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Abstract

We introduce Contextual Vision Transformers (ContextViT), a method designed to gen-
erate robust image representations for datasets experiencing shifts in latent factors across
various groups. Derived from the concept of in-context learning, ContextViT incorporates
an additional context token to encapsulate group-specific information. This integration
allows the model to adjust the image representation in accordance with the group-specific
context. Specifically, for a given input image, ContextViT maps images with identical
group membership into this context token, which is appended to the input image tokens.
Additionally, we introduce a context inference network to predict such tokens on-the-fly,
given a batch of samples from the group. This enables ContextViT to adapt to new testing
distributions during inference time. We demonstrate the efficacy of ContextViT across a
wide range of applications. In supervised fine-tuning, we show that augmenting pre-trained
ViTs with our proposed context conditioning mechanism results in consistent improvements
in out-of-distribution generalization on iWildCam and FMoW. We also investigate self-
supervised representation learning with ContextViT. Our experiments on the Camelyon17
pathology imaging benchmark and the JUMP-CP microscopy imaging benchmark demon-
strate that ContextViT excels in learning stable image featurizations amidst distribution
shift, consistently outperforming its ViT counterpart.

1 Introduction

In recent years, Vision Transformers (ViTs) have emerged as a powerful tool for image representation
learning (Dosovitskiy et al.). However, real-world datasets often exhibit structured variations or shifts in
latent factors across different groups. These shifts, which occur when known or unknown factors of variation
change during data acquisition, can lead to inaccurate or biased predictions when the model encounters new
data. To address this issue, we introduce Contextual Vision Transformers (ContextViT), a novel method that
generates robust feature representations for images, effectively handling variation in underlying latent factors.

Transformer-based models can perform test-time generalization by integrating available information through
in-context learning (Brown et al., |2020]), where input-label pairs are added to the transformer inputs. In this
work, we leverage this principle to address distribution shifts at test time. However, direct application of this
strategy presents challenges for vision transformers due to the quadratic scaling of image patch tokens with
input resolution.

Derived from the principle of in-context learning, we propose ContextViT, a variant of vision transformer
that condenses the relevant context into a single token. This context token is shared across all images with
the same underlying distribution and varies across different distributions. For instance, in medical imaging,
this could correspond to learning a single hospital token for each hospital. The context token is appended to
the input sequence of the transformer, conditioning the resulting image representation on the context. This
approach reduces the need for conditioning the model on extra input examples and enables efficient inference
at test time. Despite these advantages, one limitation remains: it does not allow for generalization to unseen
hospitals in absence of inferred context tokens.
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To overcome this limitation, we introduce a context inference network that estimates these tokens on-the-fly
from the input images. Given a group of images from the same context (e.g., a hospital), the context inference
network predicts the token that encapsulates the characteristics of this context. We argue that this procedure
should be applied iteratively across all transformer layers, a process we term layer-wise context conditioning.
This is because earlier transformer layers capture local image patterns, while later layers capture more abstract
concepts |Ghiasi et al.| (2022). Adjusting the covariates at the first layer is not sufficient to accommodate the
covariate shift, which can be a concept-level change.

Our empirical analysis begins with supervised fine-tuning, where we integrate our context conditioning
mechanism with pre-trained ViTs. Our results show consistent performance gains across three pre-trained
ViT models, namely DINO (Caron et al., [2021]), SWAG (Li et al., 2016, and CLIP (Radford et al.,2021)), on
the WILDS benchmark iWildCam (Beery et all 2021) and FMoW (Christie et al., 2018]). We then explore
the integration of self-supervised representation learning with ContextViT. On the microscopy cell imaging
benchmark JUMP-CP [Haghighi et al.| (2022]), we observe an interesting phenomenon: while the performance
of ViT decreases due to the batch effect as we introduce more data plates for pre-training, the performance of
ContextViT steadily increases with more data. On the histopathology benchmark Camelyon17-WILDS (Bandi
et al., 2018} |Sagawa et al.), ContextViT significantly improves the performance on unseen hospitals, setting a
new state-of-the-art.

The main contributions of this paper are:

1. We propose ContextViT, an adaptation of ViT for producing robust image representations using
learned context tokens to capture distribution shift. We derive ContextViT from in-context learning
under distribution shift.

2. We incorporate a context inference mechanism into ContextViT, enhancing its ability to adapt and
generalize to previously unseen distributions on the fly.

3. We present layer-wise context conditioning for ContextViT, a process that uses per-layer context
tokens iteratively across all transformer layers to handle concept-level changes across distributions.

4. We explore the integration of self-supervised learning with cell-imaging and histopathology datasets,
demonstrating significant performance improvements under distribution shifts and establishing a new
state-of-the-art.

2 Related Work

In-context learning Our work draws inspiration from and expands the idea of in-context learning (Brown
et all [2020). We realize a form of conditioning that can position transformer-based models to perform
test-time adaptation to new tasks, but instead of conditioning on a dataset explicitly for each query, we infer
context tokens that are shareable across a group. Like [Xie et al|(2022), we interpret in-context learning via
an implicit generative model. The key distinction lies in our focus on adaptation to distribution shift, and
our expansion of the framework to include explicit context tokens.

There is a substantial body of previous work on conditioning transformers with extra tokens. |Li & Liang
(2021)) introduced prefix tuning as a method to adapt a frozen Transformer model for various downstream
tasks. Xu et al. (2022)); |Li et al.|(2021); Mao et al.| (2022a)) employed additional tokens to encode extra
domain knowledge, such as multi-modal information from language. We focus on the scenario where we do
not assume existence multi-modal measurements and our domain knowledge is structural (knowing group
membership). White et al.| (2022)) explored hierarchical models for transformers in the context of language
modeling, highlighting similar group-specific effects and connections to mixed models. |Zhang et al.| (2023);
Jia et al| (2022); [Zhou et al.| (2022) learns extra prompt tokens for different downstream imaging applications.
ContextViT distinguishes itself by introducing the conditioning mechanism based on the group membership
of the data. Unlike previous approaches, ContextViT derives context information directly from the input
image and applies context conditioning at every layer of the transformer encoder. This enables ContextViT
to effectively generalize across unseen data groups.
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Figure 1: Illustration of ContextViT. For clarity, this figure depicts only two layers of the Transformer. Model
components are indicated by grey-colored blocks, while white blocks represent the input, hidden, and output
representations. Prior to processing by each Transformer layer, ContextViT employs a context inference
model (that aggregates information across all image patches within the current batch sharing identical group
membership) to generate the context token.

