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ABSTRACT

Riemannian representation learning typically relies on an encoder to estimate den-
sities on chosen manifolds. This involves optimizing numerically brittle objectives,
potentially harming model training and quality. To completely circumvent this
issue, we introduce the Riemannian generative decoder, a unifying approach for
finding manifold-valued latents on any Riemannian manifold. Latents are learned
with a Riemannian optimizer while jointly training a decoder network. By discard-
ing the encoder, we vastly simplify the manifold constraint compared to current
approaches which often only handle few specific manifolds. We validate our ap-
proach on three case studies — a synthetic branching diffusion process, human
migrations inferred from mitochondrial DNA, and cells undergoing a cell division
cycle — each showing that learned representations respect the prescribed geometry
and capture intrinsic non-Euclidean structure. Our method requires only a decoder,
is compatible with existing architectures, and yields interpretable latent spaces
aligned with data geometry. A temporarily anonymized codebase is available on:
https://anonymous.4open.science/r/rgd-470F.

decoder data space

Figure 1: Our decoder reconstructs data from Riemannian manifolds where representations are
learned as model parameters via maximum a posteriori.

1 INTRODUCTION

Real-world data often lie on non-Euclidean manifolds — e.g., evolutionary trees, social-network
graphs, or periodic signals — yet most latent-variable models assume Rd latent spaces. Euclidean
methods often fail to provide visualizations rooted in the geometry we know underlies the data,
completely missing clear signals (Section 4.3). Meanwhile, low-dimensional projections directly
guide how practitioners interpret their data in various fields. While non-linear projections like UMAP
are greatly used and abused (Huang et al., 2022), having more control of the projection facilitates
better hypothesis-based exploration of data. For this, Riemannian manifolds — spaces that are locally
Euclidean but endowed with a smoothly varying inner product (metric) defining lengths, angles,
geodesics, and curvature — provide a general framework for modeling geometry. Existing works
have adjusted variational autoencoders (VAEs) for embedding data onto various geometries. However,
despite the flexibility of VAEs, enforcing manifold priors (e.g., von Mises–Fisher on spheres or
Riemannian normals in hyperbolic spaces) requires complex densities and Monte Carlo estimates of
normalizing constants, limiting scalability for general manifolds.
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We therefore propose the Riemannian generative decoder: we discard the encoder and directly
learn manifold-valued latents with a Riemannian optimizer while training a decoder network. This
encoderless scheme removes the need for approximate densities on the manifold, and handles any
Riemannian manifold — including products of heterogeneous manifolds. With a geometry-aware
regularization through input noise, our model is further encouraged to penalize sharpness relative
to the local curvature. We analyze this form of regularization and see its importance in preserving
geometric structure during dimensionality reduction. Our contributions are as follows,

• We introduce a unifying framework for representation learning on any Riemannian
manifold via combining Riemannian optimization with an encoder-less generative model,

• We introduce a highly scalable geometric regularization, promoting coherency between a
decoder function and a chosen manifold’s metric through noise perturbation,

• We explore various real-world biological datasets and find our approach to match or
improve a diverse set of metrics; all while being much stabler in high dimensions where
other methods fail.

2 BACKGROUND

Learned representations often reveal the driving patterns of the data-generating phenomenon. Much
of computational biology — and especially data-driven fields like transcriptomics — greatly rely on
dimensionality reduction techniques to understand the underlying factors of their experiments (Becht
et al., 2019). Unfortunately, a lack of statistical identifiability implies that such representations need
not be unique (Locatello et al., 2019). Therefore, it is common practice to inject various inductive
biases that reflect prior beliefs or hypotheses about the analyzed problem. One way is to impose a
specific geometry on the latent space.

2.1 LATENT VARIABLE MODELS

Autoencoders (AEs) learn a deterministic mapping x 7→ z 7→ x̂ by minimizing a reconstruction loss

min
θ,ϕ

N∑
i=1

L (xi, fθ(gϕ(xi)) (1)

where x1, . . . , xN are the training samples, L is the loss function, e.g. the squared error, gϕ is the
encoder and fθ the decoder. Because fθ is typically smooth, nearby latent codes produce similar
reconstructions. This imposes a smoothness bias on the representation: distances in latent space are
tied to distances in data space.

The variational autoencoder (VAE) by Kingma et al. (2013) extends this by introducing a prior p(z),
a stochastic encoder qϕ(z |x) as a variational distribution, and a stochastic decoder pθ(x | z). The
marginal likelihood

p(x|θ) =

∫
p(x|z, θ)p(z)dz (2)

is intractable, but is lower bounded by the evidence lower bound (ELBO):
log p(x|θ) ≥ Eqϕ(z|x)

[
log pθ(x | z)

]︸ ︷︷ ︸
data reconstruction

−DKL

(
qϕ(z | x) ∥ p(z)

)︸ ︷︷ ︸
latent regularization

, (3)

where DKL is the Kullback-Leibler divergence. The decoder is trained by maximizing the ELBO
to reconstruct x from samples of z ∼ qϕ(z | x). The KL term encourages the encoding distribution
to match the prior, typically N (0, I), while the stochasticity of qϕ forces the decoder to be robust
to perturbations in z. Together, these constraints strengthen the smoothness bias across the encoder
distribution.

