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ABSTRACT

Although machine learning models trained on massive data have led to break-
throughs in several areas, their deployment in privacy-sensitive domains remains
limited due to restricted access to data. Generative models trained with privacy
constraints on private data can sidestep this challenge and provide indirect access
to the private data instead. We propose DP-Sinkhorn, a novel optimal transport-
based generative method for learning data distributions from private data with dif-
ferential privacy. DP-Sinkhorn relies on minimizing the Sinkhorn divergence—a
computationally efficient approximation to the exact optimal transport distance—
between the model and the data in a differentially private manner and also uses
a novel technique for conditional generation in the Sinkhorn framework. Unlike
existing approaches for training differentially private generative models, which
are mostly based on generative adversarial networks, we do not rely on adversar-
ial objectives, which are notoriously difficult to optimize, especially in the pres-
ence of noise imposed by the privacy constraints. Hence, DP-Sinkhorn is easy
to train and deploy. Experimentally, despite our method’s simplicity we improve
upon the state-of-the-art on multiple image modeling benchmarks. We also show
differentially private synthesis of informative RGB images, which has not been
demonstrated before by differentially private generative models without the use of
auxiliary public data.

1 INTRODUCTION

As the full value of data comes to fruition through a growing number of data-centric applications
(e.g. recommender systems (Gomez-Uribe & Hunt, 2016), personalized medicine (Ho et al., 2020),
face recognition (Wang & Deng, 2020), speech synthesis (Oord et al., 2016), etc.), the importance of
privacy protection has become apparent to both the public and academia. At the same time, recent
Machine Learning (ML) algorithms and applications are increasingly data hungry and the use of
personal data will eventually be a necessity.

Differential Privacy (DP) is a rigorous definition of privacy that quantifies the amount of information
leaked by a user participating in any data release (Dwork et al., 2006; Dwork & Roth, 2014). DP
was originally designed for answering queries to statistical databases. In a typical setting, a data
analyst (party wanting to use data, such as a healthcare or marketing company) sends a query to a
data curator (party in charge of safekeeping the database, such as a hospital), who makes the query
on the database and replies with a semi-random answer that preserves privacy. Differentially Private
Stochastic Gradient Descent (DPSGD)1 (Abadi et al., 2016) is the most popular method for training
general machine learning models with DP guarantees. DPSGD involves large numbers of queries, in
the form of gradient computations, to be answered quickly by the curator. This requires technology
transfer of model design from analyst to curator, and strong computational capacity be present at the
curator. Furthermore, if the analyst wants to train on multiple tasks, the curator must subdivide the
privacy budget to spend on each task. As few institutions have simultaneous access to private data,
computational resources, and expertise in machine learning, these requirements significantly limit
adoption of DPSGD for learning with privacy guarantees.

To address this challenge, generative models—models with the capacity to synthesize new data—
can be applied as a general medium for data-sharing (Xie et al., 2018; Augenstein et al., 2020). The

1Including any variants that use gradient perturbation for ensuring privacy.
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curator first encodes private data into a generative model; then, the model is used by the analysts
to synthesize similar yet different data that can train other ML applications. So long as the genera-
tive model is learned ”privately”, the user can protect their privacy by controlling how specific the
generative model is to their own data. Differentially private learning of generative models has been
studied mostly under the Generative Adversarial Networks (GAN) framework (Xie et al., 2018;
Torkzadehmahani et al., 2019; Frigerio et al., 2019; Yoon et al., 2019; Chen et al., 2020). While
GANs in the non-private setting have demonstrated the ability to synthesize complex data like high
definition images (Brock et al., 2019; Karras et al., 2020), their application in the private setting is
more challenging. This is in part because GANs suffer from training instability problems (Arjovsky
& Bottou, 2017; Mescheder et al., 2018), which can be exacerbated when adding noise to the net-
work’s gradients during training, a common technique to implement DP. Because of that, GANs
typically require careful hyperparameter tuning and supervision during training to avoid model col-
lapse. This goes against the principle of privacy, where repeated interactions with data need to be
avoided (Chaudhuri & Vinterbo, 2013).

Optimal Transport (OT) is another method to train generative models. In the optimal transport
setting, the problem of learning a generative model is framed as minimizing the optimal transport
distance, a type of Wasserstein distance, between the generator-induced distribution and the real
data distribution (Bousquet et al., 2017; Peyré & Cuturi, 2019). Unfortunately, exactly computing
the OT distance is generally expensive. Nevertheless, Wasserstein distance-based objectives are
actually widely used to train GANs (Arjovsky et al., 2017; Gulrajani et al., 2017b). However, these
approaches typically estimate a Wasserstein distance using an adversarially trained discriminator.
Hence, training instabilities remain (Mescheder et al., 2018).

An alternative to adversarial-based OT estimation is provided by the Sinkhorn divergence (Genevay
et al., 2016; Feydy et al., 2019; Genevay et al., 2018). The Sinkhorn divergence is an entropy-
regularized version of the exact OT distance, for which the optimal transport plan can be computed
efficiently via the Sinkhorn algorithm (Cuturi, 2013). In this paper, we propose DP-Sinkhorn, a
novel method to train differentially private generative models using the Sinkhorn divergence as
objective. Since the Sinkhorn approach does not intrinsically rely on adversarial components, it
avoids any potential training instabilities and removes the need for early stopping. This makes our
method easy to train and deploy in practice. As a side, we also develop a simple yet effective way to
perform conditional generation in the Sinkhorn framework, by forcing the optimal transport plan to
couple same-label data closer together. To the best of our knowledge, DP-Sinkhorn is the first fully
OT-based approach for differentially private generative modeling.

Experimentally, despite its simplicity DP-Sinkhorn achieves state-of-the-art results on image-based
classification benchmarks that use data generated under differential privacy for training. We can also
generate informative RGB images, which, to the best of our knowledge, has not been demonstrated
by any generative models trained with differential privacy and without auxiliary public data.

We make the following contributions: (i) We propose DP-Sinkhorn, a flexible and robust optimal
transport-based framework for training differentially private generative models. (ii) We introduce a
simple technique to perform label-conditional synthesis in the Sinkhorn framework. (iii) We achieve
state-of-the-art performance on widely used image modeling benchmarks. (iv) We present informa-
tive RGB images generated under strict differential privacy without the use of public data.

