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ABSTRACT

Causal discovery is fundamental to scientific research, yet traditional statistical
algorithms face significant challenges, including expensive data collection, redun-
dant examination of known relations, and unrealistic assumptions. Additionally,
while recent LLM-based methods excel at identifying commonly known causal re-
lations, they fall short in uncovering novel relations. We introduce IRIS (Iterative
Retrieval and Integrated System for Real-Time Causal Discovery), a novel frame-
work that addresses these limitations. Starting with a set of initial variables, IRIS
automatically retrieves relevant documents, extracts variable values, and organizes
data for statistical algorithms in real-time. Our hybrid causal discovery method
combines statistical algorithms and LLM-based methods to discover existing and
novel causal relations. The missing variable proposal component identifies miss-
ing variables, and subsequently, IRIS expands the causal graphs by including both
the initial and the newly suggested variables. Our approach offers a scalable and
adaptable solution for causal discovery, enabling the exploration of causal rela-
tions from a set of initial variables without requiring pre-existing datasets

1 INTRODUCTION

A fundamental task in various disciplines of science, including biology, economics and healthcare,
is to find underlying causal relations and make use of them |[Kuhn| (1962)). Although interventional
experiments are ideal for discovering causality, they are often impractical or impossible due to eth-
ical, financial, or logistical constraints. Consequently, researchers have developed methods to infer
causal relations from purely observational data Pearll (2009); [Spirtes et al.| (2000).

Both statistical and large language model (LLM) -based causal discovery algorithms face several
significant challenges that limit their applicability and effectiveness in real-world scenarios. First,
statistical algorithms typically require extensive sample collection, a process that can be both time-
consuming and expensive. As a result, many studies rely on synthetic data, potentially limiting the
generalizability of their findings |Dong et al.| (2023)); |Gasse et al.| (2021); |Korb & Nicholson| (2010);
Binder et al.| (1997). Second, statistical algorithms often redundantly examine well-established
causal relations, leading to inefficient use of computational resources, especially given the high
complexity of many causal discovery algorithms Zhang et al.|(2011); |Glymour et al.|(2019). Third,
while LLM-based methods may identify well-established causal relations, they struggle to uncover
novel causal relations not previously documented Feng et al.[ (2024)); [ZeCeviC et al.| (2023)). Lastly,
most statistical algorithms operate under assumptions that rarely hold in real-world scenarios, such
as the causal sufficiency assumption (i.e., the absence of unobservable variables in the causal graph)
and acyclicity assumption (i.e., the absence of cycles in the causal graph)|Pearl|(2009); Neal (2020).

To address these limitations, we propose a framework, called Iterative Retrieval and Integrated
System (IRIS) for real-time causal discovery. IRIS begins with a set of initial variables and em-
ploys an automated process to collect and analyze unstructured text data in real-time, eliminating
the need for pre-existing sample collection. This data is then transformed into structured format suit-
able for statistical causal discovery methods. Our framework utilizes a hybrid approach to causal
discovery, merging statistical methods with LLM-based causal relation extraction and verification
techniques. This hybrid strategy allows us to leverage existing knowledge while simultaneously un-
covering novel causal relations. Specifically, this hybrid approach allows cycles in causal graphs,

'Our code and data are available athttps://anonymous . 4open.science/r/iris—7378
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Figure 1: Illustration of our framework.

thereby discarding the acyclicity assumption. Additionally, we introduce a missing variable pro-
posal component that identifies unobserved variables that may have causal associations with the
initial variables. This component allows us to relax the causal sufficiency assumption. Then we
can conduct an iterative process where the expanded variables are used as input, to apply to our
framework again, resulting in expanded causal graphs.

Our experimental results demonstrate that IRIS significantly surpasses strong baselines across all
datasets, achieving an average F1 score improvement of 0.14 and a reduction of 0.14 in the average
NHD ratio, as detailed in Section d] Evaluations of individual components reveal that each outper-
forms its corresponding baselines. Specifically, the value extraction assessment shows that IRIS with
GPT-40 exceeds the strong baselines, which also utilizing GPT-4o (refer to Section[3). In terms of
causal discovery, our hybrid method consistently outperforms both traditional statistical algorithms
and LLM-based approaches, as outlined in Section[6] Lastly, the evaluation of our missing variable
proposal component, discussed in Section[7} indicates that our method is more effective at correctly
identifying missing variables compared to prompt-based baselines.

Our primary contributions are as follows: 1)We introduce a real-time sample collection and value ex-
traction component that significantly reduces the manual labor required for data gathering in causal
discovery. 2) We propose a hybrid causal discovery method that leverages existing causal knowledge
through relation extraction and uncovers novel causal relations using statistical algorithms. Impor-
tantly, our method permits cycles in causal graphs, thus relaxing the acyclicity assumption. 3) We
develop a missing variable proposal component that identifies unobserved variables that may have
causal relations with the initial variables, facilitating the relaxation of the causal sufficiency assump-
tion. 4) Our experimental evaluations demonstrate that IRIS consistently outperforms its baselines,
with each component of IRIS also surpassing corresponding baseline methods.

2 BACKGROUND

Causal discovery focuses on uncovering causal structures within a set of variables. Given a pair of
variables (X,Y"), the objective is to determine whether X < Y, Y <« X, or no causal influence
between them, where <— denotes causal direction. A key distinction between causal discovery and
relation extraction in NLP is that causal discovery reveals previously unknown causal relations,
whereas relation extraction focuses on transforming relations in free text into structured relational
tuples.

Although randomized controlled trials and A/B testing are the gold standard for causal discovery
Fisher| (1935), these experimental approaches are often impractical due to ethical or financial lim-
itations. Thus, researchers turn to alternative methods that rely solely on statistical analysis of
observational data to infer causal structures.
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Statistical approaches to causal discovery can be broadly classified into two categories: constraint-
based methods, exemplified by Peter and Clark (PC) [Spirtes et al.| (2000) and inductive causation
(IC) |Pearl| (2009)), and score-based methods |Heckerman et al.| (1995)); |Chickering| (2002)); |Koivisto
& Sood|(2004); [Mooij et al.| (2016)). These methodologies employ statistical measures derived from
observational data to construct causal graphs. However, these approaches face significant challenges.
Firstly, they require extensive data collection, which can be resource-intensive and time-consuming.
Secondly, they are subject to theoretical limitations. These statistical methods cannot guarantee the
precise identification of ground-truth causal graphs. Instead, they typically produce an equivalence
class of true causal graphs [Spirtes et al.|(2000); |[Pearl| (2009).

