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Abstract

Large pre-trained models, such as large language models (LLMs), present significant resource
challenges for fine-tuning due to their extensive parameter sizes, especially for applications
in mobile systems. To address this, Low-Rank Adaptation (LoRA) has been developed to
reduce resource consumption while maintaining satisfactory fine-tuning results. Despite
its effectiveness, the original LoRA method faces the challenge of suboptimal performance.
This paper investigates the intrinsic dimension of the matrix updates approximated by the
LoRA method and reveals the performance benefits of increasing this intrinsic dimension.
By employing regularization and a gradient masking method that encourages higher intrinsic
dimension, the proposed method, termed Regularized and Masked LoRA (RM-LoRA),
achieves superior generalization performance with the same or lower trainable parameter
budget compared to the original LoRA and its latest variants across various open-source
vision and language datasets.

1 Introduction

Large pre-trained models, such as large-scale language models (LLMs), have showcased remarkable performance
across a variety of tasks in computer vision and natural language processing (Zhang et al., 2022; Brown
et al., 2020; Touvron et al., 2023; Ouyang et al., 2022). Nonetheless, fine-tuning these models for specific
downstream tasks often presents substantial resource challenges due to their extensive parameter sizes. In
this context, parameter-efficient fine-tuning (PEFT) methods have been extensively explored to alleviate
resource consumption while preserving or enhancing fine-tuned model performance (Zaken et al., 2022; Hu
et al., 2021; Li & Liang, 2021; Lester et al., 2021; Vu et al., 2022; Guo et al., 2021; Zhang et al., 2023b; Liu
et al., 2022a; Houlsby et al., 2019; Liu et al., 2022b; Sung et al., 2021; 2022; Mao et al., 2022; Lee et al., 2020).
Among these methods, Low-Rank Adaptation (LoRA), which involves freezing the pre-trained weights and
approximating updates in weight matrices using the multiplication of two low-rank matrices, has emerged
as a promising approach to balance computational efficiency and task performance during the fine-tuning
process (Hu et al., 2021).

Despite its effectiveness, LoRA fine-tuning encounters challenges in determining the optimal size of LoRA
matrices for a given model and task. On one hand, excessively small matrices, with limited number of
trainable parameters, inevitably harm training convergence and generalization performance. On the other
hand, large matrices introduce redundant trainable parameters, which could be reduced to enhance parameter
efficiency. Moreover, some studies have indicated that large LoRA matrices may exacerbate overfitting, as
redundant parameters primarily contribute to training accuracy rather than test accuracy (Qiang et al., 2024;
Karimi Mahabadi et al., 2021).

Several approaches have been proposed to determine or adaptively adjust the size of LoRA matrices, often
referred to as the LoRA rank R, for improved efficiency and generalization(Valipour et al., 2023; Benedek
& Wolf, 2024; Kopiczko et al., 2023; Ding et al., 2023; Zhang et al., 2023a). However, none of these
methods investigate the intrinsic dimension r of the approximated matrix update ∆W = BA given by the

1



Under review as submission to TMLR

product of low-rank LoRA matrices A and B. This intrinsic dimension r, instead of the previously studied
LoRA rank R, has been proven to play a crucial role in LoRA fine-tuning. Specifically, Zeng & Lee (2023)
theoretically demonstrated that for fully connected neural networks, the LoRA approximation error given
by an approximated update ∆W = BA with intrinsic dimension r is related to the r-th singular value of
the discrepancy E = Wtarget −Wfrozen between the target weight matrix and the frozen pre-trained weight
matrix. In this context, the previously studied LoRA rank R determined by the size of matrices A and B
acts as just an upper bound for ∆W’s intrinsic dimension r.

In other words, encouraging the intrinsic dimension r of ∆W to approximate the given LoRA rank R benefits
the generalization of LoRA fine-tuning under a given trainable parameter budget. Inspired by this theoretical
conclusion, this paper first adopts a regularization technique to encourage LoRA matrices to span a higher
intrinsic rank in their parameter space. Additionally, to maintain a reasonable budget of trainable parameters,
a gradient masking method is introduced to randomly mask a subset of parameters in each epoch instead
of updating all parameters in LoRA matrices. Experiments on multiple datasets have proven this method
also helps promote the growth of the intrinsic rank r and thus yields lower approximation error and better
generalization performance.