2 BACKGROUND

2.1 NOTATIONS AND SETTING

Let X denote a sample space, P(X ) all possible measures on X , and Z ⊆ Rd the latent space. We
are interested in training a generative model g : Z 7→ X such that its induced distribution µ = g ◦ ξ
with noise source ξ ∈ P(Z) is similar to observed ν through an independently sampled finite sized
set of observations D = {y}N . In our case, g is a trainable parametric function with parameters θ.

2.2 GENERATIVE LEARNING WITH OPTIMAL TRANSPORT

Optimal Transport-based generative learning considers minimizing variants of the Wasserstein dis-
tance between real and generated distributions (Bousquet et al., 2017; Peyré & Cuturi, 2019).
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Two key advantages of the Wasserstein distance over standard GANs, which optimize the Jensen-
Shannon divergence (Goodfellow et al., 2014), are its definiteness on distributions with non-
overlapping supports, and its weak metrization of probability spaces (Arjovsky et al., 2017). This
prevents collapse during training caused by discriminators that are overfit to the training examples.

Methods implementing the OT framework use either the primal or the dual formulation. For genera-
tive learning, the dual formulation has been more popular. Under the dual formulation, the distance
between the generator-induced and the data distribution is computed as the expectation of potential
functions over the sample space. In WGAN and variants (Arjovsky et al., 2017; Gulrajani et al.,
2017a; Miyato et al., 2018), the dual potential is approximated by an adversarially trained discrimi-
nator network. While theoretically sound, these methods still encounter instabilities during training
since the non-optimality of the discriminator can produce arbitrarily large biases in the generator
gradient (Bousquet et al., 2017). The primal formulation involves solving for the optimal trans-
port plan—a joint distribution over the real and generated sample spaces. The distance between the
two distributions is then measured as the expectation of a point-wise cost function between pairs of
samples as distributed according to the transport plan. Thus, the properties of the point-wise cost
function are of great importance. In practice, sufficiently convex cost functions allow for an effi-
cient optimization of the generator. It is also possible to learn cost functions adversarially (Szabó
& Sriperumbudur, 2017). However, as discussed earlier, adversarial training often comes with addi-
tional challenges, which can be especially problematic in the differentially private setting.

In general, finding the optimal transport plan is a difficult optimization problem due to the constraints
of equality between its marginals and the real and generated distributions. Entropy Regularized
Wasserstein Distance (ERWD) imposes a strongly convex regularization term on the Wasserstein
distance, making the OT problem between finite samples solvable in linear time (Peyré et al., 2019).
Given a positive cost function c : X × X 7→ R+ and ε ≥ 0, the EERWD is defined as:

Wc,ε(µ, ν) = min
π∈Π

∫
c(x, y)π(x, y) + ε

∫
log

π(x, y)

dµ(x)dν(y)
dπ(x, y) (1)

where Π =
{
π(x, y) ∈ P(X × X )|

∫
π(x, ·)dx = ν,

∫
π(·, y)dy = µ

}
. Sinkhorn divergence uses

cross correlation terms to cancel out the entropic bias introduced by ERWD. This results in faithful
matching between the generator and real distributions. In this paper, we use the Sinkhorn divergence
as defined in Feydy et al. (2019).

Definition 2.1 (Sinkhorn Divergence) The Sinkhorn divergence between measures µ and ν is de-
fined as:

Sc,ε(µ, ν) = 2Wc,ε(µ, ν)−Wc,ε(µ, µ)−Wc,ε(ν, ν) (2)

Works on the efficient computation of the Sinkhorn divergence have yielded algorithms that converge
to the optimal transport plan within tens of iterations (Cuturi, 2013; Feydy et al., 2019). Gradient
computation follows by taking the Jacobian vector product between the cost matrix Jacobian and the
transport weights, which is implemented in many auto-differentiation frameworks.

When compared to WGAN, learning with the Sinkhorn divergence has distinct differences. First,
the Sinkhorn divergence is computed under the primal formulation of OT, whereas WGAN’s loss
is computed under the dual formulation. While both are approximations to the exact Wasserstein
distance, the source of the approximation error differs. The Sinkhorn divergence uses entropic regu-
larization to ensure linear convergence when finding the optimal transport plan π (Cuturi, 2013). Its
two sources of error are the suboptimality of the transport plan and bias introduced by entropic reg-
ularization. With the guarantee of linear convergence, π can converge to optimality by using enough
iterations, thereby allowing control of the first error. The second source of error can be controlled
by using small values of ε, which we found to work well in practice. In contrast, WGAN’s source of
error lies in the sub-optimality of the dual potential function. Since this potential function is parame-
terized by an adversarially trained deep neural network, it enjoys neither convergence guarantees nor
feasibility guarantees. Furthermore, the adversarial training scheme can produce oscillatory behav-
ior, where the discriminator and generator change abruptly every iteration to counter the strategy of
the other player from the previous iteration (Mescheder et al., 2017). These shortcomings contribute
to WGAN’s problems of non-convergence, which in turn can lead to mode dropping. In contrast,
training with the Sinkhorn divergence does not involve any adversarial training at all, converges
more stably, and reaps the benefits of OT metrics at covering modes.
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Figure 1: Flow diagram of DP-Sinkhorn for a single training iteration: Sensitive training data is
combined with non-sensitive generated data in the cost matrix. Then, the loss is calculated using
the Sinkhorn algorithm. In the backward pass, we impose a privacy barrier behind the generator by
clipping and adding noise to the gradients at the generated image level, similar to Chen et al. (2020).

2.3 DIFFERENTIAL PRIVACY

The current gold standard for measuring the privacy risk of data releasing programs is the notion of
differential privacy (DP) (Dwork et al., 2006). Informally, DP measures to what degree a program’s
output can deviate between adjacent input datasets—sets which differ by one entry. For a user
contributing their data, this translates to a guarantee on how much an adversary could learn about
them from observing the program’s output. In this paper, we are interested in the domain of image-
label datasets where each image and its semantic label constitute an entry.