Furthermore, many causal discovery algorithms, such as PC and Greedy Equivalence Search (GES),
operate under assumptions that can limit their applicability to real-world scenarios. Causal suf-
ficiency assumption posits that all variables are observed and included, neglecting the potential
unobserved variables [Neal (2020). Some algorithms, such as Tetrad condition-based [Silva et al.
(2006); |[Kummerfeld & Ramsey| (2016) and high-order moments-based approaches |Adams et al.
(2021); |Chen et al.| (2022) focus on uncover specific types of unobserved variables, such as latent
confounders (i.e., common causes). However, our work aims to identify more general unobserved
variables, including confounders, mediators, cause or effect of observed variables. Acyclicity as-
sumption states that causal graphs contain no cycles, which allows causal discovery to align with
Bayesian network and simplifies mathematical challenge. However, this assumption often contra-
dicts real-world phenomena. Many causal processes are known to contain feedback loops, such as
the poverty cycle: poverty — limited access to education — low-paying jobs — poverty, Banerjee
& Duflo| (2012); [De Weiss & Sirkin| (2010) and the predator-prey cycle: increase in predator pop-
ulation — decrease in prey population — decrease in predator population Schmitz|(2017); |Abrams
(2001). In contrast to prior work, our proposed causal discovery method relaxes these assumptions.
By allowing for the inclusion of unobserved variables and permitting cycles within causal graphs,
our approach aims to model causal relations more closely aligned with real-world scenarios.

The advent of LLMs provides new opportunities to address causal discovery |[Kiciman et al.|(2023));
Zecevic et al.[(2023); Long et al| (2022). In this approach, LLMs are prompted to determine the
causal direction between a given pair of variable names. However, the reliability of such methods is
under scrutiny. Zecevic et al.|(2023)) argue that LLMs may function as “causal parrots”, which de-
pend on memorization to recall the causal relations present in their training data rather than genuine
causal reasoning. This raises concerns about the models’ ability to generalize and identify causal
relations that are rare or absent in pre-training data. [Feng et al.[(2024) presents empirical evidence to
support this argument, suggesting that while LLMs may excel at reproducing frequently presented
causal relations, they may struggle to uncover novel causal relations.

In contrast to approaches that directly employ LLMs for causal discovery, [Liu et al.| (2024) utilize
LLMs as variable proposers to abstract causal variables and extract their values from collected docu-
ments, subsequently applying statistical methods to uncover causal relations among these variables.
Our work diverges from this approach by taking a set of initial variables as input and employing an
automated process to collect relevant documents. Following variable value extraction, our methodol-
ogy implements a hybrid causal discovery approach, integrating both statistical methods and relation
extraction methods. Furthermore, our approach is capable of proposing additional variables that ex-
hibit causal relations with the initial set, thereby enabling an iterative process of data collection
and causal discovery of a expanded set of variables. This iterative methodology allows for a more
comprehensive exploration of the causal relations surrounding the variables of interest.

3 METHODOLOGY

In this work, we introduce a novel causal discovery framework, IRIS. Our method differs from
prior causal discovery algorithms in three key aspects. First, IRIS does not rely on pre-existing
observational data; instead, it automatically collects and extracts observational data related to the
initial variables. Second, our approach does not require the acyclicity assumption; we allow cycles
in the causal graph. Third, we do not assume causal sufficiency; our missing variable proposal
component is designed to suggest new variables that may have causal relations with initial variables.
IRIS consists of three principal components: Data Collection and Value Extraction, Hybrid Causal
Discovery, and Missing Variable Proposal. We detail each component in the following sections.
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3.1 PROBLEM DEFINITION

IRIS begins by taking a set of initial variables, denoted as Z = (z1, zs, ..., Zx ), Where z; represents
one variable. Our method automatically collects a set of unstructured textual data D relevant to these
initial variables. From DD, our method extracts the values of these variables to assemble structured
data X, which serves as the input for statistical causal discovery algorithms. Then our missing vari-
able proposal component suggests new variables related to initial variables, resulting in an expanded
set of variables Z,,. The final output of our method is an expanded causal graph G = (Z,,,R),
where R = (71,7, ..., ;) represents the set of causal relations (edges in the graph).

3.2 DATA COLLECTION AND VALUE EXTRACTION

The initial phrase of IRIS comprises two main steps: retrieval of relevant documents and extraction
of variable value. The detailed procedure is outlined in Algorithm[I]in Appendix

Retrieval of Relevant Documents We employ the official Google API E] to retrieve documents
related to the initial variables Z. To maximize the relevance to all initial variables, we construct
search queries using a stepwise removal approach: 1) Begin with queries containing all variable
names (e.g., "smoking” AND “cancer” AND “pollution”). 2) Progressively remove one variable at
a time (e.g., ”smoking” AND “cancer”). 3) Conclude with single-variable queries (e.g., ’smoking”).
We also incorporate synonyms of variable names to enhance coverage (e.g., “smoker” and “’tobacco”
for ”smoking”). For each query, we retrieve the top-k documents to ensure data diversity. To ensure
relevance to most variables, we require queries containing more variables yield more documents.
The retrieval process continues until a predefined threshold of the number of collected documents is
reached. The resulting document set is denoted as D = (dy, ds, .., dr), where d; represents a single
document.

Extraction of Variable Value The next step involves extracting variable values from the collected
documents D to construct structured data X. We leverage LLMs for this task. Given an LLM
M, we design a prompt [ that incorporates one document d; and the description of one variable
z;. The variable description includes its name and the meaning of each value. We guide the LLM
to generate responses following multiple thinking steps, mimicking human expert reasoning, and
provide the final answer in a specific format Lin et al.|(2024). This generation process can be denoted
as 0;; = M (l(d;,z;)), where o;; is LLM’s response regarding the value of variable z; in document
d;. We then extract the exact value v;; from this formatted response o;;. By iterating through
all variables and documents, we populate the structured data X where each column represents a
variable and each row corresponds to a document. The prompt template for value extraction is
presented in Table [9]in Appendix[A.3]

3.3 HYBRID CAUSAL DISCOVERY

With the collected unstructured data D and structured data X, we employ a hybrid approach to
causal discovery, leveraging both statistical methods and relation extraction techniques. This hybrid
strategy allow us to leverage existing causal relation and uncover novel causal relations.

