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ABSTRACT

Action-dependent policies, which condition decisions on both states and other
agents’ actions, provide a powerful alternative to independent policies in multi-
agent reinforcement learning. Most existing studies have focused on auto-regressive
formulations, where each agent’s policy depends on the actions of all preceding
agents. However, this approach suffers from severe scalability limitations as the
number of agents grows. In contrast, sparse dependency structures, where each
agent relies only on a subset of other agents, remain largely unexplored and lack
rigorous theoretical foundations. To address this gap, we introduce the action
dependency graph (ADG) to model sparse inter-agent action dependencies. We
prove that action-dependent policies can converge to solutions stronger than Nash
equilibria, which often trap independent policies, and we refer to such solutions
as Ggy-locally optimal policies. Furthermore, within coordination graph (CG)
structured problems, we show that a G4-locally optimal policy attains global
optimality when the ADG satisfies specific CG-induced conditions. To substantiate
our theory, we develop a tabular policy iteration algorithm that converges exactly
as predicted. We further extend a standard deep MARL method to incorporate
action-dependent policies, confirming the practical relevance of our framework.

1 INTRODUCTION

Achieving effective multi-agent reinforcement learning (MARL) in fully cooperative environments
requires agents to coordinate their actions to maximize collective performance. Most existing MARL
methods rely on independent policies (Zhang et al.,[2021} |Oroojlooy & Hajinezhad, [2023)), where
each agent makes decisions based solely on its state or observation. Although computationally
tractable and scalable, these completely decentralized policies are often suboptimal (Fu et al.| 2022).
The primary limitation lies in their tendency to converge to one of many Nash equilibrium solutions
(Ye et al.,2022), which may not correspond to the globally optimal solution.

The emergence of action-dependent policies (Fu et al.| [2022]) offers a promising solution to this
challenge. By incorporating the actions of other agents into an agent’s decision-making process,
action-dependent policies enable more effective cooperation and achieve superior performance
compared to independent policies. We introduce the action dependency graph (ADG), a directed
acyclic graph, to represent the action dependencies required for agents to make decisions. Theoretical
studies (Bertsekas, [2021;/Chen & Zhang, [2023) demonstrate that policies with auto-regressive forms,
associated with fully dense ADGs—where replacing each directed edge with an undirected edge
yields a complete graph—guarantee global optimality. However, fully dense ADGs pose substantial
scalability issues, as they require a high degree of interdependence and coordination.

Sparse ADGs, which involve fewer inter-agent dependencies, offer a more scalable alternative. This
leads to a critical question: can action-dependent policies with sparse ADGs still guarantee global
optimality? To answer this question, we build on the framework of coordinated reinforcement
learning (Guestrin et al., [2002), where the cooperative relationship between agents is described by
a coordination graph (CG). We find that global optimality can still be achieved using an action-
dependent policy with a sparse ADG, provided that a specific relationship between the ADG and the
CG is satisfied.

The contributions of this paper are summarized as follows. (i) We introduce the notion of a G 4-
locally optimal policy, which differs from the Nash equilibrium and more precisely characterizes
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the convergence behavior of action-dependent policies. (ii) We establish a theoretical framework
that unifies coordination graphs with action-dependent policies and derive optimality conditions for
sparse ADGs. To the best of our knowledge, this is the first work to seamlessly integrate these two
perspectives. (iii) We design a policy iteration algorithm that, grounded in our theory, guarantees
convergence of action-dependent policies to a G 4-locally optimal policy, and further to a globally
optimal policy under the optimality conditions.

2 RELATED WORK

Independent policy. The majority of the literature on MARL represents the joint policy as the
Cartesian product of independent individual policies. Value-based methods such as IQL (Tan, |1993)),
VDN (Sunehag et al.|[2018), QMIX (Rashid et al., | 2018), and QTRAN (Son et al.,2019)) employ local
value functions that depend only on the state or observation of each agent. Similarly, policy-based
methods such as MADDPG (Lowe et al.,2017), COMA (Foerster et al., [2018)), MAAC (Igbal & Sha,
2019), and MAPPO (Yu et al., [2022) directly adopt independent policies. These approaches often fail
to achieve global optimality, as they are not able to cover all strategy modes (Fu et al., 2022]).

Coordination graph. Some value-based methods (Bohmer et al., 2020; (Castellini et al., [2021} [Li
et al.| |2021; Wang et al.l [2022b) recognize that the limitation of independent policies is due to a
game-theoretic pathology known as relative overgeneralization (Panait et al.,|2006). To mitigate this,
they employ a higher-order value decomposition framework by introducing the coordination graph
(CG) (Guestrin et al.,2002). In this graph, the vertices represent agents, and the edges correspond to
pairwise interactions between agents in the local value functions. While CGs improve cooperation by
considering inter-agent dependencies, the resulting joint policy cannot be decomposed into individual
policies. Consequently, decision-making algorithms still require intensive computation, such as
Max-Plus (Rogers et al., 2011) or Variable Elimination (VE) (Bertele & Brioschi, |1972)). When
the CG is dense, these computations may become prohibitively time consuming, making the policy
difficult to execute in real time.

Action-dependent policy. In contrast to independent policies, action-dependent policies (Wang et al.|
2022a; Ruan et al., [2022; L1 et al.|, 20235 |2024) incorporate not only the state, but also the actions
of other agents into an agent’s decision-making process. The action dependencies among agents
can be represented by a directed acyclic graph, which we refer to as the action dependency graph
(ADG). In some literature, the action-dependent policy is also referred to as Bayesian policy (Chen
& Zhang|, 2023) or auto-regressive policy (Fu et al.| 2022)). Moreover, the use of action-dependent
policies can be viewed as a mechanism to leverage communications for enhancing cooperation (Zhou
et al.,2023; Duan et al., 2024; Jing et al., 2024). Some approaches (Bertsekas} 2021} |Ye et al.,2022;
Wen et al.,2022) transform a multi-agent MDP into a single-agent MDP with a sequential structure,
enabling each agent to consider the actions of all previously decided agents during decision-making.
This transformation ensures the convergent joint policy to be globally optimal (Bertsekas| [2021)).
However, the fully dense ADG makes these methods computationally expensive and impractical for
large-scale systems. For more general ADGs, existing theories can only guarantee convergence to a
Nash equilibrium solution (Chen & Zhang},2023). Currently, no theoretical evidence demonstrates the
superiority of action-dependent policies with sparse dependency graphs over independent policies.

3 PRELIMINARY

We formulate the cooperative multi-agent reinforcement learning problem as a Multi-Agent Markov
Decision Process (MAMDP), represented by the tuple (N, S, A, P,r,v), where N = {1,...,n}
denotes the set of agents, S is the finite state space, A = HZL:1 Aj; is the joint action space formed by
the Cartesian product of each agent’s finite action space, P : S x A x § — [0, 1] is the transition
kernel, 7 : § x A — R is the reward function, and v € [0, 1) is the discount factor.

We consider policies of the deterministic form 7 : S — .A. The state value function and state-action
value function induced by a policy 7 are

V7(s) :=E, lz yir(st, ab)
t=0

s¥ = s] , Q" (s,a) :=E,

(oo}
3 ofr(staf)
t=0

sozs,aoza],(l)
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where the expectation E is taken over all random variables s* induced by 7 and P. For any function
V € R(S), where R(S) denotes the set of real-valued functions J : S — R, we define

QY (s,a) :=1r(s,a) +~ Z P(s|s,a)V(s). )
s'eS
The Bellman operator 7, : R(S) — R(S) and the Bellman optimality operator 7 : R(S) — R(S)
are given by

T:V(s) = QY (s,7m(s), TV(s) = maxQ"(s,a). 3)

The value function V™ is the unique fixed point of 7T, and the optimal value function V* is the
unique fixed point of 7.

3.1 COORDINATION GRAPH

In many practical scenarios such as sensor networks
(Zhang & Lesser, [2011), wind farms (Bargiacchi
et al., 2018)), mobile networks (Bouton et al., 2021},
etc., the Q-function can be approximated as the sum
of local value functions, each depending on the states
and actions of a subset of agents. A widely used
approach to representing this decomposition is the
use of the coordination graph (CG) (Guestrin et al.,
2002)), which captures the pairwise coordination rela-
tionships between agents. Formally, we define a CG
as follows.

