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Abstract

The SmoothLLLM defense provides a certification guarantee against jailbreaking
attacks, but it relies on a strict ‘k-unstable’ assumption that rarely holds in prac-
tice. This strong assumption can limit the trustworthiness of the provided safety
certificate. In this work, we address this limitation by introducing a more realis-
tic probabilistic framework, ‘(k, €)-unstable,’ to certify defenses against diverse
jailbreaking attacks, from gradient-based (GCG) to semantic (PAIR). We derive
a new, data-informed lower bound on SmoothLL.M’s defense probability by in-
corporating empirical models of attack success, providing a more trustworthy
and practical safety certificate. By introducing the notion of (k, €)-unstable, our
framework provides practitioners with actionable safety guarantees, enabling them
to set certification thresholds that better reflect the real-world behavior of LLMs.
Ultimately, this work contributes a practical and theoretically-grounded mechanism
to make LLMs more resistant to the exploitation of their safety alignments, a
critical challenge in secure Al deployment.

1 Introduction

Large Language Models (LLMs) face a critical vulnerability: "jailbreak" attacks that bypass safety
protocols by manipulating input prompts to elicit objectionable responses [1} 2]]. These attacks, rang-
ing from gradient-based methods (GCG) to semantic approaches (PAIR) [3], represent a fundamental
challenge to LLM deployment.

SmoothLLM [4] provides the first formal certificate against jailbreak attacks by perturbing input
prompts at the character level and aggregating responses. However, its certification relies on a strict
"k-unstable" assumption: that adversarial prompts fail if any &£ or more characters are altered. This
deterministic assumption provides overly conservative guarantees that rarely hold in practice.

We address this limitation by introducing a probabilistic certification framework. Through empirical
analysis of diverse attacks (GCG and PAIR), we demonstrate that Attack Success Rates (ASRs)
decay exponentially rather than dropping abruptly to zero. Motivated by this finding, we propose the
"(k, £)-unstable" assumption: attacks fail with probability at least 1 — € when & or more characters
are perturbed. Under this realistic framework, we derive new data-informed bounds on SmoothLLM’s
defense probability, providing more trustworthy and practical safety certificates. Our approach
enables practitioners to set evidence-based security thresholds that balance formal guarantees with
empirical attack behavior, transforming theoretical certificates into actionable deployment tools.

2 Related work

Early work demonstrated that aligned LLMs are vulnerable to carefully crafted prompts, with Wei
et al. documenting instruction-following attack failures and Zou et al. introducing transferable
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methods like GCG that reliably coerce harmful outputs [} [1]. The first formal certificate for jailbreak
robustness is SmoothLLM [4]], which adapts randomized smoothing to the prompt space under a
deterministic k-unstable assumption. Our work strengthens this theory by replacing the worst-case
assumption with a probabilistic (k, €)-unstable model and deriving tighter, data-driven bounds within
the same smoothing framework.

3 Methodology

3.1 Preliminaries: the SmoothLLM framework

Our work builds upon SmoothLLM [4]]. Let LLM(-) denote an aligned large language model. An
attacker crafts a prompt P = [G; S] with goal string G € A* and adversarial suffix S € A* over
alphabet A to:

find §eA" st JB(LLM(G;S]) =1,

where binary classifier JB(R) — {0, 1} returns 1 if response R constitutes a jailbreak.

SmoothLLM defends by perturbing ¢% of characters in P, sampling N perturbed prompts from
distribution P,(P), and using majority voting. Two key perturbation strategies are: Random-
SwapPerturbation (randomly replace q% of characters) and RandomPatchPerturbation (replace
d = | g|P|] consecutive characters).

Definition 1 (SmoothLLM). Let Q1,...,Qy be N i.i.d. perturbed prompts from P, (P). Define the
vote variable:
1N
A .
V=21|= E JB(LLM(Q;)) >~ ,

Jj=1

where v € [0,1] is the confidence margin. SmoothLLM outputs LLM(Q) for any @ with
JB(LLM(Q)) = V.