Gradient perturbation with the Gaussian mechanism is the most popular method for DP learning of
parametric models. During stochastic gradient descent (SGD) and variants, the parameter gradients
are clipped in 2-norm by a constant, and then Gaussian noise is added. By adding a sufficient
amount of noise, the gradients can satisfy DP requirements. Then, the post-processing property
of differential privacy (Dwork & Roth, 2014) guarantees that the parameters are also private. As
SGD involves computing the gradients on randomly drawn batches of data for multiple iterations,
two other properties of DP, composition and subsampling are required to analyze the privacy of the
algorithm. Rényi Differential Privacy (RDP) is a well-studied formulation of privacy that allows
tight composition of multiple queries, and can be easily converted to standard definitions of DP.

Definition 2.2 (Rényi Differential Privacy) A randomized mechanismM : D → R with domain D
and rangeR satisfies (α, ε)-RDP if for any adjacent d, d′ ∈ D it holds that

Dα(M(d)|M(d′)) ≤ ε, (3)

where Dα is the Rényi divergence of order α. Also, anyM that satisfies (α, ε)-RDP also satisfies
(ε+ log 1/δ

α−1 , δ)-DP (Mironov, 2017).

For clipping threshold ∆ and standard deviation of Gaussian noise σ, the Gaussian mechanism sat-
isfies (α, α∆2/(2σ2))-RDP (Mironov, 2017). Subsampling the dataset into batches also improves
privacy. The effect of subsampling on the Gaussian mechanism under RDP has been studied in
(Wang et al., 2019; Balle et al., 2018; Zhu & Wang, 2019). Privacy analysis of a gradient-based
learning algorithm entails accounting for the privacy cost of single queries (possibly with subsam-
pling), summing up the privacy cost across all queries (i.e. training iterations in our case), and then
choosing the best α. A more thorough discussion of DP can be found in Appendix B.

3 DIFFERENTIALLY PRIVATE SINKHORN WITH CLASS CONDITIONING

We propose DP-Sinkhorn (Algorithm 1), an OT-based method to learn differentially private genera-
tive models, avoiding the training instability problems characteristic for GAN-based techniques. We
use the empirical Sinkhorn loss between batches of real and generated data as objective and define
the cost function as a simple pixel-wise L2-loss. Class conditioning is achieved by biasing the op-
timal transport plan to couple images of the same class together. Privacy protection is enforced by
clipping and adding noise to the gradients of the generated images during backpropagation.
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Empirical Sinkhorn Divergence Definition 2.1 requires integration over the sample space. In
practice, we use an empirical Sinkhorn divergence computed on batches of random samples.

Definition 3.1 (Empirical Sinkhorn loss) The empirical Sinkhorn loss computed over a batch of N
generated examples and M real examples is defined as:

Ŝc,ε(X,Y) = 2CXY � P ∗ε,X,Y − CXX � P ∗ε,X,X − CY Y � P ∗ε,Y,Y (4)

where X and Y are uniformly sampled batches from the generator and real distribution respectively.
For two samples A ∈ XN and B ∈ XM , CAB is the cost matrix between A and B, and P ∗ε,A,B is
an approximate optimal transport plan that minimizes Eqn. 1 computed over A and B.

Algorithm 1 describes how Equation 4 is computed, while additionally modifying the gradient by
adding noise and clipping to implement the chosen mechanism for differential privacy (see below).
Please also see Appendix A for more details.

Class Conditioning To conditionally generate images given a target class, we inject class infor-
mation to both the generator and the Sinkhorn loss during training. For the generator, we supply
the class label either by concatenating an embedding of it with the sampled latent code (on sim-
ple DCGAN-style generators), or by using class conditioned batch-norm layers (on BigGAN-style
generators). For the loss function, we concatenate a scaled one-hot class embedding to both the gen-
erated images and real images. Intuitively, this works by increasing the cost between image pairs of
different classes, hence shifting the weight of the transport plan (P ∗ε in Eq. 4) towards class-matched
pairs. The scaling constant αc determines the importance of class similarity relative to image simi-
larity. Uniformly sampled labels are used for the generated images and the real labels are used for
real images. Let lx and ly denote the labels of x and y, and [a,b] denote concatenation of a and b.
The class-conditional pixel-wise and label loss is:

ccond([x, lx], [y, ly]) =
∣∣∣∣[x, αc ∗ onehot(lx)]T − [y, αc ∗ onehot(ly)]T

∣∣∣∣2
2
. (5)

When ccond is used for computing Ŝc,ε, the resulting optimal transport distance is the cost of trans-
porting the joint distribution of generated images and labels to the real distribution. Compared to
generating without class conditioning, this means choosing X to denote the joint space of images
and labels instead of the image space. All other formulation remains unchanged. Furthermore, since
||[a,b]||22 = ||a||22 + ||b||22, we can also interpret ccond as separately calculating the cost of transport-
ing images and labels, and then performing a weighted sum. Despite computing the cost separately,
our method does not assume that images and labels are independent. Instead, in our formulation the
joint distribution p(image, label) is defined through a decomposition as p(image|label)p(label) and
novel image-label pairs are synthesized by ancestral sampling. It is worth mentioning that a squared
L2 norm as label cost may seem unintuitive. However, we found this to work very well and we
did not observe any instances of class-conditioning failure. Hence, we chose to stick to the simplest
choice, in particular because we are using the L2 norm already for the image cost itself. Future work
may consider tailored cost functions for more complex label spaces.

Note that, to the best of our knowledge, it has not been shown before how to perform class-
conditional generation in the Sinkhorn divergence generative framework. Our simple yet efficient
trick can similarly be used in non-private learning settings.

Privacy Protection Rather than adding noise to the gradients of the generator parameters θ, we
add noise to the gradients of the generated images ∇XŜ, which is then backpropagated to θ. This
is private because the input to generators (the latent code) is randomly drawn and independent from
data, leaving the only connection to data at the output. Compared to∇θŜ, the dimension of∇XŜ is
independent from the network architecture. This allows us to train larger networks without requiring
more aggressive clipping, as ‖∇θŜ‖2 scales as

√
dim(θ). This method has been independently

proposed by Chen et al. (2020). In each iteration, gradient descent updates the generator parameters
by backpropagating the “image gradient” ∇XŜ. We clip this term such that ||∇XŜ||2 ≤ C. The
sensitivity is thus maxY,Y′ ||∇XŜ(X,Y)−∇XŜ(X,Y′)||2 ≤ 2C. By adding Gaussian noise with
scale 2Cσ, the mechanism satisfies (α, αC

2

2σ2 )-RDP (Mironov, 2017). We use the RDP accountant
with Poisson subsampling proposed in Zhu & Wang (2019) for privacy composition. Note that the
batch size of X is kept fixed, while batch size of Y follows a binomial distribution due to Poisson
subsampling.
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4 EXPERIMENTS

Algorithm 1 DP-Sinkhorn
L is number of categories, X is sample space.
M is size of private data set. backprop is a
reverse mode auto-differentiation function that
takes ‘out’, ‘in’ and ‘grad weights’ as input and
computes the Jacobian vector product
Jin(out) · grad weights. Poisson Sample and Ŵ
are defined in Appendix C.

