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ABSTRACT

The rapid progress of foundation models has led to the prosperity of autonomous
agents, which leverage the universal capabilities of foundation models to conduct
reasoning, decision-making, and environmental interaction. However, the efficacy
of agents remains limited when operating in intricate, realistic environments. In
this work, we introduce the principles of Unified Alignment for Agents (UA2),
which advocate for the simultaneous alignment of agents with human intentions,
environmental dynamics, and self-constraints such as the limitation of monetary
budgets. From the perspective of UA2, we review the current agent research and
highlight the neglected factors in existing agent benchmarks and method candi-
dates. We also conduct proof-of-concept studies by introducing realistic features
to WebShop (Yao et al., 2022a), including user profiles to demonstrate intentions,
personalized reranking for complex environmental dynamics, and runtime cost
statistics to reflect self-constraints. We then follow the principles of UA2 to pro-
pose an initial design of our agent, and benchmark its performance with several
candidate baselines in the retrofitted WebShop. The extensive experimental re-
sults further prove the importance of the principles of UA2. Our research sheds
light on the next steps of agent research with improved problem-solving abilities.

1 INTRODUCTION

EnvironmentHumans
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States, randomness, etc.
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Align with self-constraints
Time / money budgets, etc.

Agents

Figure 1: A working system of agents that con-
sists of three roles: humans to be assisted, an en-
vironment to interact with, and the agents them-
selves. The principles of Unified Alignment for
Agents (UA2) suggest that the agents should align
with the three roles in a unified manner by recog-
nizing human intentions, adapting to environmen-
tal dynamics, and adhering to self-constraints.

Recent days have witnessed the rapid develop-
ment of autonomous agents, which leverage the
proficiency of Large Language Models (LLMs)
or Large Multimodal Models (LMMs) (Ope-
nAI, 2023; Touvron et al., 2023; Team et al.,
2023; Jiang et al., 2024) to interact with envi-
ronments for task execution. Several seminal
works on foundation model agents have exhib-
ited promising results in both digital and em-
bodied scenarios, including but not limited to
web task automation (Deng et al., 2023; Zhou
et al., 2023b; Zheng et al., 2024), open-ended
world exploration (Wang et al., 2023a; Zhu
et al., 2023), interactive coding (Chen et al.,
2023c; Qian et al., 2023; Xu et al., 2023), and
robotic tasks (Ahn et al., 2022; Mirchandani
et al., 2023; Huang et al., 2023b; Ma et al.,
2023; Wang et al., 2023b).

Aside from existing literature, the development of foundation model agents in realistic, complex
scenarios is still in its infancy. While different agent benchmarks have been proposed (Liu et al.,
2023b; Mialon et al., 2023; Ma et al., 2024), the methodologies of agents are still being proposed
and evaluated in synthetic, simplified settings, which results in the bottlenecked performance
of agents in real-world deployment when attempting to satisfy the expectations of humans with
realistic demands (Kinniment et al., 2023). This naturally leads to the question: What are the
principles that the agents should follow to improve their real-world capabilities?
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To answer the question, we first take a systematic view of agents during the operation. We
recognize the working system of agents as a composition of three roles: humans that propose the
goals to be assisted, an environment that provides feedback for interaction, and foundation model
agents themselves to act in the environment to assist the human user. In complex scenarios, the
intentions of humans can be ambiguous (Tamkin et al., 2022; Li et al., 2023a) or concerned with
safety requirements (Ruan et al., 2023; Yuan et al., 2024). Moreover, the underlying dynamics
of the environment can be complicated to identify (LeCun, 2022; Hu & Shu, 2023), and affected
by temporality (Fan et al., 2022) or stochasticity (Wu et al., 2023). Last but not least, the agents
themselves can also be constrained by a certain amount of budgetary limits (e.g., monetary and
time expenses) during operations, an aspect often overlooked in the existing agent research. While
each of the aspects is noted by different aforementioned works, none of them emphasize the holistic
comprehension of all the roles in the working system.

In this work, we propose the principles of Unified Alignment for Agents (UA2) by drawing con-
nections with the alignment research in the sense of both LLMs and reinforcement learning liter-
ature (Sutton & Barto, 2018; Ouyang et al., 2022; Bai et al., 2022; Ji et al., 2023; Burns et al.,
2023). The goal of UA2 is to enhance the awareness of the foundation model agents to their working
system, aligning with human intentions, environmental dynamics, and self-constraints in a unified
manner. From the perspective of UA2, we review the existing research on agents and point out the
neglected factors in the design of existing benchmarks and candidate methodologies of agents.

To further demonstrate the essence of UA2, we conduct proof-of-concept studies by constructing
an upgraded version of WebShop (Yao et al., 2022a). In the retrofitted WebShop, we add the de-
sign of the human intentions of shoppers for agents to track and infer, the environmental dynamics
with personalized re-ranking algorithms that evolve with agent actions, and the self-constraints by
implementing a counter of monetary and temporal costs. On top of the retrofitted environment, we
initiate an agent method guided by the principles of UA2, and benchmark its performance as well as
several other candidate agent baselines. The results reveal the suboptimality of the agent baselines
that violate the principles of UA2. The results further support our advocacy that the agents should
achieve a unified alignment with humans, the environment, and the agents themselves. Our research
sheds light on the future steps of autonomous agents, including synergizing agents with alignment
techniques, constructing agent benchmarks and methods that follow the principles of UA2, and en-
visioning self-evolving agents through lifelong interaction and continual alignment.

2 PRINCIPLES OF UNIFIED ALIGNMENT FOR AGENTS

2.1 ROLES IN A WORKING SYSTEM OF AGENTS

A working system of agents consists of three roles (Figure 1): agents, humans, and the environment.

Agents are the core component of the entire system. Agents are responsible for understanding human
intentions and generating appropriate responses or actions to interact with the environment. Profi-
cient agents should provide accurate, informative, and engaging interactions during task execution.

Humans are the main role to be assisted in the system. The tasks assigned by humans can be viewed
as the initial inputs to the working system, which reflects the underlying goals and human intentions.

Environment refers to the situation where the agents operate. It encompasses the external factors
and conditions that can influence the agents’ behavior, performance, and interactions. The feedback
from the environment affects the reasoning of the agents, as well as their following actions.

Realistic working systems of agents are composed of diverse, ambiguous human intentions, chang-
ing environments with complex dynamics, as well as self-constraints over the agents themselves.
This leads to the necessity of agents to operate towards the unified alignment with all the roles.

2.2 UNIFIED ALIGNMENT WITH ALL THE ROLES

While three distinct roles exist in a working system of agents, we argue that the agents should align
with all the roles in a unified manner. To promote the orchestration of agents, humans, and the
environment, the agents should work in the direction of eliminating the gap between agents and
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Figure 2: Illustrations of the principles of unified alignment with (a) human intentions, (b) environ-
mental dynamics, and (c) self-constraints. The principles of unified alignment for agents emerge
from all the roles in an agent working system: agents, humans, and environment.

humans, agents and the environment, as well as adapting to the constraints imposed on the agents
themselves. Based on this, we propose the principles of Unified Alignment for Agents (UA2):

1. Alignment with human intentions. The agents need to correctly recognize the intentions of
the human users. While the goal is usually specified with a textual sentence, the ambiguity
of language expression can affect the understanding and decision-making of agents.