Definition 3.1 (Coordination Graph). An undirected
grap}ﬂ G. = (N, &) is a CG under state s € S of a value function Q™ : § x A — R, if there exists
a local value function ij : S x A; x Aj — Rforevery edge (i, ) € &, and a local value function
QT : 8 x A; — R for every vertex i € N, such that for any a € A, the following decomposition

holds:
Q™(s,0) = Y QF(s,a0) + Y QFj(s,as,a). “
€N (1,7)€Ec
Remark 3.2. If G, is a subgraph of G/, and G.. is a CG of Q™, then G, is also a CG of Q™. Therefore,
multiple CGs may correspond to the same value function Q™.

(b)

Figure 1: A coordination graph (a) and an
action dependency graph (b).

Without loss of generality, we assume that GG is connected; otherwise, the problem can be decom-
posed into independent subproblems depending on the connected components of G.. In a connected
graph, each vertex is involved in an edge, allowing the local value functions associated with vertices
to be merged into those local value functions associated with edges, yielding:

Q"(s,a) = > QF(s,ai,a). ©)
(i,j)egc
Figure[T] (a) shows a CG where Q™ can be decomposed as:
Qﬂ(s7 a’) = QT2(S7 ai, ClQ) + Q;II_FS(‘% ai, a?)) + Qg3(87 az, Cl3). (6)

Throughout this paper, we focus on a MAMDP structured by a CG.

3.2 NOTATIONS

In the paper, we frequently use sets as subscripts in expressions. Let S C N, and denote its elements
in ascending order as S = {1, 52, ..., 5, }. For a space, such as Ag, we define Ag := [[,c 4 Ai :=

Hle As,. For a vector, such as ag, we define ag := (as,,as,,...,as, ), as, € As,. The notation
< ¢ indicates the set of agents with indices smaller than ¢, similarly for < ¢, > ¢, and > ¢. For an
undirected graph G., Ng,_ (i) denotes the neighbor of vertex i. When there is no ambiguity, we
abbreviate N¢, (i) as N.(7). N[i] := N.(i) Ui, and N.(S) denotes the neighbors of a set .S, that
is, Ne(S) = U;cg Ne(7) \ S. For a directed graph G4, N, (i) denotes the parent set of vertex 4.
Likewise, we abbreviate N¢, (7) as Ny (4). Similarly, Ng4[i] :== Ny () U ¢, and Ny4(.S) denotes the set
of all parent nodes of vertices in S.

'In this paper, the vertices and edges of the graph are represented by agent indices and index pairs.
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4 ADG WITH OPTIMALITY GUARANTEE

4.1 ACTION DEPENDENCY GRAPH

In MARL, a deterministic joint policy is typically decomposed into independent policies of agents,
denoted as 7(s) = (m1(s),m2(s),...,m(s)). Although independent policies can, in principle,
represent optimal solutions, they are unable to capture behaviors that require correlated actions. The
absence of such correlations may prevent a policy from iteratively improving from a suboptimal
solution to an optimal one.

To address this limitation, we introduce a broader class of policies, termed action-dependent policies,
whose inputs include not only the state but also the actions of other agents. Formally, specifying
action-dependent policies requires determining the order in which actions are generated. Without loss
of generality, we assume that actions are output according to agent indices. In this case, the general
form of agent i’s policy is 7; : S x A~; — A;. Since some policies may not depend on the actions
of all preceding agents, we use a dependency set to represent this sparse dependency relation.

Definition 4.1 (Dependency Set). Let C' C (< i) be the dependency set of agent ’s policy 7; under
state s € S. Then, for any ac € Ac, azq)\c, a(<inc € A(<ic it holds that

777;(57 ac, a'/(<i)\C) = 7T7;(S, ac, a’(<i)\C)'

If C is the dependency set of agent ¢, then the policy of agent 7 depends only on the actions of agents
in C. For convenience, depending on the context, we sometimes write 7;(s, a<;) as m;(s, ac). For a
joint policy, the overall action dependency structure can be represented as a directed acyclic graph
(DAG).

Definition 4.2 (Action Dependency Graph (ADG)). The DAG Gy = (N, &,) is the Action Depen-

dency Graph of the joint policy 7 under state s € S if, for any i € N/, Ng(7) is the dependency set of
7,; under state s.

The acyclic nature of the ADG guarantees that dependencies do not form cycles, which would
otherwise cause decision-making deadlocks and render the policy infeasible. Figure [T[b) illustrates
the ADG of a joint policy 7 with the following form:

m(s) = (m1(s), ma(s,m1(8)), m3(s, ma(s, m1(8)), m1(s))) . @)

From (7), it is evident that expressing the components of a joint policy directly in terms of action-
dependent policies becomes cumbersome. To streamline such representations, we recursively define
the following policy notation:

(5, a0) a; ifi € C, )
v =
HeAm te mi(s,m<i.c(s,ac)) otherwise,
where 7<; ¢ = (m1,¢, - .., Ti—1,c). Using this notation, the joint policy 7 can be rewritten as 7, g,
and (/) can be concisely rewritten as

m(s) = (m1,2(8), m2,5(5), T3,5(s)) - ©)

4.2 COORDINATION POLYMATRIX GAME

A key reason why independent policies often converge to locally optimal solutions is the existence
of Nash equilibrium policies (Zhang et al., 2022} |Kuba et al.,[2022), also known as agent-by-agent
optimal policies (Bertsekas, 2021). In this subsection, we illustrate the suboptimality of Nash
equilibria through an example of coordination polymatrix game (Cai & Daskalakis| [2011)), and
demonstrate how action-dependent policies can overcome this limitation.

A coordination polymatrix game can be viewed as a single-step decision problem, formulated by
a MAMDP tuple (N, S, A, P,r,v), with S = @ and v = 0. In addition, the game is equipped
with an undirected graph G. = (N, £.) and a set of pairwise payoff functions {7;;}(; j)ee, . Which
together determine the global reward r(a) = >_(; ;) ce. 7ij(as, a;). In this setting, 7 is equivalent to

4
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the (state)-action value function @ : A — R, and G, serves as the CG of Q). Figure[2]illustrates a
polymatrix game with three agents, each having two possible actions, A; = {0,1},4 = 1,2,3. The
payoff matrices specify the reward for each agent pair; for example, if agents 1 and 2 both choose
action 0, they receive a payoff of 1 together.

For independent policies, the joint policies m =

(1,1,1) and 7 = (0,0, 0) are both Nash equi-

libria. However, only m = (0,0, 0) is globally 0 1 0 1

optimal. Although 7 = (1,1, 1) is suboptimal, S 1.0 L
. . ) . . 0 |os 110 |06

no single agent has an incentive to deviate uni- @ @ @

laterally, since any individual deviation reduces Z

the total reward.

Now consider action-dependent policies with an Figure 2: A polymatrix game on a line CG.
ADG G4 whose edge setis £5 = {(1,2), (2,3)}.

Suppose the policies are given by m = 1,

m2(0) = 0, m2(1) = 1, m3(0) = 0, and w3(1) = 1. This corresponds to the same joint policy
7 = (1,1,1). However, if agent 1 switches its action to 0, agents 2 and 3 will also switch to 0,
leading to the joint action (0, 0, 0) with reward (0, 0,0) = 2, which exceeds r(1,1,1) = 1.2. Thus,
agent 1 is incentivized to choose action 0, driving the system toward the globally optimal policy.

r23

4.3 OPTIMALITY GUARANTEE

The coordination polymatrix game example demonstrates that action-dependent policies can converge
to solutions stronger than Nash equilibria. Such solutions are relatively rare in the policy space and
are therefore more likely to be globally optimal. We refer to them as G4-locally optimal policies.

Definition 4.3 (G4-locally Optimal). Let G4 = (N, &) be a DAG. A joint policy 7 is G 4-locally
optimal under s € S if, for any ay, ;) € Ap, (i), the following holds:

Q7 (5, TN Na(3) (8, ANa(i))) = MAX QT (8, (i), Na(i) (8, ANa()): iy (), Nali) (8, ANg(i)))- (10)

When G, is empty (i.e., independent poli-
cies), the notion of G 4-local optimality co-

incides with agent-by-agent optimality. As ®
more edges are added to G4, condition @])
becomes increasingly restrictive. In the ex- O—(1)—®
treme case where G4 is a fully dense DAG
with edge set &g = {(i,7) € N x N : (3
cG

i < j}, a Gg-locally optimal policy aligns Sparse ADG Dense ADG
with the globally optimal policy. In gen-
eral, a joint policy with ADG G tends to
converge to a G4-locally optimal solution,
as discussed in the next section. Thus, the
most straightforward way to avoid subopti-
mality is to adopt a fully dense ADG. However, the computational cost of training and executing such
policies grows rapidly with the number of agents, limiting scalability. In fact, if the CG structure can
be exploited, even some sparse ADGs suffice to guarantee global optimality. We now introduce a
graph condition that links the CG and ADG, ensuring that every G4-locally optimal policy is also
globally optimal.

