
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STRUCTURING HIDDEN FEATURES VIA
CLUSTERING OF UNIT-LEVEL ACTIVATION PATTERNS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a self-supervised learning framework that organizes hidden feature
representations across layers, thereby enhancing interpretability. The framework
first discovers unit-level structures by comparing activation patterns across data
samples. Building on these structures, we introduce a structure-aware regulariza-
tion objective that (i) promotes feature reuse across layers via identity mappings
and (ii) encourages the emergence of representative units that serve as anchors
for related features. This regularization yields clearer and more structured feature
pathways, enhancing the interpretability of the learned representations. Experi-
ments demonstrate that our method induces structured feature pathways on syn-
thetic data, improves interpretability on CIFAR-10 as measured by Grad-CAM++
metrics, and maintains competitive performance with slightly improved mean ac-
curacy on both CIFAR-10 and ImageNet-1K.

1 INTRODUCTION

Deep neural networks learn complex internal feature representations that often lack explicit struc-
ture, leading to inefficient training and reduced interpretability. In particular, similar features are
frequently re-learned across layers rather than reused, and features compete inefficiently across and
within layers, which obscures their semantic roles. To address these inefficiencies, we propose a
self-supervised learning framework that structures hidden features by identifying and regularizing
activation-level similarities across the model. Our method introduces a clustering-based analysis of
hidden units, along with a regularization loss that promote cross-layer feature reuse through identity
mapping and encourage competition centered around a representative anchor. As shown in Fig-
ure 1, our approach yields more compact and semantically structured representations, promoting
inter-layer feature reuse through residual connections while facilitating feature exploration centered
around the layer containing anchor features.

Existing studies have also attempted to analyze or enhance feature representations, for example by
modifying representations or designing new architectures. However, these methods typically operate
on layer-level features, which limits their granularity and makes it difficult to capture fine-grained
relationships between hidden units. In addition, many of them rely on architectural modifications or
auxiliary modules.

In contrast, we introduce an architecture-agnostic strategy that operates directly at the hidden-unit
level. To operate at this level, we define each hidden feature as the activation of a single unit across
multiple input samples. We then cluster these features based on similarities in their rank-transformed
activation patterns, which reduces sensitivity to absolute magnitudes and noisy fluctuations in the
activations. This reveals structural patterns, such as inefficient regeneration across layers and the
exploration of features throughout the model.

To guide learning based on these observations, we design a novel self-supervised objective. The
structure loss organizes cross-layer feature reuse patterns by aligning features at residual positions
within the same cluster, effectively reducing inefficient regeneration and promoting the emergence
of a representative anchor feature in each cluster—thereby fostering structured competition.

Our method integrates seamlessly into standard training pipelines without requiring architectural
modifications. Leveraging this property, we apply it to Vision Transformers (ViTs) and evaluate in-
duced structured internal representations, model interpretability, and downstream task performance.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Visualization of hidden features in a Vision Transformer (ViT) for six sampled units
across the first seven transformer blocks, comparing the baseline ViT (middle) and our method
(right), using the synthetic dataset. Each column group (e.g., Unit 1) corresponds to a fixed (token,
embedding dimension) index, and each row represents a different block. Features are shown as
contour plots, with cluster membership indicated by color-coded boundaries. For clarity, 20 clusters
are highlighted with bold colored borders in distinct hues, while all other clusters are outlined with
thin black borders. Features belonging to a specific cluster are additionally marked with bold red
Xs, which, in our method, correspond to concentrated feature exploration in the earliest layer and
effective feature reuse via identity mapping through residual connections.

On a synthetic dataset, it yields better-structured representations, characterized by the emergence
of representative units in the earliest layer—serving as anchors for competitive exploration of re-
lated features—and by effective feature reuse via identity mapping through residual connections.
On CIFAR-10, our approach produces more focused attribution maps, demonstrating improved ex-
plainability. On CIFAR-10 and ImageNet-1K, it achieves slightly improved accuracy. In summary,
our framework organizes hidden features into structured representations that enhance internal orga-
nization and interpretability while maintaining comparable performance.

2 RELATED WORK

Our method addresses both analyzing internal representations and improving feature structure by
clustering hidden units via rank-transformed activation patterns, capturing fine-grained similarity
without altering the model or inputs. In contrast, prior work often relies on layer-level represen-
tations or requires architectural changes or external modules, as discussed in the following two
categories.

Analyzing Internal Representations. Understanding hidden features is key to interpreting and
improving deep neural networks. Some methods assess feature importance by modifying or mask-
ing activations (Bandarkar et al., 2025; Feng et al., 2024; Kim et al., 2025; Jiang et al., 2024),
but such interventions can distort activation distributions. Others compare feature similarity via
correlation-based metrics (Song et al., 2025; Dravid et al., 2023; Huh et al., 2024) or apply cluster-
ing to low-dimensional projections (Donahue et al., 2014), yet these often rely only on layer-level
representations, limiting granularity, or require access to multiple pretrained models.

Improving Feature Structure. Recent work has enhanced internal feature relationships by adding
alignment objectives (Wang et al., 2023; Lee et al., 2023; Kim et al., 2023), often requiring extra
components such as temporal alignment modules or auxiliary classifiers. Others modify the archi-
tecture (Guo & Gan, 2024; Xia et al., 2024; Zhai et al., 2023), for example with convolutional fusion
modules to improve feature interactions.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 Overview of our algorithm
1: C ← ∅
2: lmain, lstructure ← 0, []
3: F ← Sampling() ▷ Section 3.1
4: for t = 1 to T do
5: (x, y) ∼ D
6: (ŷ, F, f)← Forward(θ, x, F) ▷ Section 3.2
7: lmain ← lmain + Lmain(ŷ, y)
8: lstructure ← StructureLoss(lstructure, f, C) ▷ Section 3.4
9: if t mod Btrain = 0 then

10: ltotal ←WeightedMean(lmain, lstructure, Btrain) ▷ Section 3.5
11: θ ← Backpropagation(θ, ltotal)
12: lmain, lstructure ← 0, [0 | c ∈ C, i ∈ Ic \ {min(c)}]
13: end if
14: if t mod Bcluster = 0 then
15: C ← Clustering(F) ▷ Section 3.3
16: F ← Sampling()
17: lstructure ← [0 | c ∈ C, i ∈ Ic \ {min(c)}]
18: end if
19: end for
20: return θ

3 METHOD

As outlined in Algorithm 1, we structure hidden features by clustering unit-level activation patterns
and guiding them with a self-supervised objective, structure loss. This loss encourages cross-layer
feature reuse via residual connections and organizes similar features within a layer around a repre-
sentative anchor unit. Our approach improves the efficiency and organization of hidden representa-
tions without altering the network architecture.

In detail, we extend the standard training loop with five additional components. First, we period-
ically sample a shared subset of consecutive layer and token indices to control the computational
cost overhead introduced by our algorithm, as described in Section 3.1. Second, we extract hidden
activations from the sampled layers and token indices during the forward pass, as described in Sec-
tion 3.2. Third, we identify structural patterns in the collected hidden features by transforming their
activation values into ranks over data samples, and clustering them based on whether their pairwise
similarity falls below a threshold, as described in Section 3.3. Fourth, we compute the structure loss,
which encourages the emergence of a representative anchor unit—enhancing cross-layer reuse via
identity mapping in residual connections and fostering competitive exploration around the anchor
unit—as described in Section 3.4. Finally, we balance the proposed loss with the original main loss,
as described in Section 3.5.

3.1 SAMPLING HIDDEN FEATURE INDICES

To control the computational and memory overhead of applying our algorithm to hidden activations,
we periodically sample a subset of hidden activation indices based on a predefined clustering interval
Bcluster. At each interval, we randomly select Slayer consecutive layers and Stoken consecutive token
positions. Formally, if the total number of hidden activations in the model is

Hwhole = Olayer ×Otoken ×Oembed,

where Olayer, Otoken, and Oembed denote the total number of layers, the total number of token posi-
tions, and the embedding dimension, respectively, then our sampling process extracts

Hselect = Slayer × Stoken ×Oembed.