Statistical Causal Discovery For structured data X, we employ statistical causal discovery al-
gorithms such as the PC algorithm [Spirtes et al.| (2000), GES |Chickering| (2003, and NOTEARS
Zheng et al. (2018)). These methods determine causal structures by analyzing statistical relations
between variables. For instance, the PC algorithm performs conditional independence tests between
variable pairs, progressively expanding the conditioning sets to determine the presence of causal
relations. These algorithms process structured data X, which contains variables and samples, and

use predefined hyperparameters to produce a causal graph G, as the output.

Causal Relation Extraction and Verification We introduce a complementary method inspired
by causal relation verification |Si et al.|(2024)); Wadden et al.| (2022). In this approach, we treat each
potential causal relation as a claim (e.g., "smoking causes lung cancer”) and retrieve documents

https://developers.google.com/custom-search/docs/overview
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containing both the cause and effect terms (e.g., ”smoking” AND lung cancer”). To ensure the
trustworthiness of retrieved documents, we restrict the search domain to reputable academic reposi-
tories °} We then employ LLMs to assess whether each document supports or refutes or not relates
with the causal relation using a carefully designed prompt (see Table[I0]in Appendix[A.3). If a ma-
jority of documents support the causal relation, we incorporate it into a causal graph G,. Otherwise,

this causal relation should not exist in Qv.

Graph Merging The two branches of our hybrid method produce two causal graphs: G, from the
statistical algorithms and G, from the causal relation verification process. To merge these into a
final causal graph G, we post-process the causal graph Gs by adding high-confidence verified causal
relations from G, and removing relations that are strongly refuted by the verification process. This
merging strategy is adopted for two main reasons: firstly, the structured data X used in the statistical
analysis might contain noise introduced during the value extraction phase; secondly, causal relations
that are widely supported or refuted by the majority of documents are considered well-established
knowledge and are deemed trustworthy. The detailed process of our hybrid causal discovery method
is outlined in Algorithm 2]in Appendix[A.4]

3.4 MISSING VARIABLE PROPOSAL

In this step, our goal is to identify missing variables that are not included in the initial variables but
may serve as confounders, mediators, causes, or effects of initial variables.

Variable Abstraction We leverage LLMs to abstract missing variables from the retrieved docu-
ments D. For each document, the LLMs is instructed to abstract variables that may potentially have
causal relations with the initial variables. The instruction involves analyzing the content of each
document, identifying variables that could influence or be influenced by the initial variables, and
then providing the most reliable variable in a specified format. The prompt for variable abstraction
is provided in Table[TT]in Appendix [A.5]

Variable Selection To select the most promising variables from the abstracted variables, we em-
ploy a dual approach combining relation extraction and statistical methods:

* Verified Relation Extraction Approach: We verify whether each abstracted variable has a
confirmed causal relation with any initial variable using our causal relation extraction and
verification method, as stated in Section[3.3] Variables that are supported by the majority
of the documents are subsequently added to the expanded set of variables Z,,.

* Statistical Approach: We compute the Pointwise Mutual Information (PMI) between each
new variable and the initial variables. PMI quantifies the dependence between two vari-
ables, with higher scores indicating a greater likelihood of potential causal association.
The PMI between two variables (z;, z;) is computed as:

L 0(zi,25) o
PMI(z;,z5) = log p(zi,2)) =log —C = log olzi, 2;) +log€ (1)

plzplz) E A o] % oln)ol)

where 0(z;,z;) denotes the number of documents where (z;, z;) co-occur, and o(z;) represents the
number of documents where (z;) occurs. These occurrence counts are obtained through Google
search APL. C is a constant value that represents the total number of retrievable documents. Thus,
log C' can be ignored.

For each abstracted variable, we compute its PMI score with each initial variable. The top k ab-
stracted variables with the highest aggregate PMI scores across all initial variables are appended to
Z,. The detailed process of our missing variable proposal method is outlined in Algorithm [3|in

Appendix

30ur search is limited to the following academic website domains: jstor.org, springer.com, ieee.org,
ncbi.nlm.nih.gov, sciencedirect.com, scholar.google.com, arxiv.org.
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With the newly proposed variables Z,,, we can iterate the data collection, value extraction, and
causal discovery processes to generate an expanded causal graph G = (Z,,,R) that incorporates
these additional variables and new discovered causal relations.

4 EVALUATION OF EXPANDED CAUSAL GRAPHS

4.1 EXPERIMENTAL SETUP

We assess the complete pipeline of IRIS, which includes causal discovery of initial variables, miss-
ing variables proposal, and subsequent causal discovery incorporating both initial and proposed
variables. We then evaluate the quality of the resulting expanded causal graphs.

Datasets. The initial variables are from five datasets: Cancer Korb & Nicholson| (2010), Respira-
tory Disease, Diabetes, Obesity [Hernan et al.[ (2004); |Long et al.| (2022), and Alzheimer’s Disease
Neuroimaging Initiative (ADNI) Shen et al.| (2020).

Our Method and Baselines. For our framework and baseline, we employs GPT-40 as the LLM
component, a choice supported by its superior performance across value extraction, causal discovery,
and missing variable proposal tasks (see Sections [3} [6] and[7). For the statistical causal discovery
algorithms in our method, we utilize the Greedy Equivalence Search (GES) algorithm. This selection
is based on GES achieving the highest average F1 score and Normalized Hamming Distance (NHD)
ratio across all five datasets, as demonstrated in Section @ To provide a comprehensive evaluation,
we introduce a baseline method, coined “Prompt”, which relies solely on carefully crafted prompts
(see Table[I2]in Appendix [A.5) with LLM to determine causal relations among expanded variables
proposed by our missing variable proposal component.