Theorem 4.4 (Optimality of ADG, proof in Appendix|C). Let s € S, and let G4(s) be a DAG and
G.(s) be the CG of Q™ under state s. Suppose that for every s € S, the policy 7 is G4(s)-locally
optimal and the following holds:

NGu()(i) 2 Na.(5)(2 1), VieN. (a1

Figure 3: Different index orders of agents result in
different sparsity of the ADG.

Then T is globally optimal.

Remark 4.5. We write G4(s) and G.(s) to emphasize that the theorem can apply to problems where
the CG may vary across states. For brevity, unless otherwise specified, we assume a fixed CG across
all states and denote it by G, with the corresponding fixed ADG denoted by GG;. Nevertheless, all
subsequent results can immediately extend directly to state-dependent CG settings.
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This theorem indicates that the ADG can be de-
signed from the CG to guarantee that G4-local O-203®® =— O-0-C-®

optimality implies global optimality. Two spe-

cial cases illustrate this principle: (i) When both o=0 @A—@
G. and G are empty, condition reduces , ‘
to Ng(i) = N.(> i) = @, in which case the @—0) e‘o

@-function admits a VDN decomposition and
any Nash equilibrium is globally optimal, con-

sistent with Dou et al] (2022). (ii) When G.. is ® ®

complete and G is fully dense, condition (TT)) —

is also satisfied. Thus, for any CG, a fully dense o o

ADG guarantees global optimality, since every @) (4) 2 O,
CG ADG

CG is a subgraph of the complete graph.

If the agent indices are predetermined, replacing

the superset relationship with an equality in con- Figure 4: ADGs generated by Algorithm 2for CG
dition (TI) uniquely yields the sparsest ADG. topologies: line, ring, and star.

However, the choice of index order strongly in-

fluences the sparsity of G4, as shown in Figure[3]

Determining the optimal index order is analogous to finding the optimal elimination order in variable
elimination (VE), an NP-complete problem (Kok & Vlassis} 2006). Despite this complexity, practical
heuristics such as the greedy algorithm described in Appendix [E] (Algorithm [2)) can be employed.
Figure ] illustrates the resulting ADGs for several simple CG topologies.

5 CONVERGENCE OF ACTION-DEPENDENT POLICY

5.1 CONVERGENCE TO (G4-LOCALLY OPTIMAL POLICY

In this section, we introduce a policy iteration algorithm for MARL in the tabular setting. This
algorithm highlights the advantage of employing action-dependent policies, enabling convergence to
a GG 4-locally optimal policy rather than merely an agent-by-agent optimal one.

Our approach extends the multi-agent policy iteration (MPI) framework proposed in |Bertsekas| (2021)),
which decomposes the joint policy update step of standard policy iteration (PI) (Sutton, 2018]) into
sequential updates of individual agents’ policies, thereby mitigating the computational complexity of
PI. However, MPI guarantees convergence only to an agent-by-agent optimal policy, which is often
suboptimal. To address this limitation, we propose Algorithm [T} which incorporates action-dependent
policies into the MPI framework and ensures convergence to a G4-locally optimal policy.

Algorithm 1 Action-Dependent Multi-Agent Policy Iteration

Initialize policies 7}, i € N, with ADG G4 under every s € S
fork=1,2,...do
// Policy Evaluation
Compute vy by solving V' = 7.V and derive Q’Tk from V™"
// Policy Improvement
fori=1,2,...,ndo
Update 7 for every (s, a;) pair by

k
T (s,a04) alrgal.naXQTr (577-(?:_7;1)7Nd(i)(57aNd(i))7ai77ré€>i),Nd[i](S’a’Nd[i]))' (12)
end for
end for

Since the policies of agents in (< ¢) are always updated before agent 4, the update rule (I2) can
always be applied in succession. Since the image set of arg max may have multiple values, we
arbitrarily select one of them. Specifically, if 7¥(s, a~;) is already in the image set, then we prioritize
selecting 7% (s, a~;). Note that while the update is specified for every (s, a~;) pair, the arg max in
(12) only depends on (s, ay;()), so the actual computation only needs to be performed for every
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(s,an,()) pair. When update rule no longer changes 7% for any (s, a;), the algorithm reaches
convergence. The following theorem describes the convergence property:

Theorem 5.1 (Convergence of Algorithm |1} proof in Appendix @ Let {7%}2° | be the policy
sequence generated by Algorithm|I| Then {ﬂ'k}z‘;l converges to a G g-locally optimal policy in a
finite number of steps.

It is straightforward to verify that once all individual policies converge, the joint policy is G 4-locally
optimal. Thus, the main challenge in proving this theorem lies in establishing convergence of all
individual policies. |Chen & Zhang|(2023) studied action-dependent policies in the policy gradient
method and encountered a similar issue, which they bypassed by assuming that individual policies
always converge. In contrast, we show that the joint policy converges regardless of whether individual
policies converge directly (see Appendix Lemma[D.T). Although convergence of the joint policy does
not automatically imply G 4-local optimality, we can inductively establish that all individual policies
converge from the convergence of the joint policy (see Appendix Lemma|[D.6). Therefore, our policy
iteration method does not require additional assumptions and provides a complete resolution to this
challenge.

5.2 CONVERGENCE TO GLOBALLY OPTIMAL POLICY

When the CG of an MDP is fixed, independent of both the state and the joint policy (e.g., polymatrix
games), we can construct an ADG that satisfies (IT)) based on the CG, and then apply Algorithm [I|to
update policies under this ADG. Upon convergence, Theorem [5.1]ensures that the resulting policy is
G -locally optimal, and by Theorem[d.4] it is also globally optimal.

Corollary 5.2. Assume G, is the CG of the state-action value function Q™ for all policies m and
states s. Let {Wk}z"zl be the policy sequence generated by Algorithmwith an ADG Gg. If G and
G satisfy (TT), then {7*}22 | converges to a globally optimal policy in a finite number of steps.

In more general scenarios, the CG may be dynamic. To guarantee convergence to an optimal solution,
the ADG must also evolve accordingly. Such changes in the CG are typically driven by both the
state and the joint policy. We denote this dependence by G.(s, 7). For state-dependent changes,
it suffices to design a distinct ADG for each state, ensuring that Equation remains valid. In
contrast, for policy-dependent changes, the ADG should be updated after each policy iteration to
preserve convergence to the globally optimal policy. A key challenge arises here: directly modifying
the ADG may alter the structural dependencies of individual policies. For instance, under one ADG,
agent ¢ may depend only on the action of agent j, whereas under another ADG it may additionally
depend on the actions of both j and k. If the policy of agent ¢ lacks the interface to accommodate
these additional dependencies, direct modification of the ADG becomes infeasible.

To address this issue, we could employ an indirect construction. Specifically, we build a set of
individual policies such that, although their functional forms may differ before and after the ADG
update, their induced joint policies remain identical. For deterministic policies, this construction is
straightforward. Given a joint policy 7 with independent components 7(s) = (71($), ..., Tn(s)),
we define a set of action-dependent policies {7; };c o With new ADG such that,

m1(s) < 71(s), ma(s,m1(8)) < 72(s), ..., 7n(s,71(8),...,Tn-1(8)) + Tn(s). (13)

This guarantees that the joint policies before and after the ADG update are equivalent. Consequently,
if the CG changes after (I2)), we reconstruct the new policy Wf“ according to (I3). This ensures
that the ADG and CG continue to satisfy Equation (TT)), thereby allowing Algorithm [I]to achieve the
optimal solution.

Corollary 5.3 (Proof in Appendix @ Assume G (s, ) is the CG of the state-action value Q™ for
Jjoint policy m and state s. Let {ﬂk}z‘;l be the policy sequence generated by Algorithm with policy
reconstruction according to (13) upon CG change. Then {ﬂ'k}?;l converges to a globally optimal
policy in a finite number of steps.
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6 EXPERIMENTS

6.1 COORDINATION POLYMATRIX GAMES

To validate our theoretical results, we evaluate Algorithm [T] on polymatrix games with CGs of
different topologies: star (5 agents), ring (5 agents), tree (7 agents), and mesh (9 agents). The payoff
matrices are randomly generated, with the maximum reward set equal to the number of CG edges.
We compare three ADG types: sparse (generated by Algorithm [2]to satisfy (I1)), fully dense, and
empty. Additional experimental details are provided in Appendix [F Figure [5reports the learning
curves averaged over 100 runs. Both sparse and dense ADGs consistently reach the reward upper
bound, with their learning curves being very close. In contrast, empty ADGs often become trapped in
suboptimal Nash equilibria.