An alternative to the VAE is the Deep Generative Decoder (DGD; Schuster & Krogh 2023), avoiding
an encoder entirely. Each latent zi is treated as a free parameter, and the model uses MAP estimation
by maximizing P (z, θ, ϕ|x), corresponding to maximizing the following in z, θ and ϕ:

(ẑ, θ̂, ϕ̂) = argmax
z,θ,ϕ

N∑
i=1

(
log pθ(xi | zi) + log p(zi | ϕ)

)
+ log

(
P (θ)P (ϕ)

)
(4)
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The last term contains priors on θ and ϕ. A parameterized distribution p(zi | ϕ) on latent space, such
as a Gaussian mixture model, can introduce inductive bias. The decoder smoothness imposes again a
continuity constraint on z 7→ x, as reconstructions must interpolate well across learned codes. Unlike
the VAE, no amortized inference is used, but the same decoder regularization implicitly shapes the
latent geometry.

In all three frameworks — AE, VAE, and DGD — the smoothness of the decoder function acts as a
regularizer on latent codes. Since nearby z produce similar outputs, the learned representations inherit
geometric continuity. The VAE further strengthens this bias through stochastic encodings and KL
regularization. The DGD enforces it by directly optimizing per-sample codes under a smooth decoder.
These smoothness priors play a central role in learning meaningful low-dimensional structure.

2.2 GEOMETRIC INDUCTIVE BIASES

Most learned representations are assumed to be Euclidean, belonging to Rd. This implies a simple,
unbounded topological structure for the representations. This is a flexible and not very informative
inductive bias. We briefly survey parts of the literature and generally find that existing approaches
involve layers of complexity that potentially limit their performance.

Spherical representation spaces encode compactness and periodicity. Davidson et al. (2018) and
Xu & Durrett (2018) define latents on Sd−1 via a von Mises–Fisher prior:

p(z | µ, κ) = Cd(κ) exp(κµ
⊤z) with Cd(κ) =

κd/2−1

(2π)d/2Id/2−1(κ)
, (5)

where µ ∈ Sd−1 and κ > 0. Sampling uses rejection or implicit reparameterization and KL terms
involve Bessel functions, complicating Equation 3 while adding computational overhead and bias.

Hyperbolic representation spaces effectively capture hierarchical data structures (Krioukov et al.,
2010). A popular choice (used for, e.g., the P-VAE (Mathieu et al., 2019)) is the Poincaré ball Bd,
with metric gz = λ(z)2I , where λ(z) = 2/(1− ∥z∥2), and distance

dB(u, v) = arcosh
(
1 + 2

∥u− v∥2

(1− ∥u∥2)(1− ∥v∥2)

)
. (6)

One typically uses the Riemannian normal prior

p(z) ∝ exp
(
−dB(z, µ)

2/(2σ2)
)
. (7)

The ELBO then requires approximating both the intractable normalizing constant of the prior and
volume corrections, typically via Monte Carlo or series-expansion methods. Alternative hyperbolic
embeddings like the Lorentz (Nickel & Kiela, 2018) or stereographic projections (Skopek et al.,
2019) improve computational stability and flexibility but face analogous challenges.

General geometries can represent different inductive biases (Kalatzis et al., 2020; Connor et al., 2021;
Falorsi et al., 2018; Grattarola et al., 2019). Current literature is based on encoders whose densities
generally lack closed-form formulas on arbitrary manifolds M. They rely on approximations like
Monte Carlo importance sampling, truncated wrapped normals

q(z|µ,Σ) ≈
∑
k∈Zd

exp(− 1
2∥Logµ(z) + 2πk∥2Σ−1)

(2π)d/2|Σ|1/2
, (8)

or random-walk reparameterization encoders such as ∆VAE (Rey et al., 2019), that simulates
Brownian motion using the manifold exponential map: z = Expµ(

∑
i ξi), ξi ∼ N (0, t

stepsI).

Curvature regularization. Independent of encoder–decoder choices, Lee & Park (2023) propose
adding explicit intrinsic and extrinsic curvature penalties of the learned manifold. They derive
regularizers that depend on second-order derivatives of the decoder — e.g., for intrinsic curvature:

ICapprox(z) =
(

1
2
(w·∇)

(
w⊤G−2

f (v ·∇)(Gfv)
)
− 1

2
(v ·∇)

(
w⊤G−2

f (v ·∇)(Gfw)
)

+ 1
4
w⊤G−3

f (v ·∇Gf ) (v ·∇)(Gfw)− 1
4
w⊤G−2

f (v ·∇Gf )G
−1
f (v ·∇)(Gfw)

− 1
4
w⊤G−2

f (v ·∇Gf )G
−1
f (w·∇)(Gfv) +

1
4
w⊤G−1

f (v ·∇Gf )G
−2
f (w·∇)(Gfv)

)2

.

(9)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where v, w∼N (0, I), Gf = Jf (z)
⊤Jf (z), and (a·∇) is a directional derivative. Computationally

challenging second-order terms enter via (a·∇)Gf since ∂Jf are Hessian–vector products of f . Their
objective encourages globally “flat” embeddings in a Riemannian sense; in contrast, our geometry-
aware noise induces a first-order Jacobian penalty which aligns local decoder smoothness with the
chosen geometry while avoiding challenging computations (Section 3).

3 METHODOLOGY

Much of the difficulty in probabilistically learning representations over non-trivial geometries is that
densities are notably more difficult to handle than, e.g., a Gaussian distribution. Inspired by Schuster
& Krogh (2023) we propose not to variationally infer the representations, but instead perform standard
maximum a posteriori estimation (MAP). Combining Riemannian optimization with a decoder and
a form of geometry-aware regularization, we build a simple yet effective representation learning
scheme that works across different geometric inductive biases.

