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Abstract

Inspired by the diversity and depth of XLand and the simplicity and minimalism of
MiniGrid, we present XLand-MiniGrid, a suite of tools and grid-world environ-
ments for meta-reinforcement learning research. Written in JAX, XLand-MiniGrid
is designed to be highly scalable and can potentially run on GPU or TPU acceler-
ators, democratizing large-scale experimentation with limited resources. Along
with the environments, XLand-MiniGrid provides pre-sampled benchmarks with
millions of unique tasks of varying difficulty and easy-to-use baselines that allow
users to quickly start training adaptive agents. In addition, we have conducted a
preliminary analysis of scaling and generalization, showing that our baselines are
capable of reaching millions of steps per second during training and validating that
the proposed benchmarks are challenging. XLand-MiniGrid is open-source and
available at https://github.com/corl-team/xland-minigrid.

1 Introduction

Reinforcement learning (RL) is known to be extremely sample inefficient and prone to overfitting,
sometimes failing to generalize to even subtle variations in environmental dynamics or goals (Ra-
jeswaran et al., 2017; Zhang et al., 2018; Henderson et al., 2018; Alver & Precup, 2020). One way
to address these shortcomings are meta-RL approaches, where adaptive agents are pre-trained on
diverse task distributions to significantly increase sample efficiency on new problems (Wang et al.,
2016; Duan et al., 2016). With sufficient scaling and task diversity, these approaches are capable of
astonishing results, reducing the adaptation time on new problems to human levels and beyond (Team
et al., 2021, 2023).

At the same time, meta-RL methods have major limitations. Since the agent requires thousands
of different tasks for generalization, faster adaptation during inference comes at the expense of
significantly increased pre-training requirements. For example, a single training of the Ada agent
(Team et al., 2023) takes five weeks3, which can be out of reach for most academic labs and
practitioners. Even those who might have the training resources would still be unable to use them,
as the XLand environment is not publicly available. We believe, and this also has been pointed out
by Wang et al. (2021), that such demanding requirements are the reason why most recent works on
adaptive agents (Laskin et al., 2022; Lee et al., 2023; Lu et al., 2023; Norman & Clune, 2023) avoid
complex environments in favor of more simplistic ones (e.g., simple navigation).

†Work done while at T-Bank
3According to Appendix D.2 in Team et al. (2023).

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.
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Figure 1: Visualization of how the production rules in XLand-MiniGrid work, exemplified by a few
steps in the environment. In the first steps, the agent picks up the blue pyramid and places it next to
the purple square. The NEAR production rule is then triggered, which transforms both objects into a
red circle. See Figure 2 and Section 2.1 for additional details.

While simple environments are an affordable and convenient option for theoretical analysis, they are
not enough for researchers to discover the limits and scaling properties of proposed algorithms in
practice. To make such research more accessible, we continue the successful efforts of Freeman et al.
(2021); Lu et al. (2022); Bonnet et al. (2023); Koyamada et al. (2023) at accelerating environments
using JAX (Bradbury et al., 2018), and introduce the XLand-MiniGrid, a library of grid world environ-
ments and benchmarks for meta-RL research (Section 2). We carefully analyze the scaling properties
(Section 4.1) of environments and conduct preliminary experiments to study the performance and
generalization of the implemented baselines, validating that the proposed benchmarks are challenging
(Section 4.2).

2 XLand-MiniGrid

In this paper, we present the initial release of XLand-MiniGrid, a suite of tools, benchmarks and
grid world environments for meta-RL research. We do not compromise on task complexity in favor of
affordability, focusing on democratizing large-scale experimentation with limited resources. XLand-
MiniGrid is open-source and available at https://github.com/corl-team/xland-minigrid
under Apache 2.0 license.

Figure 2: Visualization of a specific sampled task
(see Figure 3) in XLand-MiniGrid. We highlighted
the optimal path to solve this particular task. The
agent needs to take the blue pyramid and put it
near the purple square in order to transform both
objects into a red circle. To complete the goal, a
red circle needs to be placed near the green circle.
However, placing the purple square near the yellow
circle will make the task unsolvable in this trial.
Initial positions of objects are randomized on each
reset. Rules and goals are hidden from the agent.

Similar to XLand (Team et al., 2023), we in-
troduce a system of extensible rules and goals
that can be combined in arbitrary ways to pro-
duce diverse distributions of tasks (see Figures 1
and 2 for a demonstration). Similar to Mini-
Grid (Chevalier-Boisvert et al., 2023), we fo-
cus on goal-oriented grid world environments
and use a visual theme already well-known in
the community. However, despite the similarity,
XLand-MiniGrid is written from scratch in the
JAX framework and can therefore run directly
on GPU or TPU accelerators, reaching millions
of steps per second with a simple jax.vmap
transformation. This makes it possible to use the
Anakin architecture (Hessel et al., 2021) and eas-
ily scale to multiple devices using the jax.pmap
transformation.

In addition to environments, we provide pre-
sampled benchmarks with millions of unique
tasks, simple baselines with recurrent PPO
(Schulman et al., 2017) that scale to multi-GPU
setups, walk-through guides that explain the API, and colab notebooks that make it easy for users to
start training adaptive agents. We hope that all of this will help researchers quickly start experiment-
ing.

This section provides a high-level overview of the library, describing the system of rules and goals,
the observation and action spaces, and its API. The implemented environments are also described.
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2.1 Rules and Goals

In XLand-MiniGrid, the system of rules and goals is the cornerstone of the emergent complexity
and diversity. In the original MiniGrid (Chevalier-Boisvert et al., 2023), some environments have
dynamic goals, but the dynamics themselves are never changed. To train and evaluate highly adaptive
agents, we need to be able to change the dynamics in non-trivial ways (Team et al., 2023).

Rules. Rules are functions that can change the environment state in a deterministic fashion according
to the given conditions. For example, the NEAR rule (see Figure 1 for a visualization) accepts two
objects a, b and transforms them to a new object c if a and b end up on neighboring tiles. Rules
can change between resets. For efficiency reasons, the rules are evaluated only after some actions or
events occur (e.g., the NEAR rule is checked only after the put_down action).

Goals. Goals are similar to rules, except they do not change the state, only test conditions. For
example, the NEAR goal (see Figure 1 for a visualization) accepts two objects a, b and checks that
they are on neighboring tiles. Similar to rules, goals are evaluated only after certain actions and can
change between resets.

Both rules and goals are implemented with classes. However, in order to be able to change between
resets and still be compatible with JAX, both rules and goals are represented with an array encoding,
where the first index states the rule or goal ID and the rest are arguments with optional padding to the
same global length. Thus, every rule and goal should implement the encode and decode methods.
The environment state contains only these encodings, not the actual functions or classes. For the full
list of supported rules and goals, see Appendix I.

2.2 API

Environment interface. There have been many new JAX-based environments appearing recently
(Freeman et al., 2021; Lange, 2022; Bonnet et al., 2023; Koyamada et al., 2023; Rutherford et al.,
2023; Jiang et al., 2023; Frey et al., 2023; Lechner et al., 2023), each offering their own API variations.
The design choices in most of them were not convenient for meta-learning4, hence why we decided
to focus on creating a minimal interface without making it general. The core of our library is
interface-independent, so we can quickly switch if a unified interface becomes available in the future.
If necessary, practitioners can easily write their own converters to the format they need, as has been
done in several projects5 that already use XLand-MiniGrid.