Star Graph Ring Graph Tree Graph Mesh Graph
4.0 F—————————— 50
35 45
2
g 40
330
4
35
25 —— empty ADG —— empty ADG —— empty ADG 8 —— empty ADG
sparse ADG 3.0 sparse ADG 35 sparse ADG sparse ADG
Py L dense ADG —— dense ADG —— dense ADG 7 —— dense ADG
25 30
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Iteration Iteration Iteration Iteration

Figure 5: Results of coordination polymatrix game.

To assess computational efficiency, Figure[6] (right) shows the average per-iteration runtime across
100 experiments when each agent has two actions. As runtime is primarily determined by policy
dimension and dimensions of dense ADG policies are independent of CG structure, their curves
nearly overlap. Due to exponential growth in policy dimension, dense ADGs incur substantially
higher costs as agent number increases, whereas sparse ADGs maintain scalability.

o —— Ring Sparse
10 Star Sparse /
Tree Sparse
Ring Dense /
Star Dense o
Tree Dense /
.

107 /

/./.

. é//

—— empty ADG
sparse ADG
—— dense ADG

Iteration Time (seconds) [Log Scale]

0 10000 20000 30000 40000 50000 60000 70000 80000 6 8 10 12 14
Step Number of Agents

Figure 6: Results of MAPPO on star CG (left) and average time per iteration (right).

We also extend the MAPPO algorithm to incorporate action-dependent policies to examine the
convergence of action-dependent policies under more practical learning settings. Specifically, we
transform the independent policy 7y, (a;|s) into the action-dependent form 7, (a;|s, an,(;)). This
requires a corresponding modification of the optimization objective to properly handle the action-
dependent policy. Consider MAPPO (Yu et al.| 2022), where the original objective is

L(0) = Es~p,anm,,, Z min <7’9i (ai, $)Ar,  (s,a), clip(re,(a;,s),1£e)Ar, (s, a)) ,
i=1
o, (as|s)
76, o1a (@i]8)’

where 19, (a;, 5) = and D denotes the distribution in the replay buffer. To adapt this objec-

o, (ails,an, (i))

tive for action-dependent policies, we replace 9, (a;, s) with 79, (a;, s, aNd(Z-)) = o (ailsan, )"
: i,0ld \EIZ N g (@

Figure [6] (left) presents results of the extended MAPPO on polymatrix games with a star CG, using
fixed payoff matrices (maximum reward 20) and 10 random seeds. As the value of the largest
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suboptimal point is 18, both sparse and dense ADGs successfully escape all suboptimal points. The
slight deviations from the maximum reward are primarily attributed to exploratory behavior caused
by entropy regularization. These results demonstrate that even in non-tabular settings parameterized
by neural networks, Theorem 4] provides a reliable design principle for sparse ADGs. In future
work, we also plan to provide a rigorous theoretical analysis to substantiate these empirical findings.

6.2 ATSC

To further examine practical applicability, we evaluate the extended
MAPPO on adaptive traffic signal control (ATSC) problem, a bench-
mark with a natural coordination structure. Experiments are conducted
on 2x2 (4 agents), 3x3 (9 agents), and 4x4 (16 agents) road networks
using the Simulation of Urban Mobility (SUMO) platform [Lopez et al|
and SUMO-RL [Alegre| (2019). The CG is defined by adjacency
between intersections, and sparse ADGs are derived with Algorithm |Z[
Detailed experimental protocols and hyperparameters are given in

Appendix [

As shown in Figure[8] sparse ADGs achieve performance comparable
to dense ADGs, and both outperform empty ADGs. This indicates
that even with approximate CG structures, sparse ADGs retain the
efficiency of action-dependent policies without sacrificing optimality.

Figure 7: 3x3 road network.
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Figure 8: Results of ATSC.

7 CONCLUSION

In this work, we established a theoretical framework for action-dependent policies in multi-agent
reinforcement learning by introducing the ADG and the notion of G4-locally optimal policies. We
further identified conditions under which these policies coincide with globally optimal solutions in
coordination graph structured problems, and proposed a policy iteration algorithm with guaranteed
convergence. Finally, we validated our theory and demonstrated its practical potential through
experiments on polymatrix games and adaptive traffic signal control. Recognizing that complex
environments may involve unknown CGs, hypergraph CGs, we aim to explore the adaptability and
potential of ADGs in these challenging settings in future research.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS

We used LLMs for improving the grammar and clarity of the manuscript. All scientific content, ideas,
and analysis are original and authored by the listed contributors.

B MATHEMATICAL PRELIMINARIES

In the appendix, we first reformulate the MAMDP as a sequentially expanded MDP (SEMDP)
(Ye et al.| 2022; |Li et al., | 2023 Bhattacharya & Bal 2025)), and then establish our proofs on this
reformulation. The SEMDP transforms a multi-agent system into a single-agent MDP by expanding
the state space. Importantly, the SEMDP reformulation is non-essential: it does not introduce any new
assumptions, and our results can still be proven directly under the MAMDP formulation. However,
introducing the SEMDP greatly simplifies the notation used in the proofs.

Given an MAMDP (N, S, A, P, 7, ~™), we construct a SEMDP denoted by (N, S, A, P, r,v), where

« S is identical to the state space in the MAMDP,
« A=TJ", A is identical to the joint action space in the MAMDP;

* Z = Jjen Zi is the expanded state space, where Z; = S x Hj;ll Aj; is the individual
expanded state space for agent ¢;

* P:Zx 2ZxJ;ep Ai — [0,1] is the transition kernel of the SEMDP;
o 7 Ujen(Zi X Ai) — Ris the reward function of the SEMDP;

The SEMDP transition kernel is defined as

P((s,a<i)|(s,a<i),a;) =1, Vs € S,a<; € A<;,0 <i <, (14)
P(s'|(s,acp),an) = P(s'|s,a), Vse S,a<n € A<p. (15)

The reward function is defined as
r((s,a<i);a;) =0, VseS,a<; € A<;,0<1i <n, (16)
r((s,a<n);an) =7(s,a), VseS,ac A 17

In the appendix, the joint policy in the SEMDP is denoted by 7 : Z — | J;c - A, where
m(s,a<;) € Ajy Vs €S ac; € Ay

12
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The individual policy of agent 7 is defined as 7; := 7| z,, which restricts the function to Z;. This
formulation is identical to the individual policy in the MAMDP. To distinguish between the joint
policies in MAMDP and SEMDP, we rewrite the joint policy in the MAMDP as 7 := ﬂ'/k\/, g =

(771)@, e ,Tl'mg).
In the SEMDP, the state value function takes the form V' : Z — R, and the state-action value function
takes the form Q : (J; o (Z2i X A;) = R. Forany V € R(Z), we define
QY (s,000:) = r(s,ac500) +7 3 P(2' | (5,020, a) V(). (18)
2'eZ

The Bellman operator 7, and the optimal Bellman operator 7 are given by

TV(2) = QY (s,aci;mi(s,a<i)), TV(z) = maXQV(S,a<i;ai). (19)

The state value function V™ is the fixed point of 7, and the state-action value function is Q™ := QV”.
The optimal state value function V* is the fixed point of 7, and Q* := Q. The semicolon in Q
and r highlights the action dependence. However, Q(s, a<y; a,,) can also be regarded as the value
function of the full joint action and thus is sometimes written simply as Q(s, a).

Proposition B.1. We summarize several fundamental properties of the SEMDP:

1. VE(s) =47V (s), Q% (s,a) = v "Q™(s,a), where V™ and QT denotes the state and
state-action value function in the original MAMDP.

2. Q7(s,a<i;a;) =YV (s,a<), 1<i<n.

30Q™(s aci;ai) = 7" QT (8, W(<py, (<) (8, a<i)i Ton (<) (8, a<i)), 1 <i<n.

Proof. (i) We expand the definition of V7 in the MAMDP:

[ oo
VA(s) = E | Y 4" r (s, 7 (s1)) |s141 ~ P(]se. 7(50)), 50 = ]

t—O

=K Vntﬂ " Sfa77<z rz(Sf) ﬂ'z‘,ra(st)) St+1 ™~ P('|St,ﬁ'(5t))750 = S]
Lt=0 =1

—F 1 n N nt+i— 1 P

= > r(s6mei o (50); Tio(56)) 8041 ~ P[50, 7(51)), 50 = s
L t=0 1=1

=4!""E [Zv r(zp;m(ze))|2e 41 ~ P(lze,m(2e)), 20 =

t'=0
=717V (s)

Similarly, we can derive that Q7 (s) = v~ Q™ (s).
(ii) For 1 < i < n, we compute:
Q7 (s, acisai) = (s, acisa;) + Z P2 | (s,a<i),ai) VT (2')
ez
=V"(s, agi)~

(iii) Repeatedly unrolling the recursion yields:
Q7 (s,a<iia;) =yV7 (s, a<i)
=yQ" (s, a<i; Tig1,(<i)(5,a<i))

= =" (s, T <ny (<) (8, a<i); o (<) (5, a<i).