Evaluation. To establish ground-truth expanded causal graphs, we engage a panel of domain ex-
perts. Three knowledgeable annotators independently assess each graph, with edges included in the
final ground-truth when at least two annotators agree. The inter-annotator agreement, calculated
using Krippendorff’s alpha, is 0.88, indicating a high level of agreement among annotators Krippen-
dorff| (2011). The detailed annotation instruction is in Table[I3|in Appendix[A.7] Following|Kiciman
et al|(2023); |[Feng et al|(2024), we evaluate the results of causal discovery using precision, recall,
F1 score, and the Ratio of Normalized Hamming Distance (NHD) to baseline NHD. The ratio is
defined as ratio = %, where the baseline NHD is derived from the worst-performing causal
graph that has the same number of edges as the predicted graph. A lower ratio signifies a more
accurate predicted causal graph.

4.2 EXPERIMENTAL RESULTS AND ANALYSIS

Dataset Method Precision Recall F17 # of predicted edges NHD Ratio]
Cancer Prompt 0.64 032 043 14 0.57
IRIS 0.89 0.57 0.7 18 0.3
Respiratory Prompt 0.67 036 047 12 0.53
IRIS 0.67 0.55 0.6 18 0.4
Diabetes Prompt 0.70 046  0.56 17 0.45
IRIS 0.76 0.5 0.6 17 0.39
Obesity Prompt 0.57 0.33 042 14 0.58
IRIS 0.67 0.58  0.62 21 0.38
Prompt 0.47 029 0.36 17 0.64
ADNI IRIS 0.5 036 042 20 0.58

Table 1: Evaluation results of expanded causal graphs.
Table[T]presents the evaluation results for the expanded causal graphs. IRIS consistently outperforms
the Prompt baseline across all datasets, achieving higher F1 scores and lower NHD ratios. The
average F1 score improvement is 0.14. Similarly, the average NHD ratio decreased by 0.14. ADNI
exhibits the lowest overall performance for both methods, though IRIS still shows improvement
over the baseline. This may reflect the inherent complexity of Alzheimer’s disease causal relations.
IRIS predicts more edges than the baseline (averaging 18.8 vs. 14.8 edges), which ensures a higher
recall than the baseline (averaging 0.51 vs. 0.35). This indicates that our method’s hybrid causal
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discovery can capture more complex causal structures effectively. The expanded causal graphs for
each dataset are illustrated in Figures [3| [} 5} [6] [7]in Appendix These results demonstrate that
IRIS can reliably expand and discover causal relations.

5 EVALUATION OF VALUE EXTRACTION

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate the value extraction component of our method using two table-to-text
datasets: AppleGastronome and Neuropathic |Liu et al.| (2024). These datasets are particularly suit-
able for our task as they provide tabular data where columns represent variables and rows represent
samples. Each row is associated with a corresponding textual description. The datasets are struc-
tured as follows: AppleGastronome contains 7 variables and 100 samples. Variable values are -1, 0,
or 1. Neuropathic contains 7 variables and 100 samples. Variable values are O or 1.

LLMs and Baselines. We utilize state-of-the-art LLMs for our method: Llama-3.1-8b-Instruct
Meta| (2024), GPT-3.5-turbo |OpenAll (2022), GPT-40 |OpenAll (2024). Additionally, we compare
our method with COAT, which also utilizes an LLM to extract values of factors from documents
Liu et al.| (2024). To ensure a fair comparison, we use GPT-40 in both our method and the COAT
implementation.

Metrics. Given that variable values are categorical, we frame the value extraction task as a classi-
fication problem, predicting the value of a variable in a given document. Consequently, we employ
standard classification metrics: precision, recall, and F1.

5.2 EXPERIMENTAL RESULTS AND ANALYSIS

Table |2| presents the evaluation results of our value ex-

traction method across different LLMs on the AppleGas- AppleGastronome

tronome and Neuropathic datasets. Our method’s supe- P R F1
rior performance with GPT-40, compared to COAT using COAT -GPT40 074 076 075
the same LLM, indicates that our approach is more effec- IRIS- Llama 071 072 071
tive than COAT under identical LLM. In both datasets, we IRIS- GPT-3.5 075 077 0.76
observe a consistent trend of improvement from Llama-  [R1S. GPT-40 079 082 0.9
3.1-8b-Instruct to GPT-3.5, and further to GPT-40 when Neuropathic

using our method. This progression aligns with the gen- —=GAT-GPT40 0.72 080 0.79

eral understanding that more advanced LLMs tend to per-  [RS_ 1 .Jama 076 0.82 079
form better on complex tasks. Overall, the models per-  |pis. GPT-3.5 0.71 0.89 0'79
form better on the Neuropathic dataset compared to Ap-  [R[S- GPT-40 073 1.0 084

pleGastronome. This could be attributed to the simpler
binary values of the Neuropathic dataset (values O or 1)  Tuple 2: Result of evaluation of value
compared to the ternary values in AppleGastronome (- oytraction. Llama represents Llama-
1, 0, 1). The additional complexity in AppleGastronome 3.1-8b-instruct

might introduce more opportunities for misclassification.

The high performance of GPT-40 suggests that it could be

highly effective for value extraction in our framework.

6 EVALUATION OF CAUSAL DISCOVERY

6.1 EXPERIMENTAL SETUP

Datasets. We apply our hybrid causal discovery component to five datasets: Cancer, Respiratory
Disease, Diabetes, Obesity, and ADNI. These causal graphs are annotated by domain experts. The
ground-truth causal graphs are presented in Figure 2]in Appendix [A.6]

Baselines. We compare our method against several baselines: 1) Pairwise-LLM constructs queries
for each pair of variables, using LLMs to determine causal relations. The computational complexity
of this method is O(n?) [Feng et al.| (2024). 2) BFS-LLM employs a breadth-first search approach
with LLMs, achieving linear computational complexity Jiralerspong et al.[(2024). 3) COAT utilizes



Under review as a conference paper at ICLR 2025

LLM to extract values from documents, then applies the PC algorithm for causal discovery |[Liu
et al.| (2024). In our hybrid approach, for statistical algorithms, we utilize PC |Spirtes et al.| (2000),
GES |Chickering| (2003)), and NOTEARS [Zheng et al.| (2018). Among the three statistical methods
(GES, NOTEARS, PC), we select the one that demonstrates the best performance for hybrid causal
discovery. Based on our value extraction results (see Table , we use GPT-40, which demonstrated
the best performance, as the LLM for both our method and the baseline approaches. To illustrate
how different LLMs affect the performance of our method, we employ the Llama-3.1-8b-instruct
model as a counterpart.

