ACTION DEPENDENCY GRAPHS FOR GLOBALLY OPTI-MAL COORDINATED REINFORCEMENT LEARNING

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

025

026027028

029

031

033

034

036

038

040

041

042

043

044

045

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Action-dependent policies, which condition decisions on both states and other agents' actions, provide a powerful alternative to independent policies in multiagent reinforcement learning. Most existing studies have focused on auto-regressive formulations, where each agent's policy depends on the actions of all preceding agents. However, this approach suffers from severe scalability limitations as the number of agents grows. In contrast, sparse dependency structures, where each agent relies only on a subset of other agents, remain largely unexplored and lack rigorous theoretical foundations. To address this gap, we introduce the action dependency graph (ADG) to model sparse inter-agent action dependencies. We prove that action-dependent policies can converge to solutions stronger than Nash equilibria, which often trap independent policies, and we refer to such solutions as G_d -locally optimal policies. Furthermore, within coordination graph (CG) structured problems, we show that a G_d -locally optimal policy attains global optimality when the ADG satisfies specific CG-induced conditions. To substantiate our theory, we develop a tabular policy iteration algorithm that converges exactly as predicted. We further extend a standard deep MARL method to incorporate action-dependent policies, confirming the practical relevance of our framework.

1 Introduction

Achieving effective multi-agent reinforcement learning (MARL) in fully cooperative environments requires agents to coordinate their actions to maximize collective performance. Most existing MARL methods rely on independent policies (Zhang et al., 2021; Oroojlooy & Hajinezhad, 2023), where each agent makes decisions based solely on its state or observation. Although computationally tractable and scalable, these completely decentralized policies are often suboptimal (Fu et al., 2022). The primary limitation lies in their tendency to converge to one of many Nash equilibrium solutions (Ye et al., 2022), which may not correspond to the globally optimal solution.

The emergence of action-dependent policies (Fu et al., 2022) offers a promising solution to this challenge. By incorporating the actions of other agents into an agent's decision-making process, action-dependent policies enable more effective cooperation and achieve superior performance compared to independent policies. We introduce the action dependency graph (ADG), a directed acyclic graph, to represent the action dependencies required for agents to make decisions. Theoretical studies (Bertsekas, 2021; Chen & Zhang, 2023) demonstrate that policies with auto-regressive forms, associated with fully dense ADGs—where replacing each directed edge with an undirected edge yields a complete graph—guarantee global optimality. However, fully dense ADGs pose substantial scalability issues, as they require a high degree of interdependence and coordination.

Sparse ADGs, which involve fewer inter-agent dependencies, offer a more scalable alternative. This leads to a critical question: can action-dependent policies with sparse ADGs still guarantee global optimality? To answer this question, we build on the framework of coordinated reinforcement learning (Guestrin et al., 2002), where the cooperative relationship between agents is described by a coordination graph (CG). We find that global optimality can still be achieved using an action-dependent policy with a sparse ADG, provided that a specific relationship between the ADG and the CG is satisfied.

The contributions of this paper are summarized as follows. (i) We introduce the notion of a G_d -locally optimal policy, which differs from the Nash equilibrium and more precisely characterizes

the convergence behavior of action-dependent policies. (ii) We establish a theoretical framework that unifies coordination graphs with action-dependent policies and derive optimality conditions for sparse ADGs. To the best of our knowledge, this is the first work to seamlessly integrate these two perspectives. (iii) We design a policy iteration algorithm that, grounded in our theory, guarantees convergence of action-dependent policies to a G_d -locally optimal policy, and further to a globally optimal policy under the optimality conditions.

2 RELATED WORK

Independent policy. The majority of the literature on MARL represents the joint policy as the Cartesian product of independent individual policies. Value-based methods such as IQL (Tan, 1993), VDN (Sunehag et al., 2018), QMIX (Rashid et al., 2018), and QTRAN (Son et al., 2019) employ local value functions that depend only on the state or observation of each agent. Similarly, policy-based methods such as MADDPG (Lowe et al., 2017), COMA (Foerster et al., 2018), MAAC (Iqbal & Sha, 2019), and MAPPO (Yu et al., 2022) directly adopt independent policies. These approaches often fail to achieve global optimality, as they are not able to cover all strategy modes (Fu et al., 2022).

Coordination graph. Some value-based methods (Böhmer et al., 2020; Castellini et al., 2021; Li et al., 2021; Wang et al., 2022b) recognize that the limitation of independent policies is due to a game-theoretic pathology known as relative overgeneralization (Panait et al., 2006). To mitigate this, they employ a higher-order value decomposition framework by introducing the coordination graph (CG) (Guestrin et al., 2002). In this graph, the vertices represent agents, and the edges correspond to pairwise interactions between agents in the local value functions. While CGs improve cooperation by considering inter-agent dependencies, the resulting joint policy cannot be decomposed into individual policies. Consequently, decision-making algorithms still require intensive computation, such as Max-Plus (Rogers et al., 2011) or Variable Elimination (VE) (Bertele & Brioschi, 1972). When the CG is dense, these computations may become prohibitively time consuming, making the policy difficult to execute in real time.

Action-dependent policy. In contrast to independent policies, action-dependent policies (Wang et al., 2022a; Ruan et al., 2022; Li et al., 2023; 2024) incorporate not only the state, but also the actions of other agents into an agent's decision-making process. The action dependencies among agents can be represented by a directed acyclic graph, which we refer to as the action dependency graph (ADG). In some literature, the action-dependent policy is also referred to as Bayesian policy (Chen & Zhang, 2023) or auto-regressive policy (Fu et al., 2022). Moreover, the use of action-dependent policies can be viewed as a mechanism to leverage communications for enhancing cooperation (Zhou et al., 2023; Duan et al., 2024; Jing et al., 2024). Some approaches (Bertsekas, 2021; Ye et al., 2022; Wen et al., 2022) transform a multi-agent MDP into a single-agent MDP with a sequential structure, enabling each agent to consider the actions of all previously decided agents during decision-making. This transformation ensures the convergent joint policy to be globally optimal (Bertsekas, 2021). However, the fully dense ADG makes these methods computationally expensive and impractical for large-scale systems. For more general ADGs, existing theories can only guarantee convergence to a Nash equilibrium solution (Chen & Zhang, 2023). Currently, no theoretical evidence demonstrates the superiority of action-dependent policies with sparse dependency graphs over independent policies.

3 PRELIMINARY

We formulate the cooperative multi-agent reinforcement learning problem as a *Multi-Agent Markov Decision Process* (MAMDP), represented by the tuple $\langle \mathcal{N}, \mathcal{S}, \mathcal{A}, P, r, \gamma \rangle$, where $\mathcal{N} = \{1, \dots, n\}$ denotes the set of agents, \mathcal{S} is the finite state space, $\mathcal{A} = \prod_{i=1}^n \mathcal{A}_i$ is the joint action space formed by the Cartesian product of each agent's finite action space, $P: \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to [0,1]$ is the transition kernel, $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ is the reward function, and $\gamma \in [0,1)$ is the discount factor.

We consider policies of the deterministic form $\pi: \mathcal{S} \to \mathcal{A}$. The state value function and state-action value function induced by a policy π are

$$V^{\pi}(s) := \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s^{t}, a^{t}) \, \middle| \, s^{0} = s \right], Q^{\pi}(s, a) := \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^{t} r(s^{t}, a^{t}) \, \middle| \, s^{0} = s, \, a^{0} = a \right], \tag{1}$$

where the expectation \mathbb{E} is taken over all random variables s^t induced by π and P. For any function $V \in \mathcal{R}(\mathcal{S})$, where $\mathcal{R}(\mathcal{S})$ denotes the set of real-valued functions $J: \mathcal{S} \to \mathbb{R}$, we define

$$Q^{V}(s,a) := r(s,a) + \gamma \sum_{s' \in S} P(s'|s,a)V(s').$$
 (2)

The Bellman operator $\mathcal{T}_{\pi}: \mathcal{R}(\mathcal{S}) \to \mathcal{R}(\mathcal{S})$ and the Bellman optimality operator $\mathcal{T}: \mathcal{R}(\mathcal{S}) \to \mathcal{R}(\mathcal{S})$ are given by

 $\mathcal{T}_{\pi}V(s) = Q^{V}(s, \pi(s)), \quad \mathcal{T}V(s) = \max_{a \in \mathcal{A}} Q^{V}(s, a). \tag{3}$ The value function V^{π} is the unique fixed point of \mathcal{T}_{π} , and the optimal value function V^{*} is the unique fixed point of \mathcal{T} .

3.1 COORDINATION GRAPH

108

109

110

111 112

113

114

115 116 117

118 119

120

121

122

123

124

125

126

127

128

129

130 131

132

133 134

135

136 137

138

139 140

141

142

143

144

145 146

147

148

149 150

151 152

153

154

155

156

157

158

159

160

161

In many practical scenarios such as sensor networks (Zhang & Lesser, 2011), wind farms (Bargiacchi et al., 2018), mobile networks (Bouton et al., 2021), etc., the Q-function can be approximated as the sum of local value functions, each depending on the states and actions of a subset of agents. A widely used approach to representing this decomposition is the use of the coordination graph (CG) (Guestrin et al., 2002), which captures the pairwise coordination relationships between agents. Formally, we define a CG as follows.

Figure 1: A coordination graph (a) and an action dependency graph (b).

Definition 3.1 (Coordination Graph). An undirected

graph $G_c = (\mathcal{N}, \mathcal{E}_c)$ is a CG under state $s \in \mathcal{S}$ of a value function $Q^{\pi} : \mathcal{S} \times \mathcal{A} \to \mathbb{R}$, if there exists a local value function $Q_{ij}^{\pi}: \mathcal{S} \times \mathcal{A}_i \times \mathcal{A}_j \to \mathbb{R}$ for every edge $(i,j) \in \mathcal{E}_c$, and a local value function $Q_i^{\pi}: \mathcal{S} \times \mathcal{A}_i \to \mathbb{R}$ for every vertex $i \in \mathcal{N}$, such that for any $a \in \mathcal{A}$, the following decomposition holds:

$$Q^{\pi}(s, a) = \sum_{i \in \mathcal{N}} Q_i^{\pi}(s, a_i) + \sum_{(i, j) \in \mathcal{E}_c} Q_{ij}^{\pi}(s, a_i, a_j). \tag{4}$$

Remark 3.2. If G_c is a subgraph of G'_c , and G_c is a CG of Q^{π} , then G'_c is also a CG of Q^{π} . Therefore, multiple CGs may correspond to the same value function Q^{π} .

Without loss of generality, we assume that G_c is connected; otherwise, the problem can be decomposed into independent subproblems depending on the connected components of G_c . In a connected graph, each vertex is involved in an edge, allowing the local value functions associated with vertices to be merged into those local value functions associated with edges, yielding:

$$Q^{\pi}(s,a) = \sum_{(i,j)\in\mathcal{E}_c} Q_{ij}^{\pi}(s,a_i,a_j).$$
 (5)

Figure 1 (a) shows a CG where Q^{π} can be decomposed as:

$$Q^{\pi}(s,a) = Q_{12}^{\pi}(s,a_1,a_2) + Q_{13}^{\pi}(s,a_1,a_3) + Q_{23}^{\pi}(s,a_2,a_3).$$
 (6)

Throughout this paper, we focus on a MAMDP structured by a CG.

3.2 NOTATIONS

In the paper, we frequently use sets as subscripts in expressions. Let $S \subseteq \mathcal{N}$, and denote its elements in ascending order as $S = \{s_1, s_2, \dots, s_k\}$. For a space, such as A_S , we define $A_S := \prod_{i \in S} A_i :=$ $\prod_{i=1}^k \mathcal{A}_{s_i}$. For a vector, such as a_S , we define $a_S := (a_{s_1}, a_{s_2}, \dots, a_{s_k}), \ a_{s_i} \in \mathcal{A}_{s_i}$. The notation < i indicates the set of agents with indices smaller than i, similarly for $\le i, > i$, and $\ge i$. For an undirected graph G_c , $N_{G_c}(i)$ denotes the neighbor of vertex i. When there is no ambiguity, we abbreviate $N_{G_c}(i)$ as $N_c(i)$. $N_c[i] := N_c(i) \cup i$, and $N_c(S)$ denotes the neighbors of a set S, that is, $N_c(S) = \bigcup_{i \in S} N_c(i) \setminus S$. For a directed graph G_d , $N_{G_d}(i)$ denotes the parent set of vertex i. Likewise, we abbreviate $N_{G_d}(i)$ as $N_d(i)$. Similarly, $N_d[i] := N_d(i) \cup i$, and $N_d(S)$ denotes the set of all parent nodes of vertices in S.

¹In this paper, the vertices and edges of the graph are represented by agent indices and index pairs.

4 ADG WITH OPTIMALITY GUARANTEE

4.1 ACTION DEPENDENCY GRAPH

In MARL, a deterministic joint policy is typically decomposed into *independent policies* of agents, denoted as $\pi(s) = (\pi_1(s), \pi_2(s), \dots, \pi_n(s))$. Although independent policies can, in principle, represent optimal solutions, they are unable to capture behaviors that require correlated actions. The absence of such correlations may prevent a policy from iteratively improving from a suboptimal solution to an optimal one.