2. Alignment with environmental dynamics. The agents need to interact with the environment
to achieve the goal required by human users. To succeed, the agents should raise their
awareness of the operation laws of the environment. This is also advocated in (LeCun,
2022; Hu & Shu, 2023) that proposes to incorporate a world model into an agent system.

3. Alignment with self-constraints. The underscored factor of current agent research comes
from the constraints imposed on the agents themselves, including time/money budget lim-
its. For foundation model agents, the underlying models (e.g., proprietary LLMs/LMMs)
are costly for inference, which hurdles the performance in realistic scenarios.

2.3 CHALLENGES FROM THE PRINCIPLES OF UA2

Figure 2 illustrates the principles of UA2. In this section, we pose the challenges raised from UA2.

Challenges in the alignment with human intentions. When the interaction between humans and
the agent is a single-turn process, it is equivalent to LLM alignment (Ouyang et al., 2022) in the form
of a prompt-response pair. However, in realistic settings, human intentions are often not perfectly
covered in a single prompt, but rather reflected by preferences not directly visible from instructions
(e.g., personal preferences and safety concerns). Challenges arise for the agents to infer authentic
human intentions with multiple turns of interactions by either eliciting human preferences (Li et al.,
2023a), or learning to self-correct from environmental feedback (Huang et al., 2023a), or both.

Challenges in the alignment with environmental dynamics. The interactive environments for
agents in realistic scenarios can be highly complicated, which requires the agent to recognize the
hidden state from the history of observations. Considering the dynamics function sn+1 ∼ π(sn,an)
where sn and an stand for the n-th step state and action, respectively, its complexity includes:

• Partial observability. This is reflected by the complexity of the function that transforms the
historical observations {o≤n} into the authentic state of the current step sn.
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Table 1: Existing agent benchmarks from the perspective of alignment with human intentions, envi-
ronmental dynamics, and self-constraints. “Temp.” stands for temporality, and “Stoch.” stands for
stochasticity. “#Actions” means that the step count in the environment will be reported as a metric.
† WebShop is fully observable as long as the URL is covered in each observation.
Type Benchmarks Human Intentions Environmental Dynamics Self-Constraints

Digital

Androidenv (Toyama et al., 2021) None Partial Obs. None
WebShop (Yao et al., 2022a) None Full Obs.† None
Mind2Web (Deng et al., 2023) None Partial Obs. None
ToolBench (Qin et al., 2023) None Full Obs. & Temp. & Stoch. None
WebArena (Zhou et al., 2023b) Fixed and Given Partial Obs. None

Embodied

VirtualHome (Puig et al., 2018) None Partial Obs. None
BabyAI (Chevalier-Boisvert et al., 2019) None Partial Obs. None
ALFWorld (Shridhar et al., 2020) None Partial Obs. None
MineDojo (Fan et al., 2022) None Partial Obs. & Stoch. None
ScienceWorld (Wang et al., 2022a) None Partial Obs. None
Interactive Gibson (Xia et al., 2020) None Partial Obs. #Actions
AGENT (Shu et al., 2021) None Partial Obs. #Actions
RFUniverse (Fu et al., 2022) Fixed and Given Partial Obs. #Actions
BEHAVIOR-1K (Li et al., 2023b) None Full Obs. #Actions
HAZARD (Zhou et al., 2024) None Partial Obs. & Temp. #Actions

Mixed
SmartPlay (Wu et al., 2023) None Partial Obs. & Stoch. None
AgentBench (Liu et al., 2023b) None Partial Obs. None
AgentBoard (Ma et al., 2024) None Partial Obs. & Temp. & Stoch. None

• Time-variant property. This is reflected by the temporal effect in the dynamics function,
where the evolution of time t leads to the variation of sn+1 ∼ π(sn,an, t).

• Stochasticity. The π(sn,an) can be interlaced with (nearly) independent random events.

In this way, constructing a precise world model for an agent system requires delicate techniques
beyond ad-hoc exploration, coarse-grained memory, or ungrounded planning.

Challenges in the alignment with self-constraints. The self-constraints of agents are the often-
overlooked desiderata in the design of existing agent methodologies. Taking the budgetary limits
into account, the agent system should re-use the accumulated experiences during the lifelong learn-
ing process (Majumder et al., 2023), and balance the resources invested in the different learning
modules. Furthermore, in scenarios where the self-constraints change with different episodes, addi-
tional challenges emerge for the agents to adapt to the constraints autonomously.

3 LITERATURE REVIEW FROM THE LENS OF UA2

3.1 BENCHMARKS

In this section, we begin with a comprehensive review of current benchmarks in agent research,
from the perspective of UA2. Representative benchmarks in both digital (Toyama et al., 2021; Yao
et al., 2022a) and embodied (Puig et al., 2018; Chevalier-Boisvert et al., 2019) environments are
summarized in Table 1. By rendering realistic simulations (Puig et al., 2023; Szot et al., 2021) and
carefully configured tasks (Li et al., 2023b), current benchmarks offer diverse environments for both
language-based and embodied agents (Xi et al., 2023) to operate and interact within (Maes, 1995).
Instead of focusing on environmental authenticity (Fu et al., 2022) or general task complexity, we
assess the benchmarks prioritizing the alignment principles of UA2. In practice, we consider the
following three aspects:

1. Human intentions: Whether the authentic goals need to be inferred during task execution,
or the intentions of humans are precisely conveyed in the descriptions.

2. Environmental dynamics: Whether the state transitions of the environment are intrinsically
endowed with partial observability, temporality, or stochasticity.

3. Self-constraints: Whether the status of budgetary resources is reflected, including time
consumption, the maximum number of actions or reasoning steps, etc.

In terms of human intentions, most benchmarks (Qin et al., 2023; Liu et al., 2023b) provide explicit
task instructions for more effective evaluation, rather than considering human intentions as hidden
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MemGPT (Packer et al., 2023),
MetaGPT (Hong et al., 2023)
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RAP (Hao et al, 2023),
Reflexion (Shinn et al., 2023),
TRAN (Yang et al., 2023)

AgentVerse (Chen et al., 2023b)

ReAct (Yao et al., 2023b), ToT (Yao et al., 2023a), BOLAA (Liu et al., 2023), Chameleon (Lu et al., 2023), HuggingGPT (Shen et al., 2023), …

Figure 3: The dissection of alignment endeavors for different representative agent techniques. Gen-
erally speaking, the methods that actively coordinate with humans excel at aligning with human
intentions. The methods that are grounded with external feedback from the environment align well
environmental dynamics. The methods that adopt adaptive strategies or fine-tuning demonstrate bet-
ter alignment with self-constraints. While the advanced techniques mostly align with one role or
two in the working system of agents, much room lies in the quest for UA2.

attributes for agents to discover. By incorporating human interactions, several embodied simula-
tors (Puig et al., 2023; Xia et al., 2019) facilitate tasks with vague goal descriptions (Paul et al.,
2022; Liu et al., 2023c), necessitating agents to engage with humans to gather sufficient information
for task completion. In contrast, digital benchmarks hardly account for this aspect. The most rele-
vant digital environment in this aspect is WebArena (Zhou et al., 2023b), which deliberately defines
consistent human intentions across episodes. However, the intentions are also explicitly stated in the
instructions, which bypasses the intention elicitation process of agents with humans.

The benchmarks for agents are designed to mirror the complexities of the real-world dynamics (Puig
et al., 2023). Most benchmarks assume the environment is partially observable where agents are re-
quired to accomplish tasks through exploration and interaction (Xia et al., 2020). Some benchmarks
also include stochastic factors (Wu et al., 2023; Zhou et al., 2024) or evolve with time (Qin et al.,
2023). Nevertheless, the synthesis of fine-grained realistic dynamics remains underdeveloped in
benchmark design, resulting in the lack of evaluations of agent methodologies therein.