Definition 2 (k-unstable). An adversarial suffix S is k-unstable if for all suffixes S’ with Hamming
distance dg (S, S’) > k, the jailbreak fails:

VS € A%, dy(S,8') >k <= IB(LLM(|G;S'])) = 0.

This strong assumption enables deterministic certificates but rarely holds in practice. Our work
replaces this with a probabilistic framework capturing empirical suffix fragility.

3.2 Threat model

We assume a standard black-box threat model consistent with prior randomized defenses [0, [7, [8].
The attacker cannot access random seeds for character perturbations or adapt their suffix in real-time
based on the N perturbed queries within a single SmoothLLLM invocation (non-adaptive defense).
This model aligns with Robey et al. [4], who note that the non-differentiable nature of character-level
perturbations poses significant challenges to adaptive attacks like GCG, despite surrogate-based
adaptive attacks being theoretically possible.

3.3 Proposed probabilistic certification

To relax the strictness of the original k-unstable assumption, we introduce a probabilistic variant that
tolerates rare edge cases where perturbed prompts may still succeed in jailbreaking the model.

Definition 3. Let G denote a goal prompt and S be an adversarial suffix, forming the full prompt
P = [G;S]. Let P,(P) be the distribution over perturbed prompts () generated by a specific
SmoothLLM mechanism (e.g., RandomSwapPerturbation). Let S’ be the suffix portion of a perturbed
prompt () ~ P,(P). We say that the suffix S is (k, €)-unstable with respect to the LLM and the
perturbation law if the probability that a perturbed prompt causes a jailbreak, conditioned on the
suffix having at least k character changes, is at most €. Formally:

Pr | WB(LLM(Q) =1 dn(5,8) > K <.

~Tq



This relaxed definition captures the intuition that adversarial suffixes are generally fragile but not
perfectly so. Unlike the strict k-unstable assumption, which requires all perturbations greater than
k edits to fail, our (k,)-unstable notion permits a small, bounded fraction & of perturbations to
succeed.

Proposition 1 ((k, £)-Unstable Certificate for RandomSwapPerturbation). Let A denote an alphabet
of size v and let P = [G; S| € A™ denote an input prompt to a given LLM where G € A™¢ and
S € A™s withm = mg +mg. Let M = |gm ] denote the number of characters perturbed. Assume
that S is (k, €)-unstable for & < min(M,mg). Then the defense success probability is:

N
pse(icish = Y () Ja'lr- 0

t=[N/2]
where « is bounded below by:

min(M,mg) (ms) (m—m_s)

a > oower = (1 —¢) Z % ()
1=k

M

Proof Sketch. The defense success probability follows a binomial distribution based on the single-
prompt success probability, «. The lower bounds for « are derived using the law of total probability
over the number of perturbed characters in the suffix, which follows a hypergeometric distribution.
The full, line-by-line derivation is provided in Appendix [A] O

Remark 1 (Tightness of the bound). The bound is tightest when the sub-threshold success probability,
7;, 18 zero for all ¢ < k. In practice, n; > 0 since even few perturbations can neutralize an attack, and
its value can be estimated empirically.

Remark 2 (Relation to the Original Certificate). Our proposed (k, €)-unstable assumption is a direct
generalization of the k-unstable assumption from [4]. By setting ¢ = 0, we enforce that the probability
of a jailbreak after & or more character changes is zero. This recovers the original deterministic
condition, where any such perturbation is guaranteed to neutralize the attack [4]. Our framework thus
provides a more flexible model by accommodating the possibility of rare, successful perturbations.