The contributions of this paper can be summarized as follows:

1. This paper extends previous theoretical bounds for LoRA approximation error from simulated
datasets to real-world datasets, providing further insights into the trade-off between LoRA rank R
and generalization performance.

2. Based on the analysis of LoRA rank and generalization performance, this paper designs a strategy for
fine-tuning LoRA matrices that encourages the growth of intrinsic rank r = rank(∆W) within the
LoRA parameter space defined by R. This strategy effectively alleviates the problem of overfitting
the training data by encouraging the LoRA matrices to explore the parameter space.

3. The experimental results across multiple open-source datasets demonstrate that this Regularized and
Masked version of LoRA (RM-LoRA) method manages to strike a better efficiency-generalization
tradeoff compared to the original LoRA method and its state-of-the-art variations, with better
generalization performance achieved with the same or lower trainable parameters budget.

2 Related Works

In attempts to address the computational challenges posed by updating the enormous amount of weights in
large pre-trained models, LoRA, proposed by Hu et al. (2021), achieves outstanding model generalization
with a significantly reduced budget of trainable parameters during fine-tuning. However, LoRA still faces
the challenges of sub-optimal performance. Previous research addressing LoRA’s main challenges is briefly
discussed as follows:

Underfitting. While LoRA has demonstrated remarkable parameter efficiency and generalization per-
formance, it may lead to insufficient fine-tuning of large-scale models with high embedding dimensions
(Hayou et al., 2024). In some cases, there is a contradictory phenomenon where a higher LoRA rank doesn’t
necessarily yield better training results than a lower LoRA rank. Much research has been devoted to further
enhancing both the performance and efficiency achieved by LoRA, including the adaptive choice of LoRA rank
(Zhang et al., 2023a; Ding et al., 2023; Valipour et al., 2023), adjustment of learning rate (Hayou et al., 2024),
random projection (Kopiczko et al., 2023), derivative-free optimization (Jin et al., 2024), and pre-trained
weights optimization (Zi et al., 2023). Nevertheless, none of these methods consider the role of LoRA updates’
intrinsic dimension in mitigating the performance gap under a given LoRA rank setting.

Overfitting. Fine-tuning large pre-trained models with a large number of parameters can easily lead to
overfitting. (Karimi Mahabadi et al., 2021). In the AdaLoRA method, the LoRA matrices of less important
pre-trained weight matrices are assigned a lower rank to prevent overfitting (Zhang et al., 2023a). However,
according to the experiments by Qiang et al. (2024), LoRA and AdaLoRA still clearly overfit the training
data as fine-tuning progresses, with decreases in training losses but increases in test losses. To alleviate the
overfitting problem, Qiang et al. (2024) developed the BiLoRA method, which iteratively trains different
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subsets of trainable parameters using different subsets of training data. Furthermore, Hayou et al. (2024)
pointed out that the overfitting of LoRA and its variants is due to some directions of LoRA matrices not
being sufficiently updated, and thus the change in model weights approximated by LoRA is restricted by the
vector (sub)space generated by the LoRA matrices’ columns at initialization.

The previous analysis of LoRA’s existing limitations and solutions gives rise to the idea and method employed
in this work. Specifically, for better performance under a given LoRA rank setting, this paper proposes a fine-
tuning strategy that promotes the growth of the intrinsic dimension of LoRA updates through regularization
and gradient masking, bridging the gap between practical performance and theoretical optimal performance.
The superiority of the two proposed techniques aligns with some of the previous studies. For example,
the proposed regularizer encourages parameter space exploration. It helps reduce the performance gap as
indicated by the performance benefits achieved by SoRA, which also tries to maintain a larger optimization
space by keeping each epoch’s sparsified components unchanged for the next epoch of updating (Ding et al.,
2023). Additionally, the gradient masking method is shown to further improve generalization performance due
to more efficient updates in certain LoRA directions. Such improvements can also be observed in DyLoRA,
which only updates one row and column in LoRA matrices in each step (Valipour et al., 2023).