Metrics.We evaluate the quality of causal graphs using precision, recall, F1, and NHD ratio as
detailed in Section

Cancer (4 edges, 5 nodes)

Method Precision Recall F171 # of predicted edges NHD Ratiol
Pairwise-LLM 0.75 075 075 4 0.25
BFS-LLM 0.6 075  0.67 5 0.33
COAT 0.13 025 0.17 8 0.83
IRIS- GES 0.25 0.5 0.33 8 0.67
IRIS- NOTEARS 1.0 0.25 0.4 1 0.6
IRIS- PC 0.14 025 0.18 7 0.82
IRIS- VCR 1.0 0.75 0.86 3 0.14
IRIS (Llama) - NOTEARS+VCR 0.375 0.75 0.5 8 0.5
IRIS- NOTEARS+VCR 1.0 0.75  0.86 3 0.14

Table 3: Evaluation results of causal discovery on cancer graph. VCR refers to verified causal
relations that are extracted from and validated by relevant academic documents. “Llama” refers to
the use of the Llama-3.1-8b-instruct model as a substitute for GPT-40 in our method.

Respiratory Disease (5 edges, 4 nodes)

Method Precision Recall F11 # of predicted edges NHD Ratio]
Pairwise-LLM 1.0 0.6 0.75 3 0.25
BFS-LLM 0.67 04 0.5 3 0.5
COAT 1.0 0.8 0.89 4 0.11
IRIS- GES 1.0 0.8 0.89 4 0.11
IRIS- NOTEARS 1.0 0.2 0.33 1 0.67
IRIS- PC 0.83 1.0 0.91 6 0.09
IRIS- VCR 1.0 0.8 0.89 4 0.11
IRIS (Llama) - PC+VCR 1.0 0.8 0.89 4 0.11
IRIS- PC+VCR 0.83 1.0 0.91 6 0.09

Table 4: Evaluation results of causal discovery on respiratory disease graph.
Diabetes (5 edges, 4 nodes)

Method Precision Recall F11 # of predicted edges NHD Ratio]
Pairwise-LLM 0.67 04 0.5 3 0.5
BFS-LLM 0.67 0.4 0.5 3 0.5
COAT 0.25 0.2 0.22 4 0.78
IRIS- GES 0.5 0.6 0.55 6 0.45
IRIS- NOTEARS 0 0 0 0 1.0
IRIS- PC 0.25 0.2 0.22 4 0.78
IRIS- VCR 1.0 0.2 0.33 1 0.67
IRIS (Llama) - GES+VCR 0.67 0.4 0.5 3 0.5
IRIS- GES+VCR 1.0 0.6 0.75 3 0.25

Table 5: Evaluation results of causal discovery on diabetes graph.

6.2 EXPERIMENTAL RESULTS AND ANALYSIS

The results of our causal discovery experiments across five datasets are presented in Table [3] A
Bl el Our hybrid method consistently outperforms baseline methods across all datasets. This
underscores the effectiveness of combining statistical algorithms with extracted knowledge.
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Obesity (5 edges, 4 nodes)
Precision Recall F11 # of predicted edges NHD Ratio]

Pairwise-LLM 0.83 1.0 0.91 6 0.09
BFS-LLM 0.6 0.6 0.6 5 0.4
COAT 0.25 0.2 0.22 4 0.78
IRIS-GES 0.25 0.2 0.22 4 0.78
IRIS- NOTEARS 0 0 0 2 1.0
IRIS- PC 0.25 0.2 0.22 4 0.78
IRIS- VCR 1.0 1.0 1.0 5 0
IRIS (Llama) - PC+VCR 0.83 1.0 091 6 0.09
IRIS- PC+VCR 1.0 1.0 1.0 5 0

Table 6: Evaluation results of causal discovery on obesity graph.

ADNI (7 edges, 8 nodes)

Method Precision Recall F11 # of predicted edges NHD Ratiol
Pairwise-LLM 0.5 0.14 022 2 0.78
BFS-LLM 0.33 0.14 0.2 3 0.8
COAT 0.11 0.14 0.13 9 0.87
IRIS- GES 0.08 0.14  0.11 12 0.89
IRIS- NOTEARS 0.33 0.14 0.2 3 0.8
IRIS- PC 0.11 0.14 0.13 9 0.87
IRIS- VCR 0.4 0.29 0.33 5 0.67
IRIS (Llama) - NOTEARS+VCR 0.08 0.14 0.11 12 0.89
IRIS- NOTEARS+VCR 0.38 0.43 0.4 8 0.6

Table 7: Evaluation results of causal discovery on ADNI graph.

We observe that the performance of individual statistical algorithms (GES, NOTEARS, PC) varied
across datasets. PC excels in Respiratory Disease and Obesity. GES demonstrates optimal per-
formance on Diabetes and Obesity. NOTEARS performs best on Cancer and ADNI but struggles
significantly with Diabetes and Obesity, achieving a 0 F1 score and a 1 NHD ratio. This varia-
tion highlights the importance of selecting statistical algorithms based on the characteristics of the
observational data, which presents a compelling area for further research. From our experiments,
both GES and PC exhibit strong performances; however, GES consistently outperforms PC, with
an average F1 score that is 0.09 points higher and an average NHD ratio that is 0.09 points lower.
Given these results, GES is recommended as the primary choice when the suitability of the algo-
rithm is uncertain. When comparing the performance of Llama-3.1-8b-instruct and GPT-40 in our
method, GPT-40 consistently outperforms Llama-3.1-8b-instruct across all datasets, with a partic-
ularly significant gap observed in the ADNI dataset. We believe this discrepancy arises because
ADNI involves specialized knowledge that is less commonly represented in the pre-training data of
Llama-3.1-8b-instruct.

LLM-based methods (Pairwise-LLM and BFS-LLM) show competitive performance on simpler
datasets. They perform well on the Cancer and Respiratory Disease datasets. However, their perfor-
mance degrades on more complex datasets like ADNI. This suggests that while LLMs have potential
in causal discovery, they may struggle with more complex causal relations, possibly due to the lower
occurrence of such relations in their training data Feng et al.|(2024). The COAT method yields re-
sults similar to IRIS- PC because both approaches extract values from documents and then perform
causal discovery using the PC algorithm.