13
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From Proposition [B.1{i), we see that the value functions in the SEMDP and the MAMDP are
equivalent up to a constant factor. Therefore, it can be easily verified that (1) an optimal policy in
the SEMDP remains optimal in the original MAMDP, (2) Q™ and Q7 have the same CG, and (3) in
update rule (12), replacing the Q-function with its SEMDP counterpart does not affect the update
outcome: .

ﬂf+1(5, a<;) + argmax Q™ (s, ﬁfjil)de(i)( VAN (i)} Gi)- (20)

a;
C PROOF OF OPTIMALITY

In the appendix, we generalize the concept of the dependency set to more general functions to simplify
the description of subsequent proofs.

Definition C.1 (Dependency Set). Let f : As — ) be a mapping defined on the joint action space
of a subset of agents S C A. A subset C C S is called a dependency set of f if for any s € S,
ac € Ac, a’S\C, as\c € Ag\c. the following holds:

flac,as\c) = flac,as\c)-

For notational convenience, we may permute the order of variables when writing a function, but the
evaluation of the function always follows the ordering of variables according to their agent indices.

Since the form of the ()-function changes in the SEMDP setting, we restate the definition of G4-
locally optimal policies for SEMDPs. Note that, according to Proposition [B.1] (i) and (iii), this
definition is equivalent to the one given in the main text.

Definition C.2 (G;-locally Optimal in SEMDP). Let G4 be a DAG. A joint policy 7 is G 4-locally
optimal under s € S if, for any ay, ;) € Ap, (i), the following holds:

QT (85 T(<i).Na (i) (8 ANg (1)) T, Na(3) (85 ANy (3))) = MAX QT (8, T(<i) Na(i) (5 Ay ()); @i) - (21)

Lemma C.3. For any fixed s € S, let G4 be a DAG. Suppose a joint policy 7 is G g-locally optimal
at s. If for every i € N, the set S; is the dependency set of the function arg max, Q" (s,a(<4);a;)
with respect to a(;) at s, and if Ny(i) 2 Sy, then 7 is globally optimal.

Proof. Fix any s € S. Since 7 is G4-locally optimal, we have

mi(s,a<i) € argmax Q™ (s, T(<4), N, (i) (5 Oy () ); i)
a;

= argmax Q" (8, an,(i)s T(<i)\Na(i),Na(i) (5 ANy (5)); Ci)-

[¢23

(22)

Because Ny(i) D S;, where S; is the dependency set of arg max,, Q7 (s, a(<4); a;), it follows that

mi(8, a<i) € argmax Q" (s, a<i;ai), Va<; € A (23)
a;
Therefore,
V7(s,a<i) = TaV7(s,a<i) = Q7 (s; acis mi((s, a<i))
=max Q" (s;a<i;ai) = TV (s, a<i), (24)
which shows that V'™ is a fixed point of 7. Hence, 7 is globally optimal. O

Lemma C.4. Ler Q be a state—action value function, and let G, = (N, E..) be the CG of Q at state s.
Then for any i € N, there exist functions Q1 : S X Ay, (> — Rand Q2 : S x A<y — R such that

Q(s,a) :Q1(87G'NC[21'])+Q2(saa<i)7 VS 68,0'6“47 (25)
where N[> i] := N.(>4) U (> i).

Proof. Decomposing @) according to the structure of G yields

Q(s,a) = Z + Z + Z ij(s,aj,ak), (26)

(4:k)€€c[2i,<i]  (J,k)EE[21]  (4,k)EEL[<I]

14
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where E.[> i, < i] denotes the subset of £. containing edges between vertices in the sets > ¢ and < 1,
and E.[> 1] := &[> 4, > i] containing edges within the set > 4. Noting that £.[> i, < i] = &[>
i, No(> )], thus, we can rewrite:

Q(&CL)Z( > + >+ > + > )ij(S,ajﬂk)-

(J,k)EE[>1,Ne(Z4)]  (4,k)€EE21]  (J,k)EE[N(20)]  (J,k)EE[<I\E[Ne(21)]
(27
Define

Q1(s,a1vc[zi]):=< > + >+ > )ij(svaj»ak)» (28)

(4,k)€E[24,Ne(Z4)]  (4,R)€E[2E]  (4,k)EE[Ne(21)]

and
Qa(s,a<i) = > Qi (s, a;, ar). (29)
(4,k) EE<IN\Ec[Ne(21)]
Then (23)) follows. O
Proof of Theorem [4.4]

Proof. For any fixed state s, we abbreviate N.(i) = Ng(s)(7) and N4(i) = Ng,(s)(i). We proceed
by induction.

Base case: We aim to show that

maXQﬂ(57a<n;an) = QW(Saa<n§7Tn(5aa<n))7 (30)

an
and that N.(> n) is the dependency set of argmax, Q™ (s, a<n;an).
By Lemma|[C.4] there exist functions @1 and @2 such that

Q7 (s, acn; an) = Q1(s, an,[n]) + Q2(s, a<n). (31)

Consider - - ,
Q7 (S, A(<n)\N.(n), AN (n)} On) — Q7 (8, A< p)\ N, (n)+ AN.(n)} An) 2)
:QQ (Sa A(<n)\Ne(n)s aNC(n)) - QQ (57 al(<n)\NC(n)a aNC(n))a
which is independent of a,,. Thus, the maximizing a,, is unaffected by a .\ N, (n), implying that
arg max Q" (s, G<p\ N, (n)s AN, (n)} @n) = arg max Q" (s, a’<n\NC<n) s AN, (n); On)- (33)
Therefore, N.(n) = N.(> n) forms the dependency set of arg max, Q™(s,a<n;ay,). Since 7 is
G g-locally optimal and Ng4(n) O N (> n), it follows that

Tn (8, acpn) € argmax Q™ (s, acp; an), (34)

and hence
max Q™ (8, acn;an) = Q" (S, acn; (s, acn)). (35)

Qn
Induction step: Assume for some ¢ + 1 that

nax Q" (5, a<n;an) = Q" (8, T(<n),(<it+1) (85 O<it1); T, (<it1)(5, a<iv1)), (36)

and that N¢(> i + 1) is the dependency set of argmax, , Q" (s, a<(it1); @i+1). We now prove the
case for ¢.

By Lemma[C.4]and Proposition [B.1|(iii), there exist functions )1 and @2 such that

Q" (s,aci;ai) =" 'Q7 (8, W(<n,(<i) (5, a<i); T (<iy (5, a<4))

(37
= Q1(5, T, [>i],(<i) (8, a<i)) + Qa2(8, T(<iy,(<i) (5, a<i))-
From Equation (36)), we obtain
T(>it+1),(<i) (8, a<i) € argmax Q1 (s, an,[>q)), (33)

A>i41
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and hence
Q1(s, a4, AN (>i)s T(>i4+1),(<4) (s, AN, (>i)s a(<i)\Nc(2i)))

= max Q1(s,an,[>q) 7

A>it41
= Q1(5, i, AN, (20), T(2i+1),(<0) (5 AN (20)> A <ip\ N, (20))-
Following the same argument as in (32)),
Q7 (S, AN, (2i)s A(<i)\N.(>i); i) — Q7 (8, AN, (2i)> U <ip\ N, (1)} i)
=Q1(8, TN, (20),(<i) (8 AN (20, G<i)\Ne(2))> @) + Qa(8, T(<i) (<) (8, AN, (2i)> U<\ No(23)))
— Q1(8, TN, (2i),(<i) (8, ANL(>1) Acip\N.(24))> @) — Q2(8, T(<i),(<i) (85 AN (>4), A<ip\ N, (24)))

=Q2(8, T(<iy,(<i) (8, AN, (20)s A(<ip\No(z4)) — Q2(8, T(<i),(<i) (8 AN, (2i)s U <ip\ N (1))

(40)
Therefore,
arg max Q" (s, an, (»i), A(<i)\N.(2i); i) = arg max QT (s, AN, (2 A<ip\ N (z0)i @)y (41)

which implies that N.(> 4) is the dependency set of arg max, Q" (s, a<;; a;). Moreover, since 7 is
G g-locally optimal and Ny (7) D N.(> 4), it follows that

mi(8, a<;) € argmax Q" (s, T(<i), N, (i) (S5 ANy ()5 @)

(€23

= arg max Q" (s, AN, (4), T(<i)\Ne(23),Na(i) (8, ANy(0) ); i) (42)

a;

= argmax Q" (s, a<i; a;).

a;

Consequently, by Proposition [B-1] (iii), it holds that

Q7 (8, T (<n),(<i) (8, 0<i); Tn, (<i) (5, a<i))
=y"""Q" (s, a<i; mi(s, a<i))
=maxy"""Q" (s, a<i; ai) 43)
= H}f.‘x Q" (s, 7T(<n),(<i+1)(5a a<it1); 7Tn,(<i+1)(5, acit1))

=max max Q" (s, a<n;ay) = max Q" (s, acp;an).
ai A>it1 a>;

Conclusion: By induction, for any given s, N.(> i) is the dependency set of
argmax, Q™ (s,a<;;a;) foralli € N. Together with the condition Ny(i) O N.(> i), Lemma
guarantees that 7 is globally optimal. ]

D PROOF OF CONVERGENCE

We first prove that the joint policy wj‘(/’g (s) in MAMDP converges.