3.1 MODEL FORMULATION

We generalize the DGD framework (Schuster & Krogh, 2023) to work with any latent geometry.
Let x ∈ X denote observed data samples, and let z ∈ M represent latent variables constrained
to a Riemannian manifold M. We define a decoder function fθ : M → X , parameterized by θ,
which maps latent representations to the data space. With a reconstruction metric, we perform MAP
estimation of the decoder parameters θ and the latent representations z = {z1, z2, . . . , zN} for a
dataset X = {x1, x2, . . . , xN}. Equation 4 then leads to the training objective

(ẑ, θ̂) = argmax
z,θ

N∑
i=1

(log p(xi | zi, θ) + log p(zi)) (10)

where the prior on θ has been left out; one often uses weight decay instead. For compact manifolds,
we assume a uniform distribution log p(zi) = − log Vol(M) and log p(zi) need not be included in
the loss. At generation time, one samples z ∼ Uniform(M) to compute x = fθ(z). For non-compact
manifolds, choices like the wrapped normal can function as p(z). Note, however, that the generative
properties are not the focus here.

Concretely, we directly assign a randomly initialized latent representation to each data sample.
To enforce the manifold constraint, we use RiemannianAdam (Bécigneul & Ganea, 2018) on
these latent representations. Such optimizers work by following the Riemannian gradient projected
onto the tangent space and mapping the updated point back onto the manifold. Relying on geoopt
(Kochurov et al., 2020) for defining tensors and optimizing on manifolds, the implementation
becomes exceedingly simple (see Appendix A). One optimizer thus learns these points on the
manifold (RiemannianAdam), while another learns the decoder parameters (Adam). The quality
of each parameter set naturally affects the other, but training remains stable. Optimization during
validation and test time is necessary as no encoder is available — unless one is trained post hoc —
and follows the strategy of Schuster & Krogh (2023), freezing decoder parameters.

For manifolds whose metric tensor varies with position, we introduce a geometry-aware regularization
to inform the model about the metric. During training, each latent z is perturbed with Gaussian noise
whose covariance is the chosen manifold’s inverse Riemannian metric at z. This adapts the noise to
local curvature: on homogeneous manifolds such as the hypersphere (where curvature is constant
and metric variation merely reflects coordinate scaling) the procedure recovers nearly isotropic noise,
whereas on spaces with non-uniform curvature the noise shape is greatly adjusted by location. We
outline a derivation inspired by Bishop (1995) and An (1996) to analyze this noise:

Let ϵ ∼ N
(
0, σ2 G−1(z)

)
and define the squared-error loss L(z) =

∥∥f(z, θ) − y
∥∥2 for some

target y. We inject noise via the exponential map, which we approximate by the identity to O(∥ϵ∥2):

z′ = Expz(ϵ) = z + ϵ+O(∥ϵ∥2). (11)

Ignoring higher order terms o(∥ϵ∥2), a second-order Taylor expansion around z gives

L
(
z′
)

≈ L(z) +∇zL(z)
⊤ ϵ+ 1

2 ϵ
⊤ ∇2

zL(z) ϵ, (12)
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Taking expectation over ϵ and using E[ϵ] = 0, E[ϵϵ⊤] = σ2 G−1(z), we obtain

Eϵ[L
(
z′
)
] = L(z) + σ2

2 Tr
(
∇2

zL(z)G
−1(z)

)
. (13)

For squared error, we have

∇2
zL(z) = 2 J(z)⊤J(z) +

∑
k

(
fk(z)− yk

)
∇2

zfk(z), (14)

with J(z) = ∂zf(z, θ). For unbiased estimates fk(z) the residual in the second term is negligible on
average, so substituting back into the expectation gives

Eϵ[L(z
′) ] ≈ L(z) +

σ2

2
Tr
(
2 J(z)⊤J(z)G−1(z)

)
(15)

= L(z) + σ2 Tr
(
J(z)⊤G−1(z) J(z)

)
. (16)

where the last equality uses cyclicity of the trace. The additive term is the induced regularizer from
corrupting representations with Gaussian noise of covariance σ2G−1(z). It penalizes large output
gradients weighted by the manifold’s predefined inverse metric, aligning decoder smoothness with
local curvature. We analyze its effects further in Appendix F. Our concrete implementation mirrors a
single Riemannian gradient descent step, but here scaling and retracting a noise vector to the manifold
rather than a gradient vector (details in Appendix A).

3.2 DATASETS

Cell cycle stages. Measuring gene expression of individual fibroblasts with single-cell RNA
sequencing captures a continuous, asynchronous progression through the cell division cycle. Tran-
scriptomic changes occur through these phases, yielding cyclic patterns in gene expression. As the
data is not coupled in nature (we cannot identify and keep track of individual cells), unsupervised
learning is suitable for picking up patterns about the underlying distribution of cells.

We apply our Riemannian generative decoder to the human fibroblast scRNA-seq dataset (5 367
cells × 10 789 genes) introduced in DeepCycle (Riba et al., 2022) and archived on Zenodo (Riba,
2021). Data were already preprocessed by scaling each cell to equal library size, log-transforming
gene counts, and smoothing and filtering using a standard single-cell pipeline. Before modeling, we
subsampled to 189 genes annotated with the cell cycle gene ontology term (GO:0007049) retrieved
via QuickGO (Binns et al., 2009) in accordance with other cell cycle studies.

Branching diffusion process. The synthetic dataset from Mathieu et al. (2019)1 simulates tree-
structured data via a hierarchical branching diffusion: from a root at the origin in Rd we grow a
depth-D tree where each node at depth ℓ produces C children by

xchild = xparent + ϵ, ϵ ∼ N
(
0,

σ2
b

pℓ
I

)
. (17)

For each node we also generate S noisy sibling observations xobs = xnode + ϵ′ with ϵ′ ∼ N
(
0,

σ2
b

fpℓ I
)

.
The dataset comprises all the noisy xobs and is standardized to zero mean and unit variance. We set
d = 50, D = 7, C = 2, σb = 1, p = 1, S = 50, f = 8, yielding 6 350 observations.

