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ABSTRACT

The study of rigid protein-protein docking plays an essential role in a variety of
tasks such as drug design and protein engineering. Recently, several learning-based
methods have been proposed, exhibiting much faster docking speed than those
computational methods. In this paper, we propose a novel learning-based method
called ElliDock, which predicts an elliptic paraboloid to represent the protein-
protein docking interface. To be specific, our model estimates elliptic paraboloid
interfaces for the two input proteins respectively, and obtains the roto-translation
transformation for docking by making two interfaces coincide. By its design,
ElliDock is independently equivariant with respect to arbitrary rotations/translations
of the proteins, which is an indispensable property to ensure the generalization of
the docking process. Experimental evaluations show that ElliDock achieves the
fastest inference time among all compared methods and is strongly competitive with
current state-of-the-art learning-based models such as DiffDock-PP and Multimer
particularly for antibody-antigen docking.

1 INTRODUCTION

Proteins realize their biological functions through molecular binding sites, which depend on the
complementary in structure and biochemical properties around key regions of protein complexes.
Studying the mechanism of protein interaction is of great significance for drug design and protein
engineering. In this work, we aim to tackle rigid protein-protein docking, which means we only target
at learning rigid body transformation from two unbound structures to their docked poses, keeping the
conformation of the protein itself unchanged during docking.

Figure 1: EquiDock: point cloud registration vs ElliDock: interface
fitting.

Traditional docking softwares (Chen et al., 2003;
Venkatraman et al., 2009; De Vries et al., 2010;
Moal et al., 2013; de Vries et al., 2015; Sunny
& Jayaraj, 2021) mainly follow this general
paradigm: first sampling numerous candidate
poses and then updating the structures with
higher scores based on a well-designed energy
model. These methods are highly computation-
ally expensive, which may be unbearable to dock
millions of complex structures in practice.

Recently, learning-based methods (Gainza et al.,
2020; Ganea et al., 2021; Evans et al., 2021;
Ketata et al., 2023; Luo et al., 2023) have been
applied to the task. EquiDock (Ganea et al., 2021) is a regression-based model that tries to predict the
functional pocket of each of the receptor and the ligand proteins, and apply point cloud registration to
obtain docking transformation. However, we believe that rigid protein-protein docking task is not
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entirely equivalent to local point cloud registration for two reasons: 1. the docking transformation
is unable to be derived uniquely if the registered point cloud is ill-posed and degenerated to be, for
example, within 2-dimensional planes or even 1-dimensional lines; 2. it will cause miss-alignment
if the registered point clouds of the two proteins are not exactly the respective docking pockets.
Another related work is MaSIF (Gainza et al., 2020), which is surface-based and designed to map
the geometric and chemical features of local protein regions into fingerprints. MaSIF can well
demonstrate the biochemical properties of the protein monomer surface (e.g., hydrophilicity) with a
lack of information interaction during protein-protein docking, which may hinder the discovery of
protein-specific binding sites. More recently, xTrimoDock (Luo et al., 2023) leverages a cross-modal
representation learning to enhance the representation ability. Since the model is carefully designed
based on specific regions (e.g., heavy chains) on the antibody, it lacks generalizability across the
entire protein domain. Another diffusion-based generative model named DiffDock-PP (Ketata et al.,
2023) is proposed to obtain high-quality docked complex structures, yet at the expense of much
longer inference time and careful tuning of many sensitive hyper-parameters.

Contribution. We propose ElliDock, a novel method tailored for rigid protein-protein docking based
on global interface fitting. Our model first predicts a pair of elliptical paraboloids with the same shape
as the binding interfaces, based on the global information of the two proteins. Then we obtain the
roto-translation for docking by calculating the transformation that makes two paraboloids coincide.
Nicely, our ElliDock is independently equivariant with respect to arbitrary rotations/translations of
the proteins, which is an indispensable property to ensure the generalization of the docking process.
Meanwhile, by constraining predicted interfaces to spatially separate nodes of the receptor and the
ligand, ElliDock manages to avoid steric clashes, which is a hard-core problem faced by some of the
previous works. Figure 1 illustrates the difference between EquiDock and our ElliDock.

We conduct experiments on both the Docking Benchmark database (DB5.5) (Vreven et al., 2015) and
the Structural Antibody Database (SAbDab) (Dunbar et al., 2014), mainly exploring the performance
of our model in heterodimers like antibody-antigen complexes. Experimentally, ElliDock is strongly
competitive with current state-of-the-art learning-based models such as DiffDock-PP (Ketata et al.,
2023) and Multimer (Evans et al., 2021) particularly for antibody-antigen docking, with significantly
decreased inference time compared with all docking baselines.

2 RELATED WORK

Equivariant Graph Neural Networks (EGNNs). EGNNs are tailored for data lying in the Euclidean
space (e.g., the coordinate of an atom), which is unable for plain GNNs to achieve equivariance
from different coordinate transformation (Satorras et al., 2021; Keriven & Peyré, 2019). EGNNs
propose a solution by designing equivariant layers and utilizing the equivariant information in the
graph. Therefore they are suitable for tasks such as molecular dynamical systems, interaction affinity
prediction and protein structure generation (Fuchs et al., 2020; Ganea et al., 2021; Jing et al., 2021;
Hutchinson et al., 2021; Wu et al., 2021; Kong et al., 2022; Jiao et al., 2022). Due to the particularity
of the protein-protein docking task (with a random unbound structure, the interaction between proteins
cannot be effectively constructed), we specially design an pairwise SE(3)-equivariance message
passing network with global-level interaction, which sets it apart from the previous work.