This design controls the complexity by operating only on a sampled set of hidden activations, which
scales as O(Hselect), with a maximum of O(Hwhole) if all activations were used. As a result, the
per-sample feature f ∈ RHselect and the aggregated features F ∈ RBcluster×Hselect are employed to
identify and structure the hidden features. Moreover, by periodically refreshing the sampled indices
throughout training, the method could gradually achieve full-feature coverage across the model.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 2: Feature transformation during identifying structures. Raw activation values F:,hselect are
converted into grouped ranks F̂:,hselect to reduce sensitivity to magnitude and noise. The example
shows Bcluster = 16 samples divided into β = 4 bins. For visualization, the 1D feature vector is
reshaped into a 2D grid using the square root of Bcluster to make the layout more compact.

3.2 EXTRACTING HIDDEN FEATURES

During training, we compute the main task loss from predictions while recording selected unit acti-
vations as per-sample features f . Over a clustering interval Bcluster, these are aggregated into F for
identifying structures, while f directly informs the structure loss to organize hidden representations.

3.3 IDENTIFYING STRUCTURES VIA UNIT-LEVEL CLUSTERING

To uncover structural patterns among the extracted hidden features, we perform clustering over the
aggregated features F using a rank-based similarity measure. The process consists of three stages:
grouped rank transformation, distance computation, and graph-based clustering.

Grouped Rank Transformation. To mitigate the sensitivity of feature comparisons to absolute
magnitude differences and noise in features, we apply a grouped rank transformation to each hidden
unit, as in Figure 2. For a hidden unit represented by the feature vector F:,hselect ∈ RBcluster , we sort
activation values across the Bcluster samples and divide them into a fixed number of bins β. Each bin
corresponds to a rank range, and all values within the same bin share a rank index. This produces
the transformed feature F̂ ∈ RBcluster×Hselect :

F̂:,hselect =

⌊
rank(F:,hselect)β

Bcluster

⌋
,

where rank(·) ∈ {0, . . . , Bcluster − 1} denotes the 0-based rank after sorting. This transformation
standardizes activation scales while preserving the relative ordering of activations across samples.

Distance Computation. To obtain structure information related to feature reuse, we compute pair-
wise L1 distances between transformed features to form a distance matrix M ∈ RHselect×Hselect :

Mhselect,h′select =
∥∥∥F̂:,hselect − F̂:,h′select

∥∥∥
1
,

where hselect and h′
select denote two sampled units with their respective indices.

Graph-Based Clustering. To cluster based on computed distances, we construct a graph using a
difference threshold τ . The binary adjacency matrix A ∈ {0, 1}Hselect×Hselect is defined as

A = 1M<τ ,

where 1M<τ denotes the element-wise indicator function, i.e., it returns 1 for each entry Mhselect,h′select

when Mhselect,h′select < τ holds, and 0 otherwise. We set τ = Bcluster, which corresponds to allowing
at most an average group rank difference of 1 per sample. The resulting undirected graph connects
highly similar units, and its connected components form clusters C = {c}. We then retain only
clusters in C that contain at least two units.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.4 STRUCTURING FEATURES VIA SELF-SUPERVISED LOSS

With the structure information obtained from clustering, we introduce a self-supervised structure
loss. Its purpose is twofold: to prevent information loss during cross-layer feature reuse by promot-
ing identity mapping, and to reduce inefficient exploration caused by excessive competition among
features across multiple layers. This is achieved by encouraging the reuse of a representative anchor
unit over residual connections within each cluster.

In detail, for each cluster c ∈ C, the unit at the first index is designated as the representative anchor
unit. Alignment is then enforced only for units that share both the token position s∗token and the
embedding dimension o∗embed with this anchor, ensuring its reuse via residual connections across
layers within the cluster. The set of layers in cluster c is determined by the minimum and maximum
layer indices, denoted by min(c) and max(c), respectively. Formally, the set of layer indices for
cluster c is defined as

Ic = {i ∈ Z | min(c) ≤ i ≤ max(c)}.

For all clusters c ∈ C and for all layer indices i ∈ Ic \ {min(c)}—that is, all layers in the cluster ex-
cept the one containing the anchor unit—we compute an alignment loss with the per-sample feature
f and the anchor index (min(c), s∗token, o

∗
embed) of the cluster c

Lstructure(f, c, i) =
∥∥f(i, s∗ token,o∗embed) − stopgrad

(
f(min(c), s∗ token,o∗embed)

)∥∥2
2
,

which measures how closely each unit follows the anchor. The function stopgrad(·) prevents gra-
dient flow into the anchor unit so that it remains a fixed reference during optimization.

The result, list of all alignment losses across clusters, is given by:

[ℓc,i ← ℓc,i + Lstructure(f, c, i) | c ∈ C, i ∈ Ic \ {min(c)}] ,
which means these per-sample alignment losses are collected and accumulated over each mini-batch
of size Btrain during training.

3.5 OTHER SUPPORTING PROCEDURES

To stabilize training and prevent the structure loss from taking precedence over the main task op-
timization, we apply a filtering and weighting scheme to alignment losses before aggregating it
into the total loss ltotal. Specifically, for a given training batch of size Btrain, we compare the mean
structure loss l̄structure to the averaged main task loss l̄main,

l̄main =
lmain

Btrain
, l̄structure =

[
ℓ̄c,i =

ℓc,i
Btrain

∣∣∣∣ c ∈ C, i ∈ Ic \ {min(c)}
]
.

Any averaged alignment loss exceeding the averaged main task loss is discarded from the aggre-
gation, ensuring that the auxiliary objective does not overshadow the primary optimization signal.
Formally, the aggregated structure loss is computed as

laggregated =

∑
ℓ̄c,i∈l̄structure

1ℓ̄c,i≤l̄main
· ℓ̄c,i∑

ℓ̄c,i∈l̄structure

1ℓ̄c,i≤l̄main

,

where 1ℓ̄c,i≤l̄main
is the indicator function and the denominator counts the number of retained losses

to produce a mean value over the surviving set. The final training objective is then defined as:

ltotal = l̄main + γ laggregated,

where γ is a hyperparameter controlling the relative contribution of the structure loss. Model pa-
rameters are updated via standard backpropagation with respect to ltotal.

4 EXPERIMENTS

We evaluate our proposed framework across three core aspects: (i) its ability to induce structured
internal feature representations, (ii) its impact on model interpretability, and (iii) its effect on down-
stream task performance.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

We first investigate structured hidden features using a synthetic dataset, where the low-dimensional
nature of the task facilitates clear visualization of unit-level activation patterns and cross-layer fea-
ture reuse. Next, we evaluate model interpretability on CIFAR-10 using Grad-CAM++ visualiza-
tions, highlighting systematic changes in attribution maps induced by our method compared to a
baseline. Finally, we assess task performance on CIFAR-10 and ImageNet-1K, showing that our
approach consistently improves interpretability without compromising classification accuracy.

4.1 PREREQUISITE

A brief overview of the datasets and hyperparameters is provided below, while a complete descrip-
tion of all factors, including hardware specifications, is provided in Appendix B.

Datasets. We evaluate our framework on three datasets of varying complexity and scale: a synthetic
dataset, CIFAR-10 (Krizhevsky & Hinton, 2009), and ImageNet-1K (Russakovsky et al., 2015). The
synthetic dataset, inspired by the TensorFlow Playground (Hoeiness et al., 2021), is designed for
fine-grained inspection of internal representation structures. It consists of two-dimensional binary
classification tasks generated via a spiral function, with a dense grid of points for testing to facilitate
visualization. CIFAR-10 is used to evaluate both classification performance and interpretability in
a real-world image classification setting. ImageNet-1K serves as a large-scale benchmark to assess
the scalability of our method.