In conclusion, our experimental results consistently demonstrate that integrating the Verified Causal
Relations (VCR) component with statistical algorithms significantly enhances causal discovery per-
formance across datasets, thereby validating the effectiveness of our hybrid approach.

7 EVALUATION OF MISSING VARIABLE PROPOSAL

7.1 EXPERIMENTAL SETUP

Datasets. Evaluating the missing variable proposal component presents a unique challenge: the
ground-truth missing variables are inherently unknown in real-world scenarios. To address this, we
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simulate missing variables and assess our method’s ability to identify them. We start with complete,
ground-truth causal graphs and systematically remove variables to create incomplete graphs. We
employ five causal graphs: Cancer, Respiratory Disease, Diabetes, Obesity, and ADNI. For each
causal graph, we iteratively remove one variable at a time, creating multiple test cases per graph. We
then apply our missing variable proposal component to these incomplete graphs, aiming to identify
the removed variables.

Our Method and Baselines. For our missing variable proposal component, we employ GPT-40 and
Llama-3.1-8b-instruct as the LLM. To ensure a thorough evaluation, we have introduced a baseline
method that employs LLM to directly suggest new variables through a prompt-based approach.

Metrics. We evaluate the performance using a success rate metric, calculated as follows:
1) For each incomplete causal graph, we check if our method successfully proposes the re-
moved variable in its final set of proposed variables Z,,. 2) We count a “success” for
each correctly proposed variable. 3) The success rate is computed as: Success Rate =
Number of Successes/Total Number of Incomplete Graphs. For instance, in a causal graph with
five variables, we create five different incomplete graphs by removing one variable at a time. If our
method correctly proposes the removed variable in three of these five graphs, the success rate would
be 0.6. For the statistical approach, we select the top-5 variables based on their PMI scores.

7.2 EXPERIMENTAL RESULTS AND ANALYSIS

The evaluation results of our Missing Variable Proposal (MVP) component are presented in Table|[S]
The MVP-GPT-40 method consistently outperforms other variants across all datasets. This demon-
strates the effectiveness of combining VCR with statistical approach in identifying missing variables.
Ablation studies indicate that both VCR and statistical approaches play a crucial role in enhancing
the success rate of the MVP. The performance gap between MVP-GPT-40 and MVP-Llama indi-
cates the superior capability of GPT-40 in understanding and reasoning about causal relations. The
prompt-based baseline consistently underperforms compared to our framework, indicating that re-
lying solely on the internal knowledge of LLMs is not reliable for proposing missing variables.

Success rate

Method Cancer Respiratory Disease Diabetes Obesity ~ADNI
Prompt - GPT-40 04 0.25 0.5 0.25 0.25
MVP - GPT-40 - NoVCR 0.6 0.75 0.5 0.75 0.25
MVP - GPT-4o - NoStats 0.6 0.75 0.75 1.0 0.375
MVP - Llama 04 0.5 0.25 0.5 0.125
MVP - GPT-40 0.8 0.75 1.0 1.0 0.5

Table 8: Evaluation results of the missing variable proposal (MVP) component. MVP-NoVCR
excludes verified causal relation extraction; MVP-NoStats omits statistical approaches; MVP-Llama
utilizes the Llama-3.1-8b-instruct model.

8 CONCLUSION

In this paper, we introduce IRIS, a novel framework that addresses several longstanding challenges
in the field of causal discovery. By integrating automated data collection, hybrid causal discov-
ery methods, and missing variable proposal components, IRIS significantly advances our ability to
uncover causal relations in real-world scenarios. Our approach not only reduces the reliance on
extensive manual data collection but also leverages existing knowledge while facilitating the dis-
covery of novel causal relations. The ability to propose potentially missing variables allows for the
development of comprehensive causal graphs. Our experimental results show that IRIS consistently
outperforms existing baselines. Future work could aim to enhancing the scalability of IRIS for larger
and more complex causal relations and to explore innovative methods for integrating causal relations
extracted from texts with those identified through statistical algorithms.

10
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A APPENDIX

A.1 RELATED WORK

Causal Discovery Causal discovery aims to uncover causal structures among variables, distin-
guishing itself from relation extraction in NLP by revealing novel causal relations rather than merely
extracting known relations. While experimental approaches such as randomized controlled trials are
gold standard methodsFisher (1935)), practical limitations often necessitate statistical methods using
observational data. These include constraint-based and score-based approaches Spirtes et al.|(2000);
Pearl (2009); [Heckerman et al.| (1995)). However, statistical methods face challenges in data collec-
tion and theoretical limitations. Recent advancements in LLMs have introduced new possibilities
for causal discovery without direct data access |Kiciman et al.| (2023); [ZeCevic et al.| (2023); Long
et al.| (2022). However, concerns about LLMs functioning as “causal parrots” and their ability to
generalize to novel relations have been raised [Zecevic et al.| (2023); [Feng et al.|(2024). Alternative
approaches, such as using LLMs for variable proposer and combining them with statistical meth-
ods [Liu et al.| (2024), have emerged. Our work builds upon these ideas, introducing an automated
document collection process, a hybrid causal discovery method integrating statistical and relation
extraction techniques, and a hybrid approach for new variable proposal.

Relation Extraction Relation extraction aims to transform unstructured textual relations into
structured relation tuples of the form < eq, r, eo >, where e; and e, represent entities and r denotes
the relation between them Yang et al.| (2022); [Dasgupta et al.| (2018). While relation extraction can
identify cause-effect relationships from documents, it fundamentally differs from causal discovery in
that it relies on explicitly stated relations in texts, whereas causal discovery can uncover novel causal
relationships from observational data even in the absence of explicit textual mentions. Nevertheless,
relation extraction can serve as a complementary method for identifying commonly known causal
relations in textual data. Several studies have focused on extracting causal relations from natural
language texts |[Balashankar et al.|(2019); Bui et al.| (2010); |Chang & Choil (2006). The methods for
causality extraction can be divided into pattern-based and deep learning-based approaches. Pattern-
based methods utilize predefined linguistic patterns to extract relevant text segments, which are then
converted into tuples using hand-crafted algorithms |Garcia) (1997)); Khoo et al.| (2000). However,
these methods often suffer from limited coverage of causal relations and require significant effort in
pattern design. Deep learning-based methods employ neural networks to learn high-level abstract
features and representations from sentences, framing relation extraction as a sequence-to-sequence
task Zhao et al.| (2023} [2024). While these approaches offer improved performance, they typically
require large fine-tuning datasets and may not consistently produce structurally correct output tuples.