Robust learning Robustness in machine learning can be interpreted in various ways. Mahmood et al.|
discovered that ViTs are vulnerable to white-box adversarial attacks Hendrycks & Dietterich| (2019).
Consequently, numerous strategies have been proposed to enhance the adversarial robustness of ViTs
ViTs (Mao et al., |2022b; |Chefer et al., 2022).

In this study, we concentrate on robustness in the face of systematic distribution shifts. Test time adaptation
is a widely adopted approach (Sun et al [2020; Liu et al.l 2021} [Zhang et all [2022)). |Li et al.| (2022)) developed
a matching network to select the most suitable pretrained models for testing. The use of batch normalization
at test time has also been shown to improve the generalization of CNN across various applications
let al., 2021} |[Nado et al.| 2020; |Li et al., 2016} [Schneider et al., 2020; Lin & Lul [2022; Kaku et al., 2020). Our
approach, however, diverges from directly normalizing feature statistics or training multiple expert models.
Instead, we incorporate context information as an additional latent input to the Transformer layer. Finally,
it’s worth noting that the representations generated by ContextViT can be seamlessly integrated with robust
learning algorithms such as Group Distributionally Robust Optimization (Sagawa et all [2019) and Invariant
Risk Minimization (Arjovsky et al.l |2020), should users desire a specific form of invariance.

3 Vision Transformers (ViTs)

Patch token embeddings Let x € RF*WX*C he an image with C' channels and resolution H by W. ViTs
first partition the image into a sequence of non-overlapping 2D patches [z, , ..., Zpy], each with resolution
(Hp, W) and represented by z,, € RI»>xWpxC  ViTs treat each image patch as a “1D token” for the
Transformer, and we obtain patch token embeddings by flattening each patch z,, into a 1D vector and
applying a trainable affine projection. The resulting patch token sequence is denoted as [t,,, ..., tp,]| where
each t,, € RY.

CLS token and position embeddings In ViTs, we prepend a trainable CLS token tcps to the input sequence.
This enables the Transformer encoder to capture global image features by aggregating information across the
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patch sequence. We retain positional information for each patch token using a trainable 1D position embedding
p;. The input sequence for the Transformer encoder is thus given by [ters, tp, + POSpys - - -, tpy + DOSpy |-

Transformer The Transformer layer (Vaswani et al.,2017) is a critical component of the ViT architecture.
It comprises a self-attention layer and a feed-forward layer, each with residual connections (He et al., [2016)
and layer normalization (Ba et al., |2016). Self-attention enables the model to capture dependencies between
patches in the input image by embedding each patch based on its similarity to other patches. ViTs utilize a
stack of Transformer layers (1), ... T(X) to encode the input sequence into a sequence of 1D features:

L
[y((JLs)v y](af)? s 7y1(;§v)] = T(L) T T(Q)T(l)([tCLS’ tPl + POSp,5 - - 7tpN +p05PN])'

4 Contextual Vision Transformer (ContextViT)

Let D. denote a collection of samples from a distribution P,.(-) under a context with index ¢, which can point
to an unobserved environmental effect, a set of covariates such as experimental conditions, or another factor
of variation with a scope over the set D, that systematically shapes its distribution. Our goal is as follows:
given a collection of such related datasets from distributions with varying factors of variation, captured as
varying contexts ¢, we would like to learn a model that can generalize gracefully across these different domains
and ideally adapt to new contexts c* during test time.

We assume that we observe data from multiple distributions jointly, each varying by a context ¢, so that
our dataset is comprised by their collection D = {Dy,...,D.}. We aim to learn a single shared ViT model,
parameterized by 6, across all sub-datasets with varying contexts. We denote a tuple {x,y, c} as the data
describing the sample, where x denotes an input, the image, and y denotes an output variable such as a
label or an unknown embedding, and ¢ denoting group membership for each datum to each sub-distribution
P.(-). Over the next sections we will explain our assumptions for ContextViT and will present practical
implementations.

4.1 In-Context Model

A popular paradigm for incorporating test-time conditioning in Transformers is given by in-context learn-
ing (Brown et al.l |2020]) and prompt-conditioning (Radford et al., [2021). To translate that paradigm to our
task, we incorporate group membership to the representation learning task by conditioning on the members
of the group, assuming the following factorization of the joint distribution over all data:

pyix,o)=11 II PwlzDe0). (1)

¢ {z,y}eD,

Here, we would concatenate all images belonging to context ¢ to the query image z. During ViT processing,
these images are patchified and represented as patch tokens, resulting in an input to the Transformer consisting
of the tokens belonging to the query image and to the context images. This process is closest to in-context
reason&lng as commonly applied for LLMs, but ported over to the scenario of representation learning for
vision

4.2 Context-Token Model

For the sake of exposition, let’s assume an implicit hierarchical generative model of images with shared
global latent variables per group t. € R? which summarizes the shared latent characteristics of D,. This
variable represents an embedding of the context (which can characterize the environment or implicit covariates
determining each distribution, or other factors of variation shifting in ¢) and is treated as a context token,

'In our formulation, we exclusively utilize the data z as the context, rather than the data-label pair (x, y. This decision is
informed by the practical reality that, while test distribution labels may be scarce or entirely absent, data itself is typically
abundant.
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Figure 2: ContextViT inference (solid line) vs. the implicit generative model (dotted line)

see Fig. Such models are common in generative modeling when environmental effects or style-class
disentanglement are proposed. The context token ¢, can be characterized by its posterior distribution given
the members of the group P(t.|D.) and can then be utilized in an adjusted model P(y|z,t.;0) to explain the
impact of D..