Hyperparameters. We group all hyperparameters into four categories: model-related, dataset-
related, training-related, and method-related. Our default experimental setting employs the Vision
Transformer (ViT) architecture (Dosovitskiy et al., 2021) with a token embedding dimension of 256
and 14 transformer layers, while for the synthetic dataset we reduce the patch size to 1× 1 to match
its low-dimensional inputs, and for ImageNet-1K we use a larger ViT variant with short-epoch train-
ing. Dataset preprocessing follows the default configuration in the PyTorch Image Models library
(Wightman, 2019), with geometric and color augmentations disabled for the synthetic dataset.

4.2 EVALUATION METRICS: STRUCTURED INTERNAL FEATURE REPRESENTATIONS

We assess the organization of internal representations using three categories of metrics: visualization
of features and clusters, per-layer analysis, and per-cluster analysis.

Visualization of Features and Clusters. To visualize feature grouping and spatial organization,
each selected group transformed feature F̂ is reshaped into a 2D grid by using the square root of the
number of samples in the vector (Bcluster), producing a compact layout, as explained in Figure 2. The
resulting 2D features are then visualized as contour plots, with color-coded boundaries indicating
cluster membership. Figure 1 presents multiple feature visualizations arranged according to their
corresponding layers, enabling direct comparison of cluster structures across network depth.

Per-layer Analysis. We evaluate the diversity of features using a per-layer analysis. First, to assess
inter-layer diversity, we leverage the distance matrix M obtained during the identifying structures
process in Section 3.3. We then apply min–max normalization and map it to grayscale intensities,
yielding M̂ ∈ RHselect×Hselect :

M̂hselect,h′select = 255 · Mhselect,h′select −min(M)

max(M)−min(M)
,

where brighter regions correspond to greater dissimilarity at the unit level.

For layer-level difference analysis, we reshape M̂ into RSlayer×(Stoken·Oembed·Slayer·Stoken·Oembed), explicitly
separating the first layer index from the remaining dimensions. We then average over all dimensions
except the first layer index, yielding M̄ ∈ RSlayer , where each entry represents the average feature
difference associated with that layer.

Second, to assess intra-layer diversity, we count the number of distinct non-overlapping clusters
containing features from each layer, which represents the number of distinct feature groups within
that layer.

Per-cluster Analysis. We perform per-cluster analysis to evaluate information preservation through
identity mapping and the efficient exploration around anchor features.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

To measure information preservation, we identify clusters that exhibit non-contiguous feature usage
across layers, indicating that regeneration with potential information loss occurs instead of identity
mapping over residual connections. This is done by extracting the unique layer indices for each
cluster. A cluster is considered inefficient if

max(c)−min(c) + 1 > # unique layers in the cluster,

which implies that similar features are reused while skipping intermediate layers.

To assess efficient exploration around anchor features, we construct a histogram of cluster sizes
using fixed-width bins (size 10, range 0–200) and compare their frequencies on a logarithmic scale
to capture both small and large clusters. We also report the size of the largest cluster as an indicator
of the strength of dominant feature exploration.

4.3 EVALUATION METRICS: MODEL INTERPRETABILITY

We evaluate model interpretability using three metrics: visualization, Point Game (PG), and Energy
PG. For all three metrics, we employ Grad-CAM++ (Chattopadhay et al., 2018), a gradient-based
explanation method that highlights regions of the input image contributing most strongly to the
model’s decision. Specifically, Grad-CAM++ is applied to the output features of the final trans-
former block, enabling us to observe how structured representations influence semantic focus and
spatial attribution within the input.

PG and Energy PG are segmentation-based metrics, adapted from their bounding-box counterparts
(Chen et al., 2025) by replacing bounding boxes with segmentation masks generated by the Segment
Anything Model (Kirillov et al., 2023). These masks are then used to evaluate the spatial alignment
between predicted class activation maps and the locations of visually salient objects in the image.

Visualization. We generate visual explanations by overlaying Grad-CAM++ heatmaps (hereafter
referred to as CAMs) on the original RGB input images. Each CAM is min–max normalized, resized
to match the image resolution, and mapped to a blue-to-red colormap, where blue indicates low
relevance and red indicates high relevance to the predicted class. The heatmap is then blended with
the original image using an image weight of 0.7, preserving scene context while clearly highlighting
salient regions. These overlays facilitate intuitive interpretation of which parts of the image most
strongly influence the model’s decision.

Point Game. The PG metric evaluates whether the most salient spatial location of the CAM lies
within the predicted segmentation mask. A binary mask Gn is constructed with a single 1 at the
position of the maximum CAM value and 0 elsewhere, and then flattened into a vector for subsequent
computations. The metric is defined as

1

N

N∑
n=1

⟨Gn,Sn⟩,

where Sn denotes the flattened binary segmentation mask for the n-th image and N is the total
number of images. This value represents the fraction of samples whose global CAM maximum lies
inside the segmentation mask.

Energy PG. The Energy PG metric quantifies the spatial alignment between CAMs and the pre-
dicted segmentation masks by measuring the proportion of total CAM activation energy that lies
within the segmentation region. It is defined as

1

N

N∑
n=1

⟨Pn,Sn⟩
⟨Pn,1⟩+ ϵ

,

where Pn denotes the flattened grayscale CAM for the n-th image, Sn denotes the flattened binary
segmentation mask, N is the total number of images, and ϵ is a small positive constant (set to 10−8)
to avoid division by zero.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comparison of the proposed framework with the baseline ViT across three datasets. For the
synthetic dataset (each layer contains 768 units), we report per-layer differences, per-layer cluster
counts, the number of inefficient clusters, and the size of the largest cluster. For CIFAR-10, we report
Point Game, Energy PG, and classification accuracy (percentages). For ImageNet-1K, we report
top-1 classification accuracy (percentage) using a larger model under short-epoch training. Arrows
indicate whether higher (↑) or lower (↓) values correspond to better performance. Bold values in
the table indicate the better result. Statistical significance analyses are provided in Appendix C.

Synthetic Difference (↑) Count (↓)
Layer (Block) ViT Ours ViT Ours Dataset/Metrics ViT Ours

1 166.97 162.32 585 377
2 163.61 161.83 733 698 Synthetic
3 161.64 161.85 762 704 Inefficient clusters (↓) 8 4
4 160.66 161.89 766 709 Largest cluster (↑) 94 179
5 159.54 161.94 766 722
6 157.51 162.17 766 734 CIFAR-10
7 156.02 162.30 767 740 Point Game (↑) 61.25 70.28
8 155.44 162.42 767 740 Energy PG (↑) 48.70 64.35
9 153.43 162.43 766 748 Acc. (↑) 97.49 97.58

10 151.12 162.58 755 753
11 150.80 162.76 753 763 ImageNet-1K
12 150.45 163.59 753 768 Acc. (↑) 65.00 65.12
13 150.19 162.74 752 539
14 148.95 162.85 749 558

Figure 3: Visual comparison of structured feature organization and model explanations. We show
from left to right: unit-level feature difference matrix M̂ (synthetic dataset; each axis denotes hidden
features ordered by layer, token, and embedding dimension, starting from the lower-left corner),
cluster size distribution (synthetic dataset), and Grad-CAM++ heatmaps (CIFAR-10).

4.4 RESULTS

We evaluate structured internal feature representations through visualization of features and clusters,
per-layer analysis, and per-cluster analysis, demonstrating that similar features are predominantly
explored within the same layer and propagate efficiently via residual connections. Furthermore,
model interpretability metrics reveal sharper and more class-focused explanations. Finally, down-
stream task performance show that our framework slightly improves the baseline, confirming that
these interpretability gains are achieved without sacrificing accuracy.