Lemma D.1. Let {wk}gozl be the policy sequence generated by Algorithm Then both V™" (s) and
ﬂf\ﬂ »(8) converge within a finite number of steps.

Proof. From the update rule (20), for any s € S,0 < i < n, we have

k
Torers VT (5,750 5(5)) = QT (s, w5l 5 (s); m (s, mET 5 (5)))

7

> Q™ (s, 5L (s); (s, 75T L (5))) (44)
=V (s, L (s)).

We now proceed by induction. Assume that

Ton V™ (5,755 () > T2 V™ (5,750 L (s), Vs€S8,0<i<n. (45)
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We now prove that

TIEAV™ (5,785 (5) > T V™ (5,781 L (s), Vse S, 0<i<n. (46)

T

When 7 < n,
41 k j k
Tjk+1v7r (s, 7T<—l_lz( ) = '77;jk+1 W (s, 7T<—li1 z(s))

> VTjk_fl v (s, T o) (47)
k
=T VT (s, 705 (9)).
When i = n,

TRV (5,781, (5) = (s, oL ( >>+wzP(s'\s,wgz,lg(s)ﬂ:mv“<s'>
> (s, L (s) +72P (8|5, L (N TIEA VT () (48)
= 7;rk+1V7T (5 letlz(s))

Thus,
ahtl : j ok ok ok
Ve s mb () = T TV (7L () 2 V7 (s L () 2V (st o (9).
(49)
By the monotone convergence theorem, v (s, wii, »(s)) converges. Since the policy space is finite,

v (s,m%; 5(5)). Vi€ N,s €S converges within a finite number of steps.

Next, we prove by contradiction that 71'}6\/, () also converges. Suppose that for some M, vy (s) has
already converged when k > M. Assume that for k& > M, Wﬁ/,g( s) # 7Tk+1 &(8). Let i be the first
index such that 7, (s) # 7rk+1( ) while 7%, o (s) = w’ijlg(s) Then

mhtl wk n—1y mF*1
V() =V (s, m p(s) = o = VT (s, 7R 5 (9)

=w1<<s w1 (s) +VZP (s, ﬂi:}Q,(s))v”“(s’))

:w“((sw’;i;; )+ 9 L Pl ()Y 7”)

I (s 9 5,7 ) G0
> "R (5,7 ()i (s, 7 o (5))

=" 72Q (s, p () mh (s TR o (9)

> 2y T (s, mE L ()i mh (s, mE L (9))

> TQT (s.wE ()i mh (s, mhi o (5)))

— 7“1‘/” (577le7;,@(5)) = VW (S)

The first equality follows from Proposition (i1). The third equality uses the fact that v (s) has
already converged. The strict inequality follows from the update rule, which preferentially selects the
pre-update policy.

Hence V”Hl( ) > V™" (s), contradicting the assumption that V”k(s) has converged. Therefore,
w}“\ﬂg(s) = 7TN— +1(s) for k > M, implying that the joint policy 7TN () also converges. O

In order to deduce the convergence of individual policies from the convergence of 7k ,(s), we
employ induction. To make the induction work properly, we need to construct a special ordering.

17



Under review as a conference paper at ICLR 2026

Definition D.2. Let C = P({1,2,...,n — 1}), where P denotes the power set. We introduce a
binary relation < on C as follows:

A< B <= min(A\ B) >min(B\ A), A,B (. (51)
For the case involving the empty set, we define min @ := n.
Lemma D.3. Forany A, B € C, the following holds:
A < B <= min(AAB) € B\ A4,
where A denotes the symmetric difference, i.e., AAB := (A\ B)U (B \ A).
Proof. We first prove the direction ”<=". Let k = min(AAB) € B\ A. Since A\B C AAB, we have
min(AAB) < min(A\ B). Moreover, because k € B\ A, it follows that min(AAB) = min(B\ A).

Since (B\A)N(A\B) = @, we obtain min(AAB) < min(A\B). Thus, min(B\ 4) < min(4\B),
ie., A< B.

Conversely, assume A < B. Then min(B \ A) < min(A \ B). Hence,
min(AAB) = min{min(B \ A), min(A \ B)} = min(B \ A). (52)
Therefore, min(AAB) € B\ A. O

Proposition D.4. The binary relation < on C is a strict total order.

Proof. Irreflexivity and asymmetry are immediate. We now prove that < is connected and transitive.
(Connectedness): Let A, B € C with A # B. We distinguish three cases:

(i) If A C B,then B\ A # @. Hence min(B\ A) <n —1and min(A \ B) =n > min(B \ 4),
so A < B.

(ii) If B C A, by symmetry we obtain B < A.
(ii)) If A ¢ Band B ¢ A, then min(A \ B) # min(B \ A). Thus, either A < B or B < A.
(Transitivity): Let A, B,C € Cwith A < Band B < C.

If A = @, then clearly A < C. Otherwise, set k; = min(AAB) and k2 = min(BAC). By
Lemma[D.3| we have k; € B\ Aand k; € C'\ B. We analyze three cases:

(i) If k1 < ko, then k; ¢ BAC. Since k; € B, it follows that k; € BN C'. Moreover, as k1 € B\ A,
we have k1 € C'\ A. Now, we only need to show k1 = min(AAC). Forall ¢ < k; withi € AU B,
we have i ¢ AAB, hence i € AN B. Since k1 < ko, we also geti € ANBNC, implying i ¢ AAC.
Thus k1 = min(AAC), and by Lemma A<C.

(ii) If ko < kq, then by symmetry, ko = min(AAC) and ks € C'\ A. Hence A < C.

(iii) If k1 = ko, then ky € B\ A and k; € C'\ B simultaneously, which is a contradiction. Thus this
case cannot occur.

Therefore, < is transitive. O
After defining the strict total order <, we arrange the elements of C in ascending order as C =
{C1,Cs, ..., Cie) )

Lemma D.5. Let C,, € C and C,,, # @. Let G4 be the ADG of T under state s. If Ny(i) 2 Cy,,i €
N, denote k = min(C,, \ Ny(2)), and define

Ci=AUB:={zeCp|e<klU{ze{l,....n—1}| x>k} (53)
Then we have j < m. Furthermore, if i # k, the following holds:
mi.c, (s, 7,0, (8, ac,,)) = Tic,,. (s, ac,,)- 54

Proof. We first verify that j < m. Since Ny(i) 2 Ciy,, we have Cy, \ Ny(i) # @, and hence k < n.
By construction of C}, min(C,, \ C;) = k. Therefore,

min(C;AC,,) = min{min(C; \ Cp,), min(C,, \ C;)} = min{min(C; \ Cy,), k}. (55)
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Because min(C; \ Cy,) > k, we obtain min(C;ACy,) = k € Cy, \ Cj. By Lemma|D.3] this implies
Cj < Ch, i.e.,j <m.