Upon closer inspection, it is evident that the in-context-learning process described in Sec. [£.1] can be interpreted
as inferring and marginalizing the posterior distribution P(t.|D,) of the context-specific variable t. as shown
in the following:

P(y|z.D,) = / P(yl.te; 0)P(t.|D,) dt.. (2)

Under this viewpoint using Eq[2] we can now see that the context token is shared over all members of a
distribution with index ¢ (similar to a variable shared in a plate in graphical models), allowing us to rewrite
Eq[T] such that we can factorize the dependence of the model on D, for each data point given this context
token:

P(Y|X,C) = H/Pt|D) Il Pwl.t:o)at (3)

{z,y}€D.

We now have established equivalence between the in-context model, and performing inference in an implicit
forward generative process which assumes existence of a context token as an additional factor of variation
capturing distribution shifts for each group sharing a context. We note that recent work proposes a deeply
related interpretation of in-context learning in (Xie et al., [2022]) supporting our view of an implicit probabilistic
model.

4.3 Oracle-Context Model

To simplify the setup for use in a ViT framework, we devise simpler formulations of the model and perform
maximum likelihood inference over the context token, simplifying Eq. [3] to:

rylx,o)=I[ Il Pwlit.o), (4)

¢ {z,y}€D.

where t. now is a shared parameter that can be inferred per existing group during training. We denote this
model the Oracle-Context Model, since it only assumes knowledge of the indicator ¢ about which group an
image belongs to, and does not require access to the other members of the group.

We can instantiate this oracle model P(y|z;t.,#) by conditioning the ViTs with a learnable context token ¢,
and append it to the input sequence of the Transformer: [tors, tc, t1 + posi, ..., tx + posy].

The limitation, however, is that such a method cannot be applied during test-time beyond known distributions,
since it lacks the ability to infer the token embedding without prior exposure to examples from this group
during the training phase.
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4.4 Context Inference Model

We overcome this limitation by closer matching the objective and assuming a model that performs amortized
inference over the context-token parameters on the fly given observations D, by utilizing an inference network
h(-;¢). Concretely, we will again simplify p(t.|D.) to be given by maximum likelihood but this time also
utilize D, by posing:

prylx,o)=1] [I Pwlx.t:0), witht.=h(De; ¢). (5)

¢ {zy}€D.

Here, h(-;¢) infers t. on the fly when observing D., and can indeed also be used during test time on a
previous unknown distribution with context ¢* time given a set of samples D.«. We note that the assumption
of availability of samples D, during testing is highly realistic and common, as datasets D, (comprised of
observed inputs sharing a context) typically appear in groups for free also during test time, for example one
would never image a single cell in an experiment but a collection under fixed conditions, and the expensive
step is to assess their unknown mapping to output labels per group. In our experiments we will show how
contexts ¢ can also be persistent objects, such as hospitals having measurement processes for pathology
images, that easily allow us to access samples from the set of measurements given context c.

There are multiple options available for instantiating the inference model h(:; @) (refer to the Appendix
for more details). In the case of ContextViT (Figure , the inference model h(-;¢) comprises three key
components:

Mean pooling Given an image x € D, with its corresponding patch embeddings ¢,,, a direct way to obtain
the context token t. is to aggregate the patch embeddings of all images in D, through an average pooling
operation 1" = pean (P, ) = ﬁ > e, % Zmp_ ez tp;- The input sequence for the image x would then
be represented as [tcs, (9", 1 + posy, ..., tN + po§ ~]. In practice, instead of pooling over the entire D, we
apply mean pooling over BN D, where B is the current batch.

Linear transformation with gradients detaching To further enhance the context representation, we
introduce a trainable linear transformation to the pooled representation. In order to prevent the patch
embeddings from being penalized by the context inference model, we detach their gradients. This results in
the expression hine¥ (D.; b, W) := b+ W - detach(t™e").

Layerwise context conditioning Recent work (Ghiasi et al., [2022]) has shown that Transformer features
progress from abstract patterns in early layers to concrete objects in later layers. We explore the application
of context conditioning beyond the input layer driven by the hypothesis that patch embeddings may not
be able to capture higher-level concepts. For the I-th Transformer layer, we use y) to denote its output
and fo) to denote the collection of hidden patch embeddings of context c. We propose layerwise context
conditioning which performs amortized inference over context-token parameters for each layer in the ViT
instead of just propagating the input-layer token:

L
POy = wite) = [[ PPy 507),  with ¢! = n(DD; D).
=1

For the [-th Transformer layer, we can express the layerwise context conditioning as

1 -
[() @ 0 (l)] T(l)([( 1) t(l 1)

Yersr Ye 7yp17"'7ypN

(I-1) (1= 1)]).

aypl 7"'7ypN

5 Experiments

We demonstrate the utilities of ContextViT across a variety of applications. We start with the common
supervised fine-tuning setting where we augment three existing pre-trained ViTs with our context inference
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Table 1: OOD accuracy on iWIldCam and worst-region OOD accuracy on FMoW for supervised fine-tuning
(FT). Augmenting existing pre-trained ViTs with our context inference model consistently improves the out-of-
distribution generalization performance. Previous work: FLYP (Goyal et al.l |2022), Model Soups (Wortsman,
et al.| [2022)), FT ViT (Wortsman et al.| 2022} Kumar et al., [2022).

iWildCam FMoW
DINO SWAG CLIP DINO SWAG CLIP

ViT-S/8 ViT-B/16 ViT-L/14 ViT-S/8 ViT-B/16 ViT-L/14
FLYP — — 76.240.4 — — _
Model Soups — — 79‘3;‘:0,3 — — 47.6i0A3
FT ViT — — 783411 — — 49.9
Our implementations
FT ViT 75.T+0.2 775105 81.540.2  35.0+0.2 39.840.5 46.641.1
FT ContextViT (w/o layerwise) 77.5+0.2 78.640.4 81.940.1 37.310.6 41.3141.0 49.140.7
FT COHtEXtViT 77.7i03 79.6i()‘6 82.9i03 37-7i0A5 41-4i043 49.9i0A4

model (Section . Next we experiment ContextViT with self-supervised representation learning. We
demonstrate the importance of context conditioning for both in-distribution generalization [5.2] and out-
of-distribution generalization We present our ablation study and analysis in Section [5.3} Due to the
constraints of space, we kindly direct our readers to the Appendix for the pseudo code implementation details.
We will release our code and data for reproducibility.