Visualization of Features and Clusters. Visualizations (Figure 1) show that in the baseline ViT,
features from the same cluster (marked with “X”) are inefficiently explored across multiple layers.
For example, in blocks 1–3, multiple units such as unit 4–5 are both marked with “X,” indicating
that exploration of these features occurs across several layers. Moreover, for unit 4, the same feature
disappears for blocks 4–6, and then reappears in block 7, illustrating reuse across non-adjacent
layers. In contrast, our method shows feature exploration in block 1 primarily through units 1–4, and
for unit 4, the same feature is reused continuously from block 1 through block 7 without interruption.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Per-layer Analysis. Per-layer analysis of the average per-unit difference (Figure 3) and per-layer
difference values (Table 1) shows that our method maintains higher inter-layer diversity than the
baseline in deeper layers. Our differences remain above 160 for all layers, whereas the baseline
declines steadily, falling below 150 in the final layer. In contrast, per-layer cluster counts (Table 1)
are consistently lower in our method, e.g., from 585 to 377 in the first layer and from 762 to 704 in
the third layer, indicating more concentrated exploration within each layer.

Per-cluster Analysis. From the per-cluster perspective, the number of inefficient clusters—those
spanning non-contiguous layers—drops from 8 in the baseline to 4 in our method (Table 1). The
cluster size distribution (Figure 3) also shifts toward larger clusters, and the largest cluster size
increases from 94 in the baseline to 179 in our method (Table 1), suggesting that our method supports
competitive exploration around anchor features.

Model Interpretability. Grad-CAM++ visualizations (Figure 3) show that our method produces
sharper and more class-focused attribution maps, whereas the baseline often highlights irrelevant
background regions. Quantitatively, in the Point Game metric (Table 1), our method achieves
70.28% compared to the baseline’s 61.25%, and in the Energy PG metric, 64.35% compared to
48.70%.

Downstream Task Performance. For CIFAR-10 classification accuracy (Table 1), our method
reaches 97.58%, showing a slight improvement over the baseline’s 97.49%. On ImageNet-1K (Ta-
ble 1), our method attains a top-1 accuracy of 65.12% under the large-model short-epoch setting,
again slightly exceeding the baseline’s 65.00%.

Across all experiments, our method produced better-structured hidden features. The visualizations
of features and clusters, together with per-cluster analysis of inefficient clusters, shows that simi-
lar features are predominantly explored within the same layer and propagate efficiently via identity
mappings through residual connections. Per-layer cluster counts and per-cluster size distributions
indicate that features are explored more tightly around representative anchors, suggesting that explo-
ration is concentrated within the anchor’s layer. Furthermore, per-layer difference analysis reveals
that only representative features from earlier layers are retained and propagated, allowing deeper
layers to focus on learning novel and complementary representations.

These behaviors yield clearer and more interpretable decision pathways, as corroborated by our
model interpretability analysis. In addition, our method delivers slight improvements in downstream
task performance, demonstrating that the enhanced interpretability is achieved without compromis-
ing accuracy.

5 CONCLUSION

We have presented a self-supervised learning framework that structures hidden feature representa-
tions by clustering rank-transformed activation patterns at the unit level and introducing a structure-
aware regularization objective. By introducing representative anchor units and promoting their reuse
across layers via residual connections, our method encourages similar features to be predominantly
explored within the same layer and to propagate efficiently across layers. This architecture-agnostic
approach enhances interpretability without compromising accuracy.

The main limitation of our work is the modest performance improvement, despite the interpretabil-
ity gains achieved. To address this limitation, we aim to develop more effective structuring strate-
gies. Specifically, we are investigating structuring strategies inspired by neuroscience and organiza-
tion theory, analyzing how structures evolve under different training processes or changes in learn-
ing hyperparameters to identify actionable strategies, and further seeking to establish theoretically
grounded structuring strategies based on information-theoretic principles.

In summary, our framework demonstrates that hidden feature representations can be effectively or-
ganized to enhance interpretability. However, the performance gains remain modest. To address this
limitation, we plan to develop more effective structuring strategies. We hope that such efforts will
establish structuring as a standard component in deep learning training. Moreover, this line of work
may naturally extend to applications based on feature interpretation, such as controlling inference
characteristics and pruning models to construct lightweight architectures.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Ethics Statement. This research does not involve human subjects, personally identifiable informa-
tion, or sensitive personal data. Our datasets include a custom-designed synthetic dataset, CIFAR-
10, and ImageNet-1K. The synthetic dataset is generated through fully reproducible procedures, and
CIFAR-10 and ImageNet-1K are publicly available and widely used in the machine learning research
community. Dataset usage complies with their respective licenses and terms of use. The proposed
framework is architecture-agnostic and does not embed explicit or implicit demographic attributes,
thereby minimizing risks of discrimination, bias, or fairness concerns. While improvements in deep
learning could potentially be applied in sensitive domains, the current work is evaluated solely in
image classification contexts for research purposes and does not address such applications. This
research complies with the ICLR Code of Ethics.

Reproducibility Statement. We have taken extensive steps to ensure reproducibility. Detailed
descriptions of the datasets, model architectures, hyperparameters, and training procedures are pro-
vided in Section 4 and Appendix B. All algorithmic components—sampling strategies, rank trans-
formation, clustering, and the structure loss—are formally defined in Section 3 with accompanying
pseudocode (Algorithm 1). To further facilitate verification and adoption, an anonymized, mini-
mal version of the source code is shared as a zip archive for early access, and the full code will be
released with the camera-ready version, together with a packaged library distribution designed for
easy installation and broad applicability in downstream research.

REFERENCES

Lucas Bandarkar, Benjamin Muller, Pritish Yuvraj, Rui Hou, Nayan Singhal, Hongjiang Lv, and
Bing Liu. Layer swapping for zero-shot cross-lingual transfer in large language models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Singapore,
April 2025.

Aditya Chattopadhay, Anirban Sarkar, Prantik Howlader, and Vineeth N. Balasubramanian. Grad-
CAM++: generalized gradient-based visual explanations for deep convolutional networks. In
Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), pp.
839–847. IEEE, 2018.

Ruoyu Chen, Siyuan Liang, Jingzhi Li, Shiming Liu, Maosen Li, Zhen Huang, Hua Zhang, and
Xiaochun Cao. Interpreting object-level foundation models via visual precision search. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
30042–30052, June 2025.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sanja Mohamed, and Andrea Vedaldi. Describ-
ing textures in the wild. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2014.

Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor
Darrell. DeCAF: a deep convolutional activation feature for generic visual recognition. In Pro-
ceedings of the 31st International Conference on Machine Learning (ICML), pp. 647–655, 2014.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: transformers for image recognition at
scale. In Proceedings of the International Conference on Learning Representations (ICLR), 2021.
URL https://openreview.net/forum?id=YicbFdNTTy.

Amil Dravid, Yossi Gandelsman, Alexei A. Efros, and Assaf Shocher. Rosetta neurons: mining
the common units in a model zoo. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 1934–1943, 2023.

Yujie Feng, Xu Chu, Yongxin Xu, Guangyuan Shi, Bo Liu, and Xiao-Ming Wu. TaSL: continual
dialog state tracking via task skill localization and consolidation. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational Linguistics (ACL), pp. 1266–1279, Bangkok,
Thailand, August 2024.

10

https://openreview.net/forum?id=YicbFdNTTy

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Zhen Guo and Hongping Gan. CPP-Net: embracing multi-scale feature fusion into deep unfold-
ing CP-PPA network for compressive sensing. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 25086–25095, 2024.

Henrik Hoeiness, Axel Harstad, and Gerald Friedland. From tinkering to engineering: Measure-
ments in tensorflow playground, 2021. URL https://arxiv.org/abs/2101.04141.

Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. Position: the Platonic repre-
sentation hypothesis. In Proceedings of the 41st International Conference on Machine Learning
(ICML), 2024.

Mingqi Jiang, Saeed Khorram, and Li Fuxin. Comparing the decision-making mechanisms by Trans-
formers and CNNs via explanation methods. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 9546–9555, 2024.

Cijo Jose, Théo Moutakanni, Dahyun Kang, Federico Baldassarre, Timothée Darcet, Hu Xu, Daniel
Li, Marc Szafraniec, Michaël Ramamonjisoa, Maxime Oquab, Oriane Siméoni, Huy V. Vo,
Patrick Labatut, and Piotr Bojanowski. Dinov2 meets text: A unified framework for image- and
pixel-level vision-language alignment. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2025.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viégas, and Rory
Sayres. Interpretability beyond feature attribution: Quantitative testing with concept activation
vectors (TCAV). In Proceedings of the 35th International Conference on Machine Learning
(ICML), pp. 2668–2677, 2018.