As for self-constraints, embodied benchmarks (Xia et al., 2020; Li et al., 2023b) use the number
of actions as a metric to reflect the operational cost in real-world deployments, such as the path
length in navigation tasks (Anderson et al., 2018). In this context, AGENT (Shu et al., 2021) further
explicitly evaluates the trade-offs between cost and reward. However, existing digital benchmarks
overlook cost and time constraints in the assessments, which should be equally important.

In essence, existing agent benchmarks are still inadequate from the lens of UA2. In general, the
development of digital benchmarks lags behind that of embodied benchmarks. This underscores the
need for more realistic environments to enhance the development of agent techniques.

3.2 METHODS

In this section, we review the representative agent methods. For each method, we investigate whether
it actively seeks alignment with human intentions, environmental dynamics, or self-constraints.

To align with human intentions, the agent methods should coordinate with humans through reason-
ing or experience summarization. HLA (Liu et al., 2023a) and MemPrompt (Madaan et al., 2022)
interact with humans for multiple rounds to solicit authentic human intentions. Multi-agent frame-
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works like CAMEL (Li et al., 2023c), AgentVerse (Chen et al., 2023b), and DyLAN (Liu et al.,
2023d) leverage a group of agents for role-playing and inter-discussion to improve the understand-
ing of human instructions. ExpeL (Zhao et al., 2023) and MemGPT (Packer et al., 2023) also align
with human intentions through the analysis of human goals in an iterative manner.

To align with environmental dynamics, the agents should ground themselves with external informa-
tion from the environment. Reflexion (Shinn et al., 2023), LATS (Zhou et al., 2023a), and Agent-
Verse (Chen et al., 2023b) use external reward feedback as conditions to rectify their actions and
improve the alignment with the environment. RetroFormer (Yao et al., 2023b), TRAN (Yang et al.,
2023), CLIN (Majumder et al., 2023), and FireAct (Chen et al., 2023a) integrate the (abstracted)
trajectories accumulated through the interaction with the environment into the prompts or data for
fine-tuning. This results in an in-context or parametrized world model, which narrows the gap of
alignment with the environment. RAP (Hao et al., 2023) can also be categorized as aligning with
the environment through simulation of the underlying foundation models.

To align with self-constraints, the agents should adopt an adaptive strategy in the process of task
execution and/or group construction. The representative works in this vein include SwiftSage (Lin
et al., 2023), Retroformer (Yao et al., 2023b), and DyLAN (Liu et al., 2023d). Finetuning a small-
sized foundation model is also beneficial to the obedience of self-constraints (Chen et al., 2023a;
Qiao et al., 2024), which eliminates the need to call the costly APIs of proprietary models.

In addition to the aforementioned frameworks, there are also basic techniques for agents, such as
ReAct (Yao et al., 2022b) and Tree-of-Thoughts (Yao et al., 2023a), that serve as the foundational
elements in most of the advanced agents. An overview of the analysis is illustrated in Figure 3.

Despite the emergence of diverse agent methodologies, plenty of room still exists for the unified
alignment of agents with human intentions, environmental dynamics, and self-constraints simulta-
neously. Challenges lie in the construction of the agent framework (Sumers et al., 2023), which
requires an elaborate design to strike a good balance of alignment with all three roles. Counterex-
amples in this sense are Reflexion (Shinn et al., 2023) and LATS (Zhou et al., 2023a), which lever-
age multiple rounds of sampling to achieve better alignment with the environment, but the self-
constraints are significantly violated at the same time due to the high cost. Moreover, the capability
of the underlying foundation model dominates the potential of the sophisticated alignment endeavors
of an agent. Therefore, it is essential to promote the synergy between the development of foundation
models (such as alignment techniques) and the research of agents.

4 PROOF-OF-CONCEPT STUDIES

In this section, we conduct proof-of-concept studies to validate the importance of UA2 in the de-
sign of both benchmarks and methods for agents. Section 4.1 covers several realistic features we
introduced into WebShop (Yao et al., 2022a), which are selected according to the principles of UA2.
In Section 4.2, we introduce our agent method design following the principles of UA2. Section 4.3
covers the experiments of several agent candidate baselines and our method in the retrofitted envi-
ronment, and Section 4.4 reports the results as well as our discussions and findings.

4.1 ENVIRONMENT CONSTRUCTION

We conduct the case studies by first upgrading the WebShop environment. WebShop is a simulated
online shopping environment with 1.18M real-world shopping items gathered from Amazon, and
12,087 textual shopping instructions collected from human annotators. While serving as a high-
quality testbed for the instruction-following and planning abilities of foundation model agents, we
further improve the complexity of WebShop by introducing the realistic factors around the three
roles in the agent working system: human intentions, environmental dynamics, and self-constraints.

Human intentions. In reality, different human users own unique, potentially invisible preferences
about the properties and categories of shopping items. Given this, we configure 10 different users for
testing, each possessing a basic preference (in text) that corresponds with a certain hidden attribute
of items. We equip each user with a group of 50 consecutive artificially constructed instructions
with user profiles, ambiguous descriptions, and preferences to be inferred by tracking the purchase
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history. The rules of reward computation for each instruction follow those of the original WebShop.
For details of the task construction and the instructions with user profiles, see Appendix A.1.

Environmental dynamics. To narrow the gap with realistic online shopping scenarios, we imple-
ment fine-grained personalized reranking algorithms on top of the original search engine in Web-
Shop. The algorithms include collaborative filtering (Sarwar et al., 2001) and a Determinantal Point
Process (DPP) based method (Chen et al., 2018). With personalized reranking schemes, the website
is constantly evolving with user actions, which better reflects the complexity of realistic environ-
mental dynamics. The details of the implementation are listed in Appendix A.2.

Self-constraints. To measure the expenses of the agents themselves during the operating process,
we implement the runtime environment to count for the temporal and monetary expenditures for the
agent working system. The monetary cost consists of the API calls of the proprietary foundation
models, and the time consumption indicates the normalized endurance of interaction between the
agents and the interactive environment (detailed in Appendix A.3).

4.2 AGENT DESIGN WITH THE PRINCIPLES OF UA2

Batched 
Analyzer

Structured 
Memory

High-Reward
Trajectories

Low-level Insights
Key Action #1: …
Key Action #2: …
Key Action #3: …

Inter-Task Retrieval of 
High-level Experience

Intentions Dynamics,
Feedback

…

Interaction

Figure 4: Overview of our agent design that fol-
lows the principles of UA2. By continually an-
alyzing and retrieving structured memory from
similar tasks of the same user, the agent extrap-
olates experience across different tasks.

Following the principles of UA2, we initiate
our agent by introducing the structured mem-
ory module on top of ReAct (Yao et al., 2022b).
Shown in Figure 4, the introduced module is
formed by two components: low-level action
insights and high-level intra-task experience.

Low-level action insights are a list of key
actions exploited from different runs in the en-
vironment under the same task instruction. The
key actions are extracted from the high-reward
trajectories with an analyzer, with which
the contributions of actions are computed in
task-solving. The analyzer adopts a batched
inference (Cheng et al., 2023) to tag all actions
at the same time. The structured memory is
then maintained with the key actions paired
with their corresponding human instructions.