3 RM-LoRA Method

3.1 Preliminary

Transformer Models. A transformer-based pre-trained model typically involves L stacked encoder/decoder
blocks, with a multi-head attention module followed by a fully connected feed-forward network (FFN) in each
block. Given an input sequence X ∈ Rn×d, the output of the multi-head attention module can be written as:

MultiHead(X) = Concat(head1, . . . , headh)WO,

with headi = Attention(Qi, Ki, Vi),

and Attention(Qi, Ki, Vi) = softmax
(

QiKT
i√

dk

)
Vi, (1)

where Qi = XWQ
i , Ki = XWK

i , and Vi = XWV
i are matrices of queries, keys, and values of headi

respectively, with projection matrices WQ
i ∈ Rd×dk , WK

i ∈ Rd×dk , WV
i ∈ Rd×dv , and WO ∈ Rhdv×d. We

refer readers to Vaswani et al. (2017) for a more comprehensive introduction to attention calculations in
general.

Given the output of the multi-head attention module, the FFN further projects the d-dimensional output X′

for each position. A two-layer FFN with a ReLU activation operates as follows:

FFN(X′) = max(0, X′Wf1 + b1)Wf2 + b2, (2)

where Wf1 ∈ Rd×dm and Wf2 ∈ Rdm×d. Moreover, a residual connection followed by layer normalization is
applied to each layer to generate the output of each transformer block given the input sequence X in the
following way:

LayerNorm(X + FFN(LayerNorm(X + MultiHead(X)))). (3)

LoRA Fine-tuning. For a pre-trained matrix W0 ∈ Rd1×d2 , LoRA, as proposed by Hu et al. (2021),
approximates its update ∆W by ∆W = BA, where A ∈ RR×d2 and B ∈ Rd1×R with rank R≪ min(d1, d2) .
During model fine-tuning, the weight matrix W0 is frozen, with only the LoRA adapters A and B being
trainable. The modified LoRA forward pass is:

h = W0x + ∆Wx = W0x + BAx. (4)

Typically, the low-rank matrice A is initialized using a random Gaussian distribution, while B is initialized to
zero, ensuring ∆W = 0 at the start of fine-tuning. Current approaches to fine-tuning large pre-trained models
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with LoRA apply a pair of matrices to all weight matrices involved in each transformer block’s multi-head
attention module and FFN He et al. (2021); Zhang et al. (2023a).

The Expressive Power of LoRA. Zeng & Lee (2023) investigates the LoRA approximation error under a
mild non-singularity assumption. To begin with, a L-layer width-D fully connected ReLU neural network is
denoted as FNNL,D(·; (Wl)L

l=1, (bl)L
l=1), where Wl ∈ RD×D are the weight matrices and bl ∈ RD are the

biases for each layer l ∈ [L]. In LoRA method, the primary objective is to adapt a pre-trained frozen FNN f0
to approximate a target FNN f̄ , which are represented as follows:

Target FNN f̄ := FNNL̄,D(·; (W̄l)L
l=1, (b̄l)L

l=1), (5)
Frozen FNN f0 := FNNL,D(·; (Wl)L

l=1, (bl)L
l=1), (6)

where W̄l ∈ RD×D and b̄l ∈ RD are the weight matrix and bias vector for the l-th layer of the target model
f̄ , while Wl ∈ RD×D and bl ∈ RD are those for the l-th layer of the pre-trained frozen model f0.

With a LoRA rank setting R ∈ [D], the frozen FNN f0 is adapted into a new model f :

Adapted FNN f := FNNL,D(·; (Wl + ∆Wl)L
l=1, (b̂l)L

l=1), (7)

where ∆Wl ∈ RD×D is the weight update approximated by LoRA with rank(∆Wl) ≤ Rl, and b̂l is the
updated bias vector or l ∈ [L]. Given that a large pre-trained model tends to be overparameterized, it is
reasonable to assume that L ≥ L̄, which means the pre-trained model is much deeper than the target model
to be approximated. Therefore, Zeng & Lee (2023) further introduces an ordered partition P = {P1, . . . ,PL̄}
to partition the L layers in the adapted model f , such that

⋃L̄
i=1 Pi = [L]. Each partition element Pi ∈ P

consists of consecutive integers l ∈ Pi, which indicate the index of layers in the adapted model that will be
used to approximate the i-th layer in the target model.

With the above definition, the following theoretical result provides an upper bound on the approximation
error for the adapted model.

