\ell, C_j}(s, \pi_{C_j, C_m}(s, a_{C_m})) \\ &= \pi_{\ell}(s, a_{(< \ell) \cap C_j}, \pi_{(< \ell) \setminus C_j}(s, a_{C_j}))|_{a_{C_j}=\pi_{C_j, C_m}(s, a_{C_m})} \\ &= \pi_{\ell}(s, a_{(< \ell) \cap C_m}, \pi_{(< \ell) \setminus C_m}(s, \pi_{C_j, C_m}(s, a_{C_m}))). \end{aligned} \quad (62)$$

1037

1038 By the induction hypothesis,

1039
$$\pi_{(< \ell) \setminus C_m, C_j}(s, \pi_{C_j, C_m}(s, a_{C_m})) = \pi_{(< \ell) \setminus C_m, C_m}(s, a_{C_m}), \quad (63)$$

1040

1041 which yields

1042
$$\pi_{\ell, C_j}(s, \pi_{C_j, C_m}(s, a_{C_m})) = \pi_{\ell}(s, a_{(< \ell) \cap C_m}, \pi_{(< \ell) \setminus C_m, C_m}(s, a_{C_m})) = \pi_{\ell, C_m}(s, a_{C_m}). \quad (64)$$

1043

1044 Finally, similar to (58), analyzing the construction of $\pi_{i, C_j}(s, a_{C_j})$ gives

1045
$$\begin{aligned} & \pi_{i, C_j}(s, \pi_{C_j, C_m}(s, a_{C_m})) \\ &= \pi_i(s, \pi_{(< i) \cap C_j}(s, a_{C_j}))|_{a_{C_j}=\pi_{C_j, C_m}(s, a_{C_m})} \\ &= \pi_i(s, a_{(< i) \cap C_m}, \pi_{(< k) \setminus C_m, C_j}(s, \pi_{C_j, C_m}(s, a_{C_m})), \pi_{k, C_j}(s, \pi_{C_j, C_m}(s, a_{C_m})), \pi_{C_j \setminus C_m, C_m}(s, a_{C_m})). \end{aligned} \quad (65)$$

1046

1047 Since $k \notin N_d(i)$, we can replace $\pi_{k, C_j}(s, \pi_{C_j, C_m}(s, a_{C_m}))$ by $\pi_{k, C_m}(s, a_{C_m})$, yielding

1048
$$\begin{aligned} & \pi_{i, C_j}(s, \pi_{C_j, C_m}(s, a_{C_m})) \\ &= \pi_i(s, a_{(< i) \cap C_m}, \pi_{(< k) \setminus C_m, C_m}(s, a_{C_m}), \pi_{k, C_m}(s, a_{C_m}), \pi_{C_j \setminus C_m, C_m}(s, a_{C_m})) \\ &= \pi_i(s, a_{(< i) \cap C_m}, \pi_{(< i) \setminus C_m, C_m}(s, a_{C_m})) \\ &= \pi_{i, C_m}(s, a_{C_m}). \end{aligned} \quad (66)$$

1049

□

1050 **Lemma D.6.** Let $\{\pi^k\}_{k=1}^\infty$ be the policy sequence generated by Algorithm 1. Then for every $C_m \in \mathcal{C}$, $\pi_{\mathcal{N}, C_m}^k$ converges within a finite number of steps.

1051

1052 *Proof.* We proceed by induction.

1053 **Base case:** Consider $C_1 = \emptyset$. By Lemma D.1, we directly obtain that $\pi_{\mathcal{N}, C_1}^k$ converges in finitely many steps.

1054 **Induction step:** Assume that $\pi_{\mathcal{N}, C_j}^k$ has already converged for all $j < m$ when $k \geq M$. We now prove that $\pi_{\mathcal{N}, C_m}^k$ also converges in finitely many steps.