At a high level, the current API combines dm_env (Muldal et al., 2019) and gymnax (Lange, 2022).
Each environment inherits from the base Environment and implements the jit-compatible reset
and step methods, with custom EnvParams if needed. The environment itself is completely stateless,
and all the necessary information is contained in the TimeStep and EnvParams data classes. This
design makes it possible for us to vectorize on arbitrary arguments (e.g., rulesets) if their logic is
compatible with jit-compilation. Similar to Gym (Brockman et al., 2016), users can register new
environment variants with custom parameters to conveniently reuse later with the help of make.
We provide minimal sample code to instantiate an environment from the registry, reset, step and
optionally render the state (see Listing 1). For an example of how to compile the entire episode
rollout, see Appendix D.

State and TimeStep. Similar to dm_env, TimeStep contains all the information available to the
agent, such as observation, reward, step_type and discount. The step type will be FIRST at
the beginning of the episode, LAST at the last step, and MID for all others. The discount can be in
the [0, 1] range, and we set it to 0.0 to indicate the end of the episode or trial. In addition, it contains
State with all the necessary information to describe the environment dynamics, such as the grid,
agent states, encoding of rules and goals, and a key for the random number generator that can be
used during resets. The combination of the internal state with the timestep is a bit different from the
previous designs by Lange (2022); Bonnet et al. (2023), but it allows for some simplifications, such
as an auto-reset wrapper implementation based on the current or previous step (in the style of Gym
(Brockman et al., 2016) or EnvPool (Weng et al., 2022)).

4For example the most popular Jumanji library currently does not allow changing env parameters during
reset, see https://github.com/instadeepai/jumanji/issues/212.

5See Stoix, varibad_jax, MetaLearnCuriosity or ARLBench codebases.
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import jax
import xminigrid

reset_key = jax.random.key(0)
# to list available environments:
xminigrid.registered_environments()

# create env instance
env, env_params = xminigrid.make("XLand-MiniGrid-R9-25x25")
# change some default params
env_params = env_params.replace(max_steps=100)

# fully jit-compatible step and reset methods
timestep = jax.jit(env.reset)(env_params, reset_key)
timestep = jax.jit(env.step)(env_params, timestep, action=0)

# optionally render the state
env.render(env_params, timestep)

Listing 1: Basic example usage of XLand-MiniGrid.

Observation and action space. Although not fully compatible, we made an effort to be consistent
with the original MiniGrid. Observations describe a partial field of view around the agent as two-
dimensional arrays, where each position is encoded by the tile and color IDs. Thus, observations
are not images and should not be treated as such by default. While naively treating them as images
can work in most cases, the correct approach would be to pre-process them via embeddings. If
necessary, practitioners can render such observations as images via the wrapper, although with some
performance overhead (see Appendix H). We also support the ability to prohibit an agent from seeing
through walls. The agent actions, namely move_forward, turn_left, turn_right, pick_up,
put_down, toggle, are discrete. The agent can only pick up one item at a time, and only if its pocket
is empty. In contrast to Team et al. (2023), the actual rules and goals of the environment remain
hidden from the agent in our experiments. However, our environment does not impose any restrictions
on this, and practitioners can easily access them if needed (see our preliminary experiments in such a
setting in Appendix G).

2.3 Supported Environments

In the initial release, we provide environments from two domains: XLand and MiniGrid. XLand
is our main focus, and for this domain, we implement single-environment XLand-MiniGrid and
numerous registered variants with different grid layouts and sizes (see Figure 14 in the Appendix).
All of them can be combined with arbitrary rulesets from the available benchmarks (see Section 3)
or custom ones, and follow the naming convention of XLand-MiniGrid-R{#rooms}-{size}. We
made an effort to balance the limit on the maximum number of steps so that the tasks cannot be
brute-forced by the agent on every trial without using any memory. Thus, we use 3 x grid height
x grid width as a heuristic to set the default maximum number of steps, but this can be changed
afterwards if needed. While meta-RL is our main motivation, this environment can be useful for
research in exploration, continual learning, unsupervised RL or curriculum learning. For example, we
can easily model novelty as a change in rules, goals or objects between episodes, similar to NovGrid
(Balloch et al., 2022).

Furthermore, due to the generality of the rules and goals and the ease of extensibility, most non-
language-based tasks from the original MiniGrid can also be quickly implemented in XLand-MiniGrid.
To demonstrate this, we have ported the majority of such tasks, including the popular Empty,
FourRooms, UnlockPickUp, DoorKey, Memory and others. For a full list of registered environments,
see Appendix L (38 in total).
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Figure 3: Visualization of a specific task tree with
depth two, sampled according to the procedure
described in Section 3. The root of the tree is a
goal to be achieved by the agent, while all other
nodes are production rules describing possible
transformations. At the beginning of each episode,
only the input objects of the leaf production rules
are placed on the grid. In addition to the main
task tree, the distractor production rules can be
sampled. They contain already used objects to
introduce dead ends. All of this together is what
we call a ruleset, as it defines the task.

0 2 4 6 8 10 12 14 16 18
Number of rules

trivial
small
medium
high

Figure 4: Distribution of the number of rules for
the available benchmark configurations. One can
see that each successive benchmark offers an in-
creasingly diverse distribution of tasks, while still
including tasks from the previous benchmarks.
The average task complexity, as well as tree depth,
also increases. See Section 3 for the generation
procedure and Appendix J for the exact genera-
tion configuration. Besides, users can generate
and load custom benchmarks easily, even with a
custom generation procedure, as long as the final
format is the same.

3 Benchmarks

Although users can manually compose and provide specific rulesets for environments, this can quickly
become cumbersome. Therefore, for large-scale open-ended experiments, we provide a way to
procedurally generate tasks of varying diversity and complexity, which can in turn generate thousands
of unique rulesets. However, since the generation procedure can be quite complex, representing
it in a form that is convenient for efficient execution in JAX is not feasible. To avoid unnecessary
overhead and standardize comparisons between algorithms and experiments, we pre-generated several
benchmarks with up to three million unique rulesets. The generation process itself as well as available
configurations are described in detail below.

Generation Procedure. For the generation procedure, we closely follow the approach of Team et al.
(2023). A similar procedure was also used in a concurrent work by Bornemann et al. (2023) but for
multi-agent meta-learning. On a high level, each task can be described as a tree (see Figure 3), where
each node is a production rule and the root is the main goal. Generation starts by uniformly sampling
an agent’s goal from the ones available. Then, new production rules are sampled recursively at each
level so that their output objects are the input objects of the previous level. Since all rules have at
most two arguments, the tree will be a complete binary tree in the worst-case scenario. At the start of
the episode, only objects from the leaf rules are placed on the grid, and their positions are randomized
at each reset. Thus, to solve the task, the agent has to trigger these rules in a sequence to get the
objects needed for the goal. This hierarchical structure is very similar to the way tasks are organized
in the famous Minecraft (Guss et al., 2021) or the simpler Crafter (Hafner, 2021) benchmarks. For
object sampling, we used ten colors and seven tile types (e.g., circle, square).