Theorem 3.1 (Theorem 6 in Zeng & Lee (2023)) If
∑

l∈Pi
Rl ≥ rank(W̄i−

∏
l∈Pi

Wl) for all i ∈ [L̂],
there exists LoRA adapters (∆Wl)L

l=1 with rank(∆Wl) ≤ Rl and biases (b̂l)L
l=1 such that the adapted model

f can exactly approximate the target model f̂ .

Furthermore, define the approximation error of the i-th layer as ei = σ∑
l∈Pi

Rl+1(W̄i −
∏

l∈Pi
Wl), and the

magnitude of the weight parameters and the input as

β := max
i∈[L̄]

√
∥Σ∥F

i∏
j=1

∥∥W̄j

∥∥
F

+
i∑

j=1

i−1∏
k=j+1

∥∥W̄k

∥∥
F

∥∥b̄j

∥∥
2

 ∨√
∥Σ∥F .

Then, there exists LoRA adapters (∆Wl)L
l=1 with rank(∆Wl) ≤ Rl and biases (b̂l)L

l=1 such that for any input
x with ExxT = Σ, the approximation error can be bounded as

E
∥∥f(x)− f̄(x)

∥∥
2 ≤ β

L̄∑
i=1

max
k∈[L̄]

(∥∥W̄k

∥∥
F

+ ek

)L̄−i
ei. (8)

In the above bound, β and
∥∥W̄k

∥∥
F

capture the magnitude of the weight parameters in the target model
and the input. The LoRA rank setting Rl for all layers l ∈ [L] in the adapted model contributes to this
bound through the term ei for all i ∈ [L̄]. The following section focuses on the interconnection among the
constituting parts of the ei term and explains how this theoretical conclusion can be utilized to enhance
LoRA adaptation on real-world datasets.
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3.2 Influence of the Intrinsic Dimension of LoRA Adapter ∆W

Note that the partition Pi of the pre-trained model for the i-th layer in the target model is an intrinsic
but unknown property during adaptation, and consequently, the number and index of layers l ∈ Pi are also
unknown. Nevertheless, with a pre-trained model f0 to be adapted and the target model f̄ determined by a
given downstream task, the partition can be considered deterministic, as can the discrepancy between the
pre-trained model and the target model Ei = W̄i −

∏
l∈Pi

Wl. Consider the case where the LoRA rank
setting for each layer l ∈ Pi is the same as R. The ei term in Equation 8 can be rewritten as:

ei,rank(∆Wl∈Pi
)≤R = σ∑

l∈Pi
R+1(Ei) for each layer i ∈ [L̄], (9)

where rank(∆Wl∈Pi) ≤ R represents the LoRA adapter for each layer l ∈ Pi satisfies the rank constraint
rank(∆Wl) ≤ R.

Clearly, increasing rank(∆Wl) helps relax the constraint on LoRA rank R to achieve a certain level
of approximation error. For example, consider two LoRA rank settings R1 and R2 with R1 < R2. If
rank(∆Wl) ≤ R1 < R2, then ei,rank(∆Wl∈Pi

)≤R2 degenerates to ei,rank(∆Wl∈Pi
)≤R1 for i ∈ [L̄], despite the

larger size of LoRA matrices under the LoRA setting of R2. In this case, LoRA rank R1 and R2 yield the
same LoRA approximation error E∥f(x)− f̄(x)∥2 according to Equation 8.

3.3 Regularization on LoRA Weights

Let a pair of LoRA low-rank matrices be denoted as WA and WB, respectively. To enforce the growth in
rank of ∆W = WBWA, the following regularizer is first used to encourage WA and WB to be orthogonal:

Reg(WA, WB) = ∥WA(WA)⊤ − I∥2
F + ∥(WB)⊤WB − I∥2

F . (10)

The orthogonality of WA and WB helps increase the rank(WA) and rank(WB). According to the lower
bound for the rank of the matrix product, for matrices A ∈ RR×d2 and B ∈ Rd1×R, the rank of their product
matrix C = BA satisfies rank(C) ≥ max(rank(A) + rank(B)−R, 0). This lower bound ensures the growth of
the intrinsic rank of the LoRA adapter ∆W = WAWB as the rank(WA) and rank(WB) increase with the
regularizer shown in Equation 10. Note that there exist other alternative regularizers that theoretically can
also encourage the growth of rank(∆W), but are infeasible in reality due to considerations of differentiability,
numerical stability, and computational costs1.