1055 We first show that, when $k \geq M$, for any $\max C_m < i \leq n$, the following inequality holds:

1056
$$Q^{\pi^k}(s, \pi_{(< i) \cap C_m}^{k+1}(s, a_{C_m}); \pi_{i, C_m}^{k+1}(s, a_{C_m})) \geq \gamma^{-1} Q^{\pi^k}(s, \pi_{(< i-1) \cap C_m}^{k+1}(s, a_{C_m}); \pi_{i-1, C_m}^{k+1}(s, a_{C_m})). \quad (67)$$

1057

1058 (i): If $N_d(i) \supseteq C_m$, then by the update rule,

1059
$$\begin{aligned} & Q^{\pi^k}(s, \pi_{(< i) \cap C_m}^{k+1}(s, a_{C_m}); \pi_{i, C_m}^{k+1}(s, a_{C_m})) \\ &= Q^{\pi^k}(s, \pi_{(< i) \cap C_m}^{k+1}(s, a_{C_m}); \pi_i^{k+1}(s, \pi_{(< i) \setminus C_m}^{k+1}(s, a_{C_m}))) \\ &\geq Q^{\pi^k}(s, \pi_{(< i) \cap C_m}^{k+1}(s, a_{C_m}); \pi_i^k(s, \pi_{(< i) \setminus C_m}^{k+1}(s, a_{C_m}))) \\ &= \gamma^{-1} Q^{\pi^k}(s, \pi_{(< i-1) \cap C_m}^{k+1}(s, a_{C_m}); \pi_{i-1}^{k+1}(s, \pi_{(< i-1) \setminus C_m}^{k+1}(s, a_{C_m}))). \end{aligned} \quad (68)$$

1060

1061

20

1080 (ii): If $N_d(i) \not\supseteq C_m$, we then construct $C_j = \{x \in C_m \mid x < k'\} \cup \{x \in \{1, \dots, n-1\} \mid x > k'\}$
 1081 with $k' = \min(C_m \setminus N_d(i))$ according to Lemma D.5. Since $i > \max C_m$, we have $i \neq k'$,
 1082 and therefore $\pi_{i,C_m}^k(s, a_{C_m}) = \pi_{i,C_j}^k(s, \pi_{C_j, C_m}^k(s, a_{C_m}))$. By the induction hypothesis, π_{N,C_j}^k has
 1083 already converged. Hence,

$$\begin{aligned} \pi_{i,C_m}^{k+1}(s, a_{C_m}) &= \pi_{i,C_j}^{k+1}(s, \pi_{C_j, C_m}^{k+1}(s, a_{C_m})) \\ &= \pi_{i,C_j}^k(s, \pi_{C_j, C_m}^{k+1}(s, a_{C_m})) \\ &= \pi_i^k(s, \pi_{< i, C_j}^k(s, a_{C_j})) \Big|_{a_{C_j}=\pi_{C_j, C_m}^{k+1}(s, a_{C_m})} \\ &= \pi_i^k(s, \pi_{< i, C_j}^k(s, \pi_{C_j, C_m}^{k+1}(s, a_{C_m}))). \end{aligned} \quad (69)$$

1091 We examine each component of $\pi_{< i, C_j}^{k+1}(s, \pi_{C_j, C_m}^{k+1}(s, a_{C_m}))$. If $x \in (< i)$ and $x = k'$, since $k' \notin$
 1092 $N_d(i)$, then π_i^k is independent of a_x , so we replace $\pi_{x,C_j}^k(s, \pi_{C_j, C_m}^{k+1}(s, a_{C_m}))$ with $\pi_{x,C_m}^{k+1}(s, a_{C_m})$
 1093 in (69). If $x \neq k'$, then we again apply Lemma D.5 and the induction hypothesis to obtain
 1094

$$\pi_{x,C_j}^k(s, \pi_{C_j, C_m}^{k+1}(s, a_{C_m})) = \pi_{x,C_j}^{k+1}(s, \pi_{C_j, C_m}^{k+1}(s, a_{C_m})) = \pi_{x,C_m}^{k+1}(s, a_{C_m}). \quad (70)$$