When sampling production rules, we restrict the possible choices of input objects, excluding those
that have already been used. This is done so that the objects are present only once as input and
once as output in the main task tree. To increase diversity, we also added the ability to sample depth
instead of using a fixed one, as well as branch pruning. With some probability, the current node can
be marked as a leaf and its input objects added as initial objects. This way, while using the same
budget, we can generate tasks with many branches, or more sequential ones but with greater depth.

To prevent the agent from indiscriminately triggering all production rules and brute forcing, we
additionally sample distractor rules and objects. Distractor objects are sampled from the remaining
objects and are not used in any rules. Distractor production rules are sampled so that they use objects
from the main task tree, but never produce useful objects. This creates dead ends and puts the game
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in an unsolvable state, as all objects are only present once. As a result, the agent needs to experiment
intelligently, remembering and avoiding these rules when encountered.

Available configurations. In the initial release, we provide four benchmark types with various levels
of diversity: trivial, small, medium and high. For each benchmark type, one million unique
rulesets were pre-sampled, including additional variations with three millions for medium and high.
Generally, we tried gradually increasing diversity to make it so that each successive benchmark also
includes tasks from the previous ones (see Figure 4). Thus, due to the increasing task-tree depth, the
average difficulty also increases. For example, the trivial benchmark has a depth of zero and can
be used for quick iterations and debugging. For exact generation settings, see Table 4 in Appendix J.

For ease of use when working with benchmarks, we provide a user-friendly interface that allows
them to be downloaded, sampled, split into train and test sets (see an extended usage example in
Appendix D). Similar to Fu et al. (2020); Kurenkov et al. (2023), our benchmarks are hosted in the
cloud and will be downloaded and cached the first time they are used. In addition, we also provide a
script used for generation, with which users can generate and load their own benchmarks with custom
settings.

4 Experiments

In this section, we demonstrate XLand-MiniGrid’s ability to scale to thousands of parallel environ-
ments, dozens of rules, various grid sizes, and multiple accelerators (see Section 4.1). In addition, we
describe the implemented baselines and validate their scalability. Finally, we perform preliminary
experiments showing that the proposed benchmarks, even with minimal diversity, present a signif-
icant challenge for the implemented baseline, leaving much room for improvement, especially in
terms of generalization to new problems (see Section 4.2). For each experiment, we list the exact
hyperparameters and additional details in Appendix K.

4.1 Scalability

Simulation throughput. Figure 5a shows the simulation throughput for a random policy averaged
over all registered environment variations (38 in total, see Section 2.3). All measurements were
done on A100 GPUs, taking the minimum value among multiple repeats. In contrast to Jumanji
(Bonnet et al., 2023), we had an auto-reset wrapper enabled to provide estimates closer to real use,
as resetting can be expensive for some environments. For meta-RL environments, random rulesets
from the trivial-1m benchmark were sampled. One can see that the scaling is almost log-log linear
with the number of parallel environments, although it does begin to saturate around 213 on a single
device. However, on multiple devices, scaling remains log-log linear without signs of saturation,
easily reaching tens of millions of steps per second. We provide the scripts we used so that our
results can be replicated on other hardware. As an example, we replicated some of the benchmarks
on consumer grade GPUs like 4090 in the Appendix F.

Scaling grid size. While most of MiniGrid’s grid world environments (Chevalier-Boisvert et al.,
2023) use small grid sizes, it is still interesting to test the scaling properties of XLand-MiniGrid in
this dimension, as larger sizes may be needed for difficult benchmarks to fit all the initial objects. As
one can see in Figure 5b, the simulation throughput can degrade significantly with increasing grid
size, and can also show earlier signs of saturation. A possible explanation for this phenomenon is that
many game loop operations, such as conditional branching during action selection, do not fit well
with the parallelism principles of the JAX framework. Similar results have been observed in previous
works using JAX-based environments (Bonnet et al., 2023; Koyamada et al., 2023). Nevertheless,
the throughput remains competitive even at larger sizes. Furthermore, as shown in Figure 5d, the
throughput can be considerably improved with multiple devices, allowing a larger pool of parallel
environments and mitigating saturation. When it comes to small grid sizes6, they can still be a
significant challenge for existing algorithms (Zhang et al., 2020), which we will also demonstrate in
Section 4.2.

Scaling number of rules. According to Team et al. (2023), a full-scale XLand environment can use
more than five rules. Similarly, our benchmarks can contain up to eighteen rules (see Figure 4). To
test XLand-MiniGrid under similar conditions, we report the simulation throughput with different

6Note that, due to how the rules and goals are encoded, the maximum grid size is currently limited to 255.
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Figure 5: Analysis of XLand-MiniGrid’s ability to scale to thousands of parallel environments, dozens
of rules, different grid sizes and multiple accelerators. All measurements were performed on A100
GPUs, taking the minimum between multiple attempts with the auto-reset wrapper enabled and with
random policy, except for (d). (a) Simulation throughput averaged over all registered environment
variations (38 in total, see Section 2.3). Scaling is almost log-log linear, with slight saturation
on a single device. (b) Increasing the grid size can significantly degrade simulation throughput,
leading to earlier saturation. (c) Increasing the number of rules monotonically reduces the simulation
throughput, with no apparent saturation. To maintain the same level of throughput, the number of
parallel environments should be increased. (d)-(e) Parallelization across multiple devices can mitigate
saturation and significantly increase throughput, even at large grid sizes and rule counts. (f) Training
throughput for the implemented recurrent PPO baseline (see Section 4.2). The PPO hyperparameters,
except for model size and RNN sequence length, were tuned for each setup to maximize utilization
per device. Single device training throughput saturates near one million steps per second. Similarly
to random policy, it can be increased greatly with multiple devices. We additionally provide figures
without log-axes at Appendix E.

numbers of rules (see Figure 5c). For testing purposes, we simply replicated the same NEAR rule
multiple times and used a grid size of 16x16. As one can see, the throughput decreases monotonically
as the number of rules increases. As a result, the number of parallel environments must be increased
to maintain the same throughput level. However, in contrast to increasing the grid size, there is no
apparent saturation even at 24 rules. The throughput can be improved even further by increasing the
number of devices (see Figure 5e).

4.2 Baselines

With the release of XLand-MiniGrid, we are providing near-single-file implementations of recurrent
PPO (Schulman et al., 2017) for single-task environments and its extension to RL2 (Duan et al., 2016;
Wang et al., 2016) for meta-learning as baselines. The implementations were inspired by the popular
PureJaxRL (Lu et al., 2022), but extended to meta-learning and multi-device setups. Due to the
full environment compatibility with JAX, we can use the Anakin architecture (Hessel et al., 2021),
jit-compile the entire training loop, and easily parallelize across multiple devices using jax.pmap
transformation. We also provide standalone implementations in the colab notebooks.