Human mitochondrial DNA. Human mitochondrial DNA (hmtDNA) is a small, maternally
inherited genome found in cells’ mitochondria. Its relatively compact size and stable inheritance
make it a fundamental genetic marker in studies of human evolution and population structure. A
relatively rapid mutation rate has led the genomes to distinct genetic variants, named haplogroups,
which reflect evolutionary branching events.

We retrieved 67 305 complete or near-complete sequences (15 400 – 16 700 bp) from GenBank via
a query from MITOMAP (MITOMAP, 2023). Sequences were annotated with haplogroup labels
using Haplogrep3 (Schönherr et al., 2023), leveraging phylogenetic trees from PhyloTree Build 17

1Available under MIT license
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Proliferating Non-proliferating

0.0 0.2 0.4 0.6 0.8

cycle phase

(a) UMAP projection (b) Euclidean R2 (c) Spherical S2 (d) Toroidal S1× S1

Figure 2: Cell cycle phases using either (a) UMAP or (b–d) different Riemannian manifolds.
Samples are concatenated across train/validation/test sets. The phase is inferred by DeepCycle as a
continuous variable ϕ ∈ [0, 1) which wraps around such that ϕ = 0 and limϕ→1 ϕ denote the same
point in the cycle. Best viewed zoomed in.

Table 1: Cell cycle: Correlation and reconstruction metrics across five random initializations
(formatted as mean ± std). Pearson/Spearman correlate phase distances to latent distances while
MAE/MSE measure reconstruction by L1/L2-norm. Our models in gray. Comparisons with S-VAE
(Davidson et al., 2018) and ∆VAE (Rey et al., 2019).

Train Test
Pearson Spearman MAE MSE Pearson Spearman MAE MSE

Euclidean R2 0.47±0.03 0.50±0.03 0.31±0.00 0.17±0.00 0.52±0.03 0.53±0.03 0.31±0.00 0.18±0.00

Euclidean R3 0.50±0.05 0.54±0.04 0.30±0.00 0.16±0.00 0.55±0.04 0.57±0.03 0.31±0.00 0.17±0.00

Sphere S2 0.58±0.03 0.59±0.03 0.31±0.00 0.17±0.00 0.60±0.03 0.60±0.03 0.32±0.00 0.18±0.00

Torus S1× S1 0.50±0.07 0.51±0.07 0.31±0.00 0.17±0.00 0.52±0.07 0.53±0.08 0.32±0.00 0.18±0.00

S-VAE sphere 0.50±0.02 0.53±0.03 0.32±0.00 0.19±0.00 0.53±0.02 0.55±0.02 0.32±0.00 0.19±0.00

∆VAE sphere 0.52±0.01 0.55±0.01 0.31±0.00 0.17±0.00 0.57±0.02 0.59±0.02 0.32±0.00 0.18±0.00

∆VAE torus 0.43±0.07 0.45±0.07 0.31±0.00 0.17±0.00 0.48±0.06 0.50±0.07 0.32±0.00 0.18±0.00

(Van Oven, 2015). A sequence was kept if the reported quality was higher than 0.9. In addition to
haplogroup classification, Haplogrep3 identified mutations with respect to a root sequence; here,
separate datasets were made using either the rCRS (revised Cambridge reference sequence) or RSRS
(reconstructed Sapiens reference sequence). Mutations were then encoded in a one-hot scheme,
removing mutations with ≤ 0.05 frequency, resulting in datasets with shapes 61665× 6298 (rCRS)
and 57385× 5366 (RSRS). Appendix D displays further characteristics.

4 RESULTS AND DISCUSSION

In the following, we treat each dataset to evaluate and discuss applications of unsupervised learning
on meaningful geometries.

4.1 CELL CYCLE STAGES

Figure 2 shows latent representations learned with different manifolds on the scRNA-seq data
containing an underlying cyclical biological process. While we may have an idea of an explainable
global optimum — e.g., a neatly arranged circle following the cell cycle stages — optimization of
the neural network does not necessarily follow such an idea. Given a model expressive enough,
representations lying in a circle could as well be unrolled or have distinct arcs interchanged without
any loss in task accuracy. To compare model fidelity and how well manifold distances correspond to
the biological geometry, Figure 1 lists reconstruction fidelities and correlations of phase distances
versus manifold geodesic distances. Here we compared to S-VAE (Davidson et al., 2018) and ∆VAE
(Rey et al., 2019); see Appendix C for further details. Euclidean R3 yields best reconstructions

6
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0 1 2 3 4 5 6

tree depth

(a) UMAP projection (b) Poincaré projection (σ = 0.5)

σ=0.00
ρ=0.57, MSE=0.09

σ=0.10
ρ=0.55, MSE=0.09

σ=0.40
ρ=0.72, MSE=0.20

σ=0.90
ρ=0.80, MSE=0.42

σ=1.60
ρ=0.79, MSE=0.69

σ=2.60
ρ=0.74, MSE=0.82

(c) Progressively increasing regularization noise of the training process (6 distinct models)

Figure 3: Visualizations of the branching diffusion process. Trees consist of 7 levels with color
lightness denoting depth. (a) UMAP projection; (b) Poincaré disk projection of Lorentz latents using
geometric regularization (c = 5.0, σ = 0.5); (c) Ablation study showing the influence of the noise
scale σ, listing Pearson correlation ρ and mean squared error on the training set.