Proposition 2 ((k, €)-Unstable Certificate for RandomPatchPerturbation). Let the prompt be P =
[G; S] € A™. Let M = | gm/| be the patch length for RandomPatchPerturbation. Assume S is
(k, €)-unstable for a threshold & < M. Then the defense success probability, DSP(|G; S]), is:

DSP(GS) = 3 (f)atu_aw—t

t=[N/2]

where o has a model-informed lower bound, pach, based on an empirical fit of the Attack Success
Rate (ASR) to the function ASR(i) = ae™" + c:

k—1 M
a > apuen = (1= (ae™ +¢)) - Pr[X =i] + (1 -¢) ) Pr[X =]
=0 i=k

where X is the random variable for the number of characters a random patch overlaps with the suffix
S, and Pr[X = {] is its probability mass function.

Proof Sketch. The proof structure for RandomPatchPerturbation mirrors that of Proposition 1. The
Defense Success Probability (DSP) follows a binomial distribution governed by «. The main
distinction is in deriving Pr[X = i], the probability of a patch overlapping with the suffix by 4
characters, which depends on a combinatorial analysis of the patch’s possible starting positions. The
full derivation is provided in Appendix O

Remark 3 (Practical Interpretation). For practitioners, the (k, €)-unstable assumption provides a
quantifiable safety guarantee: with probability at least 1 — €, any perturbation of at least k characters
in an adversarial suffix neutralizes the jailbreak. This enables setting certification thresholds &
based on security requirements, estimating € empirically using validation datasets, producing safety
guarantees that better reflect real-world LLM behavior, quantifying trade-offs between security level
and false positive rates, enabling risk-based decision making where perfect security isn’t required,
and providing probabilistic safety margins for high-stakes applications.



3.4 Sensitivity analysis of DSP to ¢

A critical aspect of our (k, £)-unstable framework is understanding how ¢ affects the certified Defense
Success Probability (DSP). The certified DSP decreases monotonically with e—as attacks become
more robust (higher ¢), defense guarantees weaken proportionally. The degradation rate is directly
proportional to the probability of perturbations meeting the instability condition (¢ > k). Detailed
mathematical analysis is provided in Appendix [C]

3.5 Experimental motivation
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Figure 1: Attack success rate on Llama2 as a
function of the number of perturbed characters
k using RandomPatchPerturbation and GCG
attack.
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Figure 2: Attack success rate on Llama2 as a
function of the number of perturbed characters
k using RandomSwapPerturbation and GCG
attack.

To motivate the need for our probabilistic framework, we first empirically test the validity of the core
assumption underlying the original SmoothLLM certificate:

Does the k-unstable assumption hold in practice? This assumption implies that for a sufficiently
large number of character perturbations, k, the Attack Success Rate (ASR) should fall to zero. We
investigate this by measuring the ASR as a function of the number of characters perturbed in an
adversarial suffix.

Our experiments, conducted on Llama2 (7B) and Vicuna (7B) [9, [10] with adversarial suffixes
generated by the GCG attack and PAIR attack, reveal that this assumption is overly conservative.
As shown in Figures 1 and 2, the ASR does not abruptly drop to zero but instead exhibits a clear
exponential decay. The results clearly show a non-zero ASR that decays with k. This provides
strong evidence against the strict k-unstable assumption and motivates the need for our proposed (k,
€)-unstable probabilistic framework, which is designed to model precisely this kind of empirically
observed behavior. We provide extensive experimental analysis in Appendix [E]and release our code.

Experimental Setup All experiments were conducted on a single NVIDIA A100 GPU. We obtain
500 malicious prompts from [1]] and generate adversarial prompts using the Greedy Coordinate
Gradient (GCGQG) attack and Prompt Automatic Iterative Refinement (PAIR) attack [5}[1]]. Following
the setup in the original SmoothLLM paper [4], we evaluate two widely used open-source LLMs:
Llama?2 (7B) and Vicuna (7B) [9,10]. Furthermore, we consider two perturbation strategies applied
to the adversarial suffixes: RandomSwapPerturbation and RandomPatchPerturbation. We calculate
Agresti-Coull confidence intervals since the attack success rate is extremely low.