Input: private data set d = {(y, l) ∈ X ×
{0, ..., L}}M , sampling ratio q, noise scale σ,
clipping coefficient ∆, generator gθ , learning rate
α, entropy regularization ε, total steps T .
Output: θ
n = q ∗M
for t = 1 to T do

Sample Y ← Poisson Sample(d, q),

Z ← (zi)
n
i=1

i.i.d.∼ Unif(0, 1)

Lx ← {li}ni=1
i.i.d.∼ Unif(0, ..., L)

X← {xi = gθ(zi, li)}ni=1

gradX ← ∇X

[
2Ŵε(X,Y)− Ŵε(X,X)

]
gradX ← clip(gradX,∆) + 2∆σN (~0, I)
gradθ ← backprop(X, θ, gradX)
θ ← θ − α ∗Adam(gradθ)

end for

We conduct experiments on conditional image
synthesis tasks since our focus is on the gen-
eration of high-dimensional data with privacy
protection. We evaluate our method with re-
spect to both visual quality and data utility for
downstream learning tasks. To compare with
previous work, all models are trained under a
privacy budget of ε = 10.

4.1 EXPERIMENTAL SETUP

Datasets We consider 3 image datasets:
MNIST (LeCun et al., 1998), Fashion-MNIST
(Xiao et al., 2017), and CelebA (Liu et al.,
2015) downsampled to 32x32 resolution. For
MNIST and Fashion-MNIST, generation is
conditioned on the regular class labels while on
CelebA we condition on gender.

Metrics In all experiments, we compute met-
rics against a synthetic dataset of 60k image-
label pairs sampled from the model. For a
quantitative measure of visual quality, we re-
port FID (Heusel et al., 2017). We compute
FID scores between our synthetic datasets of
size 60k and the full test data (either 10k or
19962 images). To measure the utility of gen-
erated data, we assess the class prediction accuracy of classifiers trained with synthetic data on the
real test sets. We consider logistic regression, MLP, and CNN classifiers. Previous work also reports
classification accuracies on a large suite of classifiers from scikit-learn. We omit them, since we
focus on images which are best processed via neural network-based classifiers.

Architectures & Hyperparameters For MNIST and Fashion-MNIST experiments, we adopt the
generator architecture from DCGAN (Radford et al., 2015). For CelebA experiments, we adopt
the CIFAR-10 generator configuration from BigGAN (Brock et al., 2019). Our preliminary exper-
iments found that using the deeper BigGAN architecture did not provide significant improvements
on MNIST and Fashion-MNIST datasets, hence we only report results with the DCGAN-based gen-
erator for these two datasets. Additional details can be found in Appendix D.3.

Privacy Implementation All our models are implemented in PyTorch. We implement the gradient
sanitization mechanism by registering a backward hook to generator output, and we do not see
a significant impact on runtime. MNIST and Fashion-MNIST experiments target (10, 10−5)-DP
while CelebA experiments target (10, 10−6)-DP. Details are in Appendix D.3.

4.2 EXPERIMENTAL RESULTS ON STANDARD BENCHMARKS

In Table 1, we compare the performance of DP-Sinkhorn with other methods on MNIST and
Fashion-MNIST. Given the same privacy budget, DP-Sinkhorn generates more informative exam-
ples than previous methods, as demonstrated by the higher accuracy achieved by the downstream
classifier. In particular, on the more visually complex Fashion-MNIST, DP-Sinkhorn’s lead is espe-
cially pronounced, beating previous state-of-the-art results by a significant margin.

The FID of images generated by DP-Sinkhorn is lower than all baselines, except GS-WGAN (Chen
et al., 2020), likely because of the slight blur in images generated by DP-Sinkhorn, as shown in
Figure 2. We hypothesize that this is due to the simple L2 cost and that improved cost functions
based on other kernels may perform better. However, in this work our focus is to keep the model
simple and focus on downstream applications, for which our model works best. It is also worth not-
ing that GS-WGAN uses a more complex adversarial setup and requires an auxiliary discriminator
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network, while we rely on the robust Sinkhorn framework. Furthermore, FID scores are based on an
ImageNet-trained Inception network and are not well suited for analyzing small grayscale images.

Ablations We study the effect of image gradient noise (perturbing ∇XŜ) versus parameter gradi-
ent noise (perturbing∇θŜ). Performance of the parameter gradient noise variant of DP-Sinkhorn is
shown in Table 1 in the row DP-Sinkhorn (∇θŜ). We tuned the clipping bound ∆ separately for this
variant, while other hyper-parameters were kept fixed. We see that DP-Sinkhorn (∇θŜ) still outper-
forms GS-WGAN in downstream classification accuracy, and is only slightly behind DP-Sinkhorn
in most measures, except for FID score on MNIST. Further inspection (in Appendix E) shows that
images generated by DP-Sinkhorn (∇θŜ) are well formed but have noisy edges. Since real MNIST
images have sharper lines than Fashion-MNIST, FID is impacted more severely by this noise. The
observation that DP-Sinkhorn outperforms GS-WGAN and the other baselines in the classification
task, despite resulting in slightly noisy images compared to GS-WGAN, suggests that our samples
are more diverse, which leads to better generalization when training the downstream classifier. We
hypothesize that the baselines suffer from some amount of mode dropping compared to our method.
We attribute this to our robust optimal transport-based training approach.