1095 Thus,

$$\pi_{i,C_m}^{k+1}(s, a_{C_m}) = \pi_i^k(s, \pi_{< i, C_j}^k(s, \pi_{C_j, C_m}^{k+1}(s, a_{C_m}))) = \pi_i^k(s, \pi_{< i, C_m}^{k+1}(s, a_{C_m})). \quad (71)$$

1100 Therefore,

$$\begin{aligned} &Q^{\pi^k}(s, \pi_{< i, C_m}^{k+1}(s, a_{C_m}); \pi_{i,C_m}^{k+1}(s, a_{C_m})) \\ &= Q^{\pi^k}(s, \pi_{< i, C_m}^{k+1}(s, a_{C_m}); \pi_i^k(s, \pi_{< i, C_m}^{k+1}(s, a_{C_m}))) \\ &= \gamma^{-1} Q^{\pi^k}(s, \pi_{< i-1, C_m}^{k+1}(s, a_{C_m}); \pi_{i-1}^{k+1}(s, \pi_{< i-1, C_m}^{k+1}(s, a_{C_m}))). \end{aligned} \quad (72)$$

1107 Next, we prove

$$Q^{\pi^k}(s, \pi_{< \max C_m, C_m}^{k+1}(s, a_{C_m}); \pi_{\max C_m, C_m}^{k+1}(s, a_{C_m})) = Q^{\pi^k}(s, \pi_{< \max C_m, C_m}^k(s, a_{C_m}); \pi_{\max C_m, C_m}^k(s, a_{C_m})). \quad (73)$$

1110 We examine each component of $\pi_{< \max C_m, C_m}^{k+1}(s, a_{C_m})$.

1112 (iii): If $i \in C_m$, then $\pi_{i,C_m}^k(s, a_{C_m}) = a_i = \pi_{i,C_m}^{k+1}(s, a_{C_m})$.

1113 (iv): If $i \notin C_m$, let $C_j = C_m \cap (< i)$. Since $i < \max C_m$, we have $C_j \subsetneq C_m$, and by Definition D.2,
 1114 $j < m$. By the induction hypothesis, π_{i,C_j}^k has converged. As $\pi_{< i}^k$ depends only on the first $i-1$
 1115 agents, it follows that $\pi_{i,C_m}^k = \pi_{i,C_j}^k$. Therefore,

$$\pi_{i,C_m}^k(s, a_{C_m}) = \pi_{i,C_j}^k(s, a_{C_j}) = \pi_{i,C_j}^{k+1}(s, a_{C_j}) = \pi_{i,C_m}^{k+1}(s, a_{C_m}). \quad (74)$$

1119 Thus, $\pi_{< \max C_m, C_m}^{k+1}(s, a_{C_m}) = \pi_{< \max C_m, C_m}^k(s, a_{C_m})$, and hence (73) holds.

1121 Now,

$$\begin{aligned} &Q^{\pi^{k+1}}(s, \pi_{< n, C_m}^{k+1}(s, a_{C_m}); \pi_{n,C_m}^{k+1}(s, a_{C_m})) \\ &= Q^{\pi^k}(s, \pi_{< n, C_m}^{k+1}(s, a_{C_m}); \pi_{n,C_m}^{k+1}(s, a_{C_m})) \\ &\geq \dots \geq \gamma^{\max C_m - n} Q^{\pi^k}(s, \pi_{< \max C_m, C_m}^{k+1}(s, a_{C_m}); \pi_{\max C_m, C_m}^{k+1}(s, a_{C_m})) \\ &= \gamma^{\max C_m - n} Q^{\pi^k}(s, \pi_{< \max C_m, C_m}^k(s, a_{C_m}); \pi_{\max C_m, C_m}^k(s, a_{C_m})) \\ &= Q^{\pi^k}(s, \pi_{< n, C_m}^k(s, a_{C_m}); \pi_{n,C_m}^k(s, a_{C_m})). \end{aligned} \quad (75)$$

1130 Here, the second line follows from Lemma D.1, which ensures that $V^{\pi^k}(s)$ has converged, and hence
 1131 $Q^{\pi^k}(s, a)$ have converged; the third line follows from (67); the fourth line from (73).