Table 2: Branching diffusion: Correlation and reconstruction metrics across five random
initializations (formatted as mean ± std). Pearson and Spearman correlate all pairs of distances
in the tree structure with latent geodesic distances. Our models in gray. Comparison with P-VAE
(Mathieu et al., 2019).

Train Test
Pearson Spearman MAE MSE Pearson Spearman MAE MSE

Euclidean R2 (σ = 0.0) 0.53±0.01 0.49±0.01 0.14±0.00 0.03±0.00 0.52±0.02 0.49±0.02 0.18±0.01 0.06±0.01

Sphere S2 (σ = 0.0) 0.56±0.02 0.53±0.03 0.14±0.00 0.03±0.00 0.55±0.02 0.52±0.02 0.17±0.00 0.05±0.00

Lorentz H2 (σ = 0.1) 0.52±0.02 0.48±0.02 0.15±0.00 0.04±0.00 0.48±0.02 0.45±0.03 0.19±0.02 0.08±0.02

Lorentz H2 (σ = 0.5) 0.78±0.02 0.74±0.03 0.32±0.01 0.18±0.02 0.69±0.03 0.69±0.03 0.28±0.02 0.14±0.02

Lorentz H2 (σ = 1.0) 0.81±0.02 0.77±0.02 0.49±0.01 0.39±0.01 0.80±0.02 0.76±0.02 0.36±0.01 0.21±0.01

Lorentz H2 (σ = 2.0) 0.77±0.04 0.74±0.05 0.68±0.01 0.74±0.01 0.79±0.09 0.73±0.11 0.52±0.02 0.45±0.03

P-VAE B2 (c = 1.2) 0.68±0.03 0.54±0.07 0.42±0.02 0.30±0.02 0.68±0.04 0.54±0.09 0.42±0.02 0.31±0.02

(having more degrees of freedom), while S2 improves correlation with the geometry. Toroidal
embeddings show greater run-to-run variability, likely due to the limited expressivity of learning on
circles S1 embedded in 2D. While our method significantly outperforms other models on the training
data, the test results are generally similar across methods from different studies.2

4.2 BRANCHING DIFFUSION PROCESS

We find that hyperbolic spaces can efficiently be used as a tool to uncover hierarchical processes.
Notably, the UMAP projection (Figure 3a) fails to reveal any underlying tree topology, despite clear

2Used as a dimensionality reduction technique, generalization performance is generally of little significance.
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haplogroup

(a) RSRS UMAP (b) RSRS Euclidean (c) RSRS Poincaré (d) rCRS Poincaré

Figure 4: Visualizations of hmtDNA haplogroups using either (a) UMAP, (b) Euclidean latent
space, or (c–d) Poincaré projection of Lorentz latents (c = 5.0, σ = 0.5). Edges represent simplified
lineage (Lott et al., 2013), nodes indicate median haplogroup positions. Best viewed zoomed in.

cluster separation. In contrast, regularized hyperbolic embeddings in the Poincaré disk (Figure 3b)
recover the tree topology.

To study the effect of geometric regularization, Figure 3c shows models trained by fixing curvature
c=5.0 and varying noise from σ=0 to σ=2.6. Correlations increase sharply up to σ≈0.9, beyond
which the noise completely overwhelms the decoder’s capacity to preserve pairwise distances. This
highlights a tradeoff between preserving local accuracy and enforcing global geometry. Appendix F
analyzes and shows how curvature and noise level relate to each other. Appendix K tracks metric
coherency as correlation between manifold versus data-space distance during training; our results
show that geometric noise drives correlation steadily higher than no noise or explicit regularization.
This indicates our model succeeds in internalizing the prescribed geometry as an inductive bias.

4.3 TRACING HUMAN MIGRATIONS

By examining differences in hmtDNA sequences, it is possible to infer patterns of migration, lineage,
and ancestry. In Figure 4, we show simplified lineages based on Lott et al. (2013) and Van Oven
(2015). The figure shows how UMAP fails in uncovering the hierarchical nature (panel a) while
Euclidean embeddings show slight improvement (panel b). Hyperbolic models clearly recover
haplogroup hierarchies (panels c–d), regardless of which reference sequence was used to encode the
data. This choice otherwise has a big impact on the actual sequence encodings, preprocessing and
filtering (see Appendix D), but models on either set converge at strikingly similar representations when
using the same seed (panels c–d). The geographical locations of haplogroups strongly correspond to
the locations of representations when comparing with migration maps from, e.g., Lott et al. (2013).

Appendix E lists correlation and reconstruction metrics for hmtDNA models (with one-hot data-
space distance as a proxy for tree distance). For regularized hyperbolic manifolds we found mainly
Spearman correlations to improve, denoting a non-linear correlation. Intuitively, the manifold
succeeds in capturing the hierarchical branching structure of the haplogroup tree, but absolute path
lengths are rescaled by the curvature. Figure 4 strongly suggests that hyperbolic distances better
relate to the tree structure than Euclidean ones. In Section 4.4, we treat additional quantitative results
based on hmtDNA metadata.

4.4 GENERAL UTILITY

We assess (i) generative fidelity with a discrimination test, (ii) downstream predictive utility from
learned latents, and (iii) wall time per epoch. Since many tricks can however increase utility and
generative metrics (e.g., training with a generative adversarial loss or engineering complex decoders),
these evaluations act mainly as sanity checks.