To address this limitation, we introduce a broader class of policies, termed *action-dependent policies*, whose inputs include not only the state but also the actions of other agents. Formally, specifying action-dependent policies requires determining the order in which actions are generated. Without loss of generality, we assume that actions are output according to agent indices. In this case, the general form of agent i's policy is $\pi_i : \mathcal{S} \times \mathcal{A}_{< i} \to \mathcal{A}_i$. Since some policies may not depend on the actions of all preceding agents, we use a *dependency set* to represent this sparse dependency relation.

Definition 4.1 (Dependency Set). Let $C \subseteq (\langle i \rangle)$ be the dependency set of agent i's policy π_i under state $s \in \mathcal{S}$. Then, for any $a_C \in \mathcal{A}_C$, $a'_{\langle s \rangle \setminus C}$, $a_{\langle s \rangle \setminus C}$, $a_{\langle s \rangle \setminus C}$, it holds that

$$\pi_i(s, a_C, a'_{(\langle i) \backslash C}) = \pi_i(s, a_C, a_{(\langle i) \backslash C}).$$

If C is the dependency set of agent i, then the policy of agent i depends only on the actions of agents in C. For convenience, depending on the context, we sometimes write $\pi_i(s, a_{< i})$ as $\pi_i(s, a_C)$. For a joint policy, the overall action dependency structure can be represented as a directed acyclic graph (DAG).

Definition 4.2 (Action Dependency Graph (ADG)). The DAG $G_d = (\mathcal{N}, \mathcal{E}_d)$ is the Action Dependency Graph of the joint policy π under state $s \in \mathcal{S}$ if, for any $i \in \mathcal{N}$, $N_d(i)$ is the dependency set of π_i under state s.

The acyclic nature of the ADG guarantees that dependencies do not form cycles, which would otherwise cause decision-making deadlocks and render the policy infeasible. Figure 1(b) illustrates the ADG of a joint policy π with the following form:

$$\pi(s) = (\pi_1(s), \pi_2(s, \pi_1(s)), \pi_3(s, \pi_2(s, \pi_1(s)), \pi_1(s))). \tag{7}$$

From (7), it is evident that expressing the components of a joint policy directly in terms of action-dependent policies becomes cumbersome. To streamline such representations, we recursively define the following policy notation:

$$\pi_{i,C}(s, a_C) = \begin{cases} a_i & \text{if } i \in C, \\ \pi_i(s, \pi_{< i, C}(s, a_C)) & \text{otherwise,} \end{cases}$$
 (8)

where $\pi_{< i,C} = (\pi_{1,C}, \dots, \pi_{i-1,C})$. Using this notation, the joint policy π can be rewritten as $\pi_{\mathcal{N},\varnothing}$, and (7) can be concisely rewritten as

$$\pi(s) = (\pi_1 \,_{\varnothing}(s), \pi_2 \,_{\varnothing}(s), \pi_3 \,_{\varnothing}(s)). \tag{9}$$

4.2 COORDINATION POLYMATRIX GAME

A key reason why independent policies often converge to locally optimal solutions is the existence of Nash equilibrium policies (Zhang et al., 2022; Kuba et al., 2022), also known as agent-by-agent optimal policies (Bertsekas, 2021). In this subsection, we illustrate the suboptimality of Nash equilibria through an example of *coordination polymatrix game* (Cai & Daskalakis, 2011), and demonstrate how action-dependent policies can overcome this limitation.

A coordination polymatrix game can be viewed as a single-step decision problem, formulated by a MAMDP tuple $\langle \mathcal{N}, \mathcal{S}, \mathcal{A}, P, r, \gamma \rangle$, with $\mathcal{S} = \varnothing$ and $\gamma = 0$. In addition, the game is equipped with an undirected graph $G_c = (\mathcal{N}, \mathcal{E}_c)$ and a set of pairwise payoff functions $\{r_{ij}\}_{(i,j)\in\mathcal{E}_c}$, which together determine the global reward $r(a) = \sum_{(i,j)\in\mathcal{E}_c} r_{ij}(a_i,a_j)$. In this setting, r is equivalent to

the (state)-action value function $Q: \mathcal{A} \to \mathbb{R}$, and G_c serves as the CG of Q. Figure 2 illustrates a polymatrix game with three agents, each having two possible actions, $A_i = \{0, 1\}, i = 1, 2, 3$. The payoff matrices specify the reward for each agent pair; for example, if agents 1 and 2 both choose action 0, they receive a payoff of 1 together.

For independent policies, the joint policies $\pi =$ (1,1,1) and $\pi=(0,0,0)$ are both Nash equilibria. However, only $\pi = (0,0,0)$ is globally optimal. Although $\pi = (1, 1, 1)$ is suboptimal, no single agent has an incentive to deviate unilaterally, since any individual deviation reduces the total reward.

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234 235

236

237

238

239

240

241

242 243 244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260 261

262

263 264

265

266

267

268

269

Figure 2: A polymatrix game on a line CG. Now consider action-dependent policies with an

ADG G_d whose edge set is $\mathcal{E}_d = \{(1,2),(2,3)\}.$

Suppose the policies are given by $\pi_1 = 1$,

 $\pi_2(0) = 0$, $\pi_2(1) = 1$, $\pi_3(0) = 0$, and $\pi_3(1) = 1$. This corresponds to the same joint policy $\pi = (1, 1, 1)$. However, if agent 1 switches its action to 0, agents 2 and 3 will also switch to 0, leading to the joint action (0,0,0) with reward r(0,0,0)=2, which exceeds r(1,1,1)=1.2. Thus, agent 1 is incentivized to choose action 0, driving the system toward the globally optimal policy.

4.3 OPTIMALITY GUARANTEE

The coordination polymatrix game example demonstrates that action-dependent policies can converge to solutions stronger than Nash equilibria. Such solutions are relatively rare in the policy space and are therefore more likely to be globally optimal. We refer to them as G_d -locally optimal policies.

Definition 4.3 (G_d -locally Optimal). Let $G_d = (\mathcal{N}, \mathcal{E}_d)$ be a DAG. A joint policy π is G_d -locally optimal under $s \in \mathcal{S}$ if, for any $a_{N_d(i)} \in \mathcal{A}_{N_d(i)}$, the following holds:

$$Q^{\pi}(s, \pi_{\mathcal{N}, N_d(i)}(s, a_{N_d(i)})) = \max_{a_i \in \mathcal{A}_i} Q^{\pi}(s, \pi_{(< i), N_d(i)}(s, a_{N_d(i)}), a_i, \pi_{(> i), N_d[i]}(s, a_{N_d[i]})). \quad (10)$$

When G_d is empty (i.e., independent policies), the notion of G_d -local optimality coincides with agent-by-agent optimality. As more edges are added to G_d , condition (10) becomes increasingly restrictive. In the extreme case where G_d is a fully dense DAG with edge set $\mathcal{E}_d = \{(i,j) \in \mathcal{N} \times \mathcal{N} :$ i < j}, a G_d -locally optimal policy aligns with the globally optimal policy. In general, a joint policy with ADG G_d tends to converge to a G_d -locally optimal solution, as discussed in the next section. Thus, the most straightforward way to avoid subopti-

Figure 3: Different index orders of agents result in different sparsity of the ADG.

mality is to adopt a fully dense ADG. However, the computational cost of training and executing such policies grows rapidly with the number of agents, limiting scalability. In fact, if the CG structure can be exploited, even some sparse ADGs suffice to guarantee global optimality. We now introduce a graph condition that links the CG and ADG, ensuring that every G_d -locally optimal policy is also globally optimal.

Theorem 4.4 (Optimality of ADG, proof in Appendix C). Let $s \in S$, and let $G_d(s)$ be a DAG and $G_c(s)$ be the CG of Q^{π} under state s. Suppose that for every $s \in \mathcal{S}$, the policy π is $G_d(s)$ -locally optimal and the following holds:

$$N_{G_d(s)}(i) \supseteq N_{G_c(s)}(\geq i), \quad \forall i \in \mathcal{N}.$$
 (11)

Then π is globally optimal.

Remark 4.5. We write $G_d(s)$ and $G_c(s)$ to emphasize that the theorem can apply to problems where the CG may vary across states. For brevity, unless otherwise specified, we assume a fixed CG across all states and denote it by G_c , with the corresponding fixed ADG denoted by G_d . Nevertheless, all subsequent results can immediately extend directly to state-dependent CG settings.

This theorem indicates that the ADG can be designed from the CG to guarantee that G_d -local optimality implies global optimality. Two special cases illustrate this principle: (i) When both G_c and G_d are empty, condition (11) reduces to $N_d(i) = N_c(\geq i) = \varnothing$, in which case the Q-function admits a VDN decomposition and any Nash equilibrium is globally optimal, consistent with Dou et al. (2022). (ii) When G_c is complete and G_d is fully dense, condition (11) is also satisfied. Thus, for any CG, a fully dense ADG guarantees global optimality, since every CG is a subgraph of the complete graph.

If the agent indices are predetermined, replacing the superset relationship with an equality in condition (11) uniquely yields the sparsest ADG. However, the choice of index order strongly influences the sparsity of G_d , as shown in Figure 3.

Figure 4: ADGs generated by Algorithm 2 for CG topologies: line, ring, and star.

Determining the optimal index order is analogous to finding the optimal elimination order in variable elimination (VE), an NP-complete problem (Kok & Vlassis, 2006). Despite this complexity, practical heuristics such as the greedy algorithm described in Appendix E (Algorithm 2) can be employed. Figure 4 illustrates the resulting ADGs for several simple CG topologies.

5 CONVERGENCE OF ACTION-DEPENDENT POLICY

5.1 Convergence to G_d -locally optimal policy

In this section, we introduce a policy iteration algorithm for MARL in the tabular setting. This algorithm highlights the advantage of employing action-dependent policies, enabling convergence to a G_d -locally optimal policy rather than merely an agent-by-agent optimal one.

Our approach extends the multi-agent policy iteration (MPI) framework proposed in Bertsekas (2021), which decomposes the joint policy update step of standard policy iteration (PI) (Sutton, 2018) into sequential updates of individual agents' policies, thereby mitigating the computational complexity of PI. However, MPI guarantees convergence only to an agent-by-agent optimal policy, which is often suboptimal. To address this limitation, we propose Algorithm 1, which incorporates action-dependent policies into the MPI framework and ensures convergence to a G_d -locally optimal policy.

Algorithm 1 Action-Dependent Multi-Agent Policy Iteration

```
Initialize policies \pi_i^1, i \in \mathcal{N}, with ADG G_d under every s \in \mathcal{S} for k=1,2,\ldots do 

// Policy Evaluation

Compute V^{\pi^k} by solving V=\mathcal{T}_{\pi^k}V and derive Q^{\pi^k} from V^{\pi^k}

// Policy Improvement

for i=1,2,\ldots,n do

Update \pi_i^{k+1} for every (s,a_{< i}) pair by

\pi_i^{k+1}(s,a_{< i}) \leftarrow \arg\max_{a_i} Q^{\pi^k}(s,\pi_{(< i),N_d(i)}^{k+1}(s,a_{N_d(i)}),a_i,\pi_{(> i),N_d[i]}^k(s,a_{N_d[i]})). (12)

end for end for
```

Since the policies of agents in (< i) are always updated before agent i, the update rule (12) can always be applied in succession. Since the image set of $\arg\max$ may have multiple values, we arbitrarily select one of them. Specifically, if $\pi_i^k(s,a_{< i})$ is already in the image set, then we prioritize selecting $\pi_i^k(s,a_{< i})$. Note that while the update is specified for every $(s,a_{< i})$ pair, the $\arg\max$ in (12) only depends on $(s,a_{N_d(i)})$, so the actual computation only needs to be performed for every

 $(s, a_{N_d(i)})$ pair. When update rule no longer changes π_i^k for any $(s, a_{< i})$, the algorithm reaches convergence. The following theorem describes the convergence property:

Theorem 5.1 (Convergence of Algorithm 1, proof in Appendix D). Let $\{\pi^k\}_{k=1}^{\infty}$ be the policy sequence generated by Algorithm 1. Then $\{\pi^k\}_{k=1}^{\infty}$ converges to a G_d -locally optimal policy in a finite number of steps.

It is straightforward to verify that once all individual policies converge, the joint policy is G_d -locally optimal. Thus, the main challenge in proving this theorem lies in establishing convergence of all individual policies. Chen & Zhang (2023) studied action-dependent policies in the policy gradient method and encountered a similar issue, which they bypassed by assuming that individual policies always converge. In contrast, we show that the joint policy converges regardless of whether individual policies converge directly (see Appendix Lemma D.1). Although convergence of the joint policy does not automatically imply G_d -local optimality, we can inductively establish that all individual policies converge from the convergence of the joint policy (see Appendix Lemma D.6). Therefore, our policy iteration method does not require additional assumptions and provides a complete resolution to this challenge.

5.2 Convergence to globally optimal policy

When the CG of an MDP is fixed, independent of both the state and the joint policy (e.g., polymatrix games), we can construct an ADG that satisfies (11) based on the CG, and then apply Algorithm 1 to update policies under this ADG. Upon convergence, Theorem 5.1 ensures that the resulting policy is G_d -locally optimal, and by Theorem 4.4, it is also globally optimal.