3.6 Instantiating the (k, £)-Unstable framework

Having established the theoretical framework and empirical motivation, we now demonstrate how to
practically instantiate the (k, €)-unstable assumption using our fitted data. From our empirical analysis
in Figure 2, we observe that the attack success rate follows the fitted model ASR(k) = ae™% + ¢
with parameters a = 0.1650, b = 0.1121, and ¢ = 0.0427 for RandomPatchPerturbation.

To instantiate our framework, consider a security requirement where we want certification against
perturbations of k& = 10 characters. From our empirical fit, ASR(10) = 0.1650 x e(~0-112110)
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Figure 3: Pipeline for tuning SmoothL.LLM for obtaining a certified defense success probability (DSP)
given the model and attack type. Detailed analysis in Section 3.7.
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Figure 4: Certified Defense Success Probability (DSP) versus the number of samples N with
RandomSwapPerturbation, using the fitted attack success rate model. We assume a total prompt

length of m = 240 characters, an adversarial suffix length of mg = 100, perturbation rate ¢ = 0.10,
threshold £ = 8, and £ = 0.05.

0.0427 ~ 0.097. We can therefore set ¢ = 0.10 to instantiate our (k, £)-unstable framework, meaning
we assume that perturbations of 10 or more characters fail with probability at least 90%.

This approach enables practitioners to select k based on their security requirements, estimate £ from
validation data using the fitted ASR model, obtain realistic certificates that account for empirically
observed attack robustness, and balance security guarantees with practical risk tolerance. The
resulting certificate provides a probabilistic safety guarantee that is both mathematically rigorous and
grounded in observed attack behavior, bridging the gap between theoretical assumptions and practical
deployment needs.

3.7 A practical case study: from risk tolerance to defense parameters

To demonstrate the practical utility of our framework, we present an end-to-end scenario that translates
an organization’s security requirements into concrete, actionable defense parameters for SmoothLLM.

1. Define the Goal An organization needs to deploy the Llama2 model and requires a certified
Defense Success Probability (DSP) of at least 95% against GCG-style jailbreaking attacks.

2. Set the Risk Tolerance The organization’s security team determines that a residual attack
success rate of ¢ = 0.05 is an acceptable risk for any prompt perturbation that modifies a sufficient
number of characters. This means they require the attack to fail with at least 95% probability once
the perturbation threshold is met.

3. Determine the Perturbation Threshold (k) Using empirical data from RandomSwapPertur-
bation on Llama? (Figure 3) with fitted model ASR(k) ~ 0.292¢~°-376% 4 0.013, we solve for the



smallest & such that ASR(k) < 0.05:
0.292e %37 1+ 0.013 < 0.05 = k > 5.49

Thus, the organization sets & = 6, providing the (k, £)-unstable guarantee of (6,0.05). Notably, the
more robust PAIR attack would require a higher % for the same £ = 0.05, demonstrating how our
framework adapts defense parameters to specific threat models.

4. Calculate the Number of Samples (V) With & = 6 and ¢ = 0.05 established, we can now
calculate the single-prompt defense probability, «, using the tighter bound from Proposition 1. This
requires computing oyigner using the model parameters from Figure 1 (m = 240, mg = 100,q =
0.10, M = 24). The probability Pr[X = 4] for a given number of suffix perturbations follows a
hypergeometric distribution. By computing this value, we can then solve the DSP inequality for the
minimum number of samples N:

N

DSP= > (]Datua)]“zo.%

t=[N/2]

Solving this inequality reveals the minimum number of samples required to meet the 95% defense
guarantee (see Figure[d)). For a computed « in this range, a value of N = 10 is typically sufficient.

Impact and Actionable Insight This case study provides a concrete, data-driven guide for prac-
titioners. By starting with a high-level security goal (95% DSP) and risk tolerance (¢ = 0.05), our
framework allows them to derive the precise operational parameters (k = 6, N = 10) required for
deploying SmoothLLLM. This transforms the theoretical certificate into a practical tool for security
engineering.