Matches or improves generative performance. An XGBoostClassifier (default parameters) is
trained to distinguish (1) optimized reconstructions of real test samples versus (2) reconstructions
obtained by sampling z ∼ p(z) and decoding p(x | z). We use half of the cell cycle test set to train
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Table 3: Human mitochondrial DNA: downstream utility (accuracy) for logistic regression (LR)
or XGBoostClassifier (XGB) on rCRS latents. Trends were consistent for RSRS. Our models in gray.

Region (3-way) Haplo 1 (24-way) Haplo 2 (128-way)
Manifold LR XGB LR XGB LR XGB
Hyperbolic H2

σ=0.1 0.72 0.90 0.49 0.74 0.31 0.42
Hyperbolic H2

σ=0.5 0.86 0.97 0.70 0.85 0.43 0.41
Euclidean R2 0.69 0.85 0.46 0.74 0.31 0.43

P-VAE H2 0.52 0.65 0.19 0.44 0.13 0.41

Table 4: Runtime (s) per epoch on the cell cycle dataset (all genes) for varying latent dimension
(including geometric noise); formatted as mean ± std through 100 epochs after warmup. Expl. RGD
refers to explicit intrinsic curvature regularization (Lee & Park, 2023). 1: Breaks in computing the
manifold volume from a value factorial in d. 2: Breaks to numerical instability (authors only attempt
low dimensionality). 3: Computationally challenging (authors only attempt low-dimensionality).

Ours
Latent d Eucl. Sphere Hyp. ∆VAE (Eucl.) ∆VAE (Sphere) P-VAE (Hyp.) Expl. RGD (Hyp.)
5D 0.21±0.01 0.23±0.02 0.25±0.00 0.41±0.02 0.60±0.06 1.70±0.11 7155±1743

50D 0.23±0.03 0.24±0.01 0.27±0.00 0.45±0.05 0.89±0.02 breaks2 infeasible3

500D 0.26±0.01 0.33±0.01 0.39±0.01 0.70±0.03 breaks1 breaks2 infeasible3

the discriminator and the other half to evaluate it; an equal number of synthetic samples is drawn for
both splits. Our results indicate that synthetic RGD generations are at least as hard to distinguish
from real data reconstructions as generations from VAE baselines (Table S2).

Matches or improves downstream utility. We evaluate downstream performance by fitting both
a simple model (logistic/linear regression) and a complex model (XGBClassifier/-Regressor) for
classification and regression tasks on latents, respectively. On cell cycle latents, categorical cell stage
and continuous cyclic phase yield near-identical scores across methods (Table S3). On hmtDNA
latents, classification of geographical region (3-way), haplogroup first letter (24-way), and first two
letters (128-way) strongly favor our model with a regularized hyperbolic space (Table 3).

Unlocks scalability to higher latent dimensionality. We probed feasibility at higher d on the full
cell cycle dataset (all genes; typical scRNA-seq analyses use d≈50). Timing results on one Intel®
Xeon® Gold 6430 core with decoder layers [64, 128, 256] shows stable scaling across manifolds
whereas variational baselines scale poorly and become numerically brittle (Table 4).

CONCLUSIONS AND FUTURE DIRECTIONS

We introduced a unifying framework for representation learning on any Riemannian manifold by
combining Riemannian optimization with an encoder-less generative model. This simplifies learning
since we avoid density estimations, challenging for a general setting of manifolds. With a novel
geometric regularization based on noise perturbation, our empirical validations demonstrated our
model to successfully capture intrinsic geometric structures across diverse datasets, substantially
improving correlations between latent distances and ground truth geometry. While we studied simple,
low-dimensional manifolds in an explorative setting, our method unlocks higher latent dimensionality
as well as heterogeneous manifold combinations, notoriously difficult with current methods. Future
research directions include adaptive geometric regularization strategies, extensions to manifold-valued
network weights, and exploring latent manifold structures within pretrained neural networks (e.g.,
generative diffusion processes or progressive generations from language models).

The decoder-only framework stores each representation explicitly, yielding memory that grows
linearly with dataset size. This per-sample parameterization may be prohibitive for datasets of
millions of points. Hybrid schemes — such as amortized inference or low-rank factorization — could
mitigate this. Lastly, our curated hmtDNA dataset invites for further empirical studies, including
analyses of geographic distances, migration patterns, or distortion-based metrics of the common
consensus trees. We make the data easily available on (redacted).
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REPRODUCIBILITY STATEMENT

Anonymized code, configs, and scripts to reproduce results are provided at the repository linked in
the abstract. Data preprocessing, splits, and hyperparameters are specified in Section 3, Appendix A,
Appendix D, and Appendix C; ablations and settings for curvature/noise are in Appendix F.
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A TRAINING DETAILS

1model.z := init_z(n, manifold) # initialize points on a manifold

2model_optim := Adam(model.decoder.parameters())

3rep_optim := RiemannianAdam([model.z])

4

5for each epoch:

6rep_optim.zero_grad()

7for each (i, data) in train_loader:

8model_optim.zero_grad()

9z := model.z[i]

10z := add_noise (z, manifold, std) # optional geometric noise

11y := model(z)

12loss := loss_fn(y, data)

13loss.backward()

14model_optim.step()

15rep_optim.step()

Listing S1: Pseudocode for training the Riemannian generative decoder.

1def add_noise (manifold, z, std):

2noise := sample_normal(shape=z.shape) * std

3rie_noise := manifold.egrad2rgrad(x, noise)

4z_noisy := manifold.retr(x, rie_noise)

5return z_noisy

Listing S2: Pseudocode for adding geometric noise. egrad2rgrad takes a Euclidean gradient and
maps it to the Riemannian gradient in the tangent space using the inverse metric. retr retracts a
tangent vector back onto the manifold via the exponential map if a closed form is available, otherwise
a first-order approximation. geoopt implements both functions for a wide range of manifolds.