High-level intra-task experience is formed by
the retrieval of the low-level action insights accumulated in the structured memory. According to
the similarity of the current human instruction with the previous ones stored in the memory, the key
actions are gathered to form an initial plan for the current task. The re-use of high-level experience
throughout the stream of tasks promotes efficient intra-task generalization.

We design the agent to differ from previous works, which rely on LLM summarization of unstruc-
tured insights (Majumder et al., 2023; Zhao et al., 2023) or multiple-round LLM reflections within a
single task (Shinn et al., 2023). Our method aligns with human intentions, environmental dynamics,
as well as self-constraints: (i) The maintenance of the structured memory contributes to the lifelong
profiling of a human user. (ii) The storage and retrieval of key actions analyzed from different trajec-
tories improves the awareness of the agent to the environment. (iii) The reuse of structured records
saves the agents from planning from scratch for each task, which aligns with self-constraints by cost
minimization. Appendix B covers the formal descriptions and implementation details.

4.3 EXPERIMENTS

Baselines. We compare the performance of our method with several widely-used agent techniques
on the retrofitted WebShop in Section 4.1, including (1) ReAct (Yao et al., 2022b), which harmonizes
internal reasoning and external actions, (2) ReAct-SC (ReAct with Self-Consistency), which equips
ReAct with sampling and marginalization (Wang et al., 2022b), (3) Reflexion (Shinn et al., 2023),
which conducts self-correction by reflecting on past actions and observations, and (4) LATS (Zhou
et al., 2023a), which leverages a combination of techniques including ReAct, self-reflection, and
Monte Carlo Tree Search (MCTS). Note that we leave the implementation of techniques categorized
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Table 2: The performance of averaged reward, success rate (SR) (%), alignment gap (%) with human
intentions (GHI) and environment dynamics (GED), time (s) and money ($) cost of all methods
tested in our retrofitted WebShop environment. The best result for each metric is in bold. The better
performance under each metric is indicated by the darker green shades. *LATS is tested on 1/10
subset of the entire task instructions due to the significant cost.

Method Reward ↑ SR (%) ↑ GHI (%) ↓ GED (%) ↓ Time (s) ↓ Money ($) ↓
ReAct 50.3 8.0 11.7 14.9 1.716 0.013
ReAct-SC 49.9 7.4 14.4 14.6 1.720 0.039
Reflexion 44.4 13.8 22.5 25.7 5.539 0.045
LATS* 52.4 10.0 18.5 14.3 125.935 5.508

Ours 51.9 9.6 6.7 14.8 1.779 0.014

as aligning with human intentions in Section 3.2 as future work, since great effort should be taken
by involving humans in the interaction loop and adapting to our settings.

Evaluation Metrics. Following the settings of Yao et al. (2022a), we measure the performance
of task completion with the average reward and success rate incurred per task. To quantitatively
investigate the alignment of different methods under the principles of UA2, we introduce three extra
metrics. We report the averaged monetary and time cost to reflect the alignment of each method
with self-constraints. For human intentions and environmental dynamics, we build ablated versions
of the retrofitted WebShop that exclude the introduced feature, respectively. We then test each
agent technique on the pair of fully-retrofitted / ablated environments, and finally investigate the
difference between the pair of the evaluated rewards. More specifically:

To evaluate the alignment with human intentions, we construct an ablated version of the environ-
ment in Section 4.1, where the hidden attributes corresponding with user profiles or preferences
are excluded from the reward computation. In this ablated environment, the performance of each
method should be better than that in the fully-retrofitted environment. We define the alignment gap
with human intentions GHI as the relative difference between the two performances:

GHI = (Rfull −RHI)/Rfull × 100%, (1)

where Rfull and RHI stand for the reward of an agent in the fully-retrofitted environment and the
environment excluding the computation of human intentions, respectively.

Similarly, to evaluate the alignment with environmental dynamics, we build an ablated environment
without the implementation of the personalized reranking algorithms, and define the alignment gap
with environmental dynamics GED:

GED = (Rfull −RED)/Rfull × 100%, (2)

with RED as the reward of an agent in the ablated environment that excludes the personalized
reranking algorithms.

4.4 RESULTS AND DISCUSSIONS

The performances of different methods in all the metrics are shown in Table 2. According to the
results, Our framework achieves the top unified performance among all the methods, with the best
balance between task completion performance and measures of different alignment sources.

LATS achieves the highest average reward, and Reflexion obtains the top success rate. This is
because they both employ trial-and-error approaches with multiple rounds of interactions. However,
the money and time costs of the two methods are significantly higher than other methods, suggesting
their weaknesses in aligning with the self-constraints of agents. To be specific, Reflexion incurs a
cost over 5× in time and 3× in money compared to other methods, while LATS, in contrast with
other methods, entails a cost exceeding 100× in time and nearly 200× in money.

ReAct-SC achieves a comparable average reward and success rate (SR) with ReAct. This might be
attributed to the complexity of our retrofitted environment, where even more runs of sampling are
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required in ReAct-SC to vote for better actions. In addition, The incorporation of self-consistency in
ReAct-SC requires more calls of the API of the proprietary foundation model, resulting in approxi-
mately three times the cost of money compared to ReAct. The time cost of ReAct and ReAct-SC is
nearly identical. This is because we only document the endurance within the interactive environment
(the time of API requests is neglected), and at the same time, ReAct might exhibit similar planning
abilities as ReAct-SC. Finally, Our framework achieves the top performance in averaged rewards
and success rates, which underscores the significance of the principles of UA2.

As for the alignment gap, the results of GHI and GED in Table 2 indicate that almost all baselines
possess the gap above 10% in terms of aligning with humans or the complex environment. Notably,
our method demonstrates a significantly lower GHI than other methods, which might benefit from
its capacity to adapt to diverse human intentions by intra-task experience generalization with the
structured memory. In contrast, LATS demonstrates a relatively low GED of 14.3%. This is because
of the accumulation of trials from the exhaustive sampling in the environment, which meanwhile
limits its practical applicability. For comparison, neither GHI nor GED of Reflexion is satisfactory,
which might indicate that the mechanism of the self-reflection is inferior to other techniques in this
setting. These results highlight the need for agent techniques following the principles of UA2.

5 ACTIONABLE INSIGHTS

Envisioning the future of autonomous agents powered by foundation models in real-world applica-
tions, in this section, we provide insights on the next steps of research from UA2.

Synergizing agents with alignment research. Alignment research aims to steer a model to follow
instructions faithfully. To achieve unified alignment in an agent system, techniques in the field of
alignment research can be helpful to the foundation model agents in following the principles of
UA2. For instance, humans can leverage ideas like Constitutional AI (Bai et al., 2022) to integrate
the principles of unified alignment into the objectives of the agents.

Constructing realistic agent benchmarks. While appreciating the existing efforts on the bench-
mark construction for agents, we advocate for more realistic simulation and sandbox design reflect-
ing the intricate scenarios with nuanced logistics and details. As shown in our proof-of-concept
studies, the principles of UA2 are also helpful in the design of the benchmark. Taking UA2 into
account, the gap between agents and realistic human demands and interactive environment can be
revealed more faithfully, laying the foundation for the next breakthrough of agent techniques.

Developing holistic evaluations for agents. Existing research on agents mainly uses the final suc-
cess of task completion as the evaluation metric. In our work, we propose the principles of unified
alignment for agents, suggesting the proficiency of agents can be reflected by the quality of align-
ment with human intentions, environmental dynamics, and self-constraints. Given this, the dissec-
tion of the performance of agents is necessary for the development of agent techniques, since an
analysis of alignment gaps with different roles indicates the direction of improvement for agents.
This suggests the importance of holistic evaluations for the development of autonomous agents.