Guidance on Selecting k¥ and ¢ Our framework is designed for practical application, where
practitioners derive certification parameters from their specific security posture. The selection process
is a top-down, risk-driven approach: 1) Set Risk Tolerance (¢): An organization first defines its
maximum acceptable risk, such as € = 0.05 (a 5% residual attack probability), based on its security
policy. 2) Determine Perturbation Threshold (k): With ¢ set, £ is found empirically by measuring
the Attack Success Rate (ASR) against the target LLM and attack. The minimum k for which the
measured ASR(k) < e becomes the certification threshold. Therefore, there is no universal "typical
range"; the values are context-dependent. For a brittle attack like GCG on Llama2, k > 6 may suffice
for e = 0.05, but a more robust attack would demand a higher % to meet the same security guarantee.

4 Conclusion and future work

We addressed a fundamental limitation in SmoothLLM’s certification: the gap between theoretical
assumptions and empirical reality. Our primary contribution is a probabilistic certification framework
based on (k,e)-instability that provides more realistic and actionable security guarantees. By incorpo-
rating empirical attack success patterns through data-driven bounds, our approach yields certificates
that are both mathematically rigorous and practically relevant for specific threat models.

Our approach has several limitations: the (k,e)-unstable assumption requires empirical validation
across diverse attack types and model architectures, the exponential decay parameters may not
generalize beyond tested combinations, and our analysis was limited to 7B-parameter models. The
framework assumes relatively independent perturbation effects, which may not hold for attacks
exploiting specific linguistic structures, and ¢ selection requires domain expertise. Future work
should investigate theoretical foundations for exponential decay, adaptive € estimation methods,
extension to semantic perturbations, and integration with other defense mechanisms.

The immediate impact is more trustworthy safety assessments for LLM deployments. Rather than
relying on overly conservative worst-case assumptions, practitioners can now set evidence-based
security thresholds that account for realistic attack behavior while maintaining formal guarantees.
This transforms the defense from a theoretical construct into a flexible tool for protecting LLMs
against exploitation, allowing organizations to manage deployment risk by balancing certified security
guarantees, computational cost, and performance.
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A Full proof of proposition 1
Proof. Following the SmoothLLLM framework, the defense success probability is:

DSP(P) = Pr[IB(SmoothLLM(P)) = 0] 3)

1 N
=Pr |+ > IB(LLM(P))) <

j=1

“

N =

where P; ~ IP,(P) are i.i.d. perturbed prompts. This equals the probability that at least [ N/2] of the
perturbed prompts do not jailbreak, which follows a binomial distribution:

DSP(P) = ZN: (]I\Z)at(l—a)N_t 6))

t=[N/2]

where a = Prg.p, (p)[JB(LLM(Q)) = 0].



To compute «, let X denote the random variable representing the number of characters in S that are
perturbed. Since we uniformly sample M positions from m total positions, X follows a hypergeo-
metric distribution:

ms m—msg
Pr[X =i :% i=0,1,...,min(M,mg) (6)
(1)
By the law of total probability:

min(M,mg)
a= Y PrIB(LLM(Q))=0|X =i] - Pr[X =] (7
=0

Under the (k, £)-instability assumption:

e Fori > k: PrJB(LLM(Q)) =0 | X =i]|>1—¢
* Fori < k: No guarantee; let 7; = Pr[JB(LLM(Q)) =0 | X = 1]

Therefore:
k—1 min(M,ms)
a=> ni-PrX=il+ Y  PrB(LLM(Q))=0|X =i]-Pr[X =] ®)
=0 i=k
k—1 min(M,ms)
> mi-PrX =i+ > (1—g)-Pr[X =i] (by(k,e)-instability) )
=0 i=k