1132 Equation (75) shows that $Q^{\pi^k}(s, \pi_{< n, C_m}^k(s, a_{C_m}); \pi_{n,C_m}^k(s, a_{C_m}))$ is monotonically non-decreasing,
 1133 and thus converges in finitely many steps.

1134 Let $k \geq M' \geq M$ be such that $Q^{\pi^k}(s, \pi_{<n, C_m}^k(s, a_{C_m}); \pi_{n, C_m}^k(s, a_{C_m}))$ has converged. We now
 1135 prove by contradiction that π_{n, C_m}^k must also converge.
 1136

1137 Suppose for $k \geq M'$, $\pi_{n, C_m}^k(s) \neq \pi_{n, C_m}^{k+1}(s)$. Let i be the smallest index where they differ, i.e.,
 1138

$$\pi_{i, C_m}^k(s) \neq \pi_{i, C_m}^{k+1}(s), \quad \pi_{<i, C_m}^k(s) = \pi_{<i, C_m}^{k+1}(s). \quad (76)$$

1140 By the analyses in (iii) and (iv), i must satisfy $i > \max C_m$. If $N_d(i) \not\supseteq C_m$, then by (ii),
 1141

$$\pi_{i, C_m}^{k+1}(s, a_{C_m}) = \pi_i^k(s, \pi_{<i, C_m}^{k+1}(s, a_{C_m})) = \pi_i^k(s, \pi_{<i, C_m}^k(s, a_{C_m})) = \pi_{i, C_m}^k(s, a_{C_m}), \quad (77)$$

1142 contradicting $\pi_{i, C_m}^k(s) \neq \pi_{i, C_m}^{k+1}(s)$. Therefore, it must be that $N_d(i) \supseteq C_m$.
 1143

$$\begin{aligned} & Q^{\pi^{k+1}}(s, \pi_{<n, C_m}^{k+1}(s, a_{C_m}); \pi_{n, C_m}^{k+1}(s, a_{C_m})) \\ &= Q^{\pi^k}(s, \pi_{<n, C_m}^{k+1}(s, a_{C_m}); \pi_{n, C_m}^{k+1}(s, a_{C_m})) \\ &\geq \gamma^{i-n} Q^{\pi^k}(s, \pi_{<i, C_m}^{k+1}(s, a_{C_m}); \pi_{i, C_m}^{k+1}(s, a_{C_m})) \\ &= \gamma^{i-n} Q^{\pi^k}(s, \pi_{i, C_m}^k(s, a_{C_m}); \pi_i^{k+1}(s, \pi_{<i, C_m}^k(s, a_{C_m}))) \\ &> \gamma^{i-n} Q^{\pi^k}(s, \pi_{i, C_m}^k(s, a_{C_m}); \pi_i^k(s, \pi_{<i, C_m}^k(s, a_{C_m}))) \\ &= Q^{\pi^k}(s, \pi_{<n, C_m}^k(s, a_{C_m}); \pi_{n, C_m}^k(s, a_{C_m})). \end{aligned} \quad (78)$$

1144 The second line uses the fact that $Q^{\pi^k}(s, a)$ has converged; the third line is by the update rule; the
 1145 fifth line follows from the update rule, which preferentially selects the pre-update policy.
 1146

1147 Equation (78) contradicts the fact that $Q^{\pi^k}(s, \pi_{<n, C_m}^k(s, a_{C_m}); \pi_{n, C_m}^k(s, a_{C_m}))$ has already
 1148 converged. Therefore, for all $k \geq M'$, $\pi_{n, C_m}^k(s) = \pi_{n, C_m}^{k+1}(s)$, i.e., π_{n, C_m}^k converges in finitely many
 1149 steps. \square
 1150