Toward self-evolving agents through continual alignment. While the sources of alignment have
been categorized by UA2, it requires the elaborated design of agent methods that carefully balance
the different alignment sources in a unified manner. Envisioning agents with next-level autonomy,
we expect the agents to self-evolve through lifelong interaction with humans and the environment
with continual alignment. In this vein, agents improve themselves with better use and efficiency,
leading to general problem-solving abilities in complex, real-world scenarios.

6 CONCLUSION

In this work, we propose the principles of unified alignment for agents with human intentions, en-
vironmental dynamics, and self-constraints. We start by recognizing the three components in a
working system of agents: agents, humans, and environment, then state the necessity of agents to
align with the three roles in a unified manner and propose the principles of UA2. We demonstrate the
significance of UA2 by literature review and proof-of-concept studies. Eventually, we shed light on
the impact of UA2 on the future of agent research with enhanced general problem-solving abilities.

9
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BROADER IMPACT

The prosperity of autonomous agents with foundation models has posed exciting avenues for future
research toward the automatic execution of daily tasks for humans. In our work, we advocate for
the unified alignment of agents (UA2) with humans, the environment, and the agents themselves
simultaneously. To align with humans means to improve the understanding of human intentions,
and especially safety concerns, to provide better assistance. By doing so, the agents also need to
align with the environment to enhance the awareness of environmental dynamics, so that the agents
can be cautious about whether the next actions could be malicious or destructive. The agents should
also align with themselves in terms of self-constraints, adhering to the running cost of money, time,
battery, etc. In our work, we conduct proof-of-concept studies by introducing realistic features, such
as human profiles, personalized reranking algorithms, and runtime cost counters into the original
WebShop. While the results have proved the essence of UA2, we plan to experiment with extra
alignment factors in the future, including safety concerns from human intentions, temporal variation
and random events from the environment, as well as other types of self-constraints.

Our work covers the principles for agents to follow, and we expect the future of agents with narrowed
alignment gaps in a unified manner. We also expect the construction of more realistic sandboxes or
simulators as the testbeds for agents, where both the capability and safety of agents can be better
studied and improved under realistic settings. Eventually, our principles of unified alignment for
agents lay the foundation for the next-level agents more intelligent and more responsible.
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A ENVIRONMENT CONSTRUCTION IN SECTION 4.1

In this section, We introduce the realistic features we introduce into the original WebShop in detail.
Note that as we aim to conduct proof-of-concept studies, the features are implemented for the pur-
pose of reflecting the three lines of alignment only. We also anticipate realistic configurations and
more nuanced logistics in a dedicated benchmark in the future.

A.1 TASK DESIGN IN THE RETROFITTED WEBSHOP

Different from the precise human instructions in the original WebShop environment, we design tasks
to reflect the necessity of agents to align with human intentions. In reality, different human users own
unique preferences about the properties and categories of shopping items. Such preferences form the
profile of a user, which dominates their authentic intentions in the stream of shopping instructions.
As it is not always easy for human users to explicitly write down the precise instructions for all their
shopping intentions, the agent should assist humans by continually inferring human intentions.

Given this, we configure 10 different users, each possessing a basic preference (described in text)
that corresponds with a certain hidden attribute of items. For example, for the hidden attribute
cruelty-free, we design the corresponding basic human profile sentence to be I cannot
care enough for the cute creatures in this world. We follow the reward
computation rules in the original WebShop, therefore the match of hidden attributes is essential
to the final reward. We equip each user with a group of 50 consecutive artificially constructed in-
structions. In all the instructions of the group, the aforementioned profile sentence always appears.

The specific instruction for the purchase of this round falls into three cases:

• The basic preference of the user should be considered. An example in this category
reads: i am interested in a 60 count of toner that is suitable
for sensitive skin, and price lower than 50.00 dollars. For
this instruction, the expected item to be found contains two hidden attributes: sensitive
skin according to the task instruction, and cruelty-free according to the user profile.

• The basic preference of the user does not need to be considered. An example in
this category reads: i am looking for a nightstand that is easy to
install. Our motivation for this case is that the users with whatever preferences al-
ways need to buy some specific items, which can be irrelevant to their profiles. In this
example, the underlying hidden attributes contain just the task-related easy install.

• The basic preference of the user should be considered, and an extra preference should
be recognized according to the recent instruction histories. An example in this cat-
egory reads: Based on my purchase preference from history, help
me to buy eco friendly face towels. And the corresponding instruction
history for this example is listed in the following Table 3. It should be inferred according
to the history that the hidden attribute (as the invisible intention) that frequently appears in
recent instructions are sensitive skin. We design the order of the instruction group
so that such to-be-inferred attributes appear at least five times more than other attribute
candidates in a sliding window. As a result, in this example, the set of the hidden attributes
consists of the cruelty-free according to the user profile, the eco friendly ac-
cording to the description in the textual instruction, and also the sensitive skin that
is to be tracked and inferred from history.

Most of the task instructions in the former two groups are selected from the crowdsourced instruc-
tions, whose corresponding ground-truth items are labeled with the hidden attributes of both the
basic user preference and the task-related instruction. We artificially rewrite the instructions in
the third category by introducing indicating words like Based on my purchase from the
history. In the 10 groups of 50 consecutive instructions, the statistics of the three categories
is 298/97/105 for the first/second/third category, approximately 3:1:1. The task completion perfor-
mances of all agent techniques should be tested on the 10 groups of 50 instructions each, with the
overall averaged reward and success rate reported. In the ablated version of the retrofitted environ-
ment for the calculation of RHI and GHI in Section 4.3, all the hidden attributes about the basic
user profiles (e.g., the cruelty free) and the preferences to be inferred (e.g., the sensitive
skin) are excluded from the reward computation.
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Table 3: The instruction history for the instruction example: Based on my purchase preference from
history, help me to buy eco friendly face towels.

The following instruction history is listed in reverse chronological order:
i am interested in a 60 count of toner that is suitable for sensitive skin.
i am looking for a sulfate & paraben free shampoo that is also suitable for my sensitive skin.
i want some hand cream for dry and sensitive hands in a grapefruit scent.
i need men’s non toxic deororizing body spray for sensitive skin. get the 2pack 3.4 ounce size.
get me a body scrub to remove dead skin. pick a 3.4 fl oz pack that is meant for sensitive skin.
i need low rise boot cut pants in grey color.
buy me some paraben free coconut oil lip balm for my sensitive skin.
i’m looking for some juicy watermelon lip gloss that is paraben and oil free and suitable for sensitive skin.
i need soaps for dry and sensitive skin that are made with argan oil.
i’m looking to buy a body wash that has tea tree oil as an ingredient that would work well for sensitive skin.