For a conservative lower bound, we set 7; = 0 for all 7 < k (worst-case assumption), yielding:

min(M,mg) (mis) (m—ms)

A 2 Qlower = (1_5) Z Zﬁ]\;ﬂ
i=k M

However, the bound aygye: is overly conservative. The worst-case assumption that n; = 0 for¢ < k
ignores the high probability of defense success even for sub-threshold perturbations. In practice, 7;
is almost always greater than zero, as a perturbation of fewer than k characters can still neutralize
the jailbreak if it hits a critical character in the suffix or if a concurrent perturbation in the goal
string G disrupts the attack logic. To form a tighter, more realistic bound, we can leverage our
empirical findings from Figures 1 and 2. The Attack Success Rate, ASR(%), is well-approximated by
an exponential decay model of the form ASR(i) ~ ae~% 4 c. Using the fitted parameters from our
experiments (a = 0.2921, b = 0.3756, ¢ = 0.0133), we can define a model-informed estimate for
n; = 1 — ASR(4). This yields a tighter lower bound, cvgnter:

(10)

k—1 min(M,mg)
a > agher = 3 (1= (ae™ +¢))-Pr(X =i+ > (1—e)-PrX=4 (D)
1=0 1=k

This data-driven bound provides a more accurate assessment of the defense’s effectiveness in practice.

Note that the exponential decay model ASR(i) ~ ae~" + c is theoretically motivated by the
diminishing marginal impact of additional character perturbations. As more characters are modified,
the probability of disrupting critical attack patterns increases exponentially, while the constant c
captures residual success probability from attack robustness. This functional form has been validated
across attack scenarios in adversarial ML literature [11]].

We note that while this exponential decay provides a strong empirical fit for the tested scenarios, these
fitted parameters (a, b, c¢) are specific to the model-attack pairing. Therefore, a practical deployment
of this certification framework would necessitate re-calibrating this model on a validation set relevant
to the specific threat model.

This completes the proof. O



B Proof sketch of proposition 2

Proof. The overall Defense Success Probability (DSP) follows a binomial distribution, identical to
the proof for RandomSwapPerturbation (Proposition 1). The main task is to derive a tight lower
bound for «, the single-prompt defense success probability under patch perturbations.

By the law of total probability, o = Zﬁo Pr[Defense Success | X = ¢] - Pr[X = i]. Using our
(k, €)-unstable assumption and the empirically fitted model for sub-threshold perturbations, we arrive
at the lower bound opach-

The probability Pr[X = i] is determined by counting the number of valid starting positions for a
patch of length M out of a total of m — M + 1 possibilities. The precise combinatorial calculation
depends on edge cases related to the relative lengths of the goal (m¢), suffix (mg), and patch (M).
We present the high-level result here and provide a full, rigorous derivation in Appendix [D} O

C Detailed sensitivity analysis

Monotonic Relationship The certified DSP is a monotonically decreasing function of €. This can
be seen by examining its relationship with «, the single-prompt defense success probability. From
Proposition 1, the lower bound on « is given by:

min(M,ms) (ms) (m—ms)

(e Z Qlower — (]- - 5) Z 7Th)[_z (12)
i=k M

Let Px4 denote the probability that a random perturbation modifies k£ or more characters in the suffix

o min(M,my) b o min(M,ms) (n;,s) (m]\/;:n;s)
e = . PrixX=il= > ) (13)
i=k i=k M

The bound on « can be expressed more compactly for both the conservative and tighter, model-
informed cases:

Qlower = (1 - €)Pk+ (14)
k—1

Qltighter = Zm “PriX =i+ (1 —¢e)Pet (15)
1=0

In both formulations, « is a linear function of €. The DSP is the cumulative distribution function of a
binomial variable with success probability a:

N

DSP(a) = > (f)at(la)]“ (16)

t=[N/2]

Since DSP(«) is monotonically increasing with « for & € [0, 1], and « is monotonically decreasing
with ¢, it follows that the certified DSP is a monotonically decreasing function of ¢.