Corollary 5.2. Assume G_c is the CG of the state-action value function Q^{π} for all policies π and states s. Let $\{\pi^k\}_{k=1}^{\infty}$ be the policy sequence generated by Algorithm 1 with an ADG G_d . If G_c and G_d satisfy (11), then $\{\pi^k\}_{k=1}^{\infty}$ converges to a globally optimal policy in a finite number of steps.

In more general scenarios, the CG may be dynamic. To guarantee convergence to an optimal solution, the ADG must also evolve accordingly. Such changes in the CG are typically driven by both the state and the joint policy. We denote this dependence by $G_c(s,\pi)$. For state-dependent changes, it suffices to design a distinct ADG for each state, ensuring that Equation (11) remains valid. In contrast, for policy-dependent changes, the ADG should be updated after each policy iteration to preserve convergence to the globally optimal policy. A key challenge arises here: directly modifying the ADG may alter the structural dependencies of individual policies. For instance, under one ADG, agent i may depend only on the action of agent j, whereas under another ADG it may additionally depend on the actions of both j and k. If the policy of agent i lacks the interface to accommodate these additional dependencies, direct modification of the ADG becomes infeasible.

To address this issue, we could employ an indirect construction. Specifically, we build a set of individual policies such that, although their functional forms may differ before and after the ADG update, their induced joint policies remain identical. For deterministic policies, this construction is straightforward. Given a joint policy $\tilde{\pi}$ with independent components $\tilde{\pi}(s) = (\tilde{\pi}_1(s), \dots, \tilde{\pi}_n(s))$, we define a set of action-dependent policies $\{\pi_i\}_{i\in\mathcal{N}}$ with new ADG such that,

$$\pi_1(s) \leftarrow \tilde{\pi}_1(s), \quad \pi_2(s, \pi_1(s)) \leftarrow \tilde{\pi}_2(s), \quad \dots, \quad \pi_n(s, \tilde{\pi}_1(s), \dots, \tilde{\pi}_{n-1}(s)) \leftarrow \tilde{\pi}_n(s).$$
 (13)

This guarantees that the joint policies before and after the ADG update are equivalent. Consequently, if the CG changes after (12), we reconstruct the new policy π_i^{k+1} according to (13). This ensures that the ADG and CG continue to satisfy Equation (11), thereby allowing Algorithm 1 to achieve the optimal solution.

Corollary 5.3 (Proof in Appendix D). Assume $G_c(s,\pi)$ is the CG of the state-action value Q^{π} for joint policy π and state s. Let $\{\pi^k\}_{k=1}^{\infty}$ be the policy sequence generated by Algorithm 1, with policy reconstruction according to (13) upon CG change. Then $\{\pi^k\}_{k=1}^{\infty}$ converges to a globally optimal policy in a finite number of steps.

6 EXPERIMENTS

6.1 COORDINATION POLYMATRIX GAMES

To validate our theoretical results, we evaluate Algorithm 1 on polymatrix games with CGs of different topologies: star (5 agents), ring (5 agents), tree (7 agents), and mesh (9 agents). The payoff matrices are randomly generated, with the maximum reward set equal to the number of CG edges. We compare three ADG types: sparse (generated by Algorithm 2 to satisfy (11)), fully dense, and empty. Additional experimental details are provided in Appendix F. Figure 5 reports the learning curves averaged over 100 runs. Both sparse and dense ADGs consistently reach the reward upper bound, with their learning curves being very close. In contrast, empty ADGs often become trapped in suboptimal Nash equilibria.

Figure 5: Results of coordination polymatrix game.

To assess computational efficiency, Figure 6 (right) shows the average per-iteration runtime across 100 experiments when each agent has two actions. As runtime is primarily determined by policy dimension and dimensions of dense ADG policies are independent of CG structure, their curves nearly overlap. Due to exponential growth in policy dimension, dense ADGs incur substantially higher costs as agent number increases, whereas sparse ADGs maintain scalability.

Figure 6: Results of MAPPO on star CG (left) and average time per iteration (right).

We also extend the MAPPO algorithm to incorporate action-dependent policies to examine the convergence of action-dependent policies under more practical learning settings. Specifically, we transform the independent policy $\pi_{\theta_i}(a_i|s)$ into the action-dependent form $\pi_{\theta_i}(a_i|s,a_{N_d(i)})$. This requires a corresponding modification of the optimization objective to properly handle the action-dependent policy. Consider MAPPO (Yu et al., 2022), where the original objective is

$$\mathcal{L}(\theta) = \mathbb{E}_{s \sim \mathcal{D}, a \sim \pi_{\theta_{\text{old}}}} \left[\sum_{i=1}^{n} \min \left(r_{\theta_i}(a_i, s) A_{\pi_{\theta_{\text{old}}}}(s, a), \text{ clip}(r_{\theta_i}(a_i, s), 1 \pm \varepsilon) A_{\pi_{\theta_{\text{old}}}}(s, a) \right) \right],$$

where $r_{\theta_i}(a_i,s) = \frac{\pi_{\theta_i}(a_i|s)}{\pi_{\theta_i,\mathrm{old}}(a_i|s)}$, and $\mathcal D$ denotes the distribution in the replay buffer. To adapt this objective of the distribution of the replacement of the replacem

tive for action-dependent policies, we replace $r_{\theta_i}(a_i,s)$ with $r_{\theta_i}(a_i,s,a_{N_d(i)}) = \frac{\pi_{\theta_i}(a_i|s,a_{N_d(i)})}{\pi_{\theta_i,\text{old}}(a_i|s,a_{N_d(i)})}$.

Figure 6 (left) presents results of the extended MAPPO on polymatrix games with a star CG, using fixed payoff matrices (maximum reward 20) and 10 random seeds. As the value of the largest

suboptimal point is 18, both sparse and dense ADGs successfully escape all suboptimal points. The slight deviations from the maximum reward are primarily attributed to exploratory behavior caused by entropy regularization. These results demonstrate that even in non-tabular settings parameterized by neural networks, Theorem 4.4 provides a reliable design principle for sparse ADGs. In future work, we also plan to provide a rigorous theoretical analysis to substantiate these empirical findings.

6.2 ATSC

To further examine practical applicability, we evaluate the extended MAPPO on adaptive traffic signal control (ATSC) problem, a benchmark with a natural coordination structure. Experiments are conducted on 2x2 (4 agents), 3x3 (9 agents), and 4x4 (16 agents) road networks using the Simulation of Urban Mobility (SUMO) platform Lopez et al. (2018) and SUMO-RL Alegre (2019). The CG is defined by adjacency between intersections, and sparse ADGs are derived with Algorithm 2. Detailed experimental protocols and hyperparameters are given in Appendix F.

As shown in Figure 8, sparse ADGs achieve performance comparable to dense ADGs, and both outperform empty ADGs. This indicates that even with approximate CG structures, sparse ADGs retain the efficiency of action-dependent policies without sacrificing optimality.

Figure 7: 3x3 road network.

Figure 8: Results of ATSC.

7 CONCLUSION

In this work, we established a theoretical framework for action-dependent policies in multi-agent reinforcement learning by introducing the ADG and the notion of G_d -locally optimal policies. We further identified conditions under which these policies coincide with globally optimal solutions in coordination graph structured problems, and proposed a policy iteration algorithm with guaranteed convergence. Finally, we validated our theory and demonstrated its practical potential through experiments on polymatrix games and adaptive traffic signal control. Recognizing that complex environments may involve unknown CGs, hypergraph CGs, we aim to explore the adaptability and potential of ADGs in these challenging settings in future research.

REFERENCES

Lucas N. Alegre. SUMO-RL. https://github.com/LucasAlegre/sumo-rl, 2019.

Eugenio Bargiacchi, Timothy Verstraeten, Diederik Roijers, Ann Nowé, and Hado Hasselt. Learning to coordinate with coordination graphs in repeated single-stage multi-agent decision problems. In *International Conference on Machine Learning*, pp. 482–490. PMLR, 2018.

Umberto Bertele and Francesco Brioschi. *Nonserial dynamic programming*. Academic Press, Inc., 1972.

- Dimitri Bertsekas. Multiagent reinforcement learning: Rollout and policy iteration. *IEEE/CAA Journal of Automatica Sinica*, 8(2):249–272, 2021.
 - Ashmita Bhattacharya and Malyaban Bal. Multi-agent decision s4: Leveraging state space models for offline multi-agent reinforcement learning, 2025.
 - Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. Deep coordination graphs. In *International Conference on Machine Learning*, pp. 980–991. PMLR, 2020.
 - Maxime Bouton, Hasan Farooq, Julien Forgeat, Shruti Bothe, Meral Shirazipour, and Per Karlsson. Coordinated reinforcement learning for optimizing mobile networks. *arXiv preprint arXiv:2109.15175*, 2021.
 - Yang Cai and Constantinos Daskalakis. On minmax theorems for multiplayer games. In *Proceedings* of the 20nd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 217–234. SIAM, 2011.
 - Jacopo Castellini, Frans A Oliehoek, Rahul Savani, and Shimon Whiteson. Analysing factorizations of action-value networks for cooperative multi-agent reinforcement learning. *Autonomous Agents and Multi-Agent Systems*, 35(2):25, 2021.
 - Dingyang Chen and Qi Zhang. Context-aware bayesian network actor-critic methods for cooperative multi-agent reinforcement learning. In *International Conference on Machine Learning*, pp. 5327–5350. PMLR, 2023.
 - Zehao Dou, Jakub Grudzien Kuba, and Yaodong Yang. Understanding value decomposition algorithms in deep cooperative multi-agent reinforcement learning. *arXiv preprint arXiv:2202.04868*, 2022.
 - Wei Duan, Jie Lu, and Junyu Xuan. Group-aware coordination graph for multi-agent reinforcement learning. In *Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence*, pp. 3926–3934, 2024.
 - Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson. Counterfactual multi-agent policy gradients. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 32, 2018.
 - Wei Fu, Chao Yu, Zelai Xu, Jiaqi Yang, and Yi Wu. Revisiting some common practices in cooperative multi-agent reinforcement learning. In *International Conference on Machine Learning*, pp. 6863–6877. PMLR, 2022.
 - Carlos Guestrin, Michail G Lagoudakis, and Ronald Parr. Coordinated reinforcement learning. In *Proceedings of the 19th International Conference on Machine Learning*, pp. 227–234, 2002.
 - Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In *International Conference on Machine Learning*, pp. 2961–2970. PMLR, 2019.
 - Gangshan Jing, He Bai, Jemin George, Aranya Chakrabortty, and Piyush K. Sharma. Distributed multiagent reinforcement learning based on graph-induced local value functions. *IEEE Transactions on Automatic Control*, 69(10):6636–6651, 2024.
 - Jelle R Kok and Nikos Vlassis. Collaborative multiagent reinforcement learning by payoff propagation. *Journal of Machine Learning Research*, 7, 2006.
 - JG Kuba, R Chen, M Wen, Y Wen, F Sun, J Wang, and Y Yang. Trust region policy optimisation in multi-agent reinforcement learning. In *International Conference on Learning Representations*, pp. 1046, 2022.
 - Chuming Li, Jie Liu, Yinmin Zhang, Yuhong Wei, Yazhe Niu, Yaodong Yang, Yu Liu, and Wanli Ouyang. Ace: Cooperative multi-agent q-learning with bidirectional action-dependency. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 8536–8544, 2023.
 - Sheng Li, Jayesh K Gupta, Peter Morales, Ross Allen, and Mykel J Kochenderfer. Deep implicit coordination graphs for multi-agent reinforcement learning. In *Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems*, pp. 764–772, 2021.

- Zhiyuan Li, Wenshuai Zhao, Lijun Wu, and Joni Pajarinen. Backpropagation through agents. In *Proceedings of the AAAI Conference on Artificial Intelligence*, pp. 13718–13726, 2024.
 - Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang Flötteröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter Wagner, and Evamarie Wießner. Microscopic traffic simulation using sumo. In *The 21st IEEE International Conference on Intelligent Transportation Systems*. IEEE, 2018.
 - Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-agent actor-critic for mixed cooperative-competitive environments. *Advances in Neural Information Processing Systems*, 30, 2017.
 - Afshin Oroojlooy and Davood Hajinezhad. A review of cooperative multi-agent deep reinforcement learning. *Applied Intelligence*, 53(11):13677–13722, 2023.
 - Liviu Panait, Sean Luke, and R Paul Wiegand. Biasing coevolutionary search for optimal multiagent behaviors. *IEEE Transactions on Evolutionary Computation*, 10(6):629–645, 2006.
 - Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht. Benchmarking multi-agent deep reinforcement learning algorithms in cooperative tasks. In *Proceedings of the Neural Information Processing Systems Track on Datasets and Benchmarks (NeurIPS)*, 2021.
 - Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforcement learning. In *International Conference on Machine Learning*, pp. 4295–4304. PMLR, 2018.
 - Alex Rogers, Alessandro Farinelli, Ruben Stranders, and Nicholas R Jennings. Bounded approximate decentralised coordination via the max-sum algorithm. *Artificial Intelligence*, 175(2):730–759, 2011.
 - Jingqing Ruan, Yali Du, Xuantang Xiong, Dengpeng Xing, Xiyun Li, Linghui Meng, Haifeng Zhang, Jun Wang, and Bo Xu. Gcs: Graph-based coordination strategy for multi-agent reinforcement learning. In *Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems*, pp. 1128–1136, 2022.
 - Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning to factorize with transformation for cooperative multi-agent reinforcement learning. In *International Conference on Machine Learning*, pp. 5887–5896. PMLR, 2019.
 - Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition networks for cooperative multi-agent learning based on team reward. In *Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems*, pp. 2085–2087, 2018.
 - Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.
 - Ming Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In *Proceedings* of the 10th International Conference on Machine Learning, pp. 330–337, 1993.
 - Jiangxing Wang, Deheng Ye, and Zongqing Lu. More centralized training, still decentralized execution: Multi-agent conditional policy factorization. *arXiv* preprint arXiv:2209.12681, 2022a.
 - Tonghan Wang, Liang Zeng, Weijun Dong, Qianlan Yang, Yang Yu, and Chongjie Zhang. Context-aware sparse deep coordination graphs. In *International Conference on Learning Representations*, 2022b.
 - Muning Wen, Jakub Kuba, Runji Lin, Weinan Zhang, Ying Wen, Jun Wang, and Yaodong Yang. Multiagent reinforcement learning is a sequence modeling problem. *Advances in Neural Information Processing Systems*, 35:16509–16521, 2022.
 - Jianing Ye, Chenghao Li, Jianhao Wang, Qianchuan Zhao, and Chongjie Zhang. Towards global optimality in cooperative MARL with sequential transformation, 2022.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising effectiveness of ppo in cooperative multi-agent games. *Advances in Neural Information Processing Systems*, 35:24611–24624, 2022.