A notable limitation of many relation extraction systems is the lack of verification for extracted rela-
tions, potentially leading to the extraction of false or unreliable relations from untrustworthy sources
Si et al.| (2024); Wadhwa et al.| (2023)). Our work addresses this issue by adopting a novel approach:
instead of directly extracting causal relations from documents, we pre-create textual mentions of
causal relations (e.g., ’smoking causes lung cancer”) and employ LLMs to verify the veracity of
these relations based on relevant documents. We consider a causal relation to hold if the majority of
documents support its veracity, thereby enhancing the reliability of our extracted causal relations.

Claim Verification Claim verification aims to assess the veracity of claims based on relevant doc-
uments |Bekoulis et al.| (2021). This process typically encompasses several key components: claim
detection, document retrieval, veracity prediction, and explanation generation. Research in this
field often focuses on specific aspects of the verification pipeline. For instance, Panchendrarajan
& Zubiaga) (2024) and [Li et al| (2024) concentrate on identifying check-worthy statements from
large text corpora. Others, such as Wadden et al.| (2022)) and Mohr et al.|(2022), prioritize veracity
prediction, while[Wang & Shu| (2023)) emphasize the importance of generating explanations for ver-
ification outcomes. The emergence of LLMs has significantly influenced the field, with numerous
studies leveraging LLMs for claim verification through carefully crafted prompts Kim et al.| (2024);
Bazaga et al.| (2024)); |Asai et al.[(2024). Building on these advancements, one branch of our hy-
brid causal discovery approach reframes causal discovery as a causal relation verification task. We
employ LLMs to assess the veracity of causal relations based on retrieved documents, subsequently
incorporating verified relations into a causal graph. This methodology bridges the gap between tra-
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ditional claim verification techniques and causal discovery, offering a novel approach to uncovering
and validating causal relations.

A.2 REPRODUCIBILITY STATEMENT

We release our code and scripts athttps://anonymous.4open.science/r/iris—7378.
Detailed descriptions of the algorithms used in each component of our framework can be found in
Appendix [A.4] We provide all prompts utilized throughout our framework in Appendix [A.5] The
ground-truth causal graphs employed in our evaluation experiments are outlined in Appendix
Additionally, Appendix [A.7] presents human annotation instruction and interface for the human an-
notation tasks involved in evaluating the expanded causal graphs. The annotated expanded causal
graphs, alongside the predicted causal graphs, are documented in Appendix

A.3 ETHICS STATEMENT

Our framework collects publicly available data that does not involve personal or sensitive informa-
tion. However, uncovering causal relations from vast amounts of unstructured data can introduce
biases inherent in the collected data and the LLMs used.

A.4 ALGORITHMS

In this section, we provide detailed descriptions of the algorithms for each component of our method.
The data collection and value extraction process is outlined in Algorithm [Tl The hybrid causal
discovery algorithm can be found in Algorithm Finally, the algorithm for proposing missing
variables is detailed in Algorithm 3]

Algorithm 1 Document Collection and Value Extraction

Require: Initial Variables Z, LLM M, threshold T', prompt [
Document Collection

D+ 0 > Initialize an empty set for collected documents
while |D| < T do
queries < (21,22, .., Zn), (21,22, - - Zn—1), - - -, (2i)]

> queries considering all variables and their synonyms
for each ¢ in queries do
n < 20 X len(q) > Determine the number of URLS to collect
urls < google_search(q, n) > Search with query ¢ and retrieve top-n URLs
for each url in urls do
D < extract text from wurl
D+ DuU{D} > Add extracted text to the document set
end for
end for
end while

Value Extraction
V <« Matrix of dimensions 1" x N > Initialize a matrix with 7" rows and N columns
for each d; in D do

for each z; in Z do

0i5 < M(l(d;, z))) > Determine value of z; in d; by LLM
v;j — extract(o;;) > Extract value from LLM output
Vi [j] < vy > Store the value v;; in matrix V" at position (¢, 5)
end for
end for

Output: D,V
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Algorithm 2 Hybrid Causal Discovery

Require: Initial variables Z, LLM M, structured data X, prompt [, hyperparameters «, 3
Statistical Causal Discovery

Gs causal_discovery_alg(X) > Apply causal discovery algorithms (e.g., PC algorithm)

Causal Relation Verification
G, < causal graph with no edges
remove_edges < ()
for each z; in Z do
for each z; in Z do
if Z; 7& Zj then
T < 7'z; causes z;”

veracity, < ( > Initialize the veracity list for relation r

for each d in DZ“ZJ do > ID)Zth denotes documents containing both z; and z;
verg <— M(l(r,d)) > Determine the veracity of r based on document d
veracity, < veracity, U {verq}

end for

if veracity,.count(True) > a x len(veracity,) then
Gy < G, U {r} > Add relation r to the causal graph Gy

else if veracity,.count(False) > ( x len(veracity,) then
remove_edges <— remove_edges U {r}
end if
end if
end for
end for

Merge QS and C;U
for each edge r in G, do

Gs + G U {r} > Add relation 7 to G
end for
for each edge r in remove_edges do

Gs < Gs \ {r} > Remove relation 7 from Gy if it exists
end for
G+« Gs > The final merged causal graph

Output: G

A.5 PROMPTS

In this section, we show prompts we used in IRIS in Table [9] The prompt used in the
”Prompt” baseline in evaluation of expanded causal graphs is shown in Table

Given a document: {doc}

Please complete the below task.

We have a variable named *{var}’. The value of variable *{var}" is True or False.

True indicates that the existence of *{var}" can be inferred from the document, whereas False suggests that the existence of {var}’ cannot be inferred from this document.
Based on the document provided, what is the most appropriate value for ’{var}’ that can be inferred?

Please form the answer using the following format.

First, provide an introductory sentence that explains what information will be discussed.

Next, list generated answer in detail, ensuring clarity and precision.

Finally, conclude the final answer of the inferred value for *{var}" using the following template:

The value of *{var}’is ___.