5.1 Fine-tuning pre-trained ViTs with context conditioning

To evaluate robustness over data shifts, we consider two image classification datasets from the WILDS
benchmarks (Koh et al.l 2021): iWildCam (Beery et al.l 2021) and FMoW (Christie et al., |2018). In
iWildCam, the task is to classify the animal species (182-way classification) from images taken by different
cameeras. We use the camera trap id for context inference and report the testing accuracy on unseen camera
traps. In FMoW, the task is to classify the land use of a satellite image (62-way classification). We use the
region id for context inference and report the worst-region accuracy for image from the testing time period.

We consider three existing pre-trained ViT models, each with a different number of parameters: 1) DINO
ViT-S/8 (Caron et al., 2021), which is pre-trained on ImageNet with self-distillation between a teacher
and a student network. 2) SWAG ViT-B/16 (Singh et al., 2022)), which is pre-trained on IG3.6B using
weak supervision (hashtags from Instagram). 3) CLIP ViT-L/14, which is pre-trained on the Multi-modal
WeblImageText using language-image contrastive learning. Despite their differences in pre-training objectives
and datasets, these models share the same ViT backbone. Therefore we can augment these pre-trained
models with our proposed context conditioning mechanism and fine-tune the combined ContextViT jointly
with empirical risk minimization.

Table (1| presents our results for supervised fine-tuning. We note that our direct fine-tuning baseline (using
CLIP ViT-L/14) outperforms the number reported by Wortsman et al.| (2022) on iWildCam (81.5 vs. 78.3)
and underperforms the number reported by Kumar et al.| (2022) on FMoW (46.6 vs. 49.9). We think this is
likely caused by the differences in the implementation details (data augmentation, learning rate scheduling,
etc.), and unfortunately we cannot find the configuration online to reproduce the exact numbers. Nevertheless,
upon comparing our implementations, we make the following observations: 1) Smaller ViTs exhibit inferior
generalization compared to larger ViTs; 2) Incorporating our context inference model consistently enhances
the performance of ViTs; 3) Layerwise context inference further enhances generalization.

5.2 In-distribution generalization with self-supervised learning

Microscopy imaging with cell painting has demonstrated its effectiveness in studying the effects of cellular
perturbations (Haghighi et al., [2022} [Moshkov et al.| 2022; [Sivanandan et al). Despite meticulous regulation of
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Table 2: Accuracy of 160-way gene perturbation classification for three cell plates in JUMP-CP. For each
plate, we train a classifier (one-layer MLP) on top of the pre-trained DINO embeddings and evaluate its held
out performance. The DINO embeddings are pre-trained on either a single plate BRO0116991 (first section)
or all three plates combined (second section).

Method BR00116991 BR00116993 BR00117000
DINO pre-training on BR00116991 only

ViT-S/16 56.5 42.7 46.8
DINO pre-training on BR00116991 € BR00116993 & BR00117000

ViT-S/16 53.6 43.5 45.6
ContextViT-S/16 57.7 48.0 48.8

experimental parameters like cell density and exposure time, technical artifacts can still confound measurements
from these screens across different batches. Learning a robust cell representation that can effectively handle
batch variations remains an ongoing challenge.

Dataset We consider three cell plates (BR0O0116991, BRO0116993, BR00117000) from the JUMP-CP dataset
released by the JUMP-Cell Painting Consortium (Chandrasekaran et al., [2022)). Each plate consists of 384
wells with perturbations (either via a chemical compound or a crispr guide) targeted at 160 different genes.
Our input data consists of single-cell images: 229, 228 images for BR0O0116991, 226, 311 images for BR0O0116993
and 239, 347 images for BRO0117000. We note that here each single-cell image has dimension 224 x 224 x 8 (5
fluorescence channels and 3 brightfield channels). For each plate, we split the images randomly into training
(40%), validation (10%) and testing (50%). We use the plate id for context inference.

Results For each model, we use DINO (Caron et all 2021)) to pre-train the ViT and ContextViT from
scratch for 100 epochs. Once pre-training is completed, we freeze the backbone parameters and attach an
MLP (with one hidden ReLU layer of dimension 384) to predict the targeted gene of the cell. Given the
unique nature of each plate, we train an individual MLP classifier for each separate plate using the training
split of that specific plate, and subsequently report the corresponding testing accuracy in Table [2}

We note that the representation learned by DINO on a single plate (BR0O0116991) exhibits poor generalization
across plates (42.7 for BR00116993 and 46.8 for BRO0117000). Moreover, directly combining all three plates for
pre-training results in a degradation of the model’s performance: —2.9 for BR0O0116991, +0.8 for BRO0116993
and —1.2 for BR0O0117000. In contrast, by utilizing ContextViT, the model effectively accounts for batch
effects through context conditioning during the pre-training stage, resulting in superior performance across
all three plates.

5.3 Out-of-distribution generalization with self-supervised learning

In medical applications, models are often trained using data from a limited number of hospitals with the
intention of deploying them across other hospitals more broadly (Yala et al., 2019; 2021 Bandi et al., [2018)).
However, this presents a challenge for the generalization of out-of-distribution data. In this section, we
aim to evaluate the ability of self-supervised learning with ContextViT to achieve better out-of-distribution
generalization.

Dataset We consider the Camelyon17-WILDS benchmark (Bandi et all |2018; [Sagawa et al.). The dataset
contains 455, 954 labeled and 2,999, 307 unlabeled pathology images across five hospitals (3 for training, 1 for
validation and 1 for testing). Given a 96 x 96 x 3 image, the task is to predict whether the image contains
any tumor tissue. We use the hospital id for context inference.