While our implementation is greatly simplified in comparison to Ada (Team et al., 2023), it encap-
sulates the main principles and is easy to understand and modify, e.g., swapping simple GRU (Cho
et al., 2014) for more modern and efficient state space models (Lu et al., 2023). Next, we perform
preliminary experiments to test the scaling, performance and generalization of the baselines.

Training throughput. Figure 5f shows the training throughput of the implemented baseline on
meta-RL tasks. We used a 9x9 grid size and the trivial-1m benchmark with fixed model size and
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Figure 6: Learning curves from training an RL2 (Duan et al., 2016; Wang et al., 2016) agent based
on recurrent PPO (Schulman et al., 2017) on the XLand-MiniGrid meta-RL benchmarks introduced
in Section 3. Grid size of 13x13 with four rooms was used (see Figure 14 in Appendix I for a
visualization). We report the return for 25 trials on each evaluation task, 4096 tasks in total. During
training, the agent is only limited by the fixed maximum step count and can get more trials if it
manages to solve tasks faster. Results are averaged over five random seeds. One can see that the
proposed benchmarks present a significant challenge, especially in terms of the 20th score percentile.
Similar to Team et al. (2023), we evaluate algorithms mainly on the 20th percentile, as it better
reflects the ability to adapt to new tasks. Also, see Appendix H for the learning curves on image-based
observations.
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Figure 7: Learning curve from the large-scale
baseline training on the high-1m benchmark for
one trillion transitions. We use the same setup
as in Figure 6 and report the return for 25 trials.
Results are averaged over three random training
seeds. While such an extreme amount of experi-
ence can be collected with our library, this alone
is not enough to significantly improve the base-
line performance on this benchmark.
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Figure 8: Preliminary generalization evaluation
of the implemented RL2 Duan et al. (2016); Wang
et al. (2016) baseline. For training, we used the
same setup as in Figure 6, excluding a subset of
goal types (but not rules) from the benchmarks,
and then tested generalization on 4096 tasks sam-
pled from them. We report the return for the 25
trials. Results are averaged over three random
training seeds. A large gap in generalization re-
mains, even for the benchmarks with minimal
diversity.

RNN sequence length of 256. Although it is not always optimal to maximize the number of steps
per second, as this may reduce the sample efficiency (Andrychowicz et al., 2020), for demonstration
purposes we searched over other parameters to maximize per device utilization. As one can see,
on a single device, the training throughput saturates near one million steps per second. Similar to
Figure 5a, it can be greatly increased with multiple devices to almost reach six million. Further
improvement may require changing the RNN architecture to a more hardware-friendly one, e.g., the
Transformer (Vaswani et al., 2017), which we left for future work. We provide additional throughput
benchmarks on consumer grade GPUs in the Appendix F.

Training Performance. We trained the implemented RL2 on the proposed benchmarks to demonstrate
that they provide an interesting challenge and to establish a starting point for future research (see
Figure 6). A grid size of 13x13 with four rooms was used (see Figure 14). We report the return for 25
trials, averaged over all 4096 evaluation tasks and five random training seeds. During the training, the

8



agent was limited to a fixed number of steps in each task, so that it could get more trials if it was able
to solve the tasks faster. Similar to (Team et al., 2023), we evaluate algorithms mainly on the 20th
percentile, as it provides a lower bound that better reflects the ability to adapt to new tasks, while the
average score is dominated by easy tasks for which it is easier to generalize. Therefore, we advise
practitioners to compare their algorithms according to the 20th percentile. See appendix K for a more
in-depth discussion.

As one can see, the performance is far from optimal, especially in terms of the 20th score percentile.
Furthermore, the performance on high-1m remains sub-optimal even when the agent is trained for
extreme one trillion transitions (see Figure 7). Note that training Ada (Team et al., 2023) for such a
duration would not be feasible.7

Generalization. Since the main purpose of meta-learning is enabling rapid adaptation to novel tasks,
we are mainly interested in generalization during training. To test the baseline along this dimension,
we excluded a subset of goal types (but not rules) from the benchmarks and retrained the agent using
the same hyperparameters and procedures as in Figure 6. During training, we tested generalization
on the 4096 tasks sampled from the excluded (i.e., unseen) tasks and averaged over three random
training seeds. As Figure 8 shows, there remains a large gap in generalization on all benchmarks,
even on the one with minimal diversity.

5 Related Work

Meta-learning environments. Historically, meta-RL benchmarks have focused on tasks with simple
distributions, such as bandits and 2D navigation (Wang et al., 2016; Duan et al., 2016; Finn et al.,
2017), or few-shot control policy adaptation (e.g., MuJoCo (Zintgraf et al., 2019) or MetaWorld (Yu
et al., 2020)), where the latent component is reduced to a few parameters that control goal location or
changes in robot morphology. The recent wave of in-context reinforcement learning research (Laskin
et al., 2022; Lee et al., 2023; Norman & Clune, 2023; Kirsch et al., 2023; Sinii et al., 2023; Zisman
et al., 2023) also uses simple environments for evaluation, such as bandits, navigational DarkRoom
& KeyToDoor, or MuJoCo with random projections of observations (Lu et al., 2023; Kirsch et al.,
2023). Notable exceptions include XLand (Team et al., 2021, 2023) and Alchemy (Wang et al., 2021).
However, XLand is not open source, while Alchemy is built on top of Unity (www.unity.com) and
runs at 30 FPS, which is not enough for quick experimentation with limited resources.

We hypothesize that the popularity of such simple benchmarks can be attributed to their affordability,
as meta-training requires significantly more environmental transitions than traditional single-task
RL Team et al. (2023). However, being limited to simple benchmarks prevents researchers from
uncovering the limits and scaling properties of the proposed methods. We believe that the solution to
this is an environment that does not compromise interestingness and task complexity for the sake
of affordability. Therefore, we designed XLand-MiniGrid to include the best from the XLand and
Alchemy environments without sacrificing speed and scalability thanks to the JAX (Bradbury et al.,
2018) ecosystem.

Hardware-accelerated environments. There are several approaches to increasing the throughput of
environment experience. The most common approach would be to write the environment logic in low
level languages (to bypass Python GIL) for asynchronous collection, as EnvPool Weng et al. (2022)
does. However, this does not remove the bottleneck of data transfer between CPU and GPU on every
iteration, and the difficulties of debugging asynchronous systems. Porting the entire environment to
the GPU, as was done in Isaac Gym (Makoviychuk et al., 2021), Megaverse (Petrenko et al., 2021)
or Madrona (Shacklett et al., 2023), can remove this bottleneck, but has the disadvantage of being
GPU-only.

Recently, new environments written entirely in JAX Bradbury et al. (2018) have appeared, taking
advantage of the GPU or TPU and the ability to compile the entire training loop just-in-time, further
reducing the overall training time. However, most of them focus on single-task environments for
robotics (Freeman et al., 2021), board games (Koyamada et al., 2023) or combinatorial optimization
(Bonnet et al., 2023). The most similar to our work is Craftax (Matthews et al., 2024). It provides
much more complex and varied world mechanics, but lacks the flexibility to customize the possible

7According to Appendix D.2 from Team et al. (2023), training Ada for 25B transitions took over 1 week on
64 Google TPUv3.
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challenges or tasks which is not really suitable for meta-RL research. While in XLand-MiniGrid,
thanks to a system of rules and goals, the user can generate many unique tasks of various difficulty.