Geonhee Kim, Marco Valentino, and André Freitas. Reasoning circuits in language models: a mech-
anistic interpretation of syllogistic inference. In Findings of the Association for Computational
Linguistics (FACL), Seattle, USA, June 2025.

Woo Jae Kim, Yoonki Cho, Junsik Jung, and Sung-Eui Yoon. Feature separation and recalibration
for adversarial robustness. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 8183–8192, 2023.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything, 2023. URL https://arxiv.org/abs/2304.02643.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. Tech-
nical Report UTML TR, University of Toronto, 2009. Technical Report.

Dongyeun Lee, Jae Young Lee, Doyeon Kim, Jaehyun Choi, Jaejun Yoo, and Junmo Kim. Fix the
noise: disentangling source feature for controllable domain translation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14224–14234,
2023.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-
Fei. Imagenet large scale visual recognition challenge. International Journal of Computer Vision
(IJCV), 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Oriane Siméoni, Huy V. Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, Francisco Massa, Daniel
Haziza, Luca Wehrstedt, Jianyuan Wang, Timothée Darcet, Théo Moutakanni, Leonel Sentana,
Claire Roberts, Andrea Vedaldi, Jamie Tolan, John Brandt, Camille Couprie, Julien Mairal, Hervé
Jégou, Patrick Labatut, and Piotr Bojanowski. Dinov3, 2025. URL https://arxiv.org/
abs/2508.10104.

Jiajun Song, Zhuoyan Xu, and Yiqiao Zhong. Out-of-distribution generalization via composition: a
lens through induction heads in Transformers. Proceedings of the National Academy of Sciences
(PNAS), 122(6):e2417182122, 2025.

11

https://arxiv.org/abs/2101.04141
https://arxiv.org/abs/2304.02643
https://arxiv.org/abs/2508.10104
https://arxiv.org/abs/2508.10104

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bowen Wang, Liangzhi Li, Yuta Nakashima, and Hajime Nagahara. Learning bottleneck concepts
in image classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 10962–10971, 2023.

Ross Wightman. PyTorch image models. https://github.com/rwightman/
pytorch-image-models, 2019. Accessed: 2025-04-25, GitHub repository, DOI:
10.5281/zenodo.4414861.

Chunlong Xia, Xinliang Wang, Feng Lv, Xin Hao, and Yifeng Shi. ViT-Comer: vision transformer
with convolutional multi-scale feature interaction for dense predictions. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5493–5502,
2024.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
Proceedings of the European Conference on Computer Vision (ECCV), pp. 818–833. Springer,
2014.

Zhijun Zhai, Jianhui Zhao, Chengjiang Long, Wenju Xu, Shuangjiang He, and Huijuan Zhao. Fea-
ture representation learning with adaptive displacement generation and transformer fusion for
micro-expression recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 22086–22095, 2023.

12

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS

We used Large Language Models (LLMs) solely to improve the clarity and readability of this paper.
Specifically, LLMs were applied for the refinement of grammar and terminology, and for identifying
passages that might require additional clarification. LLMs were not used to generate research ideas,
design methods, or produce original content.

B PREREQUISITE

B.1 DATASETS

We evaluate our proposed framework using three datasets of varying complexity and scale: a syn-
thetic dataset, CIFAR-10, and ImageNet-1K.

Synthetic Dataset. Inspired by the TensorFlow Playground (Hoeiness et al., 2021), we design a
spiral function and additionally construct a grid-based test set for visualization evaluation. The
spiral dataset enables non-linear binary classification in a low-dimensional setting and facilitates
intuitive 2D visualization in Cartesian coordinates. Each class lies on a distinct branch of a two-
dimensional spiral, offset by a phase shift of π/2, resulting in two interleaved spirals with a non-
linear decision boundary (Figure 4). We generate 16,384 training and 4,096 test samples, equally
split between the two classes. We deliberately keep the dataset size relatively small—much smaller
than CIFAR-10 (60,000 samples)—to reflect the simplicity of the task.

Figure 4: Spiral synthetic dataset. Visualization of 40 sampled data points per class from the syn-
thetic dataset generated using a 2D spiral function. Red circles and blue squares represent the two
class labels. This dataset provides a non-linear decision boundary for evaluating model representa-
tion structure.

Formally, data points are first generated in polar coordinates (r, ϕ) and then converted to Cartesian
coordinates. For class 1, the angle is sampled as ϕ1 ∼ U(0, 2π), while for class 2 the angle is phase-
shifted by π/2, i.e., ϕ2 = ϕ1 + π/2. The radius is defined as r = ϕ1/(2π), ensuring linear growth
with respect to the angle. Finally, the polar coordinates are mapped to Cartesian coordinates:

Class 1: (r · sin(ϕ1), r · cos(ϕ1))

Class 2: (r · sin(ϕ2), r · cos(ϕ2))

We additionally construct a grid-based test set by uniformly sampling 50 equally spaced values
along each axis in the range [−1.0, 1.0], yielding 2,500 points. This dense grid allows for fine-
grained visualization of model behavior both within and beyond the training manifold.

CIFAR-10. We use CIFAR-10 (Krizhevsky & Hinton, 2009), which consists of 60,000 color images
across 10 categories, with 50,000 images for training and 10,000 for testing. Each image has a
resolution of 32 × 32 pixels. CIFAR-10 serves as a widely used benchmark for assessing both
classification accuracy and interpretability in a real-world setting with manageable computational
cost.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

ImageNet-1K. As a standard-scale benchmark, ImageNet-1K (Russakovsky et al., 2015) provides
about 1.28 million training images and 50,000 validation images, spanning 1,000 object categories.
Images have varying resolutions, and during preprocessing, they are typically resized and cropped
to 224 × 224 pixels. ImageNet-1K serves as a large-scale benchmark to evaluate the scalability
and generalization of our framework to high-resolution, diverse, and complex real-world visual
recognition tasks.

B.2 HYPERPARAMETERS

We organize hyperparameters into four categories: model-related, dataset-related, training-related,
and method-related. Model-related settings follow the vit wee configuration from the PyTorch
Image Models (timm) library by default, while dataset-related and training-related settings follow
the resnet50d configuration from the same library. Few modifications are applied for the syn-
thetic dataset and ImageNet-1K experiments to accommodate dataset characteristics and experimen-
tal constraints.

All experiments were conducted using Python 3.10.18 and PyTorch 2.7.1 with CUDA 12.8 on
Ubuntu Linux. We used three computing systems: (1) NVIDIA RTX 3090 GPU, AMD EPYC
7502 32-core processor, and 377 GiB RAM; (2) NVIDIA RTX A6000 GPU, AMD EPYC 7513
32-core processor, and 1.0 TiB RAM; (3) NVIDIA A100 40GB GPU, AMD EPYC 7H12 64-core
processor, and 1007 GiB RAM.

Model-Related Hyperparameters. By default, the token embedding dimension is set to 256, and
the model consists of 14 transformer layers with 4 attention heads each. Dropout and drop path rates
are set to 0.3 and 0.1, respectively, across all settings. To better accommodate the low-dimensional
nature of the synthetic dataset, we reduce the patch size from the default 16 × 16 (used for image
datasets) to 1× 1, as each input is a single 2D point and does not require spatial decomposition. For
ImageNet-1K, we use the vit mediumd configuration from timm, with an embedding dimension
of 512, 8 attention heads, and a transformer depth of 20, while keeping the patch size at 16× 16. A
summary of the model-related hyperparameters is provided in Table 2.

Table 2: Model-related hyperparameters.

Hyperparameter Synthetic Dataset Image Dataset Image Dataset (ImageNet-1K)
patch size 1× 1 16× 16 16× 16
embedding dimension 256 256 512
transformer depth 14 14 20
attention heads 4 4 8
mlp width mult 5 5 4
dropout rate 0.3 0.3 0.3
drop path rate 0.1 0.1 0.1

Dataset-Related Hyperparameters. Both the synthetic and image datasets are normalized with a
mean and standard deviation of 0.5, and smoothing is applied in both cases. The remaining prepro-
cessing steps differ by dataset type.