Robustness In Tables 4 and 5 in Appendix E we report additional results on training DP-Sinkhorn
with a variety of different hyperparameters (optimizer, learning rate, batch size). The majority of
these experiments train in a stable manner, reaching competitive or state-of-the-art performance.
This suggests that our method is indeed robust against the choice of hyperparameters.

4.3 EXPERIMENTAL RESULTS ON CELEBA

We also evaluate DP-Sinkhorn on downsampled CelebA. To the extent of our knowledge, no DP
generative learning method has been applied on such RGB image data without accessing public
data. We evaluate whether DP-Sinkhorn is able to synthesize RGB images that are informative for
downstream classification. Furthermore, we study whether an adversarial learning scheme is helpful
for learning this dataset. We test this by using an adversarially trained feature extractor in the cost
function. Given feature extractor φ, we modify the cost function as:

cadv([x, lx], [y, ly]) =

∣∣∣∣∣∣∣∣[x, αc ∗ onehot(lx),
αaφ(x)

||φ(x)||2
]T − [y, αc ∗ onehot(ly),

αaφ(y)

||φ(y)||2
]T
∣∣∣∣∣∣∣∣2

2

.

(6)
The output of the feature extractor is normalized and then concatenated to the image and class label.
Training proceeds through alternating updates. To make this learning scheme private, we randomly
split the training dataset into k partitions and train one discriminator per partition. This way, the
gradient (with respect to generated image) computed on each partition is only dependent on that
partition, hence still benefiting from privacy amplification by subsampling. Privacy accounting for
this setting is performed through Wang et al. (2019), which analyzes fixed-size batch subsampling.

We find that while using the adversarial feature extractor is beneficial in the non-private case, it
did not provide significant improvements in the private case, as shown in Table 2. In theory, using
learned feature extractors can provide a sharper loss landscape which should be beneficial to learning
(Li et al., 2017). We hypothesize that clipping and gradient noise counteracts the effect of gradi-
ent shaping provided by the adversarial feature extractor, resulting in similar learning performance
as in the non-adversarial approach. Despite its simplicity when using only an L2 cost function,
DP-Sinkhorn generates informative images for gender classification, (uninformative images would
correspond to a ≈ 50% classification ratio). Qualitatively, Figure 3 shows that DP-Sinkhorn can
learn rough representations of each semantic class (male and female) and produces some in-class
variations. Visual fidelity of the generated images may be improved in the future through fine-tuning
of the adversarial scheme, use of tailored kernels as cost function, or tighter privacy accounting.

5 RELATED WORKS

The task of learning generative models on private data has been tackled by many prior works.
The general approach is to introduce privacy-calibrated noise into the model parameter gradients
during training. While various GAN-based approaches have been introduced (Xie et al., 2018;
Torkzadehmahani et al., 2019; Frigerio et al., 2019; Yoon et al., 2019; Chen et al., 2020), it is well
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Table 1: Comparison of DP image generation results on MNIST and Fashion-MNIST at (ε, δ) =
(10, 10−5)-DP. Results for other methods (G-PATE (Long et al., 2019), DP-MERF & DP-MERF AE
(Harder et al., 2020), DP-CGAN (Torkzadehmahani et al., 2019), GS-WGAN (Chen et al., 2020))
are from Chen et al. (2020). Results averaged over 5 runs of synthetic dataset generation.

Method DP-ε
MNIST Fashion-MNIST

FID Acc (%) FID Acc (%)

Log Reg MLP CNN Log Reg MLP CNN

Real data ∞ 1.6 92.2 97.5 99.3 2.5 84.5 88.2 90.8
Non-priv Sinkhorn ∞ 84.1 88.6 88.2 87.9 105.2 77.6 78.7 72.8

G-PATE 10 177.2 26 25 51/80.91 205.8 42 30 50/69.31

DP-CGAN 10 179.2 60 60 63 243.8 51 50 46
DP-MERF2 10 247.5 66 63 63 267.8 59 56 64
DP-MERF AE2 10 161.1 54 55 68 213.6 50 56 62
GS-WGAN 10 61.3 79 79 80 131.3 68 65 65

DP-Sinkhorn (∇θŜ) 10 218.6 79.7 79.9 80.7 213.9 70.5 71.2 68.6
DP-Sinkhorn 10 124.3 82.0 80.8 79.9 193.8 73.4 72.2 67.5

G-PATE

DP-CGAN

DP-MERF

DP-MERF AE

GS-WGAN

Ours

Figure 2: Comparisons on MNIST and Fashion-MNIST between methods for private image gener-
ation at (10, 10−5)-DP. The first 5 rows showing other methods are taken from Chen et al. (2020).

documented that GANs are unstable during training (Arjovsky & Bottou, 2017; Mescheder et al.,
2018). As discussed, this is critical in the context of DP, where the imposed gradient noise can
increase training instabilities and where interaction with private data should be limited. It is worth
noting that Chen et al. (2020) proposed the same privacy barrier mechanism like us by applying
gradient noise on the generated images rather than the generator parameters.

Other generative models have also been studied in under DP setting. Acs et al. (2018) partitions
the private data in clusters and learns separate likelihood-based models for each cluster. Harder
et al. (2020) uses MMD with random Fourier features. While these works do not face the same
stability issues as GANs, their restricted modelling capacity results in these methods mostly learning

1The G-PATE authors report much more accurate classification results than reported in Chen et al. (2020).
The visual quality of samples in both papers is roughly the same.

2DP-MERF is designed for the low-ε regime and does not make use of the extra privacy budget from ε = 10.
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Table 2: Differentially private image generation results on downsampled CelebA .

Method (ε, 10−6)-DP FID Acc (%)

MLP CNN

Real data ∞ 1.1 91.9 95.0
Adversarial Sinkhorn (non-priv) ∞ 72.8 78.1 78.2
Pixel Sinkhorn (non-priv) ∞ 140.7 78.9 77.9

Adversarial DP-Sinkhorn 10 187.0 74.7 74.5
Pixel DP-Sinkhorn 10 168.4 76.2 75.8

Figure 3: Images Generated on CelebA dataset. From top to botton: Adversarial Sinkhorn, Pixel
Sinkhorn, Adversarial DP-Sinkhorn, Pixel DP-Sinkhorn.

prototypes for each class. Lastly, while Takagi et al. (2020) produced strong empirical results, their
privacy analysis relies on the use of Wishart noise on sample covariance matrices, which has been
proven to leak privacy (Sarwate, 2017). Hence, their privacy protection is invalid in its current form.