Grid World Environments. Grid world environments have a long history in RL research Sutton &
Barto (2018), as they offer a number of attractive properties. They are typically easy to implement, do
not require large computational resources, and have simple observation spaces. However, they pose a
significant challenge even to modern RL methods, making it possible to test exploration (Zhang et al.,
2020), language understanding and generalization (Hanjie et al., 2021; Zholus et al., 2022; Lin et al.,
2023; Chevalier-Boisvert et al., 2023), as well as memory (Paischer et al., 2022).

Despite the great variety of benefits of the existing grid world benchmarks, to the best of our
knowledge, only the no longer maintained KrazyWorld (Stadie et al., 2018) focuses on meta-learning.
Other libraries, such as the popular MiniGrid (Chevalier-Boisvert et al., 2023) and Griddly (Bamford
et al., 2020), are not scalable and extensible enough to cover meta-learning needs. In this work, we
have attempted to address these needs with new minimalistic MiniGrid-style grid world environments
that can scale to millions of steps per second on a single GPU.

Large-batch RL. Large batches are known to be beneficial in deep learning (You et al., 2019) and
deep reinforcement learning is no exception. It is known to be extremely sample-inefficient and large
batches can increase the throughput, speeding up convergence and improving training stability. For
example, many of the early breakthroughs on the Atari benchmark were driven by more efficient
distributed experience collection (Horgan et al., 2018; Espeholt et al., 2018; Kapturowski et al., 2018),
eventually reducing training time to just a few minutes (Stooke & Abbeel, 2018; Adamski et al.,
2018) per game. Increasing the mini-batch size can also be beneficial in offline RL (Nikulin et al.,
2022; Tarasov et al., 2023).

However, not all algorithms scale equally well, and off-policy methods have until recently lagged
behind (Li et al., 2023), whereas on-policy methods, while generally less sample efficient, can
scale to enormous batch sizes of millions (Berner et al., 2019; Petrenko et al., 2020) and complete
training much faster (Stooke & Abbeel, 2018; Shacklett et al., 2021) in wall clock time. While we do
not introduce any novel algorithmic improvements in our work, we hope that the proposed highly
scalable XLand-MiniGrid environments will help practitioners perform meta-reinforcement learning
experiments at scale faster and with fewer resources.

6 Conclusion

Unlike other RL subfields, meta-RL lacked environments that were both non-trivial and compu-
tationally efficient. To fill this gap, we developed XLand-MiniGrid, a JAX-accelerated library of
grid-world environments and benchmarks for meta-RL research. Written in JAX, XLand-MiniGrid is
designed to be highly scalable and capable of running on GPU or TPU accelerators, and can achieve
millions of steps per second. In addition, we have implemented easy-to-use baselines and provided
preliminary analysis of their performance and generalization, showing that the proposed benchmarks
are challenging. We hope that XLand-MiniGrid will help democratize large-scale experimentation
with limited resources, thereby accelerating meta-RL research.
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A General Ethic Conduct and Potential Negative Societal Impact

To the best of our knowledge, our work does not have a direct potential negative impact on society. On
the contrary, by democratizing experimentation, fewer resources can be used to conduct large-scale
studies reducing the carbon emissions produced by the GPU accelerators.

B License

XLand-MiniGrid is open-source and available at https://github.com/corl-team/
xland-minigrid under Apache 2.0 license.

C Limitations and Future Work

There are several notable limitations to our work, some of which we expect to address in future
releases of our library.

Compared to the full-scale XLand (Team et al., 2021, 2023), we do not currently support multi-agent
simulations, procedural generation of complex worlds, rules with multiple output entities, or goal
composition. Our initial environments use simple multi-room grid worlds (see Section 2.3), although
we plan to add procedural generation of different maze layouts. Full-scale XLand also provides 30
single-agent probe tasks that were designed by hand to be interpretable and intuitive to the humans.
In contrast, we evaluated our baselines on tasks sampled from the provided benchmarks.

Compared to the MiniGrid (Chevalier-Boisvert et al., 2023), we do not yet support all tiles such
as lava or moving obstacles. Also, as our focus is on meta-RL, we do not provide explicit natural
language encoding of rules and goals, although this can easily be done. For a language focused
learning environment, we refer the reader to the recent HomeGrid (Lin et al., 2023) environment.
Although we currently do not support all existing MiniGrid environments, we provide enough tools
to make it easy to implement them if needed (and have demonstrated this in the Section 2.3).

In general, while JAX is much more high-level than CUDA or Triton (Tillet et al., 2019), it is
still much more restrictive than PyTorch (Paszke et al., 2019), can be difficult to debug, and is
poorly suited to the heterogeneous computations or conditional branching that are common when
implementing environments. However, as we show in our work, when used correctly it can provide
excellent scalability opportunities.
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D Additional Code Examples

We provide additional code examples for extended environment usage with benchmarks and jit-
compilation of the entire environment rollout.

import jax.random
import xminigrid
from xminigrid.benchmarks import Benchmark

# to list available benchmarks: xminigrid.registered_benchmarks()
# downloading to path specified by XLAND_MINIGRID_DATA,
# ~/.xland_minigrid by default
benchmark: Benchmark = xminigrid.load_benchmark(name="trivial-1m")
# reusing cached on the second use
benchmark: Benchmark = xminigrid.load_benchmark(name="trivial-1m")

# users can sample or get specific rulesets
benchmark.sample_ruleset(jax.random.PRNGKey(0))
benchmark.get_ruleset(ruleset_id=benchmark.num_rulesets() - 1)

# or split them for train & test
train, test = benchmark.shuffle(key=jax.random.PRNGKey(0)).split(prop=0.8)

# usage with the environment
key = jax.random.PRNGKey(0)
reset_key, ruleset_key = jax.random.split(key)

benchmark = xminigrid.load_benchmark(name="trivial-1m")
# choosing a ruleset, see section on rules and goals
ruleset = benchmark.sample_ruleset(ruleset_key)

# to list available environments: xminigrid.registered_environments()
env, env_params = xminigrid.make("XLand-MiniGrid-R9-25x25")
env_params = env_params.replace(ruleset=ruleset)

# fully jit-compatible step and reset methods
timestep = jax.jit(env.reset)(env_params, reset_key)
timestep = jax.jit(env.step)(env_params, timestep, action=0)

# optionally render the state
env.render(env_params, timestep)

Listing 2: Extended usage example (see Listing 1) showcasing how to load benchmarks, sample
rulesets and combine them with environments.
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import jax
import jax.tree_utils as jtu
import xminigrid
from xminigrid.wrappers import GymAutoResetWrapper

# alternatively, users can provide step_fn and reset_fn instead
# of closure, but this way is simpler to use after creation
def build_rollout(env, env_params, num_steps):

def rollout(rng):
def _step_fn(carry, _):

rng, timestep = carry
rng, _rng = jax.random.split(rng)
action = jax.random.randint(