Results We utilize DINO to pre-train our ViT and ContextViT models from scratch on unlabeled pathology
images. Unlike previous work ((Sagawa et all, 2021)) that incorporates both in-distribution and out-of-
distribution unlabeled data (Unlabeled ID&OOD), we exclusively use images from the three training hospitals,
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Table 3: Accuracy of linear probing of pre-trained DINO embeddings on Camelyon17-WILDS. We use T to
denote our implementations. Unlabeled ID&OOD denotes unlabeled pathology images from all hospitals,
while Unlabeled ID denotes unlabeled images from the three training hospitals. DenseNet121 results are
adopted from [Koh et al.| (2021)); Sagawa et al.| (2021). The results of ViT-B/16 and ViT-L/14 are adopted
from Kumar et al.| (2022).

Backbone Size Pre-training Pre-training In-distribution OOD
z Method Dataset Accuracy Accuracy

Fine-tuning all parameters

DenseNet121 7.9M Supervised ImageNet1K 90.6 82.0
DenseNet121 7.9M SwaV Unlabeled ID&OOD 92.3 91.4
ViT-B/16 86M DINO ImageNet — 90.6
ViT-L/14 303M CLIP WeblmageText 95.2 96.5
Linear probing on frozen backbone

ViT-L/14 303M CLIP WebImageText — 92.6
ViT-S/8' 21.7M DINO Unlabeled ID 98.9 93.8
ContextViT-S/87  21.8M DINO Unlabeled ID 98.9 97.5

Table 4: Ablation study and pre-training time cost (on a server with 8 A100 GPUs) of different context
inference models. For each method, we pre-train the corresponding ContextViT on Camelyonl17-WILDS
(Unlabeled ID) from scratch using DINO for 100 epochs. We report the out-of-distribution accuracy of linear
probing on the official OOD testing split.

Context Inference Method Linear Probing DINO Pre-training

OOD Acc. Time Cost
No context (ViT-S/8 baseline) 93.8 21.5h
Mean patch embeddings 94.1 22.6h
Mean patch embeddings + linear 94.4 23.5h
Mean detached patch embeddings + linear 97.2 23.2h
Layerwise mean detached patch embeddings + linear 97.5 29.9h
Deep sets over patch embeddings 92.5 30.0h
Deep sets over detached patch embeddings 94.9 29.1h

denoted as “Unlabeled ID”, during pre-training stage to prevent any potential information leakage from
out-of-distribution data. Given the 96 by 96 input resolution of our dataset, we opt for a smaller patch size (8
instead of 16) for the ViT models. Once pre-training is complete, we freeze the ViT parameters and train a
linear classifier, shared across all training hospitals, with SGD to predict the target label, the presence
of tumors. We report the testing accuracy on the out-of-distribution hospitals.

Table 3| presents a comparison of our linear probing results (marked with') with other published results on the
Camelyon17 benchmark. Our DINO pre-trained ViT-S/8 baseline outperforms the much larger CLIP model
in terms of linear probing (93.8 vs. 92.6), which is not surprising given the ViT-S/8 has been pre-trained
on the same pathology domain. Next, we see that by conditioning our ViT-S/8 representation with other
images from the same hospital within the testing batch, ContextViT-S/8 achieves an OOD accuracy of 97.5%,
significantly outperforming all baselines. Moreover, Figure [3| demonstrates that the linear classifier built upon
ContextViT-S/8 continues to enhance its OOD performance as the training of the linear classifier progresses,
while the one built upon ViT-S/8 exhibits signs of over-fitting to the training data.

Ablation study on the context inference model Due to space constraints, we have deferred additional
analyses to the Appendix. In Table 4] we perform an ablation study of our context inference model h(-; ¢).
We observe that utilizing the mean patch embeddings as context (94.1) and incorporating an additional
linear transformation (94.4) result in improved performance compared to the no context baseline (93.8).
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Figure 5: Left: PCA visualization of context tokens inferred by ContextViT using pathology images from
different hospitals. Right: Example images from different hospitals.

Notably, we find that detaching the gradients when calculating the context token from the patch embeddings
is crucial, leading to a performance boost from 94.4 to 97.2. Furthermore, the application of layerwise context
conditioning further enhance the performance.

We also experimented with other set representation models for context inference, including deep sets
(see Appendix for details). Although deep sets (with detached patch embeddings) outperformed
the baseline (94.9 vs. 93.8), it still fell short of the simpler approach of mean pooling with linear transformation.
Our hypothesis is that the Transformer block’s self-attention mechanism, which utilizes the same key, query,
and value transformations across the sequence, results in the mean pooling with linear transformation
producing a context embedding that is more comparable to the original patch sequence.
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ID images

Figure 6: Attention heatmap of ContextViT on patholog images from in-distribution hospitals (top) and
OOD hospitals (bottom) in Camelyon17.

Time efficiency One limitation of ContextViT is the extra time cost for the context conditioning. In
Table [ we present the DINO pre-training time cost for different context inference methods. We observe
that adding the non-layerwise context conditioning increases the baseline DINO pre-training time by 5%-9%.
Applying layerwise context conditioning further increases the time cost by 29%.

Sensitivity to testing batch size During the inference phase, ContextViT-S/8 takes a random batch of
testing examples (512 in all previous experiments) and groups them based on their group membership, such
as the hospital ID in the case of Camelyonl7, to infer the corresponding context tokens. In Figure [4 we
present a visualization of ContextViT’s linear probing performance sensitivity across different testing batch
sizes. Remarkably, even with a testing batch size of 1, where ContextViT-S/8 leverages patches from a single
testing image (144 patches) to establish its context, it still outperforms our ViT-S/8 baseline by a significant
margin (97.0 vs. 93.8). It’s worth noting that after DINO pre-training, ContextViT-S/8 acquires the ability
to condition its output features with respect to the context. As highlighted by pathology images
from different hospitals exhibit distinct color distributions. The exceptional performance of ContextViT-S/8
with a small testing batch size demonstrates the model’s capability to automatically estimate the color
distribution shift from a few representative images during test time.