1151 Proof of Theorem 5.1

1152 *Proof.* According to Lemma D.6, we have that $\pi_i^k = \pi_{i, <i}^k$ converges in a finite number of steps. Let
 1153 π be the limit point of the sequence $\{\pi^k\}_{k=1}^\infty$. From the update rule, it follows that
 1154

$$Q^\pi(s, \pi_{(<i), N_d(i)}(s, a_{N_d(i)}); \pi_{i, N_d(i)}(s, a_{N_d(i)})) = \max_{a_i} Q^\pi(s, \pi_{(<i), N_d(i)}(s, a_{N_d(i)}); a_i). \quad (79)$$

1155 Therefore, the limit point of $\{\pi^k\}_{k=1}^\infty$ is a G_d -locally optimal policy. \square
 1156

1157 Proof of Corollary 5.3

1158 *Proof.* From the analysis in Lemma D.1, we know that $V^{\pi^k}(s)$ is monotonically non-decreasing.
 1159 Hence, $V^{\pi^k}(s)$ also converges within a finite number of steps.
 1160

1161 Suppose that for $k \geq M$, $V^{\pi^k}(s)$ has already converged. Assume further that $G_c(s, \hat{\pi}^{k+1}) \neq$
 1162 $G_c(s, \hat{\pi}^k)$ when $k \geq M$. This implies $\hat{\pi}^{k+1} \neq \hat{\pi}^k$. From the contradiction argument in Lemma D.1,
 1163 it follows that

$$V^{\pi^{k+1}}(s) = V^{\hat{\pi}^{k+1}}(s) > V^{\hat{\pi}^k}(s) = V^{\pi^k}(s), \quad (80)$$

1164 which contradicts the assumption that $V^{\pi^k}(s)$ has already converged. Therefore, it must hold that
 1165 $G_c(s, \hat{\pi}^{k+1}) = G_c(s, \hat{\pi}^k)$ for all $k \geq M$.
 1166

1167 Consequently, when $k \geq M$, the dynamic CG eventually stabilizes into a static CG. During this
 1168 stabilization stage, the update process reduces to Algorithm 1. By Theorem 5.1, π^k converges within
 1169 a finite number of steps. Let π be the limit point of $\{\pi^k\}_{k=1}^\infty$. Then π is a G_d -locally optimal policy.
 1170 Furthermore, since the ADG satisfies condition (11), it follows from Theorem 4.4 that π is globally
 1171 optimal. \square
 1172

1188
1189

E CONSTRUCTION OF ACTION DEPENDENCY GRAPHS

1190
1191
1192

To elucidate the construction of ADGs, we present Algorithm 2 that efficiently derives an ADG from a given CG such that the condition (11) is satisfied.

1193

Algorithm 2 Greedy Algorithm: Finding a Sparse ADG

1194

Input: A CG G_c

1195

Output: An ADG $G_d = (\mathcal{N}, \mathcal{E}_d)$

1196

Initialize an empty graph $G_d = (\mathcal{N}, \mathcal{E}_d)$ with all vertices unindexed

1197

for $i = 0$ **to** $n - 1$ **do**

1198

 Assign new index $n - i$ to a vertex among the unindexed ones, such that the size of $N_c(\geq (n - i))$ is minimized

1199

end for

1200

 Construct the edge set \mathcal{E}_d by adding edges (j, i) for each vertex $i \in \mathcal{N}$ and each $j \in N_c(\geq i)$ as specified in (11)

1201

1202

1203

1204

F EXPERIMENTAL DETAILS

1205

1206

Setup of Coordination Polymatrix Game. In matrix cooperative games, different CGs and their corresponding sparse ADGs are shown in Figure 9. For policy iteration methods, we randomly generate the parameters of the payoff matrices, while fixing the maximum reward to be equal to the number of edges in the CG. Moreover, the maximum reward is obtained when all agents choose action 1. For the MAPPO method, we use fixed payoff matrices, with the exact parameters provided in Table 2 to Table 5.

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

Figure 9: The CG and sparse ADG of polymatrix coordination game.