Chongjie Zhang and Victor Lesser. Coordinated multi-agent reinforcement learning in networked distributed POMDPs. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 25, pp. 764–770, 2011.

Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent reinforcement learning: A selective overview of theories and algorithms. *Handbook of Reinforcement Learning and Control*, pp. 321–384, 2021.

Runyu Zhang, Jincheng Mei, Bo Dai, Dale Schuurmans, and Na Li. On the global convergence rates of decentralized softmax gradient play in markov potential games. *Advances in Neural Information Processing Systems*, 35:1923–1935, 2022.

Yihe Zhou, Shunyu Liu, Yunpeng Qing, Kaixuan Chen, Tongya Zheng, Yanhao Huang, Jie Song, and Mingli Song. Is centralized training with decentralized execution framework centralized enough for MARL? *arXiv* preprint arXiv:2305.17352, 2023.

APPENDIX

A THE USE OF LARGE LANGUAGE MODELS

We used LLMs for improving the grammar and clarity of the manuscript. All scientific content, ideas, and analysis are original and authored by the listed contributors.

B MATHEMATICAL PRELIMINARIES

In the appendix, we first reformulate the MAMDP as a sequentially expanded MDP (SEMDP) (Ye et al., 2022; Li et al., 2023; Bhattacharya & Bal, 2025), and then establish our proofs on this reformulation. The SEMDP transforms a multi-agent system into a single-agent MDP by expanding the state space. Importantly, the SEMDP reformulation is non-essential: it does not introduce any new assumptions, and our results can still be proven directly under the MAMDP formulation. However, introducing the SEMDP greatly simplifies the notation used in the proofs.

Given an MAMDP $\langle \mathcal{N}, \mathcal{S}, \mathcal{A}, \tilde{P}, \tilde{r}, \gamma^n \rangle$, we construct a SEMDP denoted by $\langle \mathcal{N}, \mathcal{S}, \mathcal{A}, P, r, \gamma \rangle$, where

- S is identical to the state space in the MAMDP;
- $A = \prod_{i=1}^{n} A_i$ is identical to the joint action space in the MAMDP;
- $\mathcal{Z} = \bigcup_{i \in \mathcal{N}} \mathcal{Z}_i$ is the expanded state space, where $\mathcal{Z}_i = \mathcal{S} \times \prod_{j=1}^{i-1} \mathcal{A}_j$ is the individual expanded state space for agent i;
- $P: \mathcal{Z} \times \mathcal{Z} \times \bigcup_{i \in \mathcal{N}} \mathcal{A}_i \to [0,1]$ is the transition kernel of the SEMDP;
- $r: \bigcup_{i\in\mathcal{N}}(\mathcal{Z}_i\times\mathcal{A}_i)\to\mathbb{R}$ is the reward function of the SEMDP;

The SEMDP transition kernel is defined as

$$P((s, a_{< i})|(s, a_{< i}), a_i) = 1, \quad \forall s \in \mathcal{S}, a_{< i} \in \mathcal{A}_{< i}, 0 < i < n, \tag{14}$$

$$P(s'|(s, a_{\leq n}), a_n) = \tilde{P}(s'|s, a), \quad \forall s \in \mathcal{S}, a_{\leq n} \in \mathcal{A}_{\leq n}. \tag{15}$$

The reward function is defined as

$$r((s, a_{\leq i}); a_i) = 0, \quad \forall s \in \mathcal{S}, a_{\leq i} \in \mathcal{A}_{\leq i}, 0 < i < n, \tag{16}$$

$$r((s, a_{< n}); a_n) = \tilde{r}(s, a), \quad \forall s \in \mathcal{S}, a \in \mathcal{A}.$$
 (17)

In the appendix, the joint policy in the SEMDP is denoted by $\pi: \mathcal{Z} \to \bigcup_{i \in \mathcal{N}} \mathcal{A}$, where

$$\pi(s, a_{< i}) \in \mathcal{A}_i, \quad \forall s \in \mathcal{S}, a_{< i} \in \mathcal{A}_{< i}.$$

The individual policy of agent i is defined as $\pi_i := \pi|_{\mathcal{Z}_i}$, which restricts the function to \mathcal{Z}_i . This formulation is identical to the individual policy in the MAMDP. To distinguish between the joint policies in MAMDP and SEMDP, we rewrite the joint policy in the MAMDP as $\hat{\pi} := \pi_{\mathcal{N},\varnothing}^k = (\pi_{1,\varnothing},\ldots,\pi_{n,\varnothing})$.

In the SEMDP, the state value function takes the form $V: \mathcal{Z} \to \mathbb{R}$, and the state-action value function takes the form $Q: \bigcup_{i \in \mathcal{N}} (\mathcal{Z}_i \times \mathcal{A}_i) \to \mathbb{R}$. For any $V \in \mathcal{R}(\mathcal{Z})$, we define

$$Q^{V}(s, a_{< i}; a_{i}) := r(s, a_{< i}; a_{i}) + \gamma \sum_{z' \in \mathcal{Z}} P(z' \mid (s, a_{< i}), a_{i}) V(z').$$
(18)

The Bellman operator \mathcal{T}_{π} and the optimal Bellman operator \mathcal{T} are given by

$$\mathcal{T}_{\pi}V(z) = Q^{V}(s, a_{< i}; \pi_{i}(s, a_{< i})), \quad \mathcal{T}V(z) = \max_{a_{i}} Q^{V}(s, a_{< i}; a_{i}).$$
 (19)

The state value function V^{π} is the fixed point of \mathcal{T}_{π} , and the state-action value function is $Q^{\pi} := Q^{V^{\pi}}$. The optimal state value function V^* is the fixed point of \mathcal{T} , and $Q^* := Q^{V^*}$. The semicolon in Q and r highlights the action dependence. However, $Q(s, a_{< n}; a_n)$ can also be regarded as the value function of the full joint action and thus is sometimes written simply as Q(s, a).

Proposition B.1. We summarize several fundamental properties of the SEMDP:

- 1. $V^{\hat{\pi}}(s) = \gamma^{1-n}V^{\pi}(s)$, $Q^{\hat{\pi}}(s,a) = \gamma^{1-n}Q^{\pi}(s,a)$, where $V^{\hat{\pi}}$ and $Q^{\hat{\pi}}$ denotes the state and state-action value function in the original MAMDP.
- 2. $Q^{\pi}(s, a_{< i}; a_i) = \gamma V^{\pi}(s, a_{\le i}), \quad 1 \le i < n.$
- 3. $Q^{\pi}(s, a_{< i}; a_i) = \gamma^{n-i} Q^{\pi}(s, \pi_{(< n), (\le i)}(s, a_{\le i}); \pi_{n, (\le i)}(s, a_{\le i})), \quad 1 \le i < n.$

Proof. (i) We expand the definition of $V^{\hat{\pi}}$ in the MAMDP:

$$V^{\hat{\pi}}(s) = \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^{nt} r(s_t, \hat{\pi}(s_t)) \middle| s_{t+1} \sim P(\cdot | s_t, \hat{\pi}(s_t)), s_0 = s\right]$$

$$= \mathbb{E}\left[\sum_{t=0}^{\infty} \sum_{i=1}^{n} \gamma^{nt+i-n} r(s_t, \pi_{< i,\varnothing}(s_t); \pi_{i,\varnothing}(s_t)) \middle| s_{t+1} \sim P(\cdot | s_t, \hat{\pi}(s_t)), s_0 = s\right]$$

$$= \mathbb{E}\left[\gamma^{1-n} \sum_{t=0}^{\infty} \sum_{i=1}^{n} \gamma^{nt+i-1} r(s_t, \pi_{< i,\varnothing}(s_t); \pi_{i,\varnothing}(s_t)) \middle| s_{t+1} \sim P(\cdot | s_t, \hat{\pi}(s_t)), s_0 = s\right]$$

$$= \gamma^{1-n} \mathbb{E}\left[\sum_{t'=0}^{\infty} \gamma^{t'} r(z_{t'}; \pi(z_{t'})) \middle| z_{t'+1} \sim P(\cdot | z_{t'}, \pi(z_{t'})), z_0 = s\right]$$

$$= \gamma^{1-n} V^{\pi}(s)$$

Similarly, we can derive that $Q^{\hat{\pi}}(s) = \gamma^{1-n}Q^{\pi}(s)$.

(ii) For $1 \le i < n$, we compute:

$$Q^{\pi}(s, a_{< i}; a_i) = r(s, a_{< i}; a_i) + \gamma \sum_{z' \in \mathcal{Z}} P(z' \mid (s, a_{< i}), a_i) V^{\pi}(z')$$
$$= \gamma V^{\pi}(s, a_{\le i}).$$

(iii) Repeatedly unrolling the recursion yields:

$$Q^{\pi}(s, a_{< i}; a_i) = \gamma V^{\pi}(s, a_{\le i})$$

$$= \gamma Q^{\pi}(s, a_{\le i}; \pi_{i+1,(\le i)}(s, a_{\le i}))$$

$$= \dots = \gamma^{n-i} Q^{\pi}(s, \pi_{(< n),(\le i)}(s, a_{\le i}); \pi_{n,(\le i)}(s, a_{\le i})).$$

From Proposition B.1(i), we see that the value functions in the SEMDP and the MAMDP are equivalent up to a constant factor. Therefore, it can be easily verified that (1) an optimal policy in the SEMDP remains optimal in the original MAMDP, (2) Q^{π} and $Q^{\hat{\pi}}$ have the same CG, and (3) in update rule (12), replacing the Q-function with its SEMDP counterpart does not affect the update outcome:

 $\pi_i^{k+1}(s, a_{< i}) \leftarrow \arg\max_{a_i} Q^{\pi^k}(s, \pi_{(< i), N_d(i)}^{k+1}(s, a_{N_d(i)}); a_i).$ (20)

C PROOF OF OPTIMALITY

In the appendix, we generalize the concept of the dependency set to more general functions to simplify the description of subsequent proofs.

Definition C.1 (Dependency Set). Let $f: \mathcal{A}_S \to \mathcal{Y}$ be a mapping defined on the joint action space of a subset of agents $S \subseteq \mathcal{N}$. A subset $C \subseteq S$ is called a dependency set of f if for any $s \in \mathcal{S}$, $a_C \in \mathcal{A}_C$, $a'_{S \setminus C}$, $a_{S \setminus C} \in \mathcal{A}_{S \setminus C}$, the following holds:

$$f(a_C, a'_{S \setminus C}) = f(a_C, a_{S \setminus C}).$$

For notational convenience, we may permute the order of variables when writing a function, but the evaluation of the function always follows the ordering of variables according to their agent indices.

Since the form of the Q-function changes in the SEMDP setting, we restate the definition of G_d -locally optimal policies for SEMDPs. Note that, according to Proposition B.1 (i) and (iii), this definition is equivalent to the one given in the main text.

Definition C.2 (G_d -locally Optimal in SEMDP). Let G_d be a DAG. A joint policy π is G_d -locally optimal under $s \in \mathcal{S}$ if, for any $a_{N_d(i)} \in \mathcal{A}_{N_d(i)}$, the following holds:

$$Q^{\pi}(s, \pi_{(< i), N_d(i)}(s, a_{N_d(i)}); \pi_{i, N_d(i)}(s, a_{N_d(i)})) = \max_{a_i} Q^{\pi}(s, \pi_{(< i), N_d(i)}(s, a_{N_d(i)}); a_i).$$
 (21)

Lemma C.3. For any fixed $s \in S$, let G_d be a DAG. Suppose a joint policy π is G_d -locally optimal at s. If for every $i \in \mathcal{N}$, the set S_i is the dependency set of the function $\arg\max_{a_i} Q^{\pi}(s, a_{(< i)}; a_i)$ with respect to $a_{(< i)}$ at s, and if $N_d(i) \supseteq S_i$, then π is globally optimal.