There are various works on incorporating non-sensitive public data while learning differentially
private models, mostly for discriminative tasks (Papernot et al., 2017; 2018; Zhu et al., 2020), but
also for generative modeling. Zhang et al. (2018) uses public data to pretrain discriminators for
private GAN learning. Xu et al. (2019) uses public data to calibrate per parameter clipping bounds.

Recently, Triastcyn & Faltings (2020a;b) introduced Bayesian differential privacy for ML, a data-
centric notion of differential privacy. It takes into account that a dataset’s “typical” data is easier to
protect than outliers. However, this approach has not been widely adopted by the community yet
and the focus of our work is to introduce DP-Sinkhorn in the regular differential privacy setting.

6 CONCLUSIONS

We propose DP-Sinkhorn, a novel optimal transport-based differentially private generative modeling
method. Our approach minimizes the empirical Sinkhorn loss in a differentially private manner and
does in general not require any adversarial techniques that are challenging to optimize. Therefore,
DP-Sinkhorn is easy to train and deploy, which we hope will help its adoption in practice. We
also use a novel trick to force the optimal transport plan to couple same-label data together, thereby
allowing for conditional data generation in the Sinkhorn divergence generative modeling framework.
We experimentally validate our proposed method and demonstrate superior performance compared
to the previous state-of-the-art on standard image classification benchmarks using data generated
under DP. We also show differentially private synthesis of informative RGB images without using
additional public data. Note that our main experiments only used a simple pixel-wise L2-loss as cost
function. This suggests that in the DP setting, complexity in model and objective are not necessarily
beneficial. We conclude that simple and robust models such as ours are a promising direction for
differentially private generative modeling.

Future work includes improving DP-Sinkhorn’s performance on RGB images and scaling it up to
higher resolutions, extending it to other data types, using tailored kernel-based cost functions and
incorporating auxiliary public data during training.

9
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Conference on Machine Learning, pp. 7634–7642, 2019.

Yuqing Zhu, Xiang Yu, Manmohan Chandraker, and Yu-Xiang Wang. Private-knn: Practical dif-
ferential privacy for computer vision. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2020.

13



Under review as a conference paper at ICLR 2021

A OPTIMAL TRANSPORT VIA THE SINKHORN DIVERGENCE

In addition to the notations defined in Sec. 2.1, we denote the Dirac delta distribution at x ∈ X as
δx, and the standard n-simplex as Sn.

Recall from Sec. 2.2 that, given a positive cost function c : X × X 7→ R+ and ε ≥ 0, the Entropy
Regularized Wasserstein Distance is defined as:

Wc,ε(µ, ν) = min
π∈Π

∫
c(x, y)π(x, y) + ε

∫
log

π(x, y)

dµ(x)dν(y)
dπ(x, y) (7)

where Π =
{
π(x, y) ∈ P(X × X )|

∫
π(x, ·)dx = ν,

∫
π(·, y)dy = µ

}
.

We use the Sinkhorn divergence, as defined in Feydy et al. (2019).

Definition A.1 (Sinkhorn Loss) The Sinkhorn loss between measures µ and ν is defined as:

Sc,ε(µ, ν) = 2Wc,ε(µ, ν)−Wc,ε(µ, µ)−Wc,ε(ν, ν) (8)

For modeling data-defined distributions, as in our situation, an empirical version can be defined, too.
Note that we use a slightly different notation from the main text because it is more convenient to
deal with empirical distributions rather than samples when relating to the dual formulation later on.

Definition A.2 (Empirical Sinkhorn loss) The empirical Sinkhorn loss computed over a batch of N
generated examples and M real examples is defined as:

Ŝc,ε(µ̂, ν̂) = 2CXY � P ∗ε,X,Y − CXX � P ∗ε,X,X − CY Y � P ∗ε,Y,Y (9)

where µ̂ = 1
N

∑N
i=1 δxi

, and ν̂ = 1
M

∑M
j=1 δyj . For two samples A ∈ XN and B ∈ XM , CAB

is the cost matrix between A and B, and P ∗ε,A,B is an approximate optimal transport plan that
minimizes Eqn. 1 computed over A and B.

P ∗ε is arrived at by iterating the dual potentials.

Cuturi (2013) and Feydy et al. (2019) have shown the following dual formulation for the discritized
version of Ŵc,ε:

Ŵc,ε(µ̂, ν̂) = max
f,g∈SN×SM

〈µ̂, f〉+ 〈ν̂, g〉 − ε〈µ̂⊗ ν̂, exp(
1

ε
(f ⊕ g − C))− 1〉, (10)

where⊗ denotes the product measure and⊕ denotes the “outer sum” such that the output is a matrix
of the sums of pairs of elements from each vector. Then, the optimal transport plan P ∗ε relates to the
dual potentials by P ∗ε = exp( 1

ε (f⊕g−C))(µ̂⊗ ν̂). Thus, once we find the optimal f and g, we can
obtain P ∗ε through this primal-dual relationship. We also know the first-order optimal conditions for
f and g through the Karush Kuhn Tucker theorem:

fi = −ε log

M∑
j=1

exp(log(ν̂j)+
1

ε
gj−

1

ε
C(xi, yj)) gj = −ε log

N∑
i=1

exp(log(µ̂i)+
1

ε
fi−

1

ε
C(xi, yj))

(11)
To optimize f and g, it suffices to apply the Sinkhorn algorithm (Cuturi, 2013), see Algorithm 3 in
the main text. Readers can refer to Feydy (2020) for further details.