Table 2: ① in Star

$a_1 \setminus a_2$	0	1	2	3	4
0	3.5	5.0	0.5	0.5	0.5
1	0.5	3.5	6.0	0.5	0.5
2	0.5	0.5	3.5	0.5	0.5
3	0.5	0.5	0.5	3.25	0.5
4	0.5	0.5	0.5	0.5	3.0

Table 3: ② in Star

$a_1 \setminus a_3$	0	1	2	3	4
0	3.5	0.5	5.0	0.5	0.5
1	0.5	3.5	6.0	0.5	0.5
2	0.5	0.5	3.5	0.5	0.5
3	0.5	0.5	0.5	3.25	0.5
4	0.5	0.5	0.5	0.5	3.0

1240

1241

Setup of ATSC. In the ATSC environment, we conduct experiments on the maps 2x2grid, 3x3grid, and RESCO/grid4x4 provided by SUMO-RL. Based on the road network connectivity,

1242

Table 4: ③ in Star

1243

1244

$a_1 \setminus a_4$	0	1	2	3	4
0	3.5	0.5	0.5	5.0	0.5
1	0.5	3.5	6.0	0.5	0.5
2	0.5	0.5	3.5	0.5	0.5
3	0.5	0.5	0.5	3.25	0.5
4	0.5	0.5	0.5	0.5	3.0

1250

1251

we design corresponding CGs, with their adjacency lists for CGs and sparse ADGs reported in Table 6 to Table 11. To increase task difficulty and highlight the benefits of cooperation, we follow the idea of Li et al. (2021); Böhmer et al. (2020) to modify the reward function. Specifically, instead of assigning each agent its own queue reward, we redefine the reward as the minimum individual reward among its CG neighbors, thereby emphasizing the performance gap induced by cooperation.

1252

1253

1254

1255

1256

Table 6: CG of 2x2grid

1257

1258

1259

Vertex	Neighbors
0	1, 2
1	0, 3
2	0, 3
3	1, 2

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

Table 5: ④ in Star

$a_1 \setminus a_5$	0	1	2	3	4
0	3.5	0.5	0.5	0.5	5.0
1	0.0	0.0	0.0	0.0	0.0
2	0.5	0.5	3.5	0.5	0.5
3	0.5	0.5	0.5	3.25	0.5
4	0.5	0.5	0.5	0.5	3.0

Table 7: Sparse ADG of 2x2grid

Vertex	Parent nodes
0	
1	0
2	1, 0
3	2, 1

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

Vertex	Neighbors
0	1, 3
1	0, 2, 4
2	1, 5
3	0, 4, 6
4	1, 3, 5, 7
5	2, 4, 8
6	3, 7
7	4, 6, 8
8	5, 7

Table 9: Sparse ADG of 3x3grid

Vertex	Parent nodes
0	
1	0
2	1, 0
3	2, 1, 0
4	3, 2, 1
5	4, 3, 2
6	5, 4, 3
7	6, 5, 4
8	7, 5

1279

Experimental Hyperparameters. Our implementation of MAPPO is based on the open-source EPyMARL framework Papoudakis et al. (2021), employing the Adam optimizer for training. We use the same hyperparameters across experiments under different ADGs, with a few critical hyperparameters adjusted to fit each environment. These modified values are reported in Table 14, while any unlisted parameters follow the default EPyMARL configuration.

1280

1281

1282

1283

Neural Network Architecture. For MAPPO with empty ADGs, we adopt the default MLP configurations specified in Papoudakis et al. (2021); Böhmer et al. (2020). For MAPPO with sparse and dense ADGs, we modify the agent network architecture as follows.

1284

1285

1286

1287

1288

1289

Let $o_i \in \mathbb{R}^{d_o}$ denote the observational features of agent i , and $a_i \in \mathbb{R}^{d_a}$ the action features of agent i . The first-layer hidden features are computed as:

$$h_{o_i}^1 = \text{ReLU}(W_1 o_i + b_1), \quad h_{a_i}^1 = \text{ReLU}(W_2 a_i + b_2),$$

1290

1291

1292

where $W_1 \in \mathbb{R}^{64 \times d_o}$, $W_2 \in \mathbb{R}^{64 \times d_a}$ and $b_1, b_2 \in \mathbb{R}^{64}$ are the weights and biases, respectively.