Proof. Fix any $s \in \mathcal{S}$. Since π is G_d -locally optimal, we have

$$\pi_{i}(s, a_{< i}) \in \underset{a_{i}}{\arg\max} \, Q^{\pi}(s, \pi_{(< i), N_{d}(i)}(s, a_{N_{d}(i)}); a_{i})$$

$$= \underset{a_{i}}{\arg\max} \, Q^{\pi}(s, a_{N_{d}(i)}, \pi_{(< i) \setminus N_{d}(i), N_{d}(i)}(s, a_{N_{d}(i)}); a_{i}). \tag{22}$$

Because $N_d(i) \supseteq S_i$, where S_i is the dependency set of $\arg \max_{a_i} Q^{\pi}(s, a_{(< i)}; a_i)$, it follows that

$$\pi_i(s, a_{< i}) \in \operatorname*{arg\,max}_{a_i} Q^{\pi}(s, a_{< i}; a_i), \quad \forall a_{< i} \in \mathcal{A}_{< i}. \tag{23}$$

Therefore,

$$V^{\pi}(s, a_{< i}) = \mathcal{T}_{\pi} V^{\pi}(s, a_{< i}) = Q^{\pi}(s; a_{< i}; \pi_{i}(s, a_{< i}))$$

$$= \max_{a_{i}} Q^{\pi}(s; a_{< i}; a_{i}) = \mathcal{T} V^{\pi}(s, a_{< i}),$$
(24)

which shows that V^{π} is a fixed point of \mathcal{T} . Hence, π is globally optimal.

Lemma C.4. Let Q be a state-action value function, and let $G_c = (\mathcal{N}, \mathcal{E}_c)$ be the CG of Q at state s. Then for any $i \in \mathcal{N}$, there exist functions $Q_1 : \mathcal{S} \times \mathcal{A}_{N_c[\geq i]} \to \mathbb{R}$ and $Q_2 : \mathcal{S} \times \mathcal{A}_{< i} \to \mathbb{R}$ such that

$$Q(s,a) = Q_1(s, a_{N_c[\geq i]}) + Q_2(s, a_{< i}), \quad \forall s \in \mathcal{S}, a \in \mathcal{A},$$

$$(25)$$

where $N_c[\geq i] := N_c(\geq i) \cup (\geq i)$.

Proof. Decomposing Q according to the structure of G_c yields

$$Q(s,a) = \left(\sum_{(j,k)\in\mathcal{E}_c[\geq i,\langle i]} + \sum_{(j,k)\in\mathcal{E}_c[\geq i]} + \sum_{(j,k)\in\mathcal{E}_c[\langle i]}\right) Q_{jk}(s,a_j,a_k), \tag{26}$$

where $\mathcal{E}_c[\geq i, < i]$ denotes the subset of \mathcal{E}_c containing edges between vertices in the sets $\geq i$ and < i, and $\mathcal{E}_c[\geq i] := \mathcal{E}_c[\geq i, \geq i]$ containing edges within the set $\geq i$. Noting that $\mathcal{E}_c[\geq i, < i] = \mathcal{E}_c[\geq i, N_c(\geq i)]$, thus, we can rewrite:

$$Q(s,a) = \left(\sum_{(j,k)\in\mathcal{E}_c[\geq i,N_c(\geq i)]} + \sum_{(j,k)\in\mathcal{E}_c[\geq i]} + \sum_{(j,k)\in\mathcal{E}_c[N_c(\geq i)]} + \sum_{(j,k)\in\mathcal{E}_c[< i]\setminus\mathcal{E}_c[N_c(\geq i)]}\right) Q_{jk}(s,a_j,a_k).$$

Define

$$Q_1(s, a_{N_c[\geq i]}) := \left(\sum_{(j,k)\in\mathcal{E}_c[>i, N_c(>i)]} + \sum_{(j,k)\in\mathcal{E}_c[>i]} + \sum_{(j,k)\in\mathcal{E}_c[N_c(>i)]}\right) Q_{jk}(s, a_j, a_k), \quad (28)$$

and

$$Q_2(s, a_{< i}) := \sum_{(j,k) \in \mathcal{E}_c[< i] \setminus \mathcal{E}_c[N_c(> i)]} Q_{jk}(s, a_j, a_k).$$
(29)

Then (25) follows.

Proof of Theorem 4.4

Proof. For any fixed state s, we abbreviate $N_c(i) = N_{G_c(s)}(i)$ and $N_d(i) = N_{G_d(s)}(i)$. We proceed by induction.

Base case: We aim to show that

$$\max_{a_n} Q^{\pi}(s, a_{< n}; a_n) = Q^{\pi}(s, a_{< n}; \pi_n(s, a_{< n})), \tag{30}$$

and that $N_c(\geq n)$ is the dependency set of $\arg \max_{a_n} Q^{\pi}(s, a_{< n}; a_n)$.

By Lemma C.4, there exist functions Q_1 and Q_2 such that

$$Q^{\pi}(s, a_{\leq n}; a_n) = Q_1(s, a_{N_c[n]}) + Q_2(s, a_{\leq n}). \tag{31}$$

Consider

$$Q^{\pi}(s, a_{(< n) \setminus N_c(n)}, a_{N_c(n)}; a_n) - Q^{\pi}(s, a'_{(< n) \setminus N_c(n)}, a_{N_c(n)}; a_n)$$

$$= Q_2(s, a_{(< n) \setminus N_c(n)}, a_{N_c(n)}) - Q_2(s, a'_{(< n) \setminus N_c(n)}, a_{N_c(n)}),$$
(32)

which is independent of a_n . Thus, the maximizing a_n is unaffected by $a_{< n \setminus N_c(n)}$, implying that

$$\arg\max_{a_n} Q^{\pi}(s, a_{\langle n \backslash N_c(n)}, a_{N_c(n)}; a_n) = \arg\max_{a_n} Q^{\pi}(s, a'_{\langle n \backslash N_c(n)}, a_{N_c(n)}; a_n).$$
(33)

Therefore, $N_c(n) = N_c(\geq n)$ forms the dependency set of $\arg \max_{a_n} Q^{\pi}(s, a_{< n}; a_n)$. Since π is G_d -locally optimal and $N_d(n) \supseteq N_c(\geq n)$, it follows that

$$\pi_n(s, a_{< n}) \in \arg\max_{a_n} Q^{\pi}(s, a_{< n}; a_n),$$
 (34)

and hence

$$\max_{a_n} Q^{\pi}(s, a_{< n}; a_n) = Q^{\pi}(s, a_{< n}; \pi_n(s, a_{< n})).$$
(35)

Induction step: Assume for some i + 1 that

$$\max_{a_{\geq i+1}} Q^{\pi}(s, a_{< n}; a_n) = Q^{\pi}(s, \pi_{(< n), (< i+1)}(s, a_{< i+1}); \pi_{n, (< i+1)}(s, a_{< i+1})), \tag{36}$$

and that $N_c(\geq i+1)$ is the dependency set of $\arg\max_{a_{i+1}}Q^\pi(s,a_{<(i+1)};a_{i+1})$. We now prove the case for i.

By Lemma C.4 and Proposition B.1 (iii), there exist functions Q_1 and Q_2 such that

$$Q^{\pi}(s, a_{< i}; a_i) = \gamma^{n-i} Q^{\pi}(s, \pi_{(< n), (\le i)}(s, a_{\le i}); \pi_{n, (\le i)}(s, a_{\le i}))$$

$$= Q_1(s, \pi_{N_c[\ge i], (\le i)}(s, a_{\le i})) + Q_2(s, \pi_{(< i), (< i)}(s, a_{< i})).$$
(37)

From Equation (36), we obtain

$$\pi_{(\geq i+1),(\leq i)}(s, a_{\leq i}) \in \underset{a_{\geq i+1}}{\arg\max} Q_1(s, a_{N_c[\geq i]}),$$
 (38)

and hence

$$Q_{1}(s, a_{i}, a_{N_{c}(\geq i)}, \pi_{(\geq i+1),(\leq i)}(s, a_{N_{c}(\geq i)}, a_{(< i)\setminus N_{c}(\geq i)}))$$

$$= \max_{a_{\geq i+1}} Q_{1}(s, a_{N_{c}(\geq i)})$$

$$= Q_{1}(s, a_{i}, a_{N_{c}(\geq i)}, \pi_{(\geq i+1),(\leq i)}(s, a_{N_{c}(\geq i)}, a'_{(< i)\setminus N_{c}(\geq i)})).$$
(39)

Following the same argument as in (32),

$$Q^{\pi}(s, a_{N_{c}(\geq i)}, a_{(< i) \setminus N_{c}(\geq i)}; a_{i}) - Q^{\pi}(s, a_{N_{c}(\geq i)}, a'_{(< i) \setminus N_{c}(\geq i)}; a_{i})$$

$$=Q_{1}(s, \pi_{N_{c}(\geq i), (< i)}(s, a_{N_{c}(\geq i)}, a_{(< i) \setminus N_{c}(\geq i)}), a_{i}) + Q_{2}(s, \pi_{(< i), (< i)}(s, a_{N_{c}(\geq i)}, a_{(< i) \setminus N_{c}(\geq i)}))$$

$$-Q_{1}(s, \pi_{N_{c}(\geq i), (< i)}(s, a_{N_{c}(\geq i)}, a'_{(< i) \setminus N_{c}(\geq i)}), a_{i}) - Q_{2}(s, \pi_{(< i), (< i)}(s, a_{N_{c}(\geq i)}, a'_{(< i) \setminus N_{c}(\geq i)}))$$

$$=Q_{2}(s, \pi_{(< i), (< i)}(s, a_{N_{c}(\geq i)}, a_{(< i) \setminus N_{c}(\geq i)})) - Q_{2}(s, \pi_{(< i), (< i)}(s, a_{N_{c}(\geq i)}, a'_{(< i) \setminus N_{c}(\geq i)})).$$

$$(40)$$

Therefore,

$$\arg\max_{a_i} Q^{\pi}(s, a_{N_c(\geq i)}, a_{(< i) \setminus N_c(\geq i)}; a_i) = \arg\max_{a_i} Q^{\pi}(s, a_{N_c(\geq i)}, a'_{(< i) \setminus N_c(\geq i)}; a_i),$$
(41)

which implies that $N_c(\geq i)$ is the dependency set of $\arg\max_{a_i} Q^{\pi}(s, a_{< i}; a_i)$. Moreover, since π is G_d -locally optimal and $N_d(i) \supseteq N_c(\geq i)$, it follows that

$$\pi_{i}(s, a_{< i}) \in \arg\max_{a_{i}} Q^{\pi}(s, \pi_{(< i), N_{d}(i)}(s, a_{N_{d}(i)}); a_{i})$$

$$= \arg\max_{a_{i}} Q^{\pi}(s, a_{N_{c}(\geq i)}, \pi_{(< i) \setminus N_{c}(\geq i), N_{d}(i)}(s, a_{N_{d}(i)}); a_{i})$$

$$= \arg\max_{a_{i}} Q^{\pi}(s, a_{< i}; a_{i}).$$
(42)

Consequently, by Proposition B.1 (iii), it holds that

$$Q^{\pi}(s, \pi_{(< n), (< i)}(s, a_{< i}); \pi_{n, (< i)}(s, a_{< i}))$$

$$= \gamma^{i-n} Q^{\pi}(s, a_{< i}; \pi_{i}(s, a_{< i}))$$

$$= \max_{a_{i}} \gamma^{i-n} Q^{\pi}(s, a_{< i}; a_{i})$$

$$= \max_{a_{i}} Q^{\pi}(s, \pi_{(< n), (< i+1)}(s, a_{< i+1}); \pi_{n, (< i+1)}(s, a_{< i+1}))$$

$$= \max_{a_{i}} \max_{a \ge i+1} Q^{\pi}(s, a_{< n}; a_{n}) = \max_{a \ge i} Q^{\pi}(s, a_{< n}; a_{n}).$$
(43)

Conclusion: By induction, for any given $s, N_c(\geq i)$ is the dependency set of $\arg\max_{a_i} Q^{\pi}(s, a_{< i}; a_i)$ for all $i \in \mathcal{N}$. Together with the condition $N_d(i) \supseteq N_c(\geq i)$, Lemma C.3 guarantees that π is globally optimal.

D PROOF OF CONVERGENCE

We first prove that the joint policy $\pi_{\mathcal{N},\varnothing}^k(s)$ in MAMDP converges.

Lemma D.1. Let $\{\pi^k\}_{k=1}^{\infty}$ be the policy sequence generated by Algorithm 1. Then both $V^{\pi^k}(s)$ and $\pi_{\mathcal{N},\varnothing}^k(s)$ converge within a finite number of steps.