B DIFFERENTIAL PRIVACY

As discussed in Sec. 2.3, differential privacy is the current gold standard for measuring the privacy
risk of data releasing programs. It is defined as follows (Dwork et al., 2006):

Definition B.1 (Differential Privacy) A randomized mechanismM : D → R with domain D and
range R satisfies (ε, δ)-DP if for any two adjacent inputs d, d′ ∈ D differing by at most one entry,
and for any subset of outputs S ⊆ R it holds that

Pr [M(d) ∈ S] ≤ eεPr [M(d′) ∈ S] + δ. (12)
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Gradient perturbation: For a parametric function fθ(x) parameterized by θ and loss func-
tion L(fθ(x), y), usual mini-batched first-order optimizers update θ using gradients gt =
1
N

∑N
i=1∇θL(fθ(xi), yi). Under gradient perturbation, the gradient gt is first clipped in L2 norm

by constant ∆, and then noise sampled fromN (0, σ2I) is added. Since differential privacy is closed
under post-processing—releasing any transformation of the output of an (ε, δ)-DP mechanism is
still (ε, δ)-DP (Dwork & Roth, 2014)—the parameters θ are also differentially private. The relation
between (ε, δ) and the perturbation parameters ∆ and σ is provided by the following theorem:

Theorem B.1 For c2 > 2 log(1.25/δ), Gaussian mechanism with σ ≥ c∆/ε satisfies (ε, δ) differ-
ential privacy. (Dwork & Roth, 2014)

Subsampling: In stochastic gradient descent (SGD) and related methods, randomly drawn batches
of data are used in each training step instead of the full dataset. This subsampling of the dataset can
provide amplification of privacy protection since the privacy of any record that is not in the batch
is automatically protected. Privacy bounds for various subsampling methods have been extensively
studied and applied (Dwork et al., 2006; Wang et al., 2019; Balle et al., 2018; Zhu & Wang, 2019).

Composition: SGD requires the computation of the gradient to be repeated every iteration. The
repeated application of privacy mechanisms on the same dataset is analyzed through composition.
Composition of the Gaussian mechanism has been first analyzed by Abadi et al. (2016) through the
moments accountant method.

We utilize the often used Rényi Differential Privacy (Mironov, 2017) (RDP), which is defined
through the Rényi divergence between mechanism outputs on adjacent datasets:

Definition B.2 (Rényi Differential Privacy) A randomized mechanismM : D → R with domain D
and rangeR satisfies (α, ε)-RDP if for any adjacent d, d′ ∈ D it holds that

Dα(M(d)|M(d′)) ≤ ε, (13)
where Dα is the Rényi divergence of order α. Also, anyM that satisfies (α, ε)-RDP also satisfies
(ε+ log 1/δ

α−1 , δ)-DP.

As discussed in the main text, RDP is a well-studied formulation of privacy that allows tight compo-
sition of multiple queries—training iterations in our case—and can be easily converted to standard
definitions of DP with definition B.2. Recall that for clipping threshold ∆ and standard deviation
of Gaussian noise σ, the Gaussian mechanism satisfies (α, α∆2/(2σ2))-RDP (Mironov, 2017). Pri-
vacy analysis of a gradient-based learning algorithm entails accounting for the privacy cost of single
queries, which corresponds to training iterations in our case, possibly with subsampling due to mini-
batched training. The total privacy cost is obtained by summing up the privacy cost across all queries
or training steps, and then choosing the best α.

For completeness, the Rényi divergence is defined as: Dα(P |Q) = 1
α logEx∈Q

[
P (x)
Q(x)

]α
.

C ALGORITHMS

Algorithm 2 Poisson Sample

Input : d = {(y, l) ∈ X × {0, ..., L}}M ,
sampling ratio q
Output: Y = {(yj , lj) ∈ X×{0, ..., L}}mj=1,
m ≥ 0

s = {σi}Mi=1
i.i.d.∼ Bernoulli(q)

Y = {dj |sj = 1}mj=1

Algorithm 3 Sinkhorn Algorithm Ŵε(X,Y)

Input: X = {x}n,Y = {y}m, ε
Output: Wε

∀(i, j), C[i,j] = c(Xi,Yj)

f ,g← ~0
µ̂, ν̂ ← Unif(n),Unif(m)
while not converged do
∀i, fi ← −ε log

∑m
k=1 exp(log(ν̂k) +

1
ε
gk − 1

ε
C[i,k])

∀j,gj ← −ε log
∑n
k=1 exp(log(µ̂k) +

1
ε
fk − 1

ε
C[k,j])

end while
Wε = 〈µ̂, f〉+ 〈ν̂,g〉
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D EXPERIMENT DETAILS

D.1 DATASETS

MNIST and Fashion-MNIST both consist of 28x28 grayscale images, partitioned into 60k train-
ing images and 10k test images. The 10 labels of the original classification task correspond to
digit/object class. For calculating FID scores, we repeat the channel dimension 3 times. CelebA is
composed of ∼200k colour images of celebrity faces tagged with 40 binary attributes. We down-
sample all images to 32x32, and use all 162770 train images for training and all 19962 test images
for evaluation. Generation is conditioned on the gender attribute.

D.2 CLASSIFIERS

For logistic regression, we use scikit-learn’s implementation, using the L-BFGS solver and capping
the maximum number of iterations at 5000. The MLP and CNN are implemented in PyTorch. The
MLP has one hidden layer with 100 units and a ReLU activation. The CNN has two hidden layers
with 32 and 64 filters, and uses ReLU activations. We train the CNN with dropout (p = 0.5) between
all intermediate layers. Both the MLP and CNN are trained with Adam under default parameters,
and use 10% of training data as holdout for early stopping. Training stops after no improvement is
seen in holdout accuracy for 10 consecutive epochs.

D.3 ARCHITECTURE, HYPERPARAMETER, AND IMPLEMENTATION

Our DCGAN-based architecture uses 4 transposed convolutional layers with ReLU activations at the
hidden layers and tanh activation at the output layer. A latent dimension of 12 and class embedding
dimension of 4 is used for MNIST and Fashion-MNIST experiments. CelebA experiments use a
latent dimension of 32 and embedding dimension of 4. The latent and class embeddings are con-
catenated and then fed to the convolutional stack. The first transposed convolutional layer projects
the input to 256 × 7 × 7, with no padding. Layers 2,3 and 4 have output depth [128, 64, 1], kernel
size [4, 4, 3], stride [2, 2, 1], and padding [1, 1, 1].

Our BigGAN-based architecture uses 4 residual blocks of depth 256, and a latent dimension of 32.
Each residual block consists of three convolutional layers with ReLU activations and spectral nor-
malization between each layer. Please refer to Brock et al. (2019) for more implementation details.
Our implementation is based on https://github.com/ajbrock/BigGAN-PyTorch.