When i € Cy,, since ¢ # k, we have ¢ € C,,, N C}, and therefore

mi,c; (8, Moy .00 (8, ac,,)) = ai = ™ ¢, (s, ac,,). (56)

When i ¢ C,,, we consider the two cases k = 1 and k > 1 respectively.
(k=1
In this case, C; = {2,3,...,n — 1}. We analyze the construction of 7; ¢, (s, ac; ):
mi,0; (8, ac;) =mi(s, (<), (8, ac;))
=mi(s, m1,0,(s, ac,), T(<iyne,,c, (5, ac,))
=m;(s,m1(8), a(<i)mcj)
=mi(s, 71(8), A(<i)n(@m\ (1)) U<\ )-

Substituting 7¢, ¢, (5, ac,, ) into ac,, we obtain

(57)

mi.c, (s, 7c;., (8 ac,,))

:ﬂ—i(sv 7T(<i),cj (S, aCj))

(58)

ac; =TC;,Cm (8,00, )
=i(8, T1(8), A(<i)n(Cou\{1})s T(<)\Com . Com (S5 CC, ))-
Since 1 ¢ Ng4(), m; does not depend on a;. Thus, replacing 71 (s) with a1, we obtain
75,0, (8, 70,0 (5,a0,,))
=Ti(8, 415 A(<i)n(C\ (1) T(<\ O O (85 0C,0))
=T (8, A(<i)NCp» T(<i)\CosCom (55 AC,, )
=m;.c,, (S, ac,,).

(59)

(i) k > 1.
We proceed by induction to prove that
e, (S,Wcj’cm(s,acm)) = Wg’cm(s,acm), V1</t<k. (60)
For £ = 1, since 1 < k, we have 1 € C',, N C;. Thus,
m,c,(8,7¢;,0 (5 ac,,)) = a1 = T10,(5,ac,,)- (61)

Assume the statement (60) holds for all indices less than £. For ¢ < k, note that (< £) N C,,, = (<
)N Cjand (< )\ Cp, = (< ¢)\ Cj. Therefore,

me.c,(s,mc; 0, (8, ac,,))

=T(8, a(<p)ne; T(<o\C;.c; (5, ac;)) |acj —r0;.0m (:00m) (62)
=T0(8, A(<t)NCp» T(<O\C,C; (85 TTC; .0 (850C,,)))-

By the induction hypothesis,
T(<O\Cm,C, (5:TC;.C (850C,,)) = T(<o)\Com,C,m (55 0C,, )5 (63)

which yields

Te,c; (8, 70,00 (8, 00,,)) = Te(8, 4(<t)nCh> T(<ONCm,Cm (55 0C,)) = Te,c, (5,ac,,).  (64)

Finally, similar to (58), analyzing the construction of 7; ¢, (s, ac,) gives
mi.c; (8,705, (8, 00,,))
:71—1'(57 T<4,Cy (S; ac; )) |

aC; =TC;,Cm (8,80m,)

=T (8, A(<i)NCpp» T(<EN\Com,C; (8, TCy,00 (8, 00,,)), Tk, 05 (85 TC; .0, (8, 00,,))s TONCon 1O (85 €, ) -
(65)
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Since k ¢ Ny(7), we can replace 7y ¢, (s, 7c, ¢, (5, ac,,)) by 7r,c,, (5, ac,, ), yielding
mi,c; (8, 7cy,0, (85 ac,,))
=Ti(8, A(<i)nCpps T(<EN\C, O (85 AC,, ), T, (S, 0C,,, ), TON O O (850, )
=7Ti(87 A(<i)NChy s T(<i)\Cn,Com, (37 ac,, ))
=Ti,C, (8, 00,,)-

(66)

O
Lemma D.6. Let {ﬂ'k}zczl be the policy sequence generated by Algorithm Then for every Cy, € C,
7T/k\7/”cm converges within a finite number of steps.
Proof. We proceed by induction.

Base case: Consider C; = @. By Lemma we directly obtain that wﬁf’cl converges in finitely
many steps.

Induction step: Assume that 7@’“\/70]_ has already converged for all j < m when k > M. We now

prove that Wﬁ/_ c,, also converges in finitely many steps.

We first show that, when k& > M, for any max C,,, < i < n, the following inequality holds:

Q" (5,756, (5,00, )i m) (s,00,)) 2771 Q7 (5,7 o, (.00, )imtH e, (5.ac,)).

(67)

(i): If Ny(i) 2 C,p, then by the update rule,

Qﬂ- ( <7,C (S ac,, ) 'LJCr'l (S ac,, ))

_ Q‘n’ (s, 7T<zC’ (s,ac,,); 7Tk+1(5 wi‘l_lcm(s ac,,))) 68)

> Q™ (s, 7El L (s,a0,)i (5,750 (s,00,)))

=971Q™ (s, 7T12A1 o, (8,00, )i m ] (s, Wit%c (s;ac,,)))-
(ii): If N4(i) 2 Cyn, we then construct C; = {z € C, |2 < K’} U {z € {1,. —1} |z >k}
with £ = min(C,, \ N4(7)) accordlng to Lemma Since ¢ > max Cm, we have i # k/,
and therefore 7}, (3 ac,,) = o, (5,76, o (5, acm . By the induction hypothesis, 5 - has

already converged. Hence,

T (s,ac,) = miE (5,78 6, (s,a0,,)
k k
=Tic, (s, 7Tcj,lcm(s’acm)) 6
(69)
- zk(s 7T<zC (5 ac; ))|ac ZJr}Cm (s,aCm)

_ k(e ok k+1

=m; (s, T<i,C; (s, TC;,Crm (s,ac,,)))-
We examine each component of 71"?{10 (s, ﬁé+ o, (s,ac,)). Ifx € (<i)and z = k', since k' ¢
Nq(i), then 7} is independent of a,, so we replace 7% - (s, Wéj,lcm (s,ac,,)) with @i} (s,ac,,)
in (69). If = # k', then we again apply Lemma and the induction hypothesis to obtain

77];,0,- (87 ﬂé’j,lcm(svaffm)) = Tr’ajJrCl (S 71J(f,flC,,L( >aCm)> = WI;JE‘I,,L(S aCm) (70)
Thus,
k k k
mien (s,a0,,) =7 (s, 78 o (5,18 6, (s,a0,,)) = 7 (5,755 6, (s,a0,.))- (71
Therefore,

Q™ (5,78 E, (5,00, ) mEEL (5,00,,))
= Q™ (s, 7510, (s,00,)i (s, 751G, (s,ac,,)) (72)

=971Q™ (5,75 o, (5,00, )i (s, 5 0 (s.a6,))).
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Next, we prove

k k k
Qﬂ- ( <Tnlame,C (s,acm);wm:icmvcm(s,acm)) Qﬂ (S 7T<mame,C (8 ac,, ) maxcm,cm(sﬂacm))'

(73)
. k+1
We examine each component of 7).~ (s,ac,,).

(iii): If i € C,,, then Wﬁcm (s,ac,,) =a; = wfél (s,ac,,)-

(iv): Ifi ¢ Cp,, let C; = Cpy N (< ). Since ¢ < max Cp,, we have C; C Cy,, and by Deﬁnition
j < m. By the induction hypothesis, Trff c has converged. As w’% , depends only on the first ¢ — 1
agents, it follows that 71'1’?7 c, = 7rf, o, Therefore,

e, (8,:a0,,) = o, (s,a0,) = 115 (s ac;) = Tkl (s ac,,)- (74)

k+1 _ k
Thus, 7). ... (8:ac,) = T hac 0. ¢, (8, ac,, ), and hence (73) holds.

Now,

k+1 k k+
QTr (S <:,C (S ac,, ) nC (S’aCm))
k
- Qﬂ ( <1’L C7n (S’GC”L) Trn-"brn (S aC"l))
_ k
> 2T (5, w0 00 (5,00, Tt 0,0, (8:00,,)) (75)

= ’ylnax Cm—nQﬂ' (5 Wémdx C"“Cm (8 aan) I];:]aX Crm,Cm ( 8 aC”L ))

= Q (5 7r<n Cm (5 ac,, ) T Cm (Sa acm))'
Here, the second line follows from Lemma which ensures that V™" (s) has converged, and hence

Q™" (s, a) have converged; the third line follows from (67); the fourth line from (73).

Equation ([73)) shows that Q™ (s, " o, (8500, )i n c,, (s, ac,,)) is monotonically non-decreasing,
and thus converges in finitely many steps

Let k > M’ > M be such that Q™" (s,7%, ¢, (s,a0,,);mh o (s,ac,,)) has converged. We now
prove by contradiction that Wﬁﬂcm must also converge.