A.2 PERSONALIZED RERANKING ALGORITHMS

A.2.1 OVERVIEW

To narrow the gap with realistic online shopping scenarios, we implement personalized reranking al-
gorithms in WebShop. With the reranking algorithms, the search results of the shopping item list are
re-ordered according to the click histories of the users. Specifically, on top of the Pyserini (Lin et al.,
2021) search engine used in the original Webshop, we integrate a Collaborative Filtering (CF) (Sar-
war et al., 2001) algorithm and a Determinantal Point Process (DPP) based algorithm (Chen et al.,
2018) for fine-grained personalized re-ranking. The DPP-based algorithm provides the reranking
weights based on the historical actions of the agent itself, while the CF-based algorithm provides
the reranking weights based on the similarity with other users. The two sets of weights by the two
algorithms are eventually linearly averaged with the coefficient of 0.2 for DPP-based weights and
0.8 for CF-based weights. Driven by the reranking algorithms, the environment is constantly evolv-
ing with user actions, which could better reflect the complexity of realistic environmental dynamics.
In the ablated version of the retrofitted environment for the calculation of RED and GED in Section
4.3, the two algorithms are disabled.

Algorithms 1 and 2 brief the collaborative filtering and DPP-based reranking, respectively.

Algorithm 1 User-Based Collaborative Filtering
Input: Prime user-item rating matrix R, User Click Through Rate U, Top-n items I
Output: CF reranking score of top-n items Y

1: for each prime user i do
2: for j ∈ I do
3: Mi,j = Ri,j

4: end for
5: end for
6: for each prime user i do
7: /* Calculate the intersection of items contained in the current agent and prime users */
8: P = U ∩Ri

9: Si =
∑

p∈P (Ri,p−Ri)(Up−U)√∑
p∈P (Ri,p−Ri)2

√∑
p∈P (Up−U)2

10: end for
11: Y = SM/

∑
Si

In the implementation of the CF-based algorithm, we first employed ChatGPT
(gpt-3.5-turbo-1106) as an assistant to simulate 30 different users and gather their
preference data for collaborative filtering (detailed in Appendix A.2.2). During the shopping
process, we record the click-through rates (CTR) of the agent on every item. We then re-rank the
item list of the search results according to the agent’s CTR and its Pearson correlation between the
simulated user preferences.
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Algorithm 2 Deterministic Point Process Based Reranking (Chen et al., 2018)
Input: Item score vector I, Item similarity matrix S, Top K
Output: DPP-based reranking score of top-n items Yg

1: ci = [], d2i = Lii, j = argmaxi∈Z log(d2i ), Yg = {j}
2: L = diag(I) S diag(I)
3: while |Yg| < K do
4: for i ∈ Z \ Yg do
5: ei = (Lji − ⟨cj , ci⟩)/dj
6: ci = ci∥ei
7: d2i = d2i − e2i
8: end for
9: j = argmaxi∈Z\Yg

log(d2i ), Yg = Yg ∪ {j}
10: end while

A.2.2 USER BEHAVIOR SIMULATION

We employed ChatGPT to design 30 different roles, simulating the process of shopping and gath-
ering the ranking results for 50 products for each role, the prompts are shown in Table 4. The
collected data will be used to simulate user behavior for simulating the dynamic environment sim-
ilar to recommendation systems with changeable displayed items for different users and behaviors.
The information of 30 roles is shown in Table 5 and Table 6. Note that these roles are completely
generated by ChatGPT, including their genders and other information. In this work, we construct
the 30 roles to obtain the set of preference weights for only the purpose of introducing the reranking
mechanisms into the environment. We plan to refine the construction of the profiles with a broader
coverage of demographic groups in the future.

Table 4: The prompt for user behavior simulation using ChatGPT. We define roles (colored in green)
and the query (colored in blue), asking for reranking items (colored in orange) given by the original
Webshop. The generated results (colored in red) can serve as a simulation of user click behavior.

User Behavior Simulation

/* Prompt */
Your name is [NAME] and here is your profile:
Gender: [Gender]
Age: [Age]
Occupation: [Occupation]
Shopping Habits: [Shopping Habits]

You are searching for [Query] on a shopping website and obtain 50 results:

Id: [Id1]; Description: [Desc1]; Price: [Price1]
Id: [Id2]; Description: [Desc2]; Price: [Price2]
...
Id: [Id50]; Description: [Desc50]; Price: [Price50]

Please sort all 50 products according to your preferences using the format of “Id-Ranking”.

/* Response */
[Id1]-[Rank1]; [Id2]-[Rank2]; ...; [Id50]-[Rank50];

Human Evaluation for the Ranking Results by ChatGPT. Furthermore, we conducted a human
evaluation on the ranking results of ChatGPT, and the results in Table 7 show that the NDCG score
of ChatGPT is 0.871, indicating that the simulation results are close to human ranking preferences.
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Table 5: The generated 30 different simulated users by using ChatGPT (part 1).
Profile Role #1 Role #2 Role #3 Role #4 Role #5
Name Sarah Juan Lisa Michael Emma
Gender Female Male Female Male Female
Age 32 21 40 45 55
Occupation Software Engi-

neer
College Student Stay-at-home mom Construction Man-

ager
Retired
Teacher

Habits Sarah loves on-
line shopping
for the latest
gadgets and
tech accessories.
She researches
extensively, reads
reviews, and
compares prices
before making a
purchase. She’s
always on the
lookout for the
newest tech
trends.

Juan is pas-
sionate about
fashion and
enjoys shop-
ping for trendy
clothing and
accessories.
He follows
fashion influ-
encers on social
media, visits
local boutiques,
and regularly
updates his
wardrobe to
stay stylish on
campus.

Lisa prioritizes her
family’s health and
wellness. She shops
for organic groceries,
supplements, and
natural skincare
products. She also
invests in fitness
equipment and en-
joys trying new
workout routines.

Michael is passion-
ate about home im-
provement projects.
He frequently visits
hardware stores, re-
searches tools and
materials, and en-
joys renovating and
enhancing his living
space. He seeks
quality products for
long-term durabil-
ity.

Emma is an
avid reader and
loves hosting
book club
meetings. She
enjoys brows-
ing bookstores,
collecting lit-
erary classics,
and exploring
various genres.
She values rec-
ommendations
from fellow
book lovers.

Profile Role #6 Role #7 Role #8 Role #9 Role #10
Name Alex Ryan Maya Daniel Olivia
Gender Non-binary Male Female Male Female
Age 27 35 28 50 42
Occupation Etsy Shop Owner Chef Environmental Sci-

entist
Pet Store Owner Financial Ana-

lyst
Habits Alex loves cre-

ating unique
handmade items
and runs an on-
line store. They
actively seek
out specialty
craft supplies,
materials, and
tools to produce
high-quality
products. They
also enjoy attend-
ing craft fairs and
networking with
other artisans.

Ryan is pas-
sionate about
cooking and
constantly
seeks out new
ingredients
and culinary
tools. He enjoys
shopping at
local markets,
specialty food
stores, and on-
line platforms
for gourmet
products. He
values quality
and freshness.

Maya loves hik-
ing, camping, and
exploring nature.
She invests in high-
quality outdoor
gear, such as tents,
hiking boots, and
backpacks. She
actively researches
and reads reviews to
ensure durability and
functionality.

Daniel owns a
pet store and con-
stantly seeks out
pet-related products
for his business.
He actively sources
pet food, toys,
grooming supplies,
and accessories to
cater to various pet
owners’ needs.

Olivia loves
finding the
best deals and
discounts. She
enjoys using
coupons, com-
paring prices,
and exploring
online plat-
forms to save
money on her
purchases. She
values both
quality and
affordability.

Profile Role #11 Role #12 Role #13 Role #14 Role #15
Name Ahmed Sophia Carlos Emily Javier
Gender Male Female Male Female Male
Age 38 25 30 27 34
Occupation Physical Educa-

tion Teacher
Social Media
Influencer

Automotive Engi-
neer

Environmental Ac-
tivist

Travel Blogger

Habits Ahmed is pas-
sionate about
sports and fitness.
He shops for
athletic apparel,
sports equipment,
and supplements.
He enjoys ex-
ploring local
sports stores and
stays updated on
the latest fitness
trends.