3.4 Gradient Masking for Partial Updates

The gradient masking algorithm in RM-LoRA is designed to perform partial updates in LoRA matrices. The
algorithm takes as input the total number of steps T , the LoRA rank R, and the number of directions r̂ to
update in each step. In each training step t, it samples a mini-batch of data ξt and computes the gradients
∇ξt

WA
t and ∇ξt

WB
t for each pair of LoRA weight matrices. The corresponding gradient masks are first

initialized to zero, before a set Rt of r̂ distinct directions is randomly selected. The RM-LoRA method then
sets the relevant entries in the gradient masks to one according to the selected directions. These masks are
applied to the gradients to restrict the update directions. Finally, the algorithm updates the weight matrices
WA

t and WB
t using the masked gradients, thus achieving the partial update of LoRA weight matrices. The

complete process of gradient masking is summarized in Algorithm 1.

4 Experiments

4.1 Experimental Setup

The details of the experiment for the evaluation of the proposed RM-LoRA method are outlined as follows:
1The nuclear (trace) norm involves expensive computation for singular value decomposition, especially with large matrices.

Regularization on the determinants suffers from numerical instability since the determinant calculation is highly sensitive to
small changes in the matrix elements. Constraints on eigenvalues or singular values of the matrix are not directly differentiable.
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Algorithm 1 Gradient Masking Algorithm
1: Input: Total steps T , LoRA rank R, number of updated directions r̂.
2: for t = 0 to T − 1 do
3: for each pair of LoRA weight matrices (WA

t , WB
t ) in the model do

4: Sample a mini-batch data ξt and compute the gradients (∇ξtWA
t ,∇ξtWB

t );
5: Initialize gradient masks (MA

t , MB
t )← 0 with the same shape as(∇ξt

WA
t ,∇ξt

WB
t );

6: Construct the set Rt by randomly selecting r̂ distinct integers from {1, 2, . . . , R}.
7: for each i in Rt do
8: MA

t [i, j] = 1 for all j = 1, 2, . . . , R.
9: end for

10: for each j in Rt do
11: MB

t [i, j] = 1 for all i = 1, 2, . . . , R.
12: end for
13: Apply gradient mask ∇ξt

WA
t ← ∇ξt

WA
t ⊙MA

t , ∇ξt
WB

t ← ∇ξt
WB

t ⊙MB
t .

14: Perform optimization step WA
t = WA

t − η∇ξt
WA

t , WB
t = WB

t − η∇ξt
WB

t .
15: end for
16: end for
17: Output: Updated LoRA weight matrices (WA

T , WB
T ) for each fine-tuned module.

Models and Datasets. This paper compares our proposed RM-LoRA with the original LoRA and its
recent variants across both computer vision and natural language tasks. For the vision task, a Vision
Transformer (ViT) model Dosovitskiy et al. (2020) is fine-tuned on the CIFAR-100 dataset. For language
tasks, a DeBERTaV3 model He et al. (2022) is fine-tuned on the General Language Understanding Evaluation
(GLUE) benchmark for language understanding Wang et al. (2019) and Stanford Question Answering Dataset
(SQuAD 1.1) for question answering Rajpurkar et al. (2016).

Baselines. The following baselines are implemented within the same HuggingFace’s Transformers framework
Wolf et al. (2019). LoRA and its variants are all implemented using the LoRA public code-base2 for fair
comparison:

• Full fine-tuning (FT) uses the pre-trained model as the initialization point and updates all parameters in
the model through gradient backpropagation.

• LoRA (Hu et al., 2021) approximates the incremental updates in pre-trained model weights by using the
product of two trainable matrices with rank R.

• AdaLoRA (Zhang et al., 2023a) uses the product of three small matrices in the form of singular value
decomposition to parameterize the updates in pre-trained model weights, and then prunes the singular
values of lower importance in the diagonal matrix to achieve a pre-set total parameter budget b across all
adapter weight matrices.

• SoRA (Ding et al., 2023) parameterizes the updates in pre-trained model weights similarly to AdaLoRA,
with an additional gate unit in between, and controls the sparsity of the gate by pruning components with
absolute values lower than a pre-set threshold λ.

For a fair comparison of all the LoRA variants, including our proposed RM-LoRA method, their performance
is evaluated under the same parameter budget during inference in the following part of this paper.