Table 9: The prompt for value extraction, where doc indicates the content of a document, var refers
to a variable name.

A.6 GROUND-TRUTH CAUSAL GRAPHS

The ground-truth causal graphs for causal discovery can be found in Figure
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Algorithm 3 Missing Variable Proposal

Require: Initial variables Z, LLM M, collected documents D, prompt [, hyperparameter o
Step 1: Abstraction of Missing Variable Candidates

Ze <0 > Initialize the set of candidates
for each document d in D do
z+ M(U(Z,d)) > Abstract a candidate variable from document d
Ze < 7o U{z}
end for

Step 2: Missing Variable Proposal Based on Verified Causal Relations
Loy 0 > Initialize the set of missing variables
for each variable z; in Z. do
for each given variable z; in Z do
r1 < 7'z; causes z;”

veracity,, < 0 > Initialize the veracity list for relation

for each document d in ]D)Zi,zj do » ID)Z“Z]. denotes documents containing both z; and z;
verg < M(l(r1,d)) > Determine the veracity of r1 based on document d
veracity,, + veracity,, U {verq}

end for

if veracity,. .count(True) > o x veracity, .count(False) then
Loy, — Lo, U {2} > Add z; to the set of proposed variables

end if

r9 <= 7z; causes z;” > Repeat the process for the reverse causal relation

end for
end for

Step 3: Missing Variable Proposal Based on Statistical Methods

S« 0 > Initialize a set for PMI scores
for each variable z; in Z. do

S; < (Z)

for each given variable z; in Z do

sij  PMI(z;,z;) > Compute PMI of (z;,7;) by Equation|l]

end for

S+ SuU{d>(s;)} > Aggregate the PMI scores for z;
end for
Loy Loy, U top-k(S, Z,) > Select the top-k variables based on their PMI scores
Output: Z,, > Return the final set of proposed missing variables

Given a document: {doc}

Please complete the below task.

We have a claim: *{claim}’. We need to check the veracity of this claim. The value of veracity is True or False or Unknown.
True indicates that the given document supports this claim,

False indicates that the given document refutes the claim.

Unknown indicates that the given document has no relation to the claim.

Please form the answer with a logical reasoning chain according to the following format.

First, provide an introductory sentence that explains what information will be discussed.

Next, list the logical reasoning chain in detail, ensuring clarity and precision.

Finally, conclude the veracity of claim *{claim}’ using the following template:

The veracity of claim *{claim}’ is ___.

Table 10: The prompt for causal relation verification, where doc indicates the content of a document,
claim refers to a causal relation (e.g., smoking causes lung cancer).
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Given a document: {doc}

Please complete the below task.

We have some given variables: *{observed_variables}’.

‘What are the high-level variables in the provided document that have causal relations to variables in the given variable set?

Please form the answer using the following format.

First, propose as many variables as possible that have causal relationships with the given variables, based on your understanding of the document.
Please ensure these proposed variables are different from the ones already provided.

Next, refine your list of candidate variables by reducing semantic overlap among them and shortening their names for clarity.

Finally, determine the most reliable variable candidate as the final answer using the template provided below:

The new abstracted variable is <var>____</var>.

Table 11: The prompt for missing variable abstraction.

The task is to determine the cause-effect relation between two variables.

The variables are: {variablel} and {variable2}.

The answer should be {variablel} ->{variable2} or {variablel} <- {variable2} or no causal relation.
Let’s provide a step-by-step process to analysis the relation between them,

then provide your final answer using the following format:

The final answer is ___.

Table 12: The prompt used in the baseline for evaluation of expanded causal graphs.

A.7 CAUSAL RELATION ANNOTATION TASK

The detailed instructions for the causal relation annotation task are presented in Table[T3] This table
provides comprehensive guidance to annotators on how to identify and annotate causal relations
among the given variables.

Causal Relation Annotation Task

Task overview:
Your task is to identify and annotate causal relations among a set of variables. A causal relation exists when one variable directly influences another.

Instructions:

1. Consider each pair of variables and determine if there is a direct causal relationship between them.

2. If you believe variable A causes variable B, indicate this as: A — B

3. Be cautious of confusing correlation with causation. Only mark a relationship if you believe there is a direct causal link.

4. Consider the direction of causality carefully. For example, "Obesity — Heart Failure” suggests obesity causes heart failure, not the other way around.
5. It’s okay to have multiple causes for a single effect, or multiple effects from a single cause.

6. Not all variables will necessarily have causal relationships with others.

7. Use your best judgment based on available knowledge and logical reasoning.

Examples:

lifestyle -;, obesity

heart defect -;, cardiac output
genetic disorder -;, heart defect

Submission:
Please submit your annotations as a list of causal relations in the format: Variable A -; Variable B
Thank you for your careful consideration of this task!

Task 1: Cancer

Variables:
pollution
smoker

cancer

X-ray
dyspnoea

air quality
education
health issues
toxicity
chronic illness
covid-19
inflammation
respiratory issues
immunity
carcinogens
early detection

Causal Relations:

Table 13: Instructions and interface of causal relation annotation task.
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Figure 2: The ground-truth causal graphs from original sources Herndn et al.| (2004); Long et al.|

(2022); [Shen et al.| (2020); Korb & Nicholson| (2010).

A.8 EXPANDED CAUSAL GRAPHS

The expanded causal graphs are demonstrated in Figure 3} @] [5 [6] [7}

(a) IRIS (b) Human

Figure 3: Illustration of expanded causal graphs for Cancer. Squared nodes represent initial vari-
ables, while round nodes denote new proposed variables.

(a) IRIS (b) Human

Figure 4: Tllustration of expanded causal graphs for Respiratory Disease. Squared nodes represent
initial variables, while round nodes denote new proposed variables.
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lack of exercise

body weight

(a) IRIS (b) Human

Figure 5: Illustration of expanded causal graphs for Diabetes. Squared nodes represent initial vari-
ables, while round nodes denote new proposed variables.

obesity

heart defect
heart defect

A} 14

heart failure
heart failure

A 4

*| mortality

mortality

(a) IRIS (b) Human

Figure 6: Illustration of expanded causal graphs for Obesity. Squared nodes represent initial vari-
ables, while round nodes denote new proposed variables.
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