Attention maps from multiple heads In line with the findings of |Caron et al.| (2021), which demonstrate
that DINO can learn class-specific features leading to unsupervised object segmentations, we visualize the
attention heatmaps for different heads learned with ContextViT in the Camelyonl7 dataset. Figure []
illustrates these attention maps, showcasing that the learned attentions are focused on meaningful aspects for
both in-distribution data and out-of-distribution data. Furthermore, different attention heads exhibit distinct
preferences for different cell types. For instance, head-2 primarily focuses on the contour of the cells, while
head-3 directs its attention to the actual cells themselves.

11
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Visualizing the context tokens We employ PCA to visualize the learned context tokens for each hospital,
and the results are presented in Figure 5] One approach to visualizing the context tokens is by inferring them
from all examples belonging to each hospital, resulting in five unique context tokens. However, in practice,
we infer the context token on-the-fly for the current mini-batch. Using a batch size of 256, we sample 300
batches for each hospital.

Remarkably, the inferred context tokens for each hospital exhibit high similarity, appearing closely clustered
together. Additionally, we include example images for each hospital on the right side of Figure [} Notably,
the distances between context tokens from different hospitals align well with their visual dissimilarities. For
instance, hospital 3 (highlighted in red) is closer to hospital 1 (highlighted in orange) than it is to hospital 4
(highlighted in purple).

6 Conclusion

We have presented Contextual Vision Transformers, a method that addresses challenges posed by structured
variations and covariate shifts in image datasets. By leveraging the concept of in-context learning and
introducing context tokens and token inference models, ContextViT enables robust feature representation
learning across groups with shared characteristics. Through extensive experimental evaluations across diverse
applications, ContextViT consistently demonstrates its utility compared to standard ViT models in terms
of out-of-distribution generalization and resilience to batch effects. This success highlights the power and
versatility of ContextViT when handling structured variations in real-world applications, where invariance to
such nuisances may be desirable.
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A Implementation details on supervised fine-tuning

A.1 Pseudo code

The integration of ContextViT with existing pre-trained ViT models is straightforward. As illustrated in
Figure [7} we provide a PyTorch-style pseudo code to outline the process.

¢ 1 # self.cls_token The CLS token [1, 1, embed_dim] N
2 # self.pos_embed The positional embeddings [1, seq_len, embed_dim]
3 # self.transformer_layers Sequence (nn.Sequential) of transformer layers.
4 # self.linear_layers List (nn.ModuleList) of linear layers.

5

6 def forward(self, x, c):

7 # Forward pass of ContextViT

8 # Arguments:

9 # X images of dimension: [bs, n_channels, H, W]

10 # ® covariates of x with dimension: [bs]

11 # Output:

12 # v image embeddings: [bs, embed_dim]

13

14 # Convert input images into sequences of patches

15 x = self.patch_embed(x) # [bs, seq_len, embed_dim]

16

17 # Apply the context inference model to compute the context token
18 context_token = self.context_inference(x, c, layer_id=0)

19 # [bs, 1, embed_dim]

20

21 # concatenate the CLS token, context token and the patch tokens
22 x = torch.cat([self.cls_token, context_token, x+self.pos_embed], dim=1)
23 # [bs, seq_len+2, embed_dim]

24

25 for layer_id, transformer in enumerate(self.transformer_layers):
26 # Apply one transformer layer

27 x = transformer(x) # [bs, seq_len+2, embed_dim]

28

29 # Compute the context token from the hidden patch embeddings
30 x[:,1:2] = self.context_inference(x[:,2:], c, layer=layer_id+1)
31

32 # return the image embedding at the cls token

33 y = self.norm(x)[:, 0]

34 return y

35

36

w
J

def context_inference(self, x, c, layer_id):

38 # Context inference model
39 # Arguments:
40 # X sequences of patch embeddings: [bs, seq_len, embed_dim]
41 # C covariates of x with dimension: [bs]
42 # layer_id index of the transformer layer: int
43 # Output:
44 # context context token: [bs, 1, embed_dim]
45
46 # Group patches with the same covariate value
47 unique, inverse = torch.unique(c, return_inverse=True)
48
49 # Initialize context token
50 context = torch.zeros([bs, 1, embed_dim])
51
52 # Infer context token over examples with the same covariate value
53 for idx, u in enumerate(unique):
54 # Detached mean pooling over patches that have covariate value u
55 m = torch.mean(x[inverse == idx].detach(), dim=[0, 1])
56
57 # Apply a linear layer (based on the transformer layer id)
58 context [c==u, 0] = self.linear_layers[layer_id] (m)
59
60 return context
. 7

Figure 7: PyTorch-style pseudo code for ContextViT.
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A.2 Dataset details

To evaluate robustness over data shifts, we consider two image classification datasets from WILDS (Koh
et al.l [2021)): iWildCam (Beery et al.| 2021)) and FMoW (Christie et al., |2018)).

iWildCam consists of 203,029 labeled images captured different camera traps. The task is to classify the
animal species among 182 possible options. We use the official data split. At test time, we measure the
average classification accuracy on unseen camera traps to assess out-of-distribution generalization. We use
the camera trap id for the context inference.

FMoW includes 141,696 satellite images labeled for 62 different land use categories, such as shopping malls.
The images are also tagged with the year they were taken and their geographical region. We adopt the
standard split, training our model on images from 2002-2013 and validating it on images from 2013-2016. We
evaluate the model’s worst-region accuracy on out-of-distribution images (from 2016-2018) during testing.
We use the region id for the context inference.

A.3 Data augmentation

We apply standard data augmentations during supervised fine-tuning for both ContextViTs and ViTs. These
augmentations include random resized cropping, random horizontal flipping, and random color jittering.