4.2 Image Classification

Figure 1 illustrates the results achieved by the ViT model on the CIFAR-100 dataset, serving as a preliminary
measure of the performance of LoRA and the enhancement techniques for LoRA method proposed in this
paper. To simulate the theoretical results based on the fully connected layer, only the last classification layer

2https://github.com/microsoft/LoRA
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Figure 1: Results with ViT model on CIFAR-100.

Table 1: Results with DeBERTaV3 model on GLUE benchmark

Method # T / I-Params
CoLA

Mcc

STS-B

Pearson / Spearman

QNLI

Acc

MNLI

Acc

WNLI

Acc

RTE

Acc

MRPC

Acc / F1

QQP

Acc / F1

SST-2

Acc

Full FT 184M / 184M 0.668 0.892 / 0.890 0.940 0.907 0.563 0.852 0.853 / 0.891 0.918 / 0.891 0.934

LoRAR=4 1.26M / 1.26M 0.680 0.912 / 0.912 0.939 0.901 0.718 0.856 0.892 / 0.922 0.912 / 0.883 0.934

AdaLoRA 1.92M / 1.26M 0.663 0.905 / 0.909 0.934 0.904 0.563 0.845 0.880 / 0.911 0.912 / 0.884 0.955

SoRA 1.92M / 1.38M 0.655 0.905 / 0.907 0.926 0.889 0.690 0.848 0.895 / 0.924 0.820 / 0.762 0.820

R-LoRAR=4 1.26M / 1.26M 0.685 0.914 / 0.914 0.941 0.903 0.718 0.863 0.897 / 0.925 0.917 / 0.889 0.943

RM-LoRAR=4 1.26M / 1.26M 0.689 0.915 / 0.915 0.942 0.906 0.732 0.866 0.892 / 0.922 0.913 / 0.884 0.943

LoRAR=8 1.92M / 1.92M 0.672 0.913 / 0.914 0.938 0.900 0.718 0.856 0.900 / 0.928 0.916 / 0.889 0.936

AdaLoRA 3.25M / 1.92M 0.664 0.912 / 0.913 0.942 0.906 0.578 0.841 0.897 / 0.924 0.912 / 0.885 0.948

SoRA 3.25M / 2.24M 0.665 0.907 / 0.910 0.930 0.895 0.690 0.841 0.897 / 0.927 0.819 / 0.761 0.826

R-LoRAR=8 1.92M / 1.92M 0.694 0.914 / 0.914 0.943 0.904 0.732 0.863 0.907 / 0.933 0.917 / 0.890 0.940

RM-LoRAR=8 1.92M / 1.92M 0.688 0.915 / 0.915 0.944 0.907 0.747 0.870 0.914 / 0.938 0.913 / 0.885 0.948

of the ViT model is fine-tuned by LoRA low-rank matrices. The four sub-figures of Figure 1 display the test
loss, test accuracy, train accuracy, and generalization error (measured by train accuracy minus test accuracy)
for each method respectively.

As observed in Figure 1, the regularization and gradient masking techniques proposed in this paper both
effectively mitigate overfitting and achieve higher accuracy on the test dataset. Specifically, Regularized
LoRA (R-LoRA) and Gradient Masking LoRA (GM-LoRA) represent the application of each technique
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Table 2: Results with DeBERTaV3 model on SQuAD