1293

1294

1295

Next, we take the average of $h_{a_i}^1$ over the dependency set $N_d(i)$:

$$h_{a_i}^2 = \frac{1}{|N_d(i)|} \sum_{i \in N_d(i)} h_{a_i}^1.$$

1296
1297
1298

Table 10: CG of 4x4grid

Vertex	Neighbors
0	1, 4
1	0, 2, 5
2	1, 3, 6
3	2, 7
4	0, 5, 8
5	1, 4, 6, 9
6	2, 5, 7, 10
7	3, 6, 11
8	4, 9, 12
9	5, 8, 10, 13
10	6, 9, 11, 14
11	7, 10, 15
12	8, 13
13	9, 12, 14
14	10, 13, 15
15	11, 14

1315
1316
1317

Table 12: CG of Aloha

Vertex	Neighbors
0	1, 5
1	0, 2, 6
2	1, 3, 7
3	2, 4, 8
4	3, 5, 9
5	0, 4, 6
6	1, 5, 7
7	2, 6, 8
8	3, 7, 9
9	4, 8

1328

Table 14: Experimental Hyperparameters

1329
1330
1331

	learning rate	weight decay	buffer size	batch size	entropy coefficient
ATSC	0.0004	0.0001	8	8	0.02
Polymatrix Game	0.0004	0.0001	16	8	0.1
Aloha	0.0005	0.0001	16	16	0.01

1336

1337 We then concatenate the two feature vectors and obtain

1338

$$h^3 = [h_{o_i}^1, h_{a_i}^2],$$

1340

which is fed into a multilayer perceptron:

1341

$$h^4 = \text{ReLU}(W_3 h^3 + b_3), \quad z = W_4 h^4 + b_4,$$

1342

1343 where $W_3 \in \mathbb{R}^{64 \times 128}$, $W_4 \in \mathbb{R}^{d_{\text{action}} \times 64}$, $b_3 \in \mathbb{R}^{64}$, and $b_4 \in \mathbb{R}^{d_{\text{action}}}$. The final output is z .

1344

G ADDITIONAL EXPERIMENTS

1346

G.1 BASELINE COMPARISONS IN ATSC

1348

1349

We include additional comparisons against standard MARL baselines, including QMIX, COMA, and MAT, conducted in the ATSC environment. MAT (Wen et al., 2022) is an algorithm that employs

Table 11: Sparse ADG of 4x4grid

Vertex	Parent nodes
0	
1	0
2	0, 1
3	0, 1, 2
4	0, 1, 2, 3
5	1, 2, 3, 4
6	2, 3, 4, 5
7	3, 4, 5, 6
8	4, 5, 6, 7
9	5, 6, 7, 8
10	6, 7, 8, 9
11	7, 8, 9, 10
12	8, 9, 10, 11
13	9, 10, 11, 12
14	10, 11, 13
15	11, 14

Table 13: Sparse ADG of Aloha

Vertex	Parent nodes
0	1, 5
1	2, 6
2	3, 7
3	8, 4
4	9, 5
5	6
6	7
7	8
8	9
9	

1350
 1351 auto-regressive policies and models action dependencies through attention networks. By modifying
 1352 the attention mask to suppress interactions outside the ADG, we construct a sparse-ADG variant of
 1353 MAT (denoted MAT-sparse). The results are provided in Figure 10.
 1354

1355
 1356 Figure 10: Results of ATSC with baselines.
 1357
 1358
 1359
 1360
 1361
 1362

1363
 1364 The results show that the sparse-ADG version of MAPPO consistently outperforms its independent-
 1365 policy counterpart. On 3x3 and 4x4 grids, MAT exhibits only moderate performance, likely due
 1366 to its slower learning efficiency. Nevertheless, the learning curves of MAT-sparse and the original
 1367 MAT remain closely aligned, suggesting that enforcing sparse ADGs does not introduce performance
 1368 degradation for action-dependent policies.
 1369
 1370