For the iWildcam dataset, we set the crop scale to be [0.08, 1.0], the horizontal flip probability is set to
0.5, and color jitter is applied with a maximum brightness change of 0.4, maximum contrast change of 0.4,
maximum saturation change of 0.4, and maximum hue change of 0.1, with a probability of 0.8.

In the FMoW dataset, objects typically only appear in a small part of the image, so aggressive cropping may
introduce noise. Therefore, we set the crop scale to be [0.8, 1.0] and reduce the probability of color jittering
to 0.1.

A.4 Optimization

We conduct fine-tuning of both ViTs and ContextViTs with a batch size of 256 for a total of 20 epochs. For
optimization, we follow previous work |Wortsman et al.| (2022) and utilize the AdamW optimizer [Loshchilov
& Hutter| (2019)). To ensure a stable training process, we perform a two-epoch warm-up for the optimizer
before applying a cosine annealing scheduler to decay the learning rate. We tune the learning rate within the
range of [1074,107°,1075]. Weight decay is applied to the model, excluding the bias parameters. Inspired by
Caron et al.| (2021)), we set the weight decay to 0.04 at the beginning and gradually increase it using a cosine
scheduler to reach 0.4 at the end of training. We fine-tune each model for 20 epochs with a batch size of 256.
We perform model selection based on the accuracy on the official validation split and report the mean and
standard deviation across five runs.

B Self-supervised learning on microscopy cell imaging: JUMP-CP

B.1 DINO pre-training: data augmentation

Each single-cell image in the JUMP-CP dataset has dimensions of 224 by 224 by 8. Since the images are
consistently captured at a fixed magnification ratio, we have refrained from applying random scaling, as it
could hinder the model’s ability to infer the absolute size of the cells accurately. Instead, we have employed
the following data augmentations: random padded cropping, horizontal and vertical flipping, rotation (with
angles of 90, 180, and 270 degrees), defocus Hendrycks & Dietterichl coarse dropout [DeVries & Taylor| (2017)),
and input channel dropout [Tompson et al.| (2015). To facilitate these augmentations, we have utilized the
Albumentations package [Buslaev et al.| (2020), which supports an arbitrary number of channels.

During DINO pre-training, the teacher network receives two global views of the image, while the student
network receives six local views. Here, we provide an explanation of the data augmentation configurations for
both the global and local views.
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For the teacher network in DINO, the two global views are generated as follows: starting with the original
single-cell image, we first apply random padding to expand the image to 256 x 256 and subsequently crop it
to 224 x 224. We apply flipping and rotating transformations uniformly at random. In one view, we apply
defocus with a radius range of (1,3), while in the other view, the defocus radius range is (1,5). Additionally,
we apply coarse dropout, allowing for a maximum of 10 cutout holes, where each hole has a maximum
dimension of 10 by 10. However, we do not apply input channel dropout for the global views.

For the student network, which receives eight local views, we follow a similar process as with the global
views. Starting with the original image, we apply random padding to expand it to 256 x 256 and then crop
it to 96 x 96. We apply flipping and rotating transformations uniformly at random, and we use the same
defocus radius range of (1, 3) for all six local views. Instead of coarse dropout, we randomly dropout the
input channels with a probability of 0.2.

B.2 DINO pre-training: optimization

Our optimization configuration for the DINO pre-training stage closely follows the guidelines provided in
the (Caron et al.| (2021]) GitHub repository. We utilize a batch size of 512 and train DINO for a total of 100
epochs. The key aspects of our configuration are as follows:

o We employ the AdamW optimizer |Loshchilov & Hutter| (2019) and initiate the learning rate warm-up
phase for the first 10 epochs. Considering our batch size, we set the maximum learning rate to
0.001, following recommendations from |You et al.| (2018)); |Caron et al.| (2021). Subsequently, we
decay the learning rate using a cosine learning rate scheduler. Our target learning rate at the end of
optimization is set to 1076.

e Weight decay is applied to all parameters except for the biases. We set the initial weight decay to 0.04
and gradually increase it to 0.4 using a cosine learning rate scheduler towards the end of training.

e The DINO projection head we utilize has 65536 dimensions, and we do not employ batch normalization
in the projection head.

e The output temperature of the teacher network is initially set to 0.04 and is linearly increased to 0.07
within the first 30 epochs. Throughout the remainder of training, the temperature is maintained at
0.07. Additionally, during the first epoch, we freeze the parameters of the output layer to enhance
training stability.

B.3 Downstream classifier

Based on our preliminary study on BR00116991 using ViT-S/16, we found that a multi-layer perceptron
(MLP) with two hidden layers outperforms the linear classifier (53.6% accuracy vs. 10.4% accuracy). Our
final MLP architecture consists of two hidden layers with ReLU activations, and each hidden layer has a
dimension of 512. To optimize the parameters of the MLP, we employ the Adam optimizer Kingma & Ba
(2014) with a batch size of 256, and we train the model for a maximum of 100 epochs. A weight decay of 10~°
is applied, and we fine-tune the learning rate within the range of € [1073,107*,107°] to find the optimal
value.

C Self-supervised learning on histopathology: Camelyonl17-WILDS

C.1 DINO pre-training: data augmentation

The Camelyonl17-WILDS dataset is a patch-based variant of the Camelyonl7 dataset, where each pathology
image has a dimension of 96 by 96. To enable finer-grained reasoning in ViTs, we use a smaller patch size of
8 by 8. The images are stored in the RGB pixel format, consisting of 3 bytes per pixel. For pre-training the
DINO embeddings, we apply standard data augmentations, as done in previous work |Caron et al.| (2021)).
These augmentations include random resizing and cropping, horizontal flipping, random color jittering,
random grayscale transformation, Gaussian blur, and solarization.
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Similar to the JUMP-CP dataset, the teacher network receives two global views of the image, while the student
network receives six local views. Here, we provide an explanation of the data augmentation configurations for
both the global and local views.