Quantifying the Degradation To quantify the sensitivity, we can analyze the partial derivative of
the o bound with respect to €. For both cjgwer and cugheer, the derivative is identical:
da
e
This result provides a clear interpretation: the rate at which the single-prompt defense guarantee

degrades with an increase in € is precisely equal to the negative probability of the perturbation being
large enough (i > k) to meet the instability condition.

—Piy (17)

Using the chain rule, we can find the sensitivity of the final DSP to ¢:

N

ODSP  ODSP O« 0 N

= . =P . t 1— N—t 1

e da O e | 2 <t)0‘( @) (18)
t=[N/2]




Since both Py and the derivative of the binomial CDF are non-negative, the overall derivative %
is non-positive, confirming that the certified guarantee weakens as € increases. For practitioners, this
means that as empirical evidence suggests an attack is more robust (higher ¢), the certified probability
of successfully defending against it will decrease. The magnitude of this decrease is governed by
Py, which is determined by the defense parameters (g, m, ms), and the slope of the binomial CDF,

which is determined by the number of samples V.

This direct, quantifiable relationship allows practitioners to model the trade-off between assumed
attack robustness and the level of certified safety, enabling more informed, risk-based decisions for
LLM deployment.

D Combinatorics for patch perturbation

Here, we provide a detailed derivation for Pr[X = ], the probability that a randomly placed patch
of length M overlaps with an adversarial suffix .S of length mg by exactly 7 characters. The total
prompt P = [G; S] has length m = mg 4+ mg. A patch is defined by its starting position, chosen
uniformly from the m — M + 1 possibilities.

The number of starting positions that result in an overlap of size 7+ depends on whether the patch
is fully contained within the goal or suffix, or if it straddles a boundary. Following the analysis
framework of Robey et al. [4], we analyze the cases:

* Case 1: Full Overlap (: = M). This requires the patch to be entirely within the suffix,
which is only possible if M < mg. The number of valid starting positions is (mg — M + 1).

* Case 2: No Overlap (¢ = 0). This requires the patch to be entirely within the goal, which is
only possible if M < m. The number of valid starting positions is (mg — M + 1).

* Case 3: Partial Overlap (1 < ¢ < M). This occurs when the patch straddles either the
beginning or the end of the suffix.

— A patch starting in G and ending in .S yields exactly one starting position for each
overlap size i € {1,...,min(M — 1,mg)}.
— A patch starting in S and ending after S yields exactly one starting position for each
overlap size i € {1,...,min(M — 1,mg)}.
If both the goal and suffix are long enough (i.e., mg > M — 1 and mg > M — 1), there are
exactly two starting positions for each partial overlap size i € {1,..., M — 1}.

The probability Pr[X = i] is found by dividing the number of valid starting positions for a given ¢ by
the total number of positions, m — M + 1. A complete formulation, accounting for all edge cases
(e.g., mg < M — 1), follows the piecewise derivation in the original SmoothLLM appendix.

E Additional experimental validation

Justification for Exponential Decay Model We model the relationship between the number of
perturbed characters and the attack success rate (ASR) using:

ASR(i) ~ae " 4 c.
This functional form is motivated by both empirical observations and prior work on adversarial
suffix attacks. As shown in Figures ASR decreases rapidly when only a few characters are
perturbed and then levels off, indicating that adversarial suffixes often rely on a small subset of
critical characters that drive the jailbreak logic. Perturbing these characters significantly disrupts the
attack, while perturbing non-critical characters has little effect. This phenomenon is consistent with

prior findings on GCG and PAIR jailbreaks, where specific trigger phrases or structural patterns are
crucial to eliciting harmful outputs [1} 5]