_rng,
shape=(),
minval=0,
maxval=env.num_actions(env_params)

)
timestep = env.step(env_params, timestep, action)
return (rng, timestep), timestep

rng, _rng = jax.random.split(rng)

timestep = env.reset(env_params, _rng)
rng, transitions = jax.lax.scan(

_step_fn, (rng, timestep), None, length=num_steps
)
return transitions

return rollout

env, env_params = xminigrid.make("MiniGrid-EmptyRandom-8x8")
# do not forget to use auto reset wrapper!
env = GymAutoResetWrapper(env)

# jiting the entire rollout
rollout_fn = jax.jit(build_rollout(env, env_params, num_steps=1000))

# first execution will compile
transitions = rollout_fn(jax.random.PRNGKey(0))

print("Transitions shapes: \n", jtu.tree_map(jnp.shape, transitions))

Listing 3: Example code on how to jit-compile the entire rollout through the episodes. This can be
further easily parallelized with jax.vmap over a batch of environments or random seeds.
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E Additional Benchmark Figures
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(a) Simulation throughput
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(b) Scaling grid size
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(c) Scaling number of rules

0 5000 10000 15000
Environments

0.0

0.5

1.0

St
ep

s p
er

 se
co

nd

1e7
32x32 Grid, A100-x1
32x32 Grid, A100-x4
32x32 Grid, A100-x8

(d) Multiple devices for grid size
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(e) Multiple devices for rules
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(f) Training throughput

Figure 9: Figures analogous to Figure 5 from Section 4.1, but without the log axes, to provide an
alternative visual representation. We hope they will help practitioners to better understand the actual
scaling behavior. All hyperparameters and settings other than axis scaling are identical to Figure 5.

F Additional Benchmarks on Consumer Grade GPUs
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(c) Training throughput with bf16

Figure 10: Additional simulation and training throughput benchmarks on consumer grade GPUs.

While our main experiments and benchmarks were done on A100 and H100 GPUs, we further tried to
complement them with results on more affordable consumer GPUs like 4090, 3090 or freely available
T4s from Google Colab or Kaggle Notebooks (see Figure 10). As can be seen on Figure 10a, pure
throughput with random policy is decent on all GPUs, even the oldest T4 is capable of achieving
millions of steps per second (SPS) and scales with more environments.

However, during PPO training the difference becomes more apparent (see Figure 10b). The maximum
for a T4x2 is around 160k and for 3090 is around 400k and for 4090 is around 800k SPS. To compare,
A100 is able to achieve 1.0M and H100 even higher 1.2M steps per second. The most important
factor during training is how fast we can get through a single epoch on the batch collected from all
environments, which in turn comes down to the maximum mini-batch size. Ideally, for every increase
in the number of parallel environments, we should also increase the mini-batch size. If this does not
happen, saturation occurs. Due to the smaller memory capacity of consumer GPUs the saturation
during training comes a lot earlier than for A100/H100. However, 800k on 4090 is still a good result,
more than any other benchmark (like MetaWorld, Alchemy, etc) can achieve with such resources.
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To make training more accessible on the next generation of GPUs (including consumer ones), we
added support for bf16 precision during training. On our hardware and with same hyperparamers it
increased throughput dramatically on H100 and 4090 GPUs, reaching 1.5M and 2.1M respectively
(see Figure 10c).

G Experiments With Goal Conditioning

In contrast to the (Team et al., 2023), in our main experiments we kept the rules and goals hidden from
the agent to test baselines in the pure meta-learning setting, where all necessary information about
the task should be uncovered through intelligent exploration. However, this is our conscious choice,
not a limitation of the proposed environment, and we can easily provide this information to the agent
if needed. To illustrate this, we conducted a preliminary experiment in the multitask goal-conditioned
setting (see Figure 11). To encode rules and a goal, we pre-embed them and concatenate all resulting
embeddings to obtain the final representation. We then condition the agent on this representation,
concatenating it with an image representation after the CNN and before the RNN. We train the agent
simultaneously on the 65536 tasks from the medium-1m benchmark and evaluate it on the 1024 new
tasks. While the agent can generalize on simple rulesets and solve them, albeit not optimally, in the
end, in general there is still a lot of room for improvement, especially in terms of generalization to
harder tasks (near zero 20th percentile).
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Figure 11: Learning curve of a multitask goal-conditioned agent based on the recurrent PPO. We
simultaneously trained the agent on the 65536 tasks from the medium-1m benchmark and evaluated
it on the 1024 new tasks. While the agent can generalize to simple rulesets and solve them, albeit
not optimally, in the end there is generally still a lot of room for improvement, especially in terms of
generalization to harder tasks (near zero 20th percentile). All other hyperparameters were taken from
the single-task PPO experiments.

H Experiments With Image Observations

Although symbolic observations are efficient and fast, they can be limiting, as they greatly simplify
perception. They also make generalization much more difficult, as there are often no trained
embeddings for new objects. Furthermore, symbolic observations may be too small to be used with
some large pre-trained visual models. In general, we don’t feel that these limitations are severe
enough to sacrifice efficiency, but we recognise that practitioners should be able to work around
them if they need to. Therefore, in addition to the efficient encoding of symbolic observations using
tile and color IDs as in the MiniGrid (described in Section 2.2), we provide an alternative way of
encoding symbolic observations by rendering them as 224× 224 RGB images using a wrapper (see
Listing 4 for a usage example).

We have replicated some of the experiments from Section 4 with the image observations, confirming
that they do indeed make benchmarks harder (see Figure 12), but can introduce large overheads that
significantly reduce simulation (Figure 13) and training throughput. The pure environment throughput

19



can still be on the order of millions of steps per second. Unfortunately, during training we can fit far
fewer parallel environments (only 1024) on a single GPU due to the increased memory consumption
of the larger model and images. As a result, we got about 20k steps per second during training, which
makes it too long (∼ 8 hours) to train models with more than 250M transitions on a single GPU.
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Figure 12: Learning curves from training an RL2 (Duan et al., 2016; Wang et al., 2016) agent based
on recurrent PPO (Schulman et al., 2017) on the XLand-MiniGrid meta-RL benchmarks introduced
in Section 3. Compared to the Figure 6 we use image observations instead of the symbolic ones. We
also a slightly larger CNN to handle larger images. Grid size of 13x13 with four rooms was used (see
Figure 14 in Appendix I for a visualization). We report the return for 25 trials on each evaluation task,
4096 tasks in total. During training, the agent is only limited by the fixed maximum step count and
can get more trials if it manages to solve tasks faster. Results are averaged over five random seeds.
One can see that the proposed benchmarks present a significant challenge, especially in terms of the
generalization, as 20th percentile is near zero.

import jax
import xminigrid
from xminigrid.experimental.img_obs import RGBImgObservationWrapper

key = jax.random.key(0)

env, env_params = xminigrid.make("XLand-MiniGrid-R9-25x25")

assert (
env.observation_shape(env_params) ==
(env_params.view_size, env_params.view_size, 2)

)

# for faster rendering, pre-rendered tiles will
# be saved at XLAND_MINIGRID_CACHE path
# use XLAND_MINIGRID_RELOAD_CACHE=True to force cache reload
env = RGBImgObservationWrapper(env)

# observation is RGB image now!
assert env.observation_shape(env_params) == (224, 224, 3)

# jitting works as usuall
timestep = jax.jit(env.reset)(env_params, reset_key)
timestep = jax.jit(env.step)(env_params, timestep, action=0)

Listing 4: Example code on how to render symbolic observations as RGB images.