For the teacher network, the two global views are generated as follows: starting with the original pathology
image, we first randomly crop the image with a scale sampled from the range of [0.4,1.0]. Then, we resize
the cropped image back to its original size of 96 by 96 using a bicubic transformation. A random horizontal
flipping is applied with a probability of 0.5. Color jittering is performed with maximum brightness change of
0.4, maximum contrast change of 0.4, maximum saturation change of 0.4, and maximum hue change of 0.1,
with a probability of 0.8. The image is transformed into grayscale with a probability of 0.2. Gaussian blur is
applied using a kernel size of 1.0. Finally, solarization is applied to one of the global views with a threshold
of 0.2.

For the student network, which receives six local views, a similar process is followed with the following
changes: 1) The random cropping scale is adjusted to [0.05,0.4], ensuring that the student network observes
only local views of the original image. 2) After cropping, the image is rescaled to a lower resolution of 32
by 32 instead of 96 by 96. 3) Gaussian blur is applied using a larger kernel size of 5. 4) Solarization is not
applied to the local views.

C.2 DINO pre-training: optimization

For the Camelyonl7 dataset, we employ the same optimization configuration as for the JUMP-CP dataset
during DINO pre-training. This includes training with a batch size of 512 for 100 epochs, utilizing the
AdamW optimizer with a cosine learning rate scheduler, and applying weight decay, among other techniques
that we have discussed in Section [B.2

C.3 Linear probing

To evaluate the resulting DINO embeddings, we utilize the standard linear probing test, which involves
training a linear classifier while keeping the ViT backbones frozen. Consistent with |Caron et al.| (2021]), we
employ the following data augmentation and optimization methods:

For data augmentation, we first apply random cropping with a scale range of [0.08, 1.0] and subsequently
resize the resulting image to a resolution of 96 by 96. Additionally, we incorporate horizontal flipping with a
probability of 0.5. Moreover, we apply color jittering with a probability of 0.8, where the maximum allowed
changes include a brightness change of 0.4, a contrast change of 0.4, a saturation change of 0.4, and a hue
change of 0.1.

In terms of optimization, we train the linear classifier for 100 epochs using a batch size of 512. Since the only
trainable parameters are in the final linear layer, we do not employ warmup or weight decay techniques. To
optimize the classifier, we employ SGD with a momentum value of 0.9. The learning rate is selected from the
range [0.0005,0.001, 0.005], and we utilize a cosine annealing scheduler to decay the learning rate gradually
throughout the training process.

D Additional analysis

D.1 Practical Considerations For Batches with Many Groups

Context-based data sampler In all of our experimental settings, we have utilized the standard random
sampler, which selects examples uniformly at random from the dataset, for simplicity. However, when
dealing with covariates that can take a large number of distinct values, an alternative approach to enhance
the performance of direct mean pooling is to employ a context-based data sampler. By sampling a batch
comprising examples with the same group membership, we can ensure an adequate number of instances
for estimating the context token accurately. Adopting a context-based sampler also offers the advantage
of eliminating the need for grouping examples during the forward pass, as the sampler guarantees that all
samples within a batch belong to the same group. This can potentially lead to further improvements in
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Table 5: OOD accuracy on iWildCam and worst-region OOD accuracy on FMoW for supervised fine-tuning
(FT). In “VIT in-context learning”, we append 256 random patches, sampled from images within the same
group, to the input patch sequence.

iWildCam FMoW

DINO SWAG CLIP DINO SWAG  CLIP
ViT-S/8 ViT-B/16 ViT-L/14 ViT-S/8 ViT-B/16 ViT-L/14

Our implementations

FT ViT 75.T+0.2 775405 81.5402 35.0+02 39.8+05 46.6+1.1
FT ViT in-context learning 76.310.6 T7.6x11 81.7104 351106 389107 46.311.4
FT ContextViT (w/o layerwise) 77.5+0.2 78.6+0.4 81.9+0.1 37.3106 41.3110 49.110.7
FT ContextViT T7.7T+03 79.6106 82.9+03 37.7T+05 41.4103 49.9404

computational efficiency. It is worth noting that to prevent divergence across different groups, gradient
accumulation across batches may be necessary.

D.2 Exploring Alternative Context Inference Models

The context inference model h(+; ¢) in our study serves as a mapping from a set to a vector representation.
In the paper, we propose a simple approach that employs mean pooling followed by a linear transformation.
However, there are other options available for parameterizing the context inference model. Here, we discuss
additional approaches that can be considered.

In-context learning by sampling patches from other images in the group As discussed in Section[4.1]
one direct way to incorporate context conditioning is by appending image patches from other images within
the same group into the patch sequence of the current image. However, this would result in an excessively
long sequence length. Since self-attention scales quadratically (in terms of memory and compute) with respect
to the sequence length, this approach is not feasible. To overcome this limitation, an alternative is to sample
a fixed number of patches from these images and utilize them as the context. We explored this baseline
approach by sampling 256 patches for the context and present its supervised fine-tuning results in Table [5]
The results show mixed performance, likely due to the randomness in the context conditioning. It outperforms
the ViT baseline on iWildCam but underperforms ViTs on FMoW. Furthermore, even this sampling approach
significantly increases memory consumption compared to ContextViT. For instance, conditioning the CLIP
model with 196 patches leads to a 49% increase in GPU memory size.

Deep sets Deep sets |[Zaheer et al|(2017) offers a framework for dealing with objective functions defined
on sets that are permutation-invariant. In our application, for each patch token embedding ¢,,, it utilizes
an encoder network ¢(t,,) to encode it. Then, it aggregates the embeddings of all patches belonging to the
same group into a fixed-length vector using either sum pooling or max pooling. Finally, another network p
processes the aggregated representation to generate the final output.

In Section we conducted experiments with a specific instance of the deep sets model, where we employed
two multi-layer perceptrons (each with two hidden layers and ReLU activations) as the ¢ and p networks.
Additionally, we incorporated residual connections for each hidden layer. We utilized the sum pooling
mechanism to aggregate information across the set. As shown in Table[d] while this method exhibits increased
representation power compared to mean pooling with a linear transformation, the latter demonstrates better
generalization capabilities.
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