If we assume that each perturbation has an independent probability p of altering a critical character,
the probability that none of the 7 perturbations disrupts the attack is approximately (1 — p)? ~ e~%,
where b = —In(1 — p). Across all tested models, attack strategies, and perturbation mechanisms,
this exponential model fits the observed ASR curves with high accuracy (R? > 0.9). We therefore
adopt (a, b, ¢) as fitted parameters and compute 7; = 1 — ASR(7) when deriving the tighter lower
bound aighter used in our certification framework.
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While the exponential decay holds across settings,

the parameters (a, b, ¢) change depending on the model, the attack, and the perturbation strategy. We

summarize the key trends below:

* Attack type (GCG vs. PAIR). Our analysis reveals that the PAIR attack is quantifiably more
robust to character-level perturbations than GCG, generally exhibiting a higher residual



success rate (c) and a slower decay (smaller b). This empirically-grounded insight is critical
for threat modeling, as it implies that defending against PAIR requires a higher perturbation
threshold (k) or more samples (V) to achieve the same certified DSP. Our framework
provides the necessary tool to calculate these differing requirements precisely.

* Perturbation method (Swap vs. Patch). RandomSwapPerturbation replaces individual
characters independently, so it is more likely to hit critical positions early. This leads to
larger b (faster decay). RandomPatchPerturbation, which perturbs a contiguous block,
sometimes misses critical tokens or lands outside the suffix, producing a slower decay
(smaller b) and a slightly larger floor c.

* Model architecture (Llama2 vs. Vicuna). Vicuna generally shows lower initial attack
success (a) and faster robustness gains with perturbations (larger b) compared to Llama2.
However, the residual success c varies depending on how the jailbreak detector interacts
with each model’s outputs.

These variations directly affect the certified defense success probability (DSP). A higher b and lower ¢
mean that perturbations quickly neutralize attacks, leading to stronger certificates and fewer samples
N required for a given DSP. Conversely, attacks with high a and c require either larger perturbation
thresholds &k or more samples to achieve the same safety guarantee. For this reason, we fit (a, b, ¢)
separately for each combination of model, attack, and perturbation method instead of assuming a
single global model.

Deeper Analysis of Attack Fragility: GCG vs. PAIR  Our empirical results reveal a stark contrast
in the robustness patterns of GCG and PAIR attacks, which can be attributed to their fundamentally
different mechanisms. The GCG attack, which uses a gradient-based search to append an often
nonsensical adversarial suffix [1], demonstrates what can be termed syntactic fragility. Its success
relies on a precise sequence of characters that exploits specific, brittle vulnerabilities in the model’s
token processing. As shown in our experiments (e.g., Figures [2]and[6), this makes the attack highly
susceptible to character-level perturbations; the ASR decays rapidly (a large fitted ‘b’ parameter) and
approaches a near-zero floor (a small ‘c’). A few random character changes are often sufficient to
break the exact “cheat code” the attack relies on.

In contrast, the PAIR attack operates on a semantic level, using an LLM to iteratively refine a prompt
to be more persuasive or to rephrase a harmful request in an innocuous-seeming way. This creates
semantic resilience. The jailbreak is triggered by the meaning and context of the prompt, not just a
specific, fragile character string. Consequently, as seen in Figures [8|and PAIR exhibits a much
slower ASR decay (a smaller ‘b’) and a significantly higher ASR floor (a large ‘c’). Changing a few
characters is less likely to disrupt the core semantic instruction that bypasses the LLM’s safety filters.

This distinction has crucial implications for defense and certification. It demonstrates that character-
level defenses like SmoothLLM are exceptionally effective against syntactically fragile attacks but
are less so against semantically resilient ones. More importantly, this validates the necessity of our
(k, €)-unstable framework. It allows practitioners to empirically quantify these different robustness
profiles: a GCG-style threat might be certified with a small ‘’k’ and a very low €, whereas a more
resilient PAIR-style threat would require a much larger ‘k’ or accepting a higher ¢ to achieve the same
certified DSP. Our framework thus provides a formal language to reason about and defend against the
full spectrum of attack robustness.
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