I Library Details

After the release, the library will be made available as a package on PyPI. For efficiency, we
separate rules and goals with the same meaning that apply only to objects or to the agent, since the
agent is not considered a valid entity internally. For example, the production rules AgentNear and
TileNear are separated while having very similar effects. Similarly, due to the requirement to be
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Figure 13: Simulation throughput averaged over all registered environment variations (38 in total,
see Section 2.3) using image observations instead of symbolic ones. Although the throughput is
noticeably lower compared to Figure 5a, we can still achieve millions of steps per second on a single
GPU and even more on multiple GPUs.

compatible with jit-compilation, new rules and goals can not be easily added by users, without cloning
the repository and modifying the source code, as they are hard-coded in jax.lax.switch inside
the xminigrid.core.rules.check_rule and xminigrid.core.goals.check_goal functions.
We hope that the diversity provided by already available rules and goals will be enough for most
common use cases. We list all supported objects in Table 1, and all rules and goals with their
descriptions in Tables 2 and 3.

To further increase diversity, we implemented several common grid layouts with multiple rooms (see
Figure 14), inspired by MiniGrid. We provide layouts with 1, 2, 4, 6 and 9 rooms. Positions of the
doors, as well as their colors, and objects are randomized between resets, but the grid itself does not
change. Currently, they should be chosen in advance and can not be changed under jit-compilation.
This restriction can be relaxed, but will have high overhead during reset, as due to the branching
and under jax.vmap all conditional branches will be evaluated. We left efficient procedural grid
generation for future work.

Table 1: Supported Objects Types

(a) Tiles

Tile ID

END_OF_MAP 0
UNSEEN 1
EMPTY 2
FLOOR 3
WALL 4
BALL 5
SQUARE 6
PYRAMID 7
GOAL 8
KEY 9
DOOR_LOCKED 10
DOOR_CLOSED 11
DOOR_OPEN 12
HEX 13
STAR 14

(b) Colors

Color ID

END_OF_MAP 0
UNSEEN 1
EMPTY 2
RED 3
GREEN 4
BLUE 5
PURPLE 6
YELLOW 7
GREY 8
BLACK 9
ORANGE 10
WHITE 11
BROWN 12
PINK 13
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Table 2: Supported Goals.
Goal Meaning ID

EmptyGoal Placeholder goal, always returns False 0
AgentHoldGoal(a) Whether agent holds a 1
AgentOnTileGoal(a) Whether agent is on tile a 2
AgentNearGoal(a) Whether agent and a are on neighboring tiles 3
TileNearGoal(a, b) Whether a and b are on neighboring tiles 4
AgentOnPositionGoal(x, y) Whether agent is on (x, y) position 5
TileOnPositionGoal(a, x, y) Whether a is on (x, y) position 6
TileNearUpGoal(a, b) Whether b is one tile above a 7
TileNearRightGoal(a, b) Whether b is one tile to the right of a 8
TileNearDownGoal(a, b) Whether b is one tile below a 9
TileNearLeftGoal(a, b) Whether b is one tile to the left of a 10
AgentNearUpGoal(a) Whether a is one tile above agent 11
AgentNearRightGoal(a) Whether a is one tile to the right of agent 12
AgentNearDownGoal(a) Whether a is one tile below agent 13
AgentNearLeftGoal(a) Whether a is one tile to the left of agent 14

Table 3: Supported Rules.
Rule Meaning ID

EmptyRule Placeholder rule, does not change anything 0
AgentHoldRule(a) → c If agent holds a replaces it with c 1
AgentNearRule(a) → c If agent is on neighboring tile with a replaces it with c 2
TileNearRule(a, b) → c If a and b are on neighboring tiles, replaces one with c and removes the other 3
TileNearUpRule(a, b) → c If b is one tile above a, replaces one with c and removes the other 4
TileNearRightRule(a, b) → c If b is one tile to the right of a, replaces one with c and removes the other 5
TileNearDownRule(a, b) → c If b is one tile below a, replaces one with c and removes the other 6
TileNearLeftRule(a, b) → c If b is one tile to the left of a, replaces one with c and removes the other 7
AgentNearUpRule(a) → c If a is one tile above agent, replaces it with c 8
AgentNearRightRule(a) → c If a is one tile to the right of agent, replaces it with c 9
AgentNearDownRule(a) → c If a is one tile below agent, replaces it with c 10
AgentNearLeftRule(a) → c If a is one tile to the left of agent, replaces it with c 11

J Benchmarks Details

We provide scripts used to generate benchmarks described in Section 3 along with the main library,
at scripts/ruleset_generator.py and scripts/generate_benchmarks.sh. We did not aim
to make the generator fast, as benchmarks are rarely updated, so generating large numbers of tasks
can take a long time (about 5+ hours, with a lot of time spent filtering out repeated tasks). However,
we tried to make it reproducible with a fixed random seed. For exact parameters used, see Table 4.
We document the meaning of each parameter in the corresponding script in the code.

During generation, 10 colors were used (such as red, green, blue, purple, yellow, gray, white, brown,
pink, orange), and 7 objects at most (such as ball, square, pyramid, key, star, hex, goal). This gives at
most 70 unique objects to choose from during generation, and currently limits the maximum depth
of the main task tree to 5, as in the worst-case scenario, it will be a full binary tree, where each
node adds two new objects. Complexity can be further increased by more aggressive branch pruning
to increase overall depth, or by including distractor rules. The disappearance production rule was
emulated by setting the production tile to the black floor.

We also report benchmark sizes in Table 5. As stated in Section 3, they are hosted in the cloud
in a compressed format and are automatically downloaded and cached on first use (by default to
the path specified in $XLAND_MINIGRID_DATA variable). Additionally, we provide all the tools
needed for users to load new benchmarks generated from the script with custom parameters (with
the xminigrid.load_benchmark_from_path). In the compressed format, all benchmarks take
up less than 100MB, which will be uncompressed and loaded into the memory during loading. By
default, JAX will load them into the accelerator memory if available, which can be problematic, as
600MB of GPU memory can be a lot. For memory-constrained devices (such as the RTX 3060 or
similar), we advise explicitly putting benchmarks on CPU memory, using the standard tools in JAX
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Figure 14: Visualization of the available layouts in XLand-MiniGrid (see Section 2.3). We provide
layouts with 1, 2, 4, 6 and 9 rooms. The overall grid size can be changed. Positions of the doors (as
well as their colors) and objects are randomized between resets, but the grid itself does not change
(on the grid with 6 rooms, the doors are also fixed). Currently, they should be chosen in advance
and can not be modified under jit-compilation. This restriction can be changed, but will have high
overhead during reset, as due to the branching and under jax.vmap all conditional branches will be
evaluated (i.e., all grids will be generated and then only one selected). We left efficient procedural
grid generation for future work.