For the image dataset, we follow the full data augmentation pipeline defined as the
rand m8 inc1 mstd1.0 auto-augmentation policy, which selects one augmentation operation
per image based on RandAugment. The base magnitude is 8, and slight variations are introduced
by adding Gaussian noise with standard deviation 1.0 (via the mstd parameter). The inc=1 flag
restricts selection to augmentations whose severity increases meaningfully with magnitude (e.g., ro-
tation, shear, brightness). In addition, we apply random scaling within [0.08, 1.0], aspect ratio vari-
ation in [0.75, 1.33], horizontal flipping with 50% probability, and small probabilities of grayscale
conversion and Gaussian blur. Validation images are center-cropped with a crop ratio of 0.95.

For the synthetic dataset, which is low-dimensional, we disable geometric and color-based aug-
mentations such as flipping, scaling, and blurring. Only normalization and smoothing are applied.
Validation samples are not cropped. The complete set of dataset-related hyperparameters is provided
in Table 3.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 3: Dataset-related hyperparameters.

Hyperparameter Synthetic Dataset Image Dataset
mean 0.5 0.5
std 0.5 0.5
auto augment None rand m8 inc1 mstd1.0
scale [1.0, 1.0] [0.08, 1.0]
ratio [1.0, 1.0] [0.75, 1.33]
hflip 0 0.5
grayscale probability 0 0.05
gaussian blur probability 0 0.05
smoothing 0.1 0.1
crop percentage (val) 1.0 0.95

Training-Related Hyperparameters. All models are trained using mixed-precision training (AMP)
with float16 and the native backend. We use a batch size of 784 and the AdamW optimizer with
opt betas=(0.6, 0.995), momentum 0.9, and a weight decay of 0.125. The main loss is de-
fined as the cross-entropy classification loss. The random seed is fixed to 42 across all experiments,
except for ImageNet-1K runs, where seeds {0, 1, 2} are used.

The learning rate follows a cosine decay schedule (sched=cosine) with per-update adjustments
(sched on updates=true). It is linearly increased from 0.0 during a separate 5-epoch warm-
up phase, after which the base learning rate is set to 0.002. This value is scaled proportionally to
the actual batch size (784) using a reference batch size of 4,096 (lr base size=4096), resulting
in an effective initial learning rate of approximately 0.00038. For ImageNet-1K, the batch size is
reduced to 392, resulting in an effective initial learning rate of approximately 0.00019 after scaling,
which is about half of that in the other experiments.

By default, training is conducted for 3,600 epochs on both the synthetic and image datasets, pre-
ceded by a separate 5-epoch warm-up phase (warmup prefix=true). For ImageNet-1K, we
exceptionally define a reduced training configuration comprising 10 main epochs plus the same 5-
epoch warm-up phase (15 epochs in total). Experiments on ImageNet-1K are run with multiple
random seeds [0, 1, 2], and the reported results are averaged over these seeds. Full details are pro-
vided in Table 4.

Table 4: Training-related hyperparameters.

Hyperparameter Synthetic Dataset Image Dataset Image Dataset (ImageNet-1K)
amp true true true
amp dtype float16 float16 float16
amp impl native native native
batch size 784 784 392
classification loss cross-entropy cross-entropy cross-entropy
epochs 3,600 3,600 10
optimizer adamw adamw adamw
opt betas [0.6, 0.995] [0.6, 0.995] [0.6, 0.995]
momentum 0.9 0.9 0.9
weight decay 0.125 0.125 0.125
sched cosine cosine cosine
sched on updates true true true
seed 42 42 [0,1,2]
lr base 0.002 0.002 0.002
lr base size 4,096 4,096 4,096
warmup prefix true true true
warmup epochs 5 5 5
warmup lr 0.0 0.0 0.0

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Method-Related Hyperparameters. We adopt hyperparameters to control the clustering of hidden
features as listed in Table 5 for the synthetic datasets and Table 6 for the image datasets, where the
naming conventions used in our code are mapped to their corresponding names in the main paper
for clarity. By default, features are accumulated over 20 iterations (n accum cluster = 20)
with a batch size of 784, resulting in 20 × 784 = 15,680 samples for clustering. This setting was
chosen to approximate the size of the synthetic dataset; the algorithm was validated on this basis, and
the same configuration is applied to other datasets for consistency. For ImageNet-1K, the training
batch size is halved (392), yielding 7,840 clustering samples. When the required total exceeds the
available dataset size, we instead use all samples (e.g., 4,096 for the synthetic test dataset; 2,500 for
the grid-based test set).

To control computational cost for our method, we subsample tokens and layers, each with dimen-
sionality 3 (token sampling dim=3, layer sampling dim=3). This subsampling captures
local feature interactions within selected tokens and layers, while periodic random sampling ensures
broader structural coverage throughout the model. During evaluation on the synthetic dataset, we
subsample 14 layers (layer sampling dim=14) to capture structural patterns across all layers.

After feature collection, we perform rank-based comparisons by grouping feature values into a fixed
number of bins (n bin=100). The choice of 100 bins was determined by approximating the square
root of the total number of samples for clustering in the synthetic training dataset (15,680) and
rounding to the nearest hundred, which we empirically verified to yield stable and meaningful re-
sults; hence, the same setting is consistently adopted across all tasks. Features are grouped together
if the sum of absolute rank differences across all samples is smaller than the threshold, which is
defined as a proportion of the number of samples used for clustering (scaling threshold=1).
This effectively requires no more than an average rank difference of 1 per sample, resulting in a
threshold τ of 15,680 in the default setting. The same criterion applies to other totals, such as 4,096
for the synthetic test dataset, 2,500 for the grid-based test set, and 7,840 for ImageNet-1K. Finally,
we set the loss ratio γ = 0.1, which controls the relative contribution of the structure loss to the
total training objective. This maintains a balance between structural constraints and the primary loss
term.

Table 5: Algorithm-related hyperparameters for the synthetic datasets.

Parameters Synthetic Dataset Synthetic Dataset Synthetic Dataset
(Name in Main Paper) Train Test Grid-Based Test
batch size in Table 4 784 784 784
(train batch size Btrain)
- 15,680 4,096 2,500
(clustering batch size Bcluster)
n accum cluster 20 4,096/784 2,500/784
(Bcluster / Btrain)
layer sampling dim 3 14 14
(Slayer)
token sampling dim 3 3 3
(Stoken)
n bin 100 100 100
(number of bins β)
scaling threshold 1 1 1
(τ/Bcluster)
- 0.1 0.1 0.1
(loss ratio γ)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 6: Algorithm-related hyperparameters for the image datasets.

Parameters Image Dataset Image Dataset (ImageNet-1K)
Btrain 784 392
Bcluster 15,680 7,840
Bcluster / Btrain 20 20
Slayer 3 3
Stoken 3 3
β 100 100
τ/Bcluster 1 1
γ 0.1 0.1

C RESULTS

To rigorously assess the effectiveness of our proposed method, we conducted a series of statistical
analyses. First, distribution-level tests (Kolmogorov–Smirnov and Mann–Whitney U) confirmed
significant shifts in cluster size distributions, indicating more structured feature organization and
stronger intra-layer competition. Second, layer-wise unit-level comparisons using both paired t-
tests and permutation tests revealed statistically significant differences emerging from the mid to
deep transformer layers, supporting our claim of layer-specific representational reshaping. Finally,
task-level evaluations on Point Game and Energy PG demonstrated consistent and significant per-
formance improvements, which also align with enhancements in model interpretability and the ex-
planatory power of learned representations.