Suppose for k > M’, W/’i/ o (s)# 7rk+1 (s) Let 4 be the smallest index where they differ, i.e.,

y&“m

e, (5) # wfé}n( ), e, (s) =T (s). (76)
By the analyses in (iii) and (iv), ¢ must satisfy ¢ > max C,,. If Ng(i ,7_5 Cin, then by (ii),
Wf,z',ln (87 aCm) = 7Tzl'€(57 7r]ZJirlCm (Sa aCm)) = 7‘—? (37 7lei,Cm (S, G'Cm)) = 7rzl'€,Cm (S, aCm)’ (77)

contradicting 7¥ ., (s) # ¢! (s). Therefore, it must be that Nq(i) 2 Cp,

Q™ (s, W’Zﬁlcm(s,acm) ™ (s.ac,,))

= Q™ (5,751 (s.ac, )7 (s.ac,,))

> Q™ (s, e (s,ac, )imiE! (s,ac,,)) %)
=~ an (s, 7T<z cm(S ac,, )a”kﬂ(s Wﬁzc (s,ac,.)))

>y (s, Wii,cm(svacm);wk(sﬂWZi,Cm (s,ac,.)))

= Q" (s, ™ cm(S ac,, )i o (s.ac,,)).

The second line uses the fact that Q’T (s7 @) has converged; the third line is by the update rule; the
fifth line follows from the update rule, which preferentially selects the pre-update policy.

Equation (78) contradicts the fact that Q™ (s, <n o, (s,ac,,);m n o, (s;ac,,)) has already con-

verged. Therefore, for all k > M’, 7 N,Cm( s) = 7T/k\/+é (s),ie., mk .c,, converges in finitely many
steps. [
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Proof of Theorem

Proof. According to Lemma we have that 77{»" = ﬂf <; converges in a finite number of steps. Let

7 be the limit point of the sequence {77"’}?’:1. From the update rule, it follows that

QT (85 T(<i).Na () (8 ONg ()3 TN (i) (85 A (i) = MaX Q7 (8, T(<i) Na (i) (85 vy () @i) - (79)
Therefore, the limit point of {7*}2 | is a G4-locally optimal policy. O

Proof of Corollary

Proof. From the analysis in Lemma we know that V™" (s) is monotonically non-decreasing.
k . . .
Hence, V™ (s) also converges within a finite number of steps.

Suppose that for &k > M, v (s) has already converged. Assume further that G.(s, 7%*!
G.(s,#%) when k > M. This implies 71 # #*_ From the contradiction argument in Lemma
it follows that - e B N

VEo(s)=V" (s) > V" (s)=VT" (s), (80)
which contradicts the assumption that v (s) has already converged. Therefore, it must hold that
G.(s,#%1) = G.(s,7#%) forall k > M.

Consequently, when & > M, the dynamic CG eventually stabilizes into a static CG. During this
stabilization stage, the update process reduces to Algorithm By Theorem 7* converges within
a finite number of steps. Let 7 be the limit point of {77’“}?’:1. Then 7 is a G4-locally optimal policy.
Furthermore, since the ADG satisfies condition (TTJ), it follows from Theorem [4.4] that 7 is globally
optimal. O

E CONSTRUCTION OF ACTION DEPENDENCY GRAPHS

To elucidate the construction of ADGs, we present Algorithm [2] that efficiently derives an ADG from
a given CG such that the condition (TT) is satisfied.

Algorithm 2 Greedy Algorithm: Finding a Sparse ADG

Input: A CG G,

Output: An ADG G, = (N, &)

Initialize an empty graph G4 = (N, £4) with all vertices unindexed

fori =0ton —1do
Assign index n — i to a vertex among the unindexed ones, such that the size of N,((n — 1))
is minimized

end for

Construct the edge set £; by adding edges (j, i) for each vertex i € A" and each j € N,(i[*]) as

specified in

F EXPERIMENTAL DETAILS

Setup of Coordination Polymatrix Game. In matrix cooperative games, different CGs and their
corresponding sparse ADGs are shown in Figure [9] For policy iteration methods, we randomly
generate the parameters of the payoff matrices, while fixing the maximum reward to be equal to the
number of edges in the CG. Moreover, the maximum reward is obtained when all agents choose
action 1. For the MAPPO method, we use fixed payoff matrices, with the exact parameters provided
in Table[lto Table[dl

Setup of ATSC. In the ATSC environment, we conduct experiments on the maps 2x2grid,
3x3grid, and RESCO/grid4x4 provided by SUMO-RL. Based on the road network connectivity,
we design corresponding CGs, with their adjacency lists for CGs and sparse ADGs reported in Table[]
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Figure 9: The CG and sparse ADG of polymatrix coordination game.
Table 1: (D in Star Table 2: ) in Star
al\ag 0 1 2 3 4 al\ag 0 1 2 3 4
0 35 50 05 05 05 0 35 05 50 05 05
1 05 35 60 05 05 1 05 35 60 05 05
2 05 05 35 05 05 2 05 05 35 05 05
3 05 05 05 325 05 3 05 05 05 325 05
4 05 05 05 05 3.0 4 05 05 05 05 3.0
Table 3: (3 in Star Table 4: @) in Star
al\a4 0 1 2 3 4 al\a5 0 1 2 3 4
0 35 05 05 50 05 0 35 05 05 05 50
1 05 35 60 05 05 1 00 00 00 00 0.0
2 05 05 35 05 05 2 05 05 35 05 05
3 05 05 05 325 05 3 05 05 05 325 05
4 05 05 05 05 3.0 4 05 05 05 05 3.0

to Table[T0] To increase task difficulty and highlight the benefits of cooperation, we follow the idea of
Li et al.[(2021); |Bohmer et al.|(2020) to modify the reward function. Specifically, instead of assigning
each agent its own queue reward, we redefine the reward as the minimum individual reward among
its CG neighbors, thereby emphasizing the performance gap induced by cooperation.

Table 5: CG of 2x2grid Table 6: Sparse ADG of 2x2grid
Vertex Neighbors Vertex Parent nodes
0 1,2 0
1 0,3 1 0
2 0,3 2 1,0
3 1,2 3 2,1

>

Experimental Hyperparameters. Our implementation of MAPPO is based on the open-source EPy-
MARL framework Papoudakis et al.|(2021), employing the Adam optimizer for training. We use the
same hyperparameters across experiments under different ADGs, with a few critical hyperparameters
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Table 7: CG of 3x3grid Table 8: Sparse ADG of 3x3grid
Vertex Neighbors Vertex Parent nodes
0 1,3 0
1 0,2,4 1 0
2 1,5 2 1,0
3 0,4,6 3 2,1,0
4 1,3,5,7 4 3,2, 1
5 2,4,8 5 4,3,2
6 3,7 6 5,4,3
7 4,6,8 7 6,5,4
8 5,7 8 7,5
Table 9: CG of 4x4grid Table 10: Sparse ADG of 4x4grid
Vertex Neighbors Vertex Parent nodes
0 1,4 0
1 0,2,5 1 0
2 1,3,6 2 0,1
3 2,7 3 0,1,2
4 0,5,8 4 0,1,2,3
5 1,4,6,9 5 1,2,3,4
6 2,5,7,10 6 2,3,4,5
7 3,6,11 7 3,4,5,6
8 4,9,12 8 4,5,6,7
9 5,8,10, 13 9 5,6,7,8
10 6,9,11, 14 10 6,7,8,9
11 7,10, 15 11 7,8,9,10
12 8,13 12 8,9,10, 11
13 9,12, 14 13 9,10, 11, 12
14 10, 13, 15 14 10, 11, 13
15 11,14 15 11, 14

adjusted to fit each environment. These modified values are reported in Table[T1] while any unlisted
parameters follow the default EPyMARL configuration.

Table 11: Experimental Hyperparameters

learning rate  weight decay  buffer size  batch size entropy coefficient

ATSC 0.0004 0.0001 8 8 0.02
Polymatrix Game 0.0004 0.0001 16 8 0.1

Neural Network Architecture. For MAPPO with empty ADGs, we adopt the default MLP config-
urations specified in [Papoudakis et al.|(2021)); Bohmer et al.|(2020). For MAPPO with sparse and
dense ADGs, we modify the agent network architecture as follows.

Let 0; € R% denote the observational features of agent i, and a; € R% the action features of agent 7.
The first-layer hidden features are computed as:

h})i = ReLU(W10i + bl), hllh = RCLU(WQCL,‘ + bg),
where W, € R64xdo 1}, ¢ R%4*da and by, by € R5* are the weights and biases, respectively.
Next, we take the average of h}l over the dependency set Ny (i):

1
h2 = Al .
“ [Na(3)] 2 .

IEN4 (i)
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‘We then concatenate the two feature vectors and obtain

h3 = [htl)L ? hiLL
which is fed into a multilayer perceptron:
h* = ReLU(W3h? 4 b3), 2z = Wyh* + by,

where W3 € R64>128 1), € Rbwionx64 po c RO4 and by € R%in, The final output is z.
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