B OVERVIEW OF AVAILABLE MANIFOLDS

The following are manifolds implemented in geoopt (Kochurov et al., 2020), applicable for our
representation learning.

• Euclidean

• Stiefel

• CanonicalStiefel

• EuclideanStiefel

• EuclideanStiefelExact

• Sphere

• SphereExact

• Stereographic

• StereographicExact

• PoincareBall

• PoincareBallExact

• SphereProjection

• SphereProjectionExact

• Scaled

• ProductManifold

• Lorentz

• SymmetricPositiveDefinite

• UpperHalf

• BoundedDomain

Parameterization and further details appear on geoopt.readthedocs.io.
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C EXPERIMENTAL DETAILS

C.1 PROTOCOLS AND REPRODUCIBILITY

General details. Non-overlapping train/validation/test splits were made using 82/9/9 percent of
samples for each distinct dataset. Across data modalities, our models all use linear layers with
hidden sizes [16, 32, 64, 128, 256], and sigmoid linear units (SiLU) as the non-linearity between
layers. Decoder parameters were optimized via Pytorch (Paszke et al., 2019) with Adam (learning
rate 2 × 10−3, β = (0.9, 0.995), weight decay 10−3), a CosineAnnealingWarmRestarts schedule
(T0 = 40 epochs) and early-stopped with patience 85, typically resulting in approximately 500
epochs. Representations were optimized with geoopt’s RiemannianAdam (learning rate 1× 10−1,
β = (0.5, 0.7), stabilization period 5). Spherical/toroidal representations used learning rate 4× 10−1

and decoder β = (0.7, 0.9). Representations are only updated once an epoch, necessitating larger
learning rates and less rigidity via the beta parameters. For hyperbolic manifolds, the curvature was
fixed at c = 5.0 unless stated otherwise. The cell cycle and branching diffusion models used mean
squared error as reconstruction objective, while the hmtDNA models used binary cross entropy.

Initializing latents. Initialization strategies for traditional models have been tuned for long. We
however simply follow the strategy:

• Before training: initial guesses consist of a small degree of random noise projected to the
origin of the manifold if it exists, otherwise around a random point. Randomly covering the
entire manifold is generally not suitable, since latents cannot easily jump.

• After training: a number of initial guesses for each point are sampled from around the
manifold, and we continue optimization from the one with smallest loss. If there are classes
or other distinct regions on the latent manifold, sampling each region is a natural approach.
This is a fast and simple variant; one may also train shortly in each sampled location before
committing to any.

Test-time RGD latents. Following the strategy of Schuster & Krogh (2023), test-time represen-
tations for our model were found by freezing the model parameters and finding optimal z through
maximizing the log-likelihood of Equation 10.

UMAP parameters. For both the branching diffusion and hmtDNA UMAPs (Figure 3a and
Figure 4a), hyperparameters n_neighbors=30 and min_dist=0.99 were used to help promote
global structure. For Figure 2a, the UMAP coordinates of the original study were used.

Comparison details. We evaluated existing implementations of three baselines: the P-VAE of
Mathieu et al. (2019) (based on MIT-licensed https://github.com/emilemathieu/pvae), the
S-VAE of Davidson et al. (2018) (based on MIT-licensed https://github.com/nicola-decao/
s-vae-pytorch), and the ∆VAE of Rey et al. (2019) (based on Apache 2.0-licensed https:
//github.com/luis-armando-perez-rey/diffusion_vae). Model architectures were fixed
— here, implementations of earlier methods were adjusted to use the same architectural backbone as
ours (see the General details paragraph) — while hyperparameters were tuned for each model and
dataset.

C.2 HARDWARE

All experiments were carried out on a Dell PowerEdge R760 server running Linux kernel 4.18.0-
553.40.1.el8_10.x86_64. Key components:

• CPU: 2 × Intel® Xeon® Gold 6430 (32 cores/64 threads per CPU, 2.1 GHz base)

• Memory: 512 GiB DDR5-4800 (8 × 64 GiB RDIMMs)

• GPUs: 1 × NVIDIA A30 (24 GB HBM2e; CUDA 12.8; Driver 570.86.15)

Training single-cell and branching diffusion models takes a few minutes on our setup; models on the
mitochondrial DNA data train for around 20 minutes.
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D HMTDNA DATA DISTRIBUTIONS

Figure S1 shows the distribution of mutation counts for datasets using different reference sequences.
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Figure S1: Distributions of mutation counts for datasets using different root sequence. Sequence
counts of each dataset differ since the choice of haplo-tree changes the reported qualities from
Haplogrep3, affecting the filtering procedure. Using the revised Cambridge reference sequence
(rCRS) means that most sequences contain less mutations when compared to the reconstructed
Sapiens reference sequence (RSRS).

E HMTDNA CORRELATIONS AND RECONSTRUCTIONS

In a similar fashion to the other datasets, Table S1 lists correlation and reconstruction metrics for the
hmtDNA dataset. It however uses one-hot data-space distance as a heuristic for tree distance.

Table S1: Correlation and reconstruction metrics across three runs for the hmtDNA dataset
(mean ± std). Mean F1 scores assess reconstruction; Pearson and Spearman correlate manifold vs
genetic distance (5000 random points). RSRS/rCRS denote distinct reference sequences.