Proof. From the update rule (20), for any $s \in \mathcal{S}, 0 \le i \le n$, we have

$$\mathcal{T}_{\pi^{k+1}}V^{\pi^{k}}(s, \pi^{k+1}_{< i,\varnothing}(s)) = Q^{\pi^{k}}(s, \pi^{k+1}_{< i,\varnothing}(s); \pi^{k+1}_{i}(s, \pi^{k+1}_{< i,\varnothing}(s)))$$

$$\geq Q^{\pi^{k}}(s, \pi^{k+1}_{< i,\varnothing}(s); \pi^{k}_{i}(s, \pi^{k+1}_{< i,\varnothing}(s)))$$

$$= V^{\pi^{k}}(s, \pi^{k+1}_{< i,\varnothing}(s)).$$
(44)

We now proceed by induction. Assume that

$$\mathcal{T}^{j}_{\pi^{k+1}} V^{\pi^{k}}(s, \pi^{k+1}_{< i, \varnothing}(s)) \ge \mathcal{T}^{j-1}_{\pi^{k+1}} V^{\pi^{k}}(s, \pi^{k+1}_{< i, \varnothing}(s)), \quad \forall s \in \mathcal{S}, \ 0 \le i \le n.$$
 (45)

We now prove that

$$\mathcal{T}_{\pi^{k+1}}^{j+1} V^{\pi^k}(s, \pi_{< i, \varnothing}^{k+1}(s)) \ge \mathcal{T}_{\pi^{k+1}}^{j} V^{\pi^k}(s, \pi_{< i, \varnothing}^{k+1}(s)), \quad \forall s \in \mathcal{S}, \ 0 \le i \le n.$$
 (46)

When i < n,

$$\mathcal{T}_{\pi^{k+1}}^{j+1} V^{\pi^{k}}(s, \pi_{\langle i,\varnothing}^{k+1}(s)) = \gamma \mathcal{T}_{\pi^{k+1}}^{j} V^{\pi^{k}}(s, \pi_{\langle i+1,\varnothing}^{k+1}(s))
\geq \gamma \mathcal{T}_{\pi^{k+1}}^{j-1} V^{\pi^{k}}(s, \pi_{\langle i+1,\varnothing}^{k+1}(s))
= \mathcal{T}_{\pi^{k+1}}^{j} V^{\pi^{k}}(s, \pi_{\langle i,\varnothing}^{k+1}(s)).$$
(47)

When i = n,

$$\mathcal{T}_{\pi^{k+1}}^{j+1} V^{\pi^{k}}(s, \pi_{\leq n, \emptyset}^{k+1}(s)) = r(s, \pi_{\leq n, \emptyset}^{k+1}(s)) + \gamma \sum_{s'} P(s'|s, \pi_{\leq n, \emptyset}^{k+1}(s)) \mathcal{T}_{\pi^{k+1}}^{i} V^{\pi^{k}}(s')
\geq r(s, \pi_{\leq n, \emptyset}^{k+1}(s)) + \gamma \sum_{s'} P(s'|s, \pi_{\leq n, \emptyset}^{k+1}(s)) \mathcal{T}_{\pi^{k+1}}^{i-1} V^{\pi^{k}}(s')
= \mathcal{T}_{\pi^{k+1}}^{j} V^{\pi^{k}}(s, \pi_{\leq n, \emptyset}^{k+1}(s)).$$
(48)

Thus

$$V^{\pi^{k+1}}(s, \pi^{k+1}_{< i,\varnothing}(s)) = \lim_{j \to \infty} \mathcal{T}^{j}_{\pi^{k+1}} V^{\pi^{k}}(s, \pi^{k+1}_{< i,\varnothing}(s)) \ge V^{\pi^{k}}(s, \pi^{k+1}_{< i,\varnothing}(s)) \ge V^{\pi^{k}}(s, \pi^{k}_{< i,\varnothing}(s)).$$
(49)

By the monotone convergence theorem, $V^{\pi^k}(s,\pi^k_{< i,\varnothing}(s))$ converges. Since the policy space is finite, $V^{\pi^k}(s,\pi^k_{< i,\varnothing}(s)), \forall i\in\mathcal{N}, s\in\mathcal{S}$ converges within a finite number of steps.

Next, we prove by contradiction that $\pi^k_{\mathcal{N},\varnothing}(s)$ also converges. Suppose that for some $M,V^{\pi^k}(s)$ has already converged when $k\geq M$. Assume that for $k\geq M,$ $\pi^k_{\mathcal{N},\varnothing}(s)\neq\pi^{k+1}_{\mathcal{N},\varnothing}(s)$. Let i be the first index such that $\pi^k_{i,\varnothing}(s)\neq\pi^{k+1}_{i,\varnothing}(s)$ while $\pi^k_{< i,\varnothing}(s)=\pi^{k+1}_{< i,\varnothing}(s)$. Then

$$V^{\pi^{k+1}}(s) = \gamma V^{\pi^{k+1}}(s, \pi_{<2,\varnothing}^{k+1}(s)) = \dots = \gamma^{n-1} V^{\pi^{k+1}}(s, \pi_{< n,\varnothing}^{k+1}(s))$$

$$= \gamma^{n-1} \left(r(s, \pi_{\leq n,\varnothing}^{k+1}(s)) + \gamma \sum_{s'} P(s'|s, \pi_{\leq n,\varnothing}^{k+1}(s)) V^{\pi^{k+1}}(s') \right)$$

$$= \gamma^{n-1} \left(r(s, \pi_{\leq n,\varnothing}^{k+1}(s)) + \gamma \sum_{s'} P(s'|s, \pi_{\leq n,\varnothing}^{k+1}(s)) V^{\pi^{k}}(s') \right)$$

$$= \gamma^{n-1} Q^{\pi^{k}} \left(s, \pi_{< n,\varnothing}^{k+1}(s); \pi_{n}^{k+1}(s, \pi_{< n,\varnothing}^{k+1}(s)) \right)$$

$$\geq \gamma^{n-1} Q^{\pi^{k}} \left(s, \pi_{< n,\varnothing}^{k+1}(s); \pi_{n}^{k}(s, \pi_{< n,\varnothing}^{k+1}(s)) \right)$$

$$= \gamma^{n-2} Q^{\pi^{k}} \left(s, \pi_{< n-1,\varnothing}^{k+1}(s); \pi_{n-1}^{k+1}(s, \pi_{< n-1,\varnothing}^{k+1}(s)) \right)$$

$$\geq \dots \geq \gamma^{i-1} Q^{\pi^{k}}(s, \pi_{< i,\varnothing}^{k+1}(s); \pi_{i}^{k+1}(s, \pi_{< i,\varnothing}^{k+1}(s)))$$

$$> \gamma^{i-1} Q^{\pi^{k}}(s, \pi_{< i,\varnothing}^{k}(s); \pi_{i}^{k}(s, \pi_{< i,\varnothing}^{k}(s)))$$

$$= \gamma^{i-1} V^{\pi^{k}}(s, \pi_{< i,\varnothing}^{k}(s)) = V^{\pi^{k}}(s).$$
(50)

The first equality follows from Proposition B.1 (ii). The third equality uses the fact that $V^{\pi^k}(s)$ has already converged. The strict inequality follows from the update rule, which preferentially selects the pre-update policy.

Hence $V^{\pi^{k+1}}(s) > V^{\pi^k}(s)$, contradicting the assumption that $V^{\pi^k}(s)$ has converged. Therefore, $\pi^k_{\mathcal{N},\varnothing}(s) = \pi^{k+1}_{\mathcal{N},\varnothing}(s)$ for $k \geq M$, implying that the joint policy $\pi^k_{\mathcal{N},\varnothing}(s)$ also converges. \square

In order to deduce the convergence of individual policies from the convergence of $\pi_{\mathcal{N},\emptyset}^k(s)$, we employ induction. To make the induction work properly, we need to construct a special ordering.

Definition D.2. Let $C = \mathcal{P}(\{1, 2, ..., n-1\})$, where \mathcal{P} denotes the power set. We introduce a binary relation < on C as follows:

$$A < B \iff \min(A \setminus B) > \min(B \setminus A), \ A, B \in \mathcal{C}. \tag{51}$$

For the case involving the empty set, we define $\min \emptyset := n$.

Lemma D.3. For any $A, B \in \mathcal{C}$, the following holds:

$$A < B \iff \min(A\Delta B) \in B \setminus A$$
,

where Δ denotes the symmetric difference, i.e., $A\Delta B := (A \setminus B) \cup (B \setminus A)$.

Proof. We first prove the direction " \Leftarrow ". Let $k = \min(A \Delta B) \in B \setminus A$. Since $A \setminus B \subseteq A \Delta B$, we have $\min(A \Delta B) \le \min(A \setminus B)$. Moreover, because $k \in B \setminus A$, it follows that $\min(A \Delta B) = \min(B \setminus A)$. Since $(B \setminus A) \cap (A \setminus B) = \emptyset$, we obtain $\min(A \Delta B) < \min(A \setminus B)$. Thus, $\min(B \setminus A) < \min(A \setminus B)$, i.e., A < B.

Conversely, assume A < B. Then $\min(B \setminus A) < \min(A \setminus B)$. Hence,

$$\min(A\Delta B) = \min\{\min(B \setminus A), \min(A \setminus B)\} = \min(B \setminus A). \tag{52}$$

Therefore, $min(A\Delta B) \in B \setminus A$.

Proposition D.4. The binary relation < on C is a strict total order.

Proof. Irreflexivity and asymmetry are immediate. We now prove that < is connected and transitive.

(Connectedness): Let $A, B \in \mathcal{C}$ with $A \neq B$. We distinguish three cases:

- (i) If $A \subsetneq B$, then $B \setminus A \neq \emptyset$. Hence $\min(B \setminus A) \leq n-1$ and $\min(A \setminus B) = n > \min(B \setminus A)$, so A < B.
 - (ii) If $B \subseteq A$, by symmetry we obtain B < A.
- 945 (iii) If $A \nsubseteq B$ and $B \nsubseteq A$, then $\min(A \setminus B) \neq \min(B \setminus A)$. Thus, either A < B or B < A.
- 946 (Transitivity): Let $A, B, C \in \mathcal{C}$ with A < B and B < C.
- If $A=\varnothing$, then clearly A< C. Otherwise, set $k_1=\min(A\Delta B)$ and $k_2=\min(B\Delta C)$. By Lemma D.3, we have $k_1\in B\setminus A$ and $k_2\in C\setminus B$. We analyze three cases:
- (i) If $k_1 < k_2$, then $k_1 \notin B\Delta C$. Since $k_1 \in B$, it follows that $k_1 \in B\cap C$. Moreover, as $k_1 \in B\setminus A$, we have $k_1 \in C\setminus A$. Now, we only need to show $k_1 = \min(A\Delta C)$. For all $i < k_1$ with $i \in A\cup B$, we have $i \notin A\Delta B$, hence $i \in A\cap B$. Since $k_1 < k_2$, we also get $i \in A\cap B\cap C$, implying $i \notin A\Delta C$.

 Thus $k_1 = \min(A\Delta C)$, and by Lemma D.3, A < C.
 - (ii) If $k_2 < k_1$, then by symmetry, $k_2 = \min(A\Delta C)$ and $k_2 \in C \setminus A$. Hence A < C.
 - (iii) If $k_1 = k_2$, then $k_1 \in B \setminus A$ and $k_1 \in C \setminus B$ simultaneously, which is a contradiction. Thus this case cannot occur.

Therefore,
$$\langle$$
 is transitive.

After defining the strict total order <, we arrange the elements of C in ascending order as $C = \{C_1, C_2, \dots, C_{|C|}\}$.

Lemma D.5. Let $C_m \in \mathcal{C}$ and $C_m \neq \emptyset$. Let G_d be the ADG of π under state s. If $N_d(i) \not\supseteq C_m, i \in \mathcal{N}$, denote $k = \min(C_m \setminus N_d(i))$, and define

$$C_i = A \cup B := \{ x \in C_m \mid x < k \} \cup \{ x \in \{1, \dots, n-1\} \mid x > k \}.$$
 (53)

Then we have j < m. Furthermore, if $i \neq k$, the following holds:

$$\pi_{i,C_j}(s, \pi_{C_j,C_m}(s, a_{C_m})) = \pi_{i,C_m}(s, a_{C_m}). \tag{54}$$

Proof. We first verify that j < m. Since $N_d(i) \not\supseteq C_m$, we have $C_m \setminus N_d(i) \neq \emptyset$, and hence k < n. By construction of C_j , $\min(C_m \setminus C_j) = k$. Therefore,

$$\min(C_j \Delta C_m) = \min\{\min(C_j \setminus C_m), \min(C_m \setminus C_j)\} = \min\{\min(C_j \setminus C_m), k\}.$$
 (55)

Because $\min(C_j \setminus C_m) > k$, we obtain $\min(C_j \Delta C_m) = k \in C_m \setminus C_j$. By Lemma D.3, this implies $C_j < C_m$, i.e., j < m.

When $i \in C_m$, since $i \neq k$, we have $i \in C_m \cap C_i$, and therefore

976
$$\pi_{i,C_j}(s, \pi_{C_j,C_m}(s, a_{C_m})) = a_i = \pi_{i,C_m}(s, a_{C_m}). \tag{56}$$

When $i \notin C_m$, we consider the two cases k = 1 and k > 1 respectively.

(i) k = 1.