Cluster Size Distribution. To quantitatively support the shift in cluster size distribution observed in
Figure 3 of the main paper, we conducted statistical comparisons between the baseline ViT and our
method. The Kolmogorov–Smirnov test indicates a significant difference in the overall distribution
of cluster sizes (p = 1.673×10−16). Additionally, the Mann–Whitney U test shows that our method
yields significantly larger clusters on average (p = 2.567 × 10−22), supporting the claim that it
promotes more structured feature organization and stronger intra-layer competition. The detailed
statistics are summarized in Table 7.

Table 7: Statistical comparison of cluster size distributions between the baseline and our method.
The total number of clusters is 8082 for the baseline ViT and 6478 for our method.

Test Statistic p-value Interpretation
Kolmogorov–Smirnov 0.072 1.673× 10−16 significant distribution difference
Mann–Whitney U 2.398× 107 2.567× 10−22 ours significantly higher

Per-layer Difference. To further support the layer-wise feature difference analysis presented in
Table 1 of the main paper, we conducted statistical testing to assess the significance of unit-level
differences between the baseline ViT and our proposed method. For each transformer layer, we
applied two types of statistical tests.

First, we performed a paired t-test across the full set of unit differences per layer. This yielded
extremely small p-values (typically smaller than 1 × 10−300), which reflects the sensitivity of the
t-test under large-n conditions.

To complement this, and to provide a distribution-free validation, we also conducted a permutation
test on a subsample of 5,000 unit pairs per layer, repeating the test 10,000 times. This approach
evaluates the significance of observed mean differences without relying on parametric assumptions,
and thus serves as a robustness check.

The resulting statistics are summarized in Table 8. The permutation-based p-values indicate statisti-
cally significant differences in unit-level representations beginning at layer 5 and continuing through
layer 14 (p < 0.05), suggesting that the effect of our method becomes prominent in the deeper layers
of the transformer.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

These results provide further empirical evidence that the proposed method reshapes the internal
feature structures of the transformer in a significant and layer-specific manner.

Table 8: Statistical comparison of layer-wise feature differences between the baseline and our
method across transformer layers. For each layer, 3 sampled tokens were used, and each token’s
embedding consists of 256 dimensions, resulting in 768 unit-wise comparisons per layer. When
comparing each of the 768 units against all 14 layers, this yields a total of 8,257,536 comparisons
(768× 14× 768). Results are derived from full-set paired t-tests and subsampled permutation tests
(5,000 samples, 10,000 iterations). Mean Difference (Mean Diff.) and Permutation Mean Difference
(Perm. Mean Diff.) are computed as ViT – Ours.

Layer ViT Ours Diff Perm. Diff Perm. p-val t-stat t-test p-val
1 166.97 162.32 4.65 3.48 0.0028 161.8752 < 1× 10−300

2 163.61 161.83 1.78 1.36 0.2478 61.2900 < 1× 10−300

3 161.64 161.85 -0.21 -0.52 0.6746 -7.0965 1.28× 10−12

4 160.66 161.89 -1.23 -1.14 0.3446 -41.0935 < 1× 10−300

5 159.54 161.94 -2.40 -3.02 0.0142 -78.9885 < 1× 10−300

6 157.51 162.17 -4.66 -5.78 < 1× 10−4 -153.3043 < 1× 10−300

7 156.02 162.30 -6.28 -7.37 < 1× 10−4 -206.0222 < 1× 10−300

8 155.44 162.42 -6.98 -7.79 < 1× 10−4 -229.6553 < 1× 10−300

9 153.43 162.43 -9.00 -9.76 < 1× 10−4 -295.3185 < 1× 10−300

10 151.12 162.58 -11.46 -12.25 < 1× 10−4 -373.0352 < 1× 10−300

11 150.80 162.76 -11.96 -12.57 < 1× 10−4 -393.7288 < 1× 10−300

12 150.45 163.59 -13.14 -13.49 < 1× 10−4 -445.6517 < 1× 10−300

13 150.19 162.74 -12.55 -12.47 < 1× 10−4 -425.4399 < 1× 10−300

14 148.95 162.85 -13.90 -13.77 < 1× 10−4 -469.4471 < 1× 10−300

Point Game and Energy PG. To further support the Point Game and Energy PG analysis presented
in Table 1 of the main paper, we conducted statistical testing to assess the significance of perfor-
mance differences between the baseline and our method. For each metric, we report the mean and
standard deviation across trials, along with paired t-test statistics and p-values.

As summarized in Table 9, our method achieved higher scores in both. In the Point Game, the mean
score improved from 0.613 to 0.703 (p < 0.001). In the Energy PG, the improvement was from
0.487 to 0.644 (p < 0.001).

These results demonstrate that the proposed method yields consistent and statistically significant
gains, reinforcing our claim that it enhances the interpretability and explanatory power of the learned
representations.

Table 9: Statistical comparison of Point Game and Energy PG between the baseline and our method.
Mean ± standard deviation are reported, with paired t-test statistics and p-values shown separately.

Metric Base Ours t-stat p-val
Point Game 0.613± 0.487 0.703± 0.457 −13.517 1.88× 10−41

Energy PG 0.487± 0.344 0.644± 0.236 −37.504 < 1× 10−295

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D AUXILIARY ANALYSES

To support a more comprehensive understanding of our work, we provide auxiliary analyses orga-
nized into the following four sections. Section D.1 examines feature dynamics across layers using
TCAV (Kim et al., 2018). Section D.2 extends our structure analysis to DINOv3 (Siméoni et al.,
2025), illustrating that the proposed approach offers meaningful insights across diverse architectures
and tasks. Section D.3 presents an ablation study on the feature transformation schemes used in our
structure analysis, along with sensitivity analyses of the hyperparameters included in our method.
Finally, Section D.4 provides supplementary explanations for Figure 1 to further clarify key aspects
of the main results.

D.1 FEATURE DYNAMICS ANALYSIS

To evaluate whether our method encourages the model to selectively rely on low-level concepts at
the specific layer containing the concept-related anchor unit, we conduct an analysis using Testing
with Concept Activation Vectors (TCAV) (Kim et al., 2018).

This analysis builds on prior findings showing that lower layers primarily learn low-level features
(Zeiler & Fergus, 2014; Dosovitskiy et al., 2021). Accordingly, we adopt the Describable Textures
Dataset (DTD) (Cimpoi et al., 2014), whose 47 texture categories closely correspond to such low-
level representations, as our concept dataset.

For TCAV, each DTD class is treated as a distinct concept, and we compute layerwise TCAV scores
for every CIFAR-10 class. For each target CIFAR-10 class, all remaining classes serve as non-
concept examples. We sample 30 non-concept examples for each TCAV computation and repeatedly
resample them 300 times without replacement to obtain 300 distinct combinations for each concept-
class pair. This produces TCAV scores across 14 layers x 47 concepts × 10 target classes × 300
combinations. We then perform a layerwise paired t-test over all TCAV scores (47 × 10 × 300), and
compute the win rate over concept-class pairs (47 × 10) for which our method achieves a higher
mean TCAV score.

As shown in Table 10, our model demonstrates significantly higher TCAV scores at layer 5, in-
dicating more focused utilization of low-level concepts. These findings quantitatively support our
claim that, through the use of anchors, features become more concentrated and effectively learned
at specific layers.

Table 10: TCAV-based analysis of layerwise utilization of low-level concepts. We report mean
TCAV scores for ViT and our method on CIFAR-10, along with their differences, paired t-statistics,
p-values, and win rates (percentage). The layer exhibiting the largest performance gap is highlighted
in bold.