Train Test
Pearson Spearman F1 Pearson Spearman F1

rCRS H2 (σ = 0.1) 0.18±0.02 0.17±0.05 0.88±0.00 -0.00±0.08 -0.04±0.13 0.74±0.01

rCRS H2 (σ = 0.5) 0.28±0.01 0.50±0.04 0.79±0.01 0.15±0.01 0.28±0.03 0.80±0.01

rCRS R2 (σ = 0.0) 0.41±0.03 0.42±0.10 0.90±0.00 0.16±0.07 0.24±0.14 0.73±0.02

RSRS H2 (σ = 0.1) 0.15±0.01 0.12±0.04 0.93±0.00 0.04±0.10 0.04±0.23 0.83±0.02

RSRS H2 (σ = 0.5) 0.28±0.01 0.49±0.02 0.86±0.00 0.15±0.02 0.30±0.04 0.88±0.00

RSRS R2 (σ = 0.0) 0.35±0.00 0.29±0.01 0.94±0.00 0.12±0.07 0.23±0.09 0.83±0.02
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F GEOMETRIC REGULARIZATION: CURVATURE VERSUS NOISE SCALE

For a hyperbolic model with curvature c, the metric and its inverse carry a nontrivial, state-dependent
factor — which cannot be absorbed into a single global σ.

Concretely, for the ball of curvature c one has

G(z) =
4

(1− c ∥z∥2)2
I, G−1(z) =

(1− c ∥z∥2)2

4
I,

so the regularizer becomes

E[L(z′)] ≈ L(z) + σ2 (1− c ∥z∥2)2

4
Tr

(
J(z)⊤J(z)

)
.

Changing c thus reshapes the weight (1−c ∥z∥2)2

4 across the manifold rather than rescaling a uniform
noise-variance. Only at ∥z∥ ≈ 0 does it reduce to a constant factor, but in general the curvature and
noise-scale contribute distinct effects.

Figure S2: Effects of manifold curvature and noise level for hyperbolic models on the synthetic
branching diffusion dataset. The visualization is similar to Figure 3c but contains a selection of
curvatures rather than c = 5.0. Trees consist of 7 levels; color lightness denotes depth.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The local noise standard deviation induced by this Riemannian scaling is

σ(z) =
σ (1− c ∥z∥2)

2
,

which depends on both curvature and position. In particular,

∂σ(z)

∂c
= −σ ∥z∥2

2
< 0 (∥z∥ > 0),

so increasing c attenuates the noise magnitude as one moves away from the origin: If you fix σ and
increase c, then for any ∥z∥ > 0 the factor (1− c ∥z∥2) is smaller, so the actual standard deviation
of the injected noise at that point is reduced. Intuitively, points “away from the origin” (larger ∥z∥)
receive less noise. By contrast, raising the global noise scale σ amplifies noise uniformly across all
z. Thus curvature c controls the spatial profile of the perturbations, whereas σ governs their overall
amplitude. Using the synthetic branching diffusion data, Figure S2 shows the effect of curvature and
noise level.

G NOISE ABLATION ON THE HMTDNA SEQUENCES

Figure S3 shows the effect of geometry-aware regularization, now on the hmtDNA data.

Figure S3: Gradually increasing σ on the rCRS hmtDNA data, listing Spearman correlation ρs
and mean F1-score on the training set. Fixed curvature c = 5.0.

H RELATIONSHIPS OF TABLE 2

To make Table 2 more digestable, Figure S4 visualizes how the noise level σ impacts correlation and
reconstruction metrics for the synthetic branching diffusion dataset.
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Figure S4: Errorbar plots varying σ for the geometry-aware regularization; a visualization of the
Lorentz results of Table 2.
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I CELL CYCLE GENERATIVE FIDELITY

For generating scRNA-seq cells, Table S2 shows RGD generations are at least as hard to discriminate
as VAE baselines.

Table S2: Generative fidelity measured by XGBClassifier accuracy in discriminating real reconstruc-
tions versus synthetic reconstructions (lower is better; perfectly indiscernible gives 0.5 in expectation).

Manifold Accuracy
RGD Sphere S2 0.58
S-VAE Sphere S2 0.58
∆VAE Sphere S2 0.62

RGD Torus S1× S1 0.59
∆VAE Torus S1× S1 0.63

J CELL CYCLE DOWNSTREAM PERFORMANCE

Table S3 reports similar downstream performances across methods for predicting categorical cell
stage and continuous cell phase from latents.

Table S3: Cell cycle: downstream utility — accuracy in predicting cell stage (3-way) or cyclic R2

in regressing cell phase (continuous) using logistic/linear regression (LR) and XGBoost (XGB).

Cell stage (3-way) Cell phase (cont.)
Manifold LR XGB LR XGB
RGD Euclidean R2 0.89 0.90 0.41 0.86
RGD Euclidean R3 0.93 0.91 0.44 0.87
RGD Sphere S2 0.90 0.89 0.45 0.87
RGD Torus S1× S1 0.88 0.89 0.43 0.86

∆VAE Sphere S2 0.90 0.90 0.47 0.88
∆VAE Torus S1× S1 0.89 0.89 0.46 0.86
S-VAE S2 0.91 0.87 0.48 0.87

K BRANCHING DIFFUSION METRIC COHERENCY

Figure S5 shows how correlation between manifold distance versus data-space distance improves
during the first 400 epochs of training hyperbolic models. Particularly our regularized model shows
large positive correlation.
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Figure S5: Pearson correlation of manifold distance versus data-space distance during training
for hyperbolic models on the branching diffusion dataset over 5 runs. The explicit curvature model
was stopped after three training days and only shows results from one run (refer to Table 4).
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L USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs were used only for language polishing. They did not contribute to model design, experiments,
or analysis. All technical content was written, verified, and is the full responsibility of the authors.
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