Method # T / I-Rank # T / I-Params EM F1 Score

Full FT N/A N/A 184M 184M 87.862 93.651

LoRAR=8 8 8 1.33M 1.33M 87.512 93.329

AdaLoRA 16 8 2.66M 1.33M 86.547 92.883

SoRAλ2=5e−4 16 16 2.66M 1.28M 82.753 90.499

RM-LoRAR=8 8 8 1.33M 1.33M 87.900 93.674

LoRAR = 4 4 4 0.67M 0.67M 87.446 93.352

AdaLoRA 8 4 1.33M 0.67M 86.500 92.830

SoRAλ2=5e−4 8 8 1.33M 0.61M 79.660 88.030

RM-LoRAR=4 4 4 0.67M 0.67M 87.597 93.508

Table 3: Hyperparameters for GLUE tasks

Datasets
Learning Rate

Batch Size # Epochs
SoRA Parameters

FT LoRA λ Sparsity

CoLA 0.00001 0.001 32 3 0.001 68.96%

SST-2 0.00001 0.001 32 3 0.005 53.90%

MRPC 0.00001 0.001 32 5 0.001 79.27%

STS-B 0.00001 0.001 32 3 0.001 80.62%

QQP 0.00001 0.001 32 3 0.005 53.90%

QNLI 0.00001 0.001 32 3 0.0001 58.06%

MNLI 0.00001 0.001 32 3 0.005 64.77%

WNLI 0.00001 0.001 32 5 0.01 62.53%

RTE 0.00001 0.001 32 3 0.005 64.23%

individually, while RM-LoRA combines them together as described in Section 3. Furthermore, Table 4
presents the orthogonal loss ∥∆W(∆W)⊤ − I∥2

F of ∆W after being fine-tuned by each method, which
describes its spatial distribution. The results in Table 4 demonstrate that the orthogonal penalty term for the
LoRA matrices WA and WB in Eq. 10 effectively promotes the orthogonality of their product. Meanwhile, as
the orthogonal loss of ∆W decreases, the accuracy of LoRA fine-tuning on the test data increases. Therefore,
by effectively promoting the reduction of ∆W’s orthogonal loss, the RM-LoRA method proposed in this
paper achieves the best generalization performance across all rank settings.

4.3 Natural Language Understanding

The GLUE benchmark includes two single-sentence classification tasks (CoLA, SST-2), three similarity and
paraphrase tasks (MRPC, STS-B, QQP), and four natural language inference tasks (QNLI, WNLI, MNLI,
RTE). The proposed RM-LoRA method is compared against the baseline methods under multiple LoRA
rank settings to demonstrate its superiority. Table 1 shows the performance achieved by different methods on
GLUE tasks, as well as the number of trainable and inference parameters (# T / I - Params respectively).
The best result for each task is highlighted in bold. R-LoRA with the proposed regularizer consistently
achieves performance gains under the same or lower inference parameter budget compared to other methods
in most cases. Furthermore, RM-LoRA with gradient masking outperforms R-LoRA in a majority of task
settings. The specific fine-tuning hyperparameters adopted by each method on the GLUE benchmark are
summarized in Table 3.
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Table 4: Correlation between the orthogonality of ∆W and generalization performance

Method Rank of ∆W Orthogonality Loss of ∆W Test Acc

LoRAR=32 29 585.835 77.024

GM-LoRAR=32 29 277.919 77.772

R-LoRAR=32 30 122.079 78.050

RM-LoRAR=32 30 95.240 78.054

LoRAR=64 55 410.154 78.491

GM-LoRAR=64 52 175.010 79.662

R-LoRAR=64 59 79.876 79.721

RM-LoRAR=64 57 58.010 80.092

LoRAR=80 64 342.197 78.190

GM-LoRAR=80 59 155.010 79.730

R-LoRAR=80 72 68.970 79.680

RM-LoRAR=80 69 48.832 80.210

4.4 Question Answering

The performance of different methods using the DeBERTaV3 model on the SQuAD dataset are shown in
Table 2. Similarly, the proposed RM-LoRA method outperforms other baselines under the same or lower
inference parameter budget across varying LoRA rank settings, with EM denoting the average exact match
score and F1 referring to the average F1 score. These results highlight that the RM-LoRA method consistently
improves LoRA’s fine-tuning performance across various benchmarks. The capability of achieving better or
comparable performance with a reduced parameter budget is especially significant for practical deployment
in mobile systems, where efficiency and resource utilization are crucial factors.

5 Conclusion

In conclusion, the exploration of the intrinsic dimension in LoRA fine-tuning reveals critical insights into
optimizing parameter efficiency and enhancing model generalization. The theoretical foundation indicates
that the intrinsic dimension of the approximated matrix updates is more pivotal in achieving effective LoRA
fine-tuning than the previously emphasized LoRA rank. By employing a regularization technique and a
gradient masking method to encourage parameter space exploration while controlling the trainable parameters
budget, this paper presents an advanced low-rank adaptation strategy that addresses the challenges of
sub-optimal performance associated with LoRA. The better generalization performance achieved by the
proposed RM-LoRA under the same or lower parameter budget compared to other methods represents
progress in the field of parameter-efficient fine-tuning for large pre-trained models.
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