Sophia is a
beauty en-
thusiast and
creates content
about cosmet-
ics, skincare,
and makeup
tutorials. She
actively seeks
out new beauty
products, fol-
lows trends,
and shares her
recommenda-
tions with her
followers.

Carlos has a deep
interest in cars and
enjoys shopping for
automotive acces-
sories, performance
parts, and main-
tenance tools. He
actively researches
and stays updated on
the latest automobile
technology.

Emily is focused
on sustainable
living and seeks
out eco-friendly
products. She
shops for ethically
sourced clothing,
reusable items, and
environmentally
friendly household
products.

Javier loves
traveling and
exploring new
destinations.
He shops for
travel gear,
luggage, and
outdoor ac-
cessories.
He values
lightweight
and durable
products for his
adventures.
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Table 6: The generated 30 different simulated users by using ChatGPT (part 2).
Profile Role #16 Role #17 Role #18 Role #19 Role #20
Name Lily Oliver Emma Noah Ava
Gender Female Male Female Male Female
Age 29 19 52 65 45
Occupation Marketing Man-

ager
College Student Antique Store Owner Retired Engineer Art Gallery

Owner
Habits Lily recently

became a new
parent and ac-
tively shops for
baby products,
including cloth-
ing, toys, and
nursery essen-
tials. She seeks
out trusted brands
and prioritizes
safety and qual-
ity.

Oliver is pas-
sionate about
music and
loves shopping
for musical
instruments,
equipment, and
vinyl records.
He actively
explores local
music stores
and online
platforms for
unique finds.

Emma has a keen
interest in vintage
items and actively
seeks out antique
furniture, clothing,
and collectibles. She
enjoys visiting flea
markets, estate sales,
and auctions to ex-
pand her collection.

Noah embraces
technology and
enjoys shopping for
the latest gadgets,
smartphones, and
smart home de-
vices. He actively
seeks user-friendly
products and keeps
up with technologi-
cal advancements.

Ava is pas-
sionate about
art and ac-
tively collects
paintings,
sculptures, and
other fine art
pieces. She
frequents art
fairs, galleries,
and auctions
to discover
new artists and
expand her
collection.

Profile Role #21 Role #22 Role #23 Role #24 Role #25
Name Max Olivia Liam Sophia Ethan
Gender Male Female Male Female Male
Age 20 35 32 26 50
Occupation College Student Interior De-

signer
Personal Trainer Graphic Designer Landscape Ar-

chitect
Habits Max is an avid

gamer and ac-
tively shops for
the latest gam-
ing consoles,
accessories, and
video games. He
stays updated on
gaming news,
follows esports
tournaments, and
seeks out mer-
chandise from his
favorite games.

Olivia special-
izes in creating
beautiful spaces
and frequently
shops for fur-
niture, decor,
and lighting
fixtures. She
stays updated
on design
trends, visits
trade shows,
and sources
unique pieces
for her clients.

Liam is dedicated to
fitness and actively
shops for workout
apparel, equipment,
and supplements.
He seeks out high-
quality gear that
withstands intense
training sessions and
recommends prod-
ucts to his clients.

Sophia has a pas-
sion for stationery
and actively shops
for notebooks,
pens, art supplies,
and planners. She
values aestheti-
cally pleasing and
functional products
that inspire her
creativity.

Ethan enjoys
gardening and
frequently
shops for
plants, seeds,
gardening
tools, and
outdoor decor.
He seeks out
sustainable and
eco-friendly
products that
enhance his
garden.

Profile Role #26 Role #27 Role #28 Role #29 Role #30
Name Mia Noah Isabella James Harper
Gender Female Male Female Male Female
Age 38 75 30 35 23
Occupation CEO Retired Teacher Environmental Sci-

entist
Stay-at-home dad Vintage Cloth-

ing Store
Owner

Habits Mia appreciates
luxury and ac-
tively shops for
high-end fashion,
accessories, and
designer items.
She seeks out
exclusive brands,
attends fashion
events, and val-
ues premium
craftsmanship.

Noah prefers
simplicity when
it comes to
technology
and shops for
user-friendly
devices, such
as easy-to-use
smartphones,
tablets, and
assistive tech-
nology. He
values products
with clear in-
structions and
reliable cus-
tomer support.

Isabella is committed
to sustainable living
and actively shops
for eco-friendly
products, includ-
ing reusable bags,
zero-waste toiletries,
and environmentally
friendly cleaning
supplies. She values
products with min-
imal environmental
impact.

James is a hands-
on parent and fre-
quently shops for
baby gear, includ-
ing strollers, baby
carriers, and child-
proofing items. He
seeks out functional
and safe products
that make parenting
easier.

Harper has a
passion for
vintage fashion
and actively
shops for
retro clothing,
accessories,
and antique
jewelry. She
enjoys visiting
thrift stores,
vintage mar-
kets, and online
platforms for
unique finds.
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Table 7: NDCG@10 scores of the ranking results according to the results by ChatGPT and eight
human evaluators.

Annotator Query #1 Query #2 Query #3 Query #4 Query #5 Average.

#1 0.807 0.830 0.826 0.857 0.819 0.828
#2 0.823 0.908 0.871 0.798 0.814 0.843
#3 0.795 0.956 0.999 0.962 0.964 0.935
#4 0.927 0.896 0.974 0.931 0.763 0.898
#5 0.843 0.900 0.910 0.961 0.876 0.898
#7 0.836 0.934 0.883 0.860 0.915 0.885
#6 0.851 0.905 0.872 0.749 0.841 0.844
#8 0.798 0.824 0.920 0.764 0.877 0.837

Average. 0.835 0.894 0. 907 0. 860 0.859 0.871

A.3 RUNTIME ENVIRONMENT

To measure the expenses of the agents themselves we implement the runtime environment for the
agent working system that tracks the temporal and monetary expenditures. We compute the mone-
tary cost of each API call of the proprietary foundation models based on their official pricing. We
also track the time consumption of the interaction between the agents and the environment. As the
response of the website can be affected by networking issues, we leverage the following benchmark-
ing measures for simplicity: In our environment construction, we documented all kinds of actions
taking place in the environment and pre-calculated a static list of their estimated response delays.
We also disregard the duration of API calls in the runtime environment as the tracked monetary cost
also reflects the expense of API calls. With the runtime environment as a wrapper of the working
system, humans can monitor the obedience of the agents to their self-constraints.

Specifically, we estimate the response delay of each action in the interactive environment by artifi-
cially sampling actions, trying them out, and then recording the delays. After gathering the delay
statistics for each action, we fit the data with a uniform distribution, and use the expected value to
reflect the estimated time for the action. Such estimated time is static, and is leveraged to benchmark
the time cost in the experiments. The estimated time for all the actions is listed in the Table 8.