In this case, $C_j = \{2, 3, \dots, n-1\}$. We analyze the construction of $\pi_{i,C_i}(s, a_{C_i})$:

$$\pi_{i,C_{j}}(s, a_{C_{j}}) = \pi_{i}(s, \pi_{(\langle i \rangle, C_{j}}(s, a_{C_{j}})))$$

$$= \pi_{i}(s, \pi_{1,C_{j}}(s, a_{C_{j}}), \pi_{(\langle i \rangle \cap C_{j}, C_{j}}(s, a_{C_{j}})))$$

$$= \pi_{i}(s, \pi_{1}(s), a_{(\langle i \rangle \cap C_{j}}))$$

$$= \pi_{i}(s, \pi_{1}(s), a_{(\langle i \rangle \cap (C_{m} \setminus \{1\})}, a_{(\langle i \rangle \setminus C_{m}})).$$
(57)

Substituting $\pi_{C_i,C_m}(s,a_{C_m})$ into a_{C_i} , we obtain

$$\pi_{i,C_{j}}(s, \pi_{C_{j},C_{m}}(s, a_{C_{m}}))$$

$$=\pi_{i}(s, \pi_{(

$$=\pi_{i}(s, \pi_{1}(s), a_{(
(58)$$$$

Since $1 \notin N_d(i)$, π_i does not depend on a_1 . Thus, replacing $\pi_1(s)$ with a_1 , we obtain

$$\pi_{i,C_{j}}(s, \pi_{C_{j},C_{m}}(s, a_{C_{m}}))$$

$$=\pi_{i}(s, a_{1}, a_{(

$$=\pi_{i}(s, a_{(

$$=\pi_{i,C_{m}}(s, a_{C_{m}}).$$
(59)$$$$

(ii) k > 1.

We proceed by induction to prove that

$$\pi_{\ell,C_i}(s, \pi_{C_i,C_m}(s, a_{C_m})) = \pi_{\ell,C_m}(s, a_{C_m}), \quad \forall 1 \le \ell < k.$$
 (60)

For $\ell = 1$, since 1 < k, we have $1 \in C_m \cap C_i$. Thus,

$$\pi_{1,C_i}(s, \pi_{C_i,C_m}(s, a_{C_m})) = a_1 = \pi_{1,C_m}(s, a_{C_m}). \tag{61}$$

Assume the statement (60) holds for all indices less than ℓ . For $\ell < k$, note that $(< \ell) \cap C_m = (< \ell) \cap C_j$ and $(< \ell) \setminus C_m = (< \ell) \setminus C_j$. Therefore,

$$\pi_{\ell,C_{j}}(s, \pi_{C_{j},C_{m}}(s, a_{C_{m}}))$$

$$=\pi_{\ell}(s, a_{(<\ell)\cap C_{j}}, \pi_{(<\ell)\setminus C_{j},C_{j}}(s, a_{C_{j}}))\big|_{a_{C_{j}}=\pi_{C_{j},C_{m}}(s, a_{C_{m}})}$$

$$=\pi_{\ell}(s, a_{(<\ell)\cap C_{m}}, \pi_{(<\ell)\setminus C_{m},C_{j}}(s, \pi_{C_{j},C_{m}}(s, a_{C_{m}}))).$$
(62)

By the induction hypothesis,

$$\pi_{(\langle \ell) \backslash C_m, C_i}(s, \pi_{C_i, C_m}(s, a_{C_m})) = \pi_{(\langle \ell) \backslash C_m, C_m}(s, a_{C_m}), \tag{63}$$

which yields

$$\pi_{\ell,C_i}(s, \pi_{C_i,C_m}(s, a_{C_m})) = \pi_{\ell}(s, a_{(<\ell)\cap C_m}, \pi_{(<\ell)\setminus C_m,C_m}(s, a_{C_m})) = \pi_{\ell,C_m}(s, a_{C_m}). \tag{64}$$

Finally, similar to (58), analyzing the construction of $\pi_{i,C_i}(s,a_{C_i})$ gives

1022
$$\pi_{i,C_{j}}(s,\pi_{C_{j},C_{m}}(s,a_{C_{m}}))$$

1023 $=\pi_{i}(s,\pi_{< i,C_{j}}(s,a_{C_{j}}))|_{a_{C_{j}}=\pi_{C_{j},C_{m}}(s,a_{C_{m}})}$
1024 $=\pi_{i}(s,a_{(< i)\cap C_{m}},\pi_{(< k)\setminus C_{m},C_{j}}(s,\pi_{C_{j},C_{m}}(s,a_{C_{m}})),\pi_{k,C_{j}}(s,\pi_{C_{j},C_{m}}(s,a_{C_{m}})),\pi_{C_{j}\setminus C_{m},C_{m}}(s,a_{C_{m}})).$
(65)

Since $k \notin N_d(i)$, we can replace $\pi_{k,C_j}(s,\pi_{C_j,C_m}(s,a_{C_m}))$ by $\pi_{k,C_m}(s,a_{C_m})$, yielding

1028
$$\pi_{i,C_{j}}(s,\pi_{C_{j},C_{m}}(s,a_{C_{m}}))$$
1029
$$=\pi_{i}(s,a_{(
1030
$$=\pi_{i}(s,a_{(
1031
$$=\pi_{i,C_{m}}(s,a_{C_{m}}).$$
(66)$$$$

Lemma D.6. Let $\{\pi^k\}_{k=1}^{\infty}$ be the policy sequence generated by Algorithm 1. Then for every $C_m \in \mathcal{C}$, π_{N,C_m}^k converges within a finite number of steps.

Proof. We proceed by induction.

Base case: Consider $C_1 = \emptyset$. By Lemma D.1, we directly obtain that $\pi^k_{\mathcal{N}, C_1}$ converges in finitely many steps.

Induction step: Assume that $\pi^k_{\mathcal{N},C_j}$ has already converged for all j < m when $k \ge M$. We now prove that $\pi^k_{\mathcal{N},C_m}$ also converges in finitely many steps.

We first show that, when $k \geq M$, for any $\max C_m < i \leq n$, the following inequality holds:

$$Q^{\pi^{k}}(s, \pi^{k+1}_{< i, C_{m}}(s, a_{C_{m}}); \pi^{k+1}_{i, C_{m}}(s, a_{C_{m}})) \ge \gamma^{-1} Q^{\pi^{k}}(s, \pi^{k+1}_{< i-1, C_{m}}(s, a_{C_{m}}); \pi^{k+1}_{i-1, C_{m}}(s, a_{C_{m}})).$$

$$(67)$$

(i): If $N_d(i) \supseteq C_m$, then by the update rule,

$$Q^{\pi^{k}}(s, \pi_{\langle i, C_{m}}^{k+1}(s, a_{C_{m}}); \pi_{i, C_{m}}^{k+1}(s, a_{C_{m}}))$$

$$= Q^{\pi^{k}}(s, \pi_{\langle i, C_{m}}^{k+1}(s, a_{C_{m}}); \pi_{i}^{k+1}(s, \pi_{\langle i, C_{m}}^{k+1}(s, a_{C_{m}})))$$

$$\geq Q^{\pi^{k}}(s, \pi_{\langle i, C_{m}}^{k+1}(s, a_{C_{m}}); \pi_{i}^{k}(s, \pi_{\langle i, C_{m}}^{k+1}(s, a_{C_{m}})))$$

$$= \gamma^{-1}Q^{\pi^{k}}(s, \pi_{\langle i-1, C_{m}}^{k+1}(s, a_{C_{m}}); \pi_{i-1}^{k+1}(s, \pi_{\langle i-1, C_{m}}^{k+1}(s, a_{C_{m}}))).$$
(68)

(ii): If $N_d(i) \not\supseteq C_m$, we then construct $C_j = \{x \in C_m \mid x < k'\} \cup \{x \in \{1, \dots, n-1\} \mid x > k'\}$ with $k' = \min(C_m \setminus N_d(i))$ according to Lemma D.5. Since $i > \max C_m$, we have $i \neq k'$, and therefore $\pi_{i,C_m}^k(s,a_{C_m}) = \pi_{i,C_j}^k(s,\pi_{C_j,C_m}^k(s,a_{C_m}))$. By the induction hypothesis, $\pi_{\mathcal{N},C_j}^k$ has already converged. Hence,

$$\pi_{i,C_{m}}^{k+1}(s, a_{C_{m}}) = \pi_{i,C_{j}}^{k+1}(s, \pi_{C_{j},C_{m}}^{k+1}(s, a_{C_{m}}))$$

$$= \pi_{i,C_{j}}^{k}(s, \pi_{C_{j},C_{m}}^{k+1}(s, a_{C_{m}}))$$

$$= \pi_{i}^{k}(s, \pi_{< i,C_{j}}^{k}(s, a_{C_{j}}))|_{a_{C_{j}} = \pi_{C_{j},C_{m}}^{k+1}(s, a_{C_{m}})}$$

$$= \pi_{i}^{k}(s, \pi_{< i,C_{j}}^{k}(s, \pi_{C_{j},C_{m}}^{k+1}(s, a_{C_{m}}))).$$
(69)

We examine each component of $\pi^{k+1}_{< i,C_j}(s,\pi^{k+1}_{C_j,C_m}(s,a_{C_m}))$. If $x\in (< i)$ and x=k', since $k'\notin N_d(i)$, then π^k_i is independent of a_x , so we replace $\pi^k_{x,C_j}(s,\pi^{k+1}_{C_j,C_m}(s,a_{C_m}))$ with $\pi^{k+1}_{x,C_m}(s,a_{C_m})$ in (69). If $x\neq k'$, then we again apply Lemma D.5 and the induction hypothesis to obtain

$$\pi_{x,C_j}^k(s,\pi_{C_j,C_m}^{k+1}(s,a_{C_m})) = \pi_{x,C_j}^{k+1}(s,\pi_{C_j,C_m}^{k+1}(s,a_{C_m})) = \pi_{x,C_m}^{k+1}(s,a_{C_m}). \tag{70}$$

Thus,

$$\pi_{i,C_m}^{k+1}(s, a_{C_m}) = \pi_i^k(s, \pi_{< i, C_i}^k(s, \pi_{C_i, C_m}^{k+1}(s, a_{C_m}))) = \pi_i^k(s, \pi_{< i, C_m}^{k+1}(s, a_{C_m})). \tag{71}$$

Therefore,

$$Q^{\pi^{k}}(s, \pi_{< i, C_{m}}^{k+1}(s, a_{C_{m}}); \pi_{i, C_{m}}^{k+1}(s, a_{C_{m}}))$$

$$= Q^{\pi^{k}}(s, \pi_{< i, C_{m}}^{k+1}(s, a_{C_{m}}); \pi_{i}^{k}(s, \pi_{< i, C_{m}}^{k+1}(s, a_{C_{m}})))$$

$$= \gamma^{-1}Q^{\pi^{k}}(s, \pi_{< i-1, C_{m}}^{k+1}(s, a_{C_{m}}); \pi_{i-1}^{k+1}(s, \pi_{< i-1, C_{m}}^{k+1}(s, a_{C_{m}}))).$$
(72)

Next, we prove

$$Q^{\pi^{k}}(s, \pi_{<\max C_{m}, C_{m}}^{k+1}(s, a_{C_{m}}); \pi_{\max C_{m}, C_{m}}^{k+1}(s, a_{C_{m}})) = Q^{\pi^{k}}(s, \pi_{<\max C_{m}, C_{m}}^{k}(s, a_{C_{m}}); \pi_{\max C_{m}, C_{m}}^{k}(s, a_{C_{m}})).$$
(73)

We examine each component of $\pi^{k+1}_{\leq \max C_m, C_m}(s, a_{C_m})$.

1085 (iii): If
$$i \in C_m$$
, then $\pi_{i,C_m}^k(s,a_{C_m}) = a_i = \pi_{i,C_m}^{k+1}(s,a_{C_m})$.

(iv): If $i \notin C_m$, let $C_j = C_m \cap (< i)$. Since $i < \max C_m$, we have $C_j \subsetneq C_m$, and by Definition D.2, j < m. By the induction hypothesis, π^k_{i,C_j} has converged. As $\pi^k_{\leq i}$ depends only on the first i-1 agents, it follows that $\pi^k_{i,C_m} = \pi^k_{i,C_j}$. Therefore,

$$\pi_{i,C_m}^k(s, a_{C_m}) = \pi_{i,C_i}^k(s, a_{C_j}) = \pi_{i,C_i}^{k+1}(s, a_{C_j}) = \pi_{i,C_m}^{k+1}(s, a_{C_m}). \tag{74}$$

Thus, $\pi^{k+1}_{\leq \max{C_m, C_m}}(s, a_{C_m}) = \pi^k_{\leq \max{C_m, C_m}}(s, a_{C_m})$, and hence (73) holds.

Now,

$$Q^{\pi^{k+1}}(s, \pi_{< n, C_m}^{k+1}(s, a_{C_m}); \pi_{n, C_m}^{k+1}(s, a_{C_m}))$$

$$= Q^{\pi^k}(s, \pi_{< n, C_m}^{k+1}(s, a_{C_m}); \pi_{n, C_m}^{k+1}(s, a_{C_m}))$$

$$\geq \cdots \geq \gamma^{\max C_m - n} Q^{\pi^k}(s, \pi_{< \max C_m, C_m}^{k+1}(s, a_{C_m}); \pi_{\max C_m, C_m}^{k+1}(s, a_{C_m}))$$

$$= \gamma^{\max C_m - n} Q^{\pi^k}(s, \pi_{< \max C_m, C_m}^{k}(s, a_{C_m}); \pi_{\max C_m, C_m}^{k}(s, a_{C_m}))$$

$$= Q^{\pi^k}(s, \pi_{< n, C_m}^{k}(s, a_{C_m}); \pi_{n, C_m}^{k}(s, a_{C_m})).$$
(75)

Here, the second line follows from Lemma D.1, which ensures that $V^{\pi^k}(s)$ has converged, and hence $Q^{\pi^k}(s,a)$ have converged; the third line follows from (67); the fourth line from (73).