In our experiments with the adversarially trained feature extractor, we used a simple feature ex-
tractor with 3 convolutional layers with hidden depth of 64 and output depth of 32. Between each
convolutional layer are batchnorm and ReLU layers, followed a 2× 2 maxpool layer. The first two
layers have kernel size 3 and padding 1, while the last layers have kernel size 1 with no padding. For
the generator Gθ and feature extractor φω , the adversarial loss objective can be formally expressed
as:

min
θ

max
ω

Ŝc(ω),ε(µ̂(θ), ν̂) = min
θ

max
ω

2〈cφ(Gθ(z), y), P ∗ε (Gθ(z), y)〉

− 〈cφ(Gθ(z), Gθ(z)), P
∗
ε (Gθ(z), Gθ(z))〉

− 〈cφ(y, y), P ∗ε (y, y)〉

Where cφ(a, a) = ||[aimg, αcalabel, αa φ(aimg)
||φ(aimg)||2 ]T − [bimg, αcblabel, αa

φ(bimg)
||φ(bimg)||2 ]T ||22 =

cadv([aimg, alabel], [bimg,blabel])

Hyperparameters of the Sinkhorn loss used were: αc = 15, and entropy regularization ε = 0.05 in
MNIST and Fashion-MNIST experiments. ε = 5 is used for CelebA experiments. We use the im-
plementation publically available at https://www.kernel-operations.io/geomloss/
api/install and all other hyperparameters are kept at their default values. For all experiments,
we use the Adam (Kingma & Ba, 2015) optimizer with learning rate 10−5, β = (0.9, 0.999), weight
decay 2× 10−5.
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Figure 4: Additional DP-Sinkhorn generated images under (10, 10−6)differential privacy. Top two
rows use DCGAN based generator, while bottom two rows use BigGAN based generator.

D.4 IMPLEMENTATION OF DIFFERENTIAL PRIVACY

For privacy accounting, we use the implementation of the RDP Accountant available in Tensorflow
Privacy.2 All experiments employing the pixel-wiseL2 cost use Poisson sampling, and are amenable
to the analysis implemented in compute rdp. For the experiments with the batch-wise feature
extractor, examples are batched into records at the start of training, and a single record is drawn at
random in each iteration. The privacy amplification for this fixed-size sampling scheme is studied
in Wang et al. (2019), and we use the author’s implementation of Theorem 9 for bounding the RDP
cost of our queries.

For MNIST and Fashion-MNIST results reported in the main body, we use a noise scale of σ = 1.1
and a batch size of 50 resulting in q = 1/1200, which gives us ∼ 3.4 million training iterations to
reach ε = 10 for δ = 10−5. For the non-private runs, we use a batch size of 500, which improves
image quality and diversity. When training with DP, increasing batch size significantly increases
the privacy cost per iteration, resulting in poor image quality for fixed ε = 10. Image gradient
perturbation used clipping norm bound of 0.5, while the parameter gradient perturbation variant
used clipping norm bound of 1.

For CelebA results reported in the main body, we use a noise scale of σ = 0.8 and a batch size of
200 resulting in q = 0.00123. At δ = 10−6, we train for 1.1 million steps to reach ε = 10.

E ADDITIONAL RESULTS

We evaluate the impact of architecture choice on the performance in the CelebA task by comparing
DP-Sinkhorn+BigGAN with DP-Sinkhorn+DCGAN, under pixel loss. Results are summarized in
Table 3 and visualized in Figure 4. Qualitatively, despite reaching lower FID score, the DCGAN-
based generator’s images have visible artifacts that are not present in models trained with BigGAN-
generators.

Table 3: Differetially private image generation results on downsampled CelebA.

Method DP-ε FID Acc (%)

MLP CNN

Real data ∞ 1.1 91.9 95.0

DCGAN+DP-Sinkhorn 10 156.7 74.96 74.62
BigGAN+DP-Sinkhorn 10 168.4 76.18 75.79

2https://github.com/tensorflow/privacy/
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Figure 5: Additional images generated by DP-Sinkhorn, trained on MNIST. Left: Images gener-
ated using parameter gradient perturbation; these correspond to the “DP-Sinkhorn (∇θŜ)” row in
the main table. Right: Images generated using gradient perturbation on generated images; these
correspond to the “DP-Sinkhorn” row in the main results table.

Figure 6: Additional images generated by DP-Sinkhorn, trained on Fashion-MNIST. Left: Images
generated using parameter gradient perturbation; these correspond to the “DP-Sinkhorn (∇θŜ)” row
in the main table. Right: Images generated using gradient perturbation on generated images; these
correspond to the “DP-Sinkhorn” row in the main results table.
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Table 4: Comparison of training DP-Sinkhorn with various optimizers and learning rates on MNIST.
Batch size is 50 and DP ε = 10. The first row corresponds to the configuration used in results
reported in Table 1. Runs which did not converge are highlighted in red.

Optimizer Learning rate FID Acc (%)

Log Reg MLP CNN

Adam 1e-5 124.3 82.0 80.8 79.9
SGD 1e-5 135.0 77.1 77.6 78.8
RMSProp 1e-5 135.4 78.8 79.6 77.6

Adam 1e-6 137.7 78.4 79.5 78.6
Adam 1e-4 158.5 78.1 79.4 76.5
Adam 1e-3 158.2 76.8 77.3 76.1
Adam 1e-2 491 08.4 13.2 10
SGD 1e-6 137.7 78.4 79.5 78.6
SGD 1e-4 175.6 75.9 76.1 74.6
SGD 1e-3 360 10.2 5.6 8.7

Table 5: Comparison of training DP-Sinkhorn with various batch sizes and noise scales (σ) on
MNIST. We use an Adam optimizer with learning rate 1e-5, and DP ε = 10 is used as target to
determine the number of epochs. The first row corresponds to the configuration used in results
reported in Table 1.

Batch size Noise scale FID Acc (%)

Log Reg MLP CNN

50 1.1 124.3 82.0 80.8 79.9
50 0.9 135.6 80.3 78.5 77.0
50 1.3 140.6 82.1 80.5 79.6
100 0.9 139.1 78.8 78.8 79.2
100 1.1 131.4 79.4 79.8 77.6
100 1.3 122.1 78.9 78.6 76.7
200 2 113.8 73.1 73.4 72.8
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