Table 8: Estimated time for different actions.
Action Time (s)

reset 0.1874
search 0.5966
click[Instruction History] 0.2645
click[Back to Search] 0.1197
click[Next >] 0.2693
click[< Prev] 0.2545
click[Descriptions] 0.2401
click[Features] 0.2167
click[Reviews] 0.1275
click[Buy Now] 0.1920
click[other valid tag] 0.2896
think 0.0000

Invalid Action 0.3234

Average 0.2370
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Figure 5: The details of our agent design that follows the principles of UA2. Compared to tradi-
tional ReACT agents, we append structured experience as the long-term memory: By filtering and
analyzing raw trajectories, we extracted key actions from prior successes as low-level insights in
reasoning/action paths. By retrieving reference low-level insights under the same user, we can find
the high-level experience under most similar user instructions, expressing similar human intentions.
Agents are able to understand human intentions and environment dynamics by extrapolating key
actions from a similar, prior task.

B EXPERIMENTS

B.1 DESCRIPTIONS ON AGENT DESIGN WITH THE PRINCIPLES OF UA2

From Section 3.2, we identify three core capacities essential to agents and how they are related to
the alignment principles. However, the trade-off between stronger capacities and fulfilling these
principles makes it challenging to design a universally satisfactory method. Instead, to make the
very first attempt, we consider improving well-known techniques to satisfy most principles.

We introduce structured memory for unified alignment principles for agents (UA2), as depicted in
Figure 5, on top of the original ReAct (Yao et al., 2022b) agent.
Definition B.1. Trajectory is a list of actions (ai) and observations (oi) that agents have observed
from environment (E) after each action: T = {ai, oi}ni=1, oi = E({ak}ik=1).

After filtering high-reward trajectories (Definition B.1) under human intentions from the given in-
struction q and temporal environment conditions (E), we utilize a batched analyzer (Cheng et al.,
2023) that tags key actions from the whole trajectory within one API call. Thus we integrate in-
sights from environment dynamics with low costs compared to Reflexion (Shinn et al., 2023) and
LATS (Zhou et al., 2023a).
Definition B.2. Key actions (a∗i ) are those having a positive impact on the efficiency or efficacy of
task completion. We obtain the key actions T ∗

q = {a∗i }mi=1 each time the agent completes a task.

Definition B.3. Low-level insights is a list of key actions (a∗i ) under a given instruction (q): T ∗
q =

{a∗i }mi=1. On top of this, structured experiences at t-th query are formed by a set of paired previous
instructions and key actions: S = {(q, T ∗

q ) : q ∈ Qt−1}, where Qt−1 denotes the set of previous
instructions before t-th query.

Thus, we enhance agents’ memory by mapping low-level insights with corresponding instructions of
previous tasks, which formulates a structured memory (S) (Definition B.3). It is worth noting that
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we construct the structured memory under each user, which allows agents to comprehend human
intention from prior instructions. When a new instruction is given, denoted as qgiven, a reference
containing high-level experience under the instruction qr could be retrieved by simply calculating
the most similar instructions from its memory using BM25 (Robertson et al., 2009) scoring: T ∗

qr ∈
S, qr = argmaxq∈Q{BM25(q, qgiven)}.

The retrieved high-level experience acts as a plan across tasks which guides the agent towards the
goal accurately and rapidly, also reducing costs of time and money. After completing a task under
the environment, the agent analyzes the new trajectory as well as the experience learned from the
former reference, termed “meta-experience”. We then record the new insights adjacent to the former
reference. Also, we copy the “meta-experience” in the attachment to the former reference, which
could be retrieved for upcoming tasks.

B.2 IMPLEMENTATION DETAILS

We evaluate our method and baseline methods across all 10 users on our retrofitted Webshop, each
comprising 50 tasks, except for LATS which is evaluated with only one user due to its high cost.
All methods utilize gpt-3.5-turbo-instruct-0914 as the underlying model for their agents
except for LATS where we utilize gpt-3.5-turbo-1106 to keep the same setting as the original
paper. In executing each task, we limited the interaction with the web to a maximum of 15 steps per
task, inclusive of any invalid actions.

B.3 DETAILS OF EXPERIMENTAL SETUPS

For ReAct, Reflexion, and our method, we set the temperature as 0.0. For ReAct-SC, we set the
number of samples k to be 3 and the temperature to be 0.05. We also experiment with the family
of chain-of-thought methods: CoT (Wei et al., 2022), CoT-L2M (Zhou et al., 2022), CoT-SC (Wang
et al., 2022b). Since their performances in task completion are significantly less competitive than
other methods (see the next section), we exclude them from the main experiments in Section 4.3,
but include them here for reference. For CoT and CoT-L2M, we set the temperature as 0.0; and for
CoT-SC, we set k = 3 and the temperature to be 0.05. To adhere to the same settings with (Zhou
et al., 2023a), we set the temperature as 1.0, k as 5, the number of iterations n as 30 for LATS.

All methods were tested in each of the following three environments respectively:

• The fully retrofitted environment: configured exactly as described in Section 4.1.
• The ablated environment that excludes human intentions: Based on the fully retrofitted en-

vironment, the hidden attributes from the user profiles and to be inferred from purchase
histories are not excluded from reward computation. The alignment gap with human inten-
tions (GHI) can be identified by comparing the test performances therein with those in the
fully retrofitted environment.

• The ablated environment that excludes environmental dynamics: The fully retrofitted en-
vironment with the re-ranking algorithms in Appendix A.2 disabled. The alignment gap
with environmental dynamics (GED) can be identified by comparing the test performances
therein with those in the fully retrofitted environment.

B.4 RESULTS

We present the comparative results on our retrofitted WebShop in Figure 6, Figure 7, and Table 9.
Note that due to the significantly lower reward and success rate of CoT-related methods compared to
others, the relative differences GHI and GED can be dominantly affected by stochastic issues, and
are therefore not of reference and comparison value.

In each figure, the X-axis represents the alignment gap with self-constraints, and the Y-axis rep-
resents the performance. In terms of success rate, our proposed agent demonstrates comparable
performance to Reflexion. To be specific, our approach places a greater emphasis on minimizing
costs, whereas Reflexion prioritizes performance improvement. Our proposed agent, guided by the
principles of UA2, achieves a good balance between reward and cost considerations, while there
remain a substantial gap between our agent and the ultimate goal of an oracle agent.
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Table 9: Reward, success rate (SR), alignment gap with human intentions and environment dynam-
ics, time and money cost result on our retrofitted WebShop. *LATS is tested on 1/10 subset of the
entire task collection due to the significant cost.

Method Reward ↑ SR (%) ↑ GHI (%) ↓ GED (%) ↓ Time (s) ↓ Money ($) ↓
CoT 8.5 1.2 22.4 67.1 1.858 0.011
CoT-L2M 9.8 0.8 6.1 8.2 1.939 0.037
CoT-SC 11.8 1.4 32.2 -61.9 1.883 0.032

ReAct 50.3 8.0 11.7 14.9 1.716 0.013
ReAct-SC 49.9 7.4 14.4 14.6 1.720 0.039
Reflexion 44.4 13.8 22.5 25.7 5.539 0.045
LATS* 52.4 10.0 18.5 14.3 125.935 5.508

Ours 51.9 9.6 6.7 14.8 1.779 0.014

Figure 6: Agent’s performance against the alignment gap with self-constraints tested on the
retrofitted WebShop. The size of each circle represents the alignment gap with human intentions
(GHI). The red star symbolizes our ultimate goal of developing an oracle agent capable of flaw-
lessly completing complex tasks with minimal cost.

Figure 7: Agent’s performance against the alignment gap with self-constraints tested on the
retrofitted WebShop. The size of each circle represents the alignment gap with environmental dy-
namics (GED). The red star symbolizes our ultimate goal of developing an oracle agent capable of
flawlessly completing complex tasks with minimal cost.
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