1371 G.2 RESULTS OF THE ALOHA ENVIRONMENT

1372
 1373 We further evaluate the algorithms in Aloha Oliehoek (2010). Aloha consists of 10 islands, each
 1374 equipped with a radio tower that transmits messages to local residents. Each island maintains a
 1375 message queue, and at every timestep an agent may choose to transmit a message or stay idle. Due
 1376 to geographical proximity, simultaneous transmissions from adjacent islands interfere: when two
 1377 neighboring agents transmit at the same time, a collision occurs and the messages must be resent. A
 1378 successful transmission yields a global reward of 1, while a collision incurs a penalty of -10.
 1379

1380 We use the adjacency matrix provided by the environment as the CG and generate the corresponding
 1381 sparse ADG (Table 13) using Algorithm 2. Results are given in Figure 11 (left). Algorithms based on
 1382 independent policies struggle to obtain positive transmission rewards, whereas ADG-based policies
 1383 successfully learn efficient transmission policies.
 1384

1385
 1386 Figure 11: Results of Aloha (left) and Ablation on heuristic ADGs (right).
 1387
 1388
 1389
 1390
 1391
 1392
 1393
 1394
 1395
 1396

1397 G.3 ABLATION ON DIFFERENT ADGs

1398
 1399 To examine the effect of alternative ADG constructions, particularly those that do not satisfy the
 1400 structural conditions of Theorem 4.4, we conducted ablations in the Aloha environment. We designed
 1401 several heuristic ADGs in which each agent depends only on the actions of the k immediately
 1402 preceding agents ($k = 1, 2, 3$). Notably, in the ADG generated by Algorithm 2, each node depends on
 1403 at most 3 agents. The results, shown in Figure 11 (right), indicate that such heuristically constructed

1404 ADGs perform noticeably worse than ADGs derived from the CG. This supports the importance of
 1405 using CG-consistent dependency structures when CG is available.

1406 Different agent index orderings lead to different ADG structures according to (11). To examine
 1407 robustness with respect to ADG construction, we evaluate the sparse-ADG variant of MAPPO on
 1408 2x2 and 4x4 ATSC grids using both ascending and descending index orders. As shown in Figure 12,
 1409 the training curves under different indexings are nearly identical, indicating that the algorithm is
 1410 insensitive to index order.

1412
 1413
 1414
 1415
 1416
 1417
 1418
 1419
 1420
 1421
 1422
 1423
 1424
 1425
 1426
 1427
 1428
 1429
 1430
 1431
 1432
 1433
 1434
 1435
 1436
 1437
 1438
 1439
 1440
 1441
 1442
 1443
 1444
 1445
 1446
 1447
 1448
 1449
 1450
 1451
 1452
 1453
 1454
 1455
 1456
 1457
 1458
 Figure 12: Results of Different Agent Index Orderings .

G.4 RESULTS OF SMAC

1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479
 1480
 1481
 1482
 1483
 1484
 1485
 1486
 1487
 1488
 1489
 1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 Figure 13: Results of SMAC.

1451 To further assess the behavior of sparse ADGs in complex dynamic settings, we perform experiments
 1452 in the SMAC environment. Since SMAC does not provide an explicit CG, we cannot construct
 1453 ADGs guaranteed to satisfy the conditions in Theorem 4.4. Thus, sparse ADGs in this setting
 1454 are not expected to match the performance of dense ADGs. We adopt a simple rule for sparse
 1455 ADGs: each agent depend on at most 1/4 of the total number of agents. (e.g., in the 8m map,
 1456 each agent only depends on the actions of its two immediate predecessors) These experiments are
 1457 intended solely to evaluate whether sparse ADGs still outperform independent-policy baselines. We
 1458 train MAT and its sparse-ADG variant on several SMAC maps. We adopt the hyperparameters

1458 recommended by Wen et al. (2022) for the MAT and its sparse-ADG variant, while adopting the
1459 hyperparameters recommended by EPYMARL for the baseline algorithms. The results in Figure 13
1460 show that sparse ADG policies still outperform independent ones, and does not exhibit significant
1461 degradation compared auto-regressive policies.
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511