(e.g., jax.device_put). However, in such cases, there may be overhead due to transfer from CPU
memory to GPU memory during training.

Table 4: Parameters used for the generation of benchmarks proposed in this work (see Sec-
tion 3). The argument names are exactly the same as the arguments of the script used to generate
them. The script is provided along with the library in scripts/ruleset_generator.py and
scripts/generate_benchmarks.sh. We tried to ensure that the generation will be reproducible
with the same random seed.

Parameter trivial small medium high

chain_depth 0 1 2 3
sample_depth false false false false
prune_chain false true true true
prune_prob 0.0 0.3 0.1 0.1
num_distractor_rules 0 2 3 4
sample_distractor_rules false true true true
num_distractor_objects 3 2 2 1
random_seed 42 42 42 42

K Experiment Details

Below, we provide additional details about each experiment from Section 4.2.

Training throughput. As noted in Section 4.2, we used the XLand-MiniGrid-R1-9x9 environment
and the trivial-1m benchmark. Overall, we used the default hyperparameters that are common in
other PPO implementations, such as CleanRL (Huang et al., 2022) and PureJaxRL (Lu et al., 2022).
After a small sweep on model size and RNN sequence length, we took the best performing ones
and fixed them (see Table 6). Next, when measuring the training throughput, we tuned num_envs
and num_minibatches to maximize the per-device utilization for each setup, which we define
as a saturation point, after which further increasing the minibatch size or the number of parallel
environments does not increase the overall throughput. Note that the values obtained are close to
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Table 5: Sizes of the benchmarks provided by XLand-MiniGrid. Benchmarks are stored in a
compressed state and will be downloaded from the cloud and cached locally on first use. During
loading, they will be uncompressed and loaded into memory. By default, JAX will load them into
the accelerator memory if available. For devices limited in memory, we advise explicitly putting
benchmarks on CPU memory by using the standard tools in JAX (e.g. jax.device_put). Note that
this can introduce some overhead during training.

Benchmark Size (MB) Comp. Size (MB)

trivial-1m 38.0 5.7
small-1m 69.0 13.7
medium-1m 112.0 17.7
medium-3m 336.0 53.1
high-1m 193.0 31.6
high-3m 579.0 94.8

Table 6: RL2 hyperparameters used in experiments from Section 4.2. Most of them were ported from
CleanRL (Huang et al., 2022) or PureJaxRL (Lu et al., 2022).

Parameter Value

action_emb_dim 16
rnn_hidden_dim 1024
rnn_num_layers 1
head_hidden_dim 256
num_envs 16384
num_steps_per_env 12800
num_steps_per_update 256
update_epochs 1
num_minibatches 32
total_timesteps 1e10
optimizer Adam
lr 0.001
clip_eps 0.2
gamma 0.99
gae_lambda 0.95
ent_coef 0.01
vf_coef 0.5
max_grad_norm 0.5
eval_num_envs 4096
eval_num_episodes 25
eval_seed 42
train_seed 42

the maximum possible on our hardware (A100 with full precision). Throughput will decrease as the
complexity of the benchmark or the size of the agent network increases.

Performance. All the main performance experiments (see Figure 6) were performed with
XLand-MiniGrid-R4-13x13 and a single A100 GPU at full precision. We used the same hy-
perparameters from Table 6 for all benchmarks. Depending on the benchmark, training to 10B
transitions took between 3 and 5 hours. For the large-scale experiment (see Figure 7), we used the
high-1m benchmark, increasing the number of devices from one to eight A100s and the number of
environments from 16384 to 131072 (simply multiplying by eight, as it was close to optimal for a
single device). Training to the 1T transitions took 72 hours or 3 days, with a throughput of ∼ 3.85M
steps per second.

In our main experiments, we used the 20th percentile to evaluate our baselines, following the approach
of Team et al. (2023). Unlike the average score, which can be dominated by outlier scores from the
easiest tasks, the 20th percentile gives us a lower bound guarantee of the agent’s ability to adapt to a
majority of tasks from the broad evaluation distribution. For example, if an agent’s 20th percentile
score is 0.9, then the agent will score at least 0.9 on 80% of the evaluation tasks. Since our main goal
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with meta-RL is to learn an agent that can adapt to new, unseen tasks, we believe that maximizing the
lower bound on performance is the most appropriate approach.

Generalization. To assess generalization in Figure 8, we excluded a whole subset of goal types from
the benchmarks instead of just splitting the tasks to increase the novelty of the test tasks. During
training, only goals with IDs 1, 3, 4 were retained, while all others were separated into the test
from which we sampled 4096 tasks. After the split, there were ∼ 300k training tasks left in each
benchmark. The exclusion of some rule types will likely further increase the generalization gap.
However, more aggressive filtering will probably require the use of benchmarks with a larger total
number of tasks, e.g., variants with 3M of tasks.
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L Environments

(a) DoorKey (b) Empty (c) EmptyRandom

(d) FourRooms (e) LockedDoor (f) Playground

(g) Unlock (h) UnlockPickUp (i) BlockedUnlockPickUp

(j) Memory

Figure 15: Visualization of all environments ported from the original MiniGrid. Each can have
different registered configurations (see Table 7). For a full description of each environment, we refer
the reader to the MiniGrid documentation (https://minigrid.farama.org).

26

https://minigrid.farama.org


Table 7: Full list of the registered XLand-MiniGrid environments.

Environment Name
XLand-MiniGrid-R1-9x9

XLand-MiniGrid-R1-13x13
XLand-MiniGrid-R1-17x17

XLand-MiniGrid-R2-9x9
XLand-MiniGrid-R2-13x13
XLand-MiniGrid-R2-17x17

XLand-MiniGrid-R4-9x9
XLand-MiniGrid-R4-13x13
XLand-MiniGrid-R4-17x17
XLand-MiniGrid-R6-13x13
XLand-MiniGrid-R6-17x17
XLand-MiniGrid-R6-19x19
XLand-MiniGrid-R9-16x16
XLand-MiniGrid-R9-19x19
XLand-MiniGrid-R9-25x25

MiniGrid-BlockedUnlockPickUp
MiniGrid-DoorKey-5x5
MiniGrid-DoorKey-6x6
MiniGrid-DoorKey-8x8

MiniGrid-DoorKey-16x16
MiniGrid-Empty-5x5
MiniGrid-Empty-6x6
MiniGrid-Empty-8x8

MiniGrid-Empty-16x16
MiniGrid-EmptyRandom-5x5
MiniGrid-EmptyRandom-6x6
MiniGrid-EmptyRandom-8x8

MiniGrid-EmptyRandom-16x16
MiniGrid-FourRooms

MiniGrid-LockedRoom
MiniGrid-MemoryS8

MiniGrid-MemoryS16
MiniGrid-MemoryS32
MiniGrid-MemoryS64
MiniGrid-MemoryS128
MiniGrid-Playground

MiniGrid-Unlock
MiniGrid-UnlockPickUp
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