Layer ViT Ours Diff t-stat p-val Win
1 0.49406 0.49327 -0.00080 -1.59 1.13e-01 44.26
2 0.49313 0.49306 -0.00007 -0.13 8.96e-01 48.72
3 0.49206 0.49392 0.00186 3.46 5.49e-04 55.96
4 0.48993 0.49350 0.00357 6.19 6.12e-10 61.70
5 0.48761 0.49392 0.00631 10.51 7.99e-26 68.94
6 0.48998 0.49285 0.00286 4.63 3.67e-06 59.15
7 0.48852 0.48805 -0.00048 -0.72 4.69e-01 48.09
8 0.48869 0.48772 -0.00097 -1.47 1.41e-01 46.17
9 0.48905 0.48597 -0.00308 -4.67 3.05e-06 41.70
10 0.49083 0.48811 -0.00273 -4.28 1.89e-05 44.04
11 0.49402 0.49153 -0.00249 -4.11 3.97e-05 44.89
12 0.50087 0.49821 -0.00266 -4.37 1.27e-05 42.34
13 0.51437 0.51423 -0.00014 -0.16 8.75e-01 48.72
14 0.54147 0.54442 0.00294 1.88 5.94e-02 54.89

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.2 STRUCTURE COMPARISON WITH DINOV2 DINO.TXT AND DINOV3 DINO.TXT

To verify that our structure analysis generalizes across different architectures and tasks, we compare
DINOv2 dino.txt (Jose et al., 2025) and DINOv3 dino.txt (Siméoni et al., 2025), which
share the same backbone architecture but differ in downstream performance, training methodology,
and the inclusion of an additional text encoder trained for text-related tasks.

We conduct our structure analysis on the ImageNet-1k validation set. Since the DINO dino.txt
models are substantially larger than the vit wee architecture used in our main experiments, we
include all transformer blocks in the analysis but subsample features for tractability: for each layer,
we use features from the first three patches and 2-dimensional slices from the embedding space, and
employ a batch size of 4000 for structure computation.

As shown in Table 11, DINOv3 dino.txt achieves a 0.34% higher downstream performance than
DINOv2 dino.txt despite having the same model size. Table 12 further shows that both the vision
backbone and the text encoder (trained on top of the frozen vision backbone) exhibit larger cluster-
size distributions in DINOv3 dino.txt, with average differences of 0.007 and 0.107, respectively.
Although the absolute differences in mean cluster size appear small due to the dominance of clusters
of size 1, the histogram in Figure 5 reveals a clear shift toward larger clusters. This trend is consistent
with our main finding that larger cluster sizes correspond to competitive exploration among units
related to a specific feature and are associated with improved task performance.

Table 11: Top-1 classification accuracy (percentages) on the ImageNet-1k validation set for DINOv2
dino.txt and DINOv3 dino.txt. The values in the table are our reproduced results, while the
original papers report 81.6% for DINOv2 dino.txt and 82.3% for DINOv3 dino.txt. Bold
indicates the better result.

DINOv2 dino.txt DINOv3 dino.txt
Acc. 81.59 81.93

Table 12: Mean size of the cluster. Bold indicates the better result.
DINOv2 dino.txt DINOv3 dino.txt

Vision backbone 1.009 1.016
Text encoder 3.005 3.112

Figure 5: Cluster size distributions.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D.3 ABLATION AND HYPERPARAMETER SENSITIVITY

To more precisely quantify the contribution of each component in our algorithm, we conduct ablation
studies and hyperparameter sensitivity experiments. All experiments are performed under a lighter
setting than in the main paper: we train on CIFAR-10 for 300 epochs using a reduced batch size of
392.

Our ablation focuses on the grouped rank transformation introduced in Section 3.3. We evaluate
variants in which this transformation is removed or modified to assess how these changes influence
classification accuracy.

As shown in Table 13, only Ours 392—our method equipped with the grouped rank transformation
and appropriate hyperparameters—achieves an improved accuracy over ViT (a gain of 0.59%). All
other variants result in performance degradation. This results indicate that the grouped rank trans-
formation is essential for stable structure estimation, as it mitigates sensitivity to absolute feature
magnitudes and feature-level noise, consistent with the discussion in the main text.

Table 13: Ablation study on the feature transformation schemes used in our structure analysis. We
report Top-1 CIFAR-10 classification accuracy (percentages) for ViT and several variants: rank
applies standard ranking without grouping, raw uses unprocessed feature values, and normalized
raw applies batch-wise normalization to raw features. Ours 392 and Ours 15680 differ only in
the cluster batch size used during structure computation (see Table 14). Bold indicates the best-
performing method.

ViT Ours 392 Ours 15680 Rank Raw Normalized raw
Acc. 92.43 93.02 91.69 91.60 87.31 92.14

To analyze hyperparameter sensitivity, we conduct experiments on two key factors in our struc-
ture analysis: the batch size used when estimating structure, and the threshold on the average rank
difference used to determine whether two units belong to the same cluster.

As shown in Table 14, using a structure-analysis batch size that matches the training batch size (392)
yields the best performance. While the main experiments in the paper reuse the hyperparameter
settings that were validated on the synthetic dataset, these results suggest that additional performance
gains may be achievable through dedicated hyperparameter tuning. Moreover, Figure 6 demonstrates
that, regardless of the hyperparameter choice, our method consistently improves more rapidly than
the ViT baseline during the first 30 epochs. The best-performing hyperparameter setting (batch size
392) also provides more stable and higher accuracy throughout training.

Table 14: Top-1 CIFAR-10 classification accuracy (percentages) under different batch sizes used
for structure analysis. Ours 392, Ours 7840, and Ours 15680 correspond to using 392, 7,840, and
15,680 samples, respectively, when computing the structure. Bold indicates the best-performing
hyperparameter setting.

Clustering batch size (Bcluster) Ours 392 Ours 7840 Ours 15680
Acc. 93.02 91.30 91.69

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 6: Accuracy curve.

To further assess the sensitivity of our method to the criterion used for merging units into a single
cluster, we conduct an experiment in which the average-rank difference threshold is reduced by
half. As shown in Table 15, retaining the original threshold value used in the main paper (i.e., 1)
consistently yields superior performance.

Table 15: Top-1 CIFAR-10 classification accuracy (percentages) under different scaling thresholds.
Each value corresponds to the difference threshold τ in Section 3.3: a threshold of 0.5 corresponds
to 15,680 × 0.5 = 7,840, whereas a threshold of 1.0 corresponds to 15,680 × 1.0 = 15,680. Bold
indicates the best-performing hyperparameter setting.

Scaling threshold (τ/Bcluster) 0.5 1.0
Acc. 87.28 91.69

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

D.4 ADDITIONAL VISUALIZATION

To supplement the discussion of the clusters marked with bold red Xs in Figure 1, we provide an
additional example illustrating the ineffective feature reuse, characterized by an interspersed pattern
in which units briefly return to similar feature distributions but are interrupted by layers exhibiting
substantially different behavior. This example uses a different architecture composed of 32 linear
layers with residual connections and a hidden dimension of 32.

As shown in Figure 7, the regions highlighted with red circles illustrate such ineffective reuse. For
Unit A, Layers 3 and 5 display similar activation values; for Unit B, Layers 23 and 26 behave sim-
ilarly; and for Unit C, Layers 25 and 30 also exhibit comparable values. However, the intermediate
layers between these pairs (e.g., Layer 4 for Unit A) do not maintain this similarity and instead
produce noticeably different activation values. This interspersed pattern contrasts with the effec-
tive feature reuse enabled by our method via identity mappings through residual connections, where
related features propagate more coherently across layers.

Figure 7: Visualization of hidden features in a model with 32 linear layers and residual connections,
each with a hidden dimension of 32. Red circles highlight regions that primarily influence clustering
in our structure analysis. For additional context, a subset of inter-layer weights is visualized, where
line thickness represents magnitude and color denotes sign.

23

	Introduction
	Related Work
	Method
	Sampling Hidden Feature Indices
	Extracting Hidden Features
	Identifying Structures via Unit-Level Clustering
	Structuring Features via Self-Supervised Loss
	Other Supporting Procedures

	Experiments
	Prerequisite
	Evaluation Metrics: Structured Internal Feature Representations
	Evaluation Metrics: Model Interpretability
	Results

	Conclusion
	The Use of Large Language Models
	Prerequisite
	Datasets
	Hyperparameters

	Results
	Auxiliary Analyses
	Feature Dynamics Analysis
	Structure Comparison with DINOv2 dino.txt and DINOv3 dino.txt
	Ablation and Hyperparameter Sensitivity
	Additional visualization