Equation (75) shows that $Q^{\pi^k}(s,\pi^k_{< n,C_m}(s,a_{C_m});\pi^k_{n,C_m}(s,a_{C_m}))$ is monotonically non-decreasing, and thus converges in finitely many steps.

Let $k \geq M' \geq M$ be such that $Q^{\pi^k}(s, \pi^k_{< n, C_m}(s, a_{C_m}); \pi^k_{n, C_m}(s, a_{C_m}))$ has converged. We now prove by contradiction that $\pi^k_{\mathcal{N}, C_m}$ must also converge.

Suppose for $k \geq M'$, $\pi^k_{\mathcal{N}, C_m}(s) \neq \pi^{k+1}_{\mathcal{N}, C_m}(s)$. Let i be the smallest index where they differ, i.e.,

$$\pi_{i,C_m}^k(s) \neq \pi_{i,C_m}^{k+1}(s), \quad \pi_{\langle i,C_m}^k(s) = \pi_{\langle i,C_m}^{k+1}(s).$$
 (76)

By the analyses in (iii) and (iv), i must satisfy $i > \max C_m$. If $N_d(i) \not\supseteq C_m$, then by (ii),

$$\pi_{i,C_m}^{k+1}(s, a_{C_m}) = \pi_i^k(s, \pi_{< i, C_m}^{k+1}(s, a_{C_m})) = \pi_i^k(s, \pi_{< i, C_m}^k(s, a_{C_m})) = \pi_{i, C_m}^k(s, a_{C_m}), \tag{77}$$

contradicting $\pi_{i,C_m}^k(s) \neq \pi_{i,C_m}^{k+1}(s)$. Therefore, it must be that $N_d(i) \supseteq C_m$.

$$Q^{\pi^{k+1}}(s, \pi_{< n, C_m}^{k+1}(s, a_{C_m}); \pi_{n, C_m}^{k+1}(s, a_{C_m}))$$

$$= Q^{\pi^k}(s, \pi_{< n, C_m}^{k+1}(s, a_{C_m}); \pi_{n, C_m}^{k+1}(s, a_{C_m}))$$

$$\geq \gamma^{i-n}Q^{\pi^k}(s, \pi_{< i, C_m}^{k+1}(s, a_{C_m}); \pi_{i, C_m}^{k+1}(s, a_{C_m}))$$

$$= \gamma^{i-n}Q^{\pi^k}(s, \pi_{< i, C_m}^{k}(s, a_{C_m}); \pi_i^{k+1}(s, \pi_{< i, C_m}^{k}(s, a_{C_m})))$$

$$> \gamma^{i-n}Q^{\pi^k}(s, \pi_{< i, C_m}^{k}(s, a_{C_m}); \pi_i^{k}(s, \pi_{< i, C_m}^{k}(s, a_{C_m})))$$

$$= Q^{\pi^k}(s, \pi_{< n, C_m}^{k}(s, a_{C_m}); \pi_{n, C_m}^{k}(s, a_{C_m})).$$

$$(78)$$

The second line uses the fact that $Q^{\pi^k}(s, a)$ has converged; the third line is by the update rule; the fifth line follows from the update rule, which preferentially selects the pre-update policy.

Equation (78) contradicts the fact that $Q^{\pi^k}(s,\pi^k_{< n,C_m}(s,a_{C_m});\pi^k_{n,C_m}(s,a_{C_m}))$ has already converged. Therefore, for all $k\geq M',\pi^k_{\mathcal{N},C_m}(s)=\pi^{k+1}_{\mathcal{N},C_m}(s)$, i.e., $\pi^k_{\mathcal{N},C_m}$ converges in finitely many steps.

Proof of Theorem 5.1

Proof. According to Lemma D.6, we have that $\pi_i^k = \pi_{i, < i}^k$ converges in a finite number of steps. Let π be the limit point of the sequence $\{\pi^k\}_{k=1}^{\infty}$. From the update rule, it follows that

$$Q^{\pi}(s, \pi_{(< i), N_d(i)}(s, a_{N_d(i)}); \pi_{i, N_d(i)}(s, a_{N_d(i)})) = \max_{a_i} Q^{\pi}(s, \pi_{(< i), N_d(i)}(s, a_{N_d(i)}); a_i).$$
(79)

Therefore, the limit point of $\{\pi^k\}_{k=1}^{\infty}$ is a G_d -locally optimal policy.

Proof of Corollary 5.3

Proof. From the analysis in Lemma D.1, we know that $V^{\pi^k}(s)$ is monotonically non-decreasing. Hence, $V^{\pi^k}(s)$ also converges within a finite number of steps.

Suppose that for $k \geq M$, $V^{\pi^k}(s)$ has already converged. Assume further that $G_c(s, \hat{\pi}^{k+1}) \neq G_c(s, \hat{\pi}^k)$ when $k \geq M$. This implies $\hat{\pi}^{k+1} \neq \hat{\pi}^k$. From the contradiction argument in Lemma D.1, it follows that

$$V^{\pi^{k+1}}(s) = V^{\hat{\pi}^{k+1}}(s) > V^{\hat{\pi}^k}(s) = V^{\pi^k}(s), \tag{80}$$

which contradicts the assumption that $V^{\pi^k}(s)$ has already converged. Therefore, it must hold that $G_c(s, \hat{\pi}^{k+1}) = G_c(s, \hat{\pi}^k)$ for all $k \geq M$.

Consequently, when $k \geq M$, the dynamic CG eventually stabilizes into a static CG. During this stabilization stage, the update process reduces to Algorithm 1. By Theorem 5.1, π^k converges within a finite number of steps. Let π be the limit point of $\{\pi^k\}_{k=1}^{\infty}$. Then π is a G_d -locally optimal policy. Furthermore, since the ADG satisfies condition (11), it follows from Theorem 4.4 that π is globally optimal.

E CONSTRUCTION OF ACTION DEPENDENCY GRAPHS

To elucidate the construction of ADGs, we present Algorithm 2 that efficiently derives an ADG from a given CG such that the condition (11) is satisfied.

Algorithm 2 Greedy Algorithm: Finding a Sparse ADG

```
Input: A CG G_c
```

Output: An ADG $G_d = (\mathcal{N}, \mathcal{E}_d)$

Initialize an empty graph $G_d = (\mathcal{N}, \mathcal{E}_d)$ with all vertices unindexed

for i = 0 to n - 1 do

Assign index n-i to a vertex among the unindexed ones, such that the size of $N_c((n-i)^{[+]})$ is minimized

end for

Construct the edge set \mathcal{E}_d by adding edges (j,i) for each vertex $i \in \mathcal{N}$ and each $j \in N_c(i^{[+]})$ as specified in (11)

F EXPERIMENTAL DETAILS

Setup of Coordination Polymatrix Game. In matrix cooperative games, different CGs and their corresponding sparse ADGs are shown in Figure 9. For policy iteration methods, we randomly generate the parameters of the payoff matrices, while fixing the maximum reward to be equal to the number of edges in the CG. Moreover, the maximum reward is obtained when all agents choose action 1. For the MAPPO method, we use fixed payoff matrices, with the exact parameters provided in Table 1 to Table 4.

Setup of ATSC. In the ATSC environment, we conduct experiments on the maps 2x2grid, 3x3grid, and RESCO/grid4x4 provided by SUMO-RL. Based on the road network connectivity, we design corresponding CGs, with their adjacency lists for CGs and sparse ADGs reported in Table 5

Figure 9: The CG and sparse ADG of polymatrix coordination game.

Table 1: ① in Star

Table 2: (2) in Star

$a_1 \setminus a_2$	0	1	2	3	4
0	3.5	5.0	0.5	0.5	0.5
1	0.5	3.5	6.0	0.5	0.5
2	0.5	0.5	3.5	0.5	0.5
3	0.5	0.5	0.5	3.25	0.5
4	0.5	0.5	0.5	0.5	3.0

$a_1 \backslash a_3$	0	1	2	3	4
0	3.5	0.5	5.0	0.5	0.5
1	0.5	3.5	6.0	0.5	0.5
2	0.5	0.5	3.5	0.5	0.5
3	0.5	0.5	0.5	3.25	0.5
4	0.5	0.5	0.5	0.5	3.0

Table 3: ③ in Star

Table 4: (4) in Star

$a_1 \setminus a_4$	0	1	2	3	4
0	3.5	0.5	0.5	5.0	0.5
1	0.5	3.5	6.0	0.5	0.5
2	0.5	0.5	3.5	0.5	0.5
3	0.5	0.5	0.5	3.25	0.5
4	0.5	0.5	0.5	0.5	3.0

$a_1 \backslash a_5$	0	1	2	3	4
0	3.5	0.5	0.5	0.5	5.0
1	0.0	0.0	0.0	0.0	0.0
2	0.5	0.5	3.5	0.5	0.5
3	0.5	0.5	0.5	3.25	0.5
4	0.5	0.5	0.5	0.5	3.0

to Table 10. To increase task difficulty and highlight the benefits of cooperation, we follow the idea of Li et al. (2021); Böhmer et al. (2020) to modify the reward function. Specifically, instead of assigning each agent its own queue reward, we redefine the reward as the minimum individual reward among its CG neighbors, thereby emphasizing the performance gap induced by cooperation.

Table 5: CG of 2x2grid

Table 6: Sparse ADG of 2x2grid

Vertex	Neighbors
0	1, 2
1	0, 3
2	0, 3
3	1, 2

Vertex	Parent nodes
0	
1	0
2	1, 0
3	2, 1

Experimental Hyperparameters. Our implementation of MAPPO is based on the open-source EPy-MARL framework Papoudakis et al. (2021), employing the Adam optimizer for training. We use the same hyperparameters across experiments under different ADGs, with a few critical hyperparameters

1242 Table 7: CG of 3x3grid

Vertex	Neighbors
0	1, 3
1	0, 2, 4
2	1, 5
3	0, 4, 6
4	1, 3, 5, 7
5	2, 4, 8
6	3, 7
7	4, 6, 8
8	5, 7

Table 9: CG of 4x4grid

Vertex	Parent nodes
0	
1	0
2	1, 0
3	2, 1, 0
4	3, 2, 1
5	4, 3, 2
6	5, 4, 3
7	6, 5, 4
8	7, 5

Table 8: Sparse ADG of 3x3grid

Table 10: Sparse ADG of 4x4grid

Vertex	Neighbors
0	1, 4
1	0, 2, 5
2	1, 3, 6
3	2, 7
4	0, 5, 8
5	1, 4, 6, 9
6	2, 5, 7, 10
7	3, 6, 11
8	4, 9, 12
9	5, 8, 10, 13
10	6, 9, 11, 14
11	7, 10, 15
12	8, 13
13	9, 12, 14
14	10, 13, 15
15	11, 14

Vertex	Parent nodes
0	
1	0
2	0, 1
3	0, 1, 2
4	0, 1, 2, 3
5	1, 2, 3, 4
6	2, 3, 4, 5
7	3, 4, 5, 6
8	4, 5, 6, 7
9	5, 6, 7, 8
10	6, 7, 8, 9
11	7, 8, 9, 10
12	8, 9, 10, 11
13	9, 10, 11, 12
14	10, 11, 13
15	11. 14

adjusted to fit each environment. These modified values are reported in Table 11, while any unlisted parameters follow the default EPyMARL configuration.

Table 11: Experimental Hyperparameters

	learning rate	weight decay	buffer size	batch size	entropy coefficient
ATSC	0.0004	0.0001	8	8	0.02
Polymatrix Game	0.0004	0.0001	16	8	0.1

Neural Network Architecture. For MAPPO with empty ADGs, we adopt the default MLP configurations specified in Papoudakis et al. (2021); Böhmer et al. (2020). For MAPPO with sparse and dense ADGs, we modify the agent network architecture as follows.

Let $o_i \in \mathbb{R}^{d_o}$ denote the observational features of agent i, and $a_i \in \mathbb{R}^{d_a}$ the action features of agent i. The first-layer hidden features are computed as:

$$h^1_{o_i} = \text{ReLU}(W_1o_i + b_1), \quad h^1_{a_i} = \text{ReLU}(W_2a_i + b_2),$$

where $W_1 \in \mathbb{R}^{64 \times d_o}$, $W_2 \in \mathbb{R}^{64 \times d_a}$ and $b_1, b_2 \in \mathbb{R}^{64}$ are the weights and biases, respectively.

Next, we take the average of $h_{a_i}^1$ over the dependency set $N_d(i)$:

$$h_{a_i}^2 = \frac{1}{|N_d(i)|} \sum_{i \in N_d(i)} h_{a_i}^1.$$

We then concatenate the two feature vectors and obtain

$$h^3 = [h_{o_i}^1, h_{a_i}^2],$$

which is fed into a multilayer perceptron:

$$h^4 = \text{ReLU}(W_3 h^3 + b_3), \quad z = W_4 h^4 + b_4,$$

where $W_3 \in \mathbb{R}^{64 \times 128}$, $W_4 \in \mathbb{R}^{d_{\text{action}} \times 64}$, $b_3 \in \mathbb{R}^{64}$, and $b_4 \in \mathbb{R}^{d_{\text{action}}}$. The final output is z.