Protein-Protein Docking. Protein complexes data acquired in the laboratory is not only expensive
but also inefficient to produce, so we resort to finding efficient computational methods to discover
protein-protein docking patterns (Vakser, 2014). Traditional docking methods (Chen et al., 2003;
Venkatraman et al., 2009; De Vries et al., 2010; Satorras et al., 2021; Biesiada et al., 2011; Schindler
et al., 2017; Sunny & Jayaraj, 2021) share a similar pattern with relatively high computational cost:
sample millions of candidate complex poses at first, rank them with a well-designed scoring function,
then update the complex structures among the top-ranked candidates based on an energy model. Deep
learning methods are recently proposed to tackle protein-protein docking task based on molecular
dynamics (Desta et al., 2020; Ghani et al., 2021), surface property deciphering (Gainza et al., 2020),
keypoints alignment (Ganea et al., 2021), protein structure prediction (Jumper et al., 2021; Evans
et al., 2021), multiple sequence alignment (Bryant et al., 2022), diffusion (Ketata et al., 2023) or
cross-modal representation learning (Luo et al., 2023). Different from prior work, we propose a
novel method that converts rigid protein docking to predicting binding interfaces as a pair of elliptic
paraboloids and calculating the transformation based on interface fitting.
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3 METHOD

As defined in Section 1, the rigid protein-protein task aims to predict a SE(3) transformation (rotation
and translation) of the unbound structures of an interacting protein pair to get the docked complex.
To address this, we first develop a pairwise-independent SE(3)-equivariant GNN, named EPIT, to
characterize both the intra-protein and inter-protein interactions in the complex. Then, upon the
invariant and equivariant outputs of EPIT, we derive the SE(3) transformation via elliptic paraboloid
interface prediction and alignment.

3.1 PROTEIN REPRESENTATION

We model a protein as a graph by regarding each residue as a node, and denote G1 = (V1, E1),
G2 = (V2, E2) as the ligand graph and the receptor graph, respectively. We associate each node
vi with a tuple (hi, x⃗i) where hi ∈ RH denotes the SE(3)-invariant feature and x⃗i ∈ R3 is the
3D coordinate of the α-carbon atom in residue i. The collection of all node representations yields
H1 ∈ RN1×H , X⃗1 ∈ RN1×3 for the ligand graph G1, and H2 ∈ RN2×H , X⃗2 ∈ RN2×3 for the
receptor graph G2. The edges are constructed in the k-NN manner, that is, selecting k nearest nodes
in the Euclidean distance from the same protein as the neighbors for each node vi. More details of
the graph representation are provided in Appendix.

Task Formulation We fix the conformation of the receptor G2, and predict a rotation matrix
Q ∈ SO(3) and a translation vector t⃗ ∈ R3, such that the transformation of the ligand G1, namely
X⃗∗

1 = X⃗1Q+ t⃗ is at the docking position to the receptor.

3.2 EQUIVARIANT POLARIZABLE INTERACTION TRANSFORMER (EPIT)

We adopt PAINN (Schütt et al., 2021) as the backbone of our model, owing to its promising
performance for molecular representation learning. Basically, our model takes as input the node
features H

(0)
p = Hp, coordinates X⃗

(0)
p = X⃗p and all-zero vectors V⃗

(0)
p = 0 ∈ RNp×H×3, and

outputs SE(3)-invariant features H
(L)
p ∈ RNp×H as well as SO(3)-equivariant vectors V⃗

(L)
p ∈

RNi×H×3 after L-layer message passing (p ∈ {1, 2}).

Upon PAINN, we further introduce a Graph Transformer Layer (GTL) into each message passing
block, to enhance the ability of detecting protein pockets. Given a pair of adjacent nodes i, j with
corresponding node features hi,hj and edge feature ej→i, we obtain a message from j to i through
a fully-connected layer:

mj→i = FC(hj , ej→i) ∈ RH . (1)

Then we construct the graph transformer layer as follows:

q
(u)
j→i,k

(u)
j→i,v

(u)
j→i = FC(mj→i) ∈ RH , j ∈ Ni, 1 ≤ u ≤ U, (2)

α
(u)
j→i = softmaxj(

1√
H

⟨q(u)
j→i,k

(u)
j→i⟩) ∈ R, (3)

o
(u)
j→i = α

(u)
j→iv

(u)
j→i ∈ RH , (4)

m′
j→i = FC(concatu(o

(u)
j→i)) ∈ RH , (5)

m′
i =

1

|Ni|
∑
j∈Ni

m′
j→i ∈ RH . (6)

Here, U denotes the number of attention heads, FC(·) = Linear ◦ SiLU ◦ Linear(·) denotes a
fully-connected layer, ⟨·, ·⟩ denotes the inner product operation, Ni collects the neighbors of node i,
and concatu(o

(u)
j→i) indicates the concatenation of o(u)

j→i in terms of all values of u. The aggregated
message m′

i will be used to update H and V⃗ following the pipeline in PAINN. The intra-part
architecture of EPIT is illustrated in Appendix.

So far, all the message passing processes are conducted only through intra-protein edges, without
modeling the interaction between the receptor and the ligand. As they are in unbound states, it makes
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no sense to construct inter-protein edges based on 3D coordinates similar to those intra-protein edges.
Instead, we propose dense edge connections between every node pair of the receptor and the ligand,
and only allow the invariant node features H(l)

p (not V⃗ (l)
p ) to be passed along the intra-protein edges.

By defining W (l) ∈ RH×H as a learnable matrix of layer l, we derive the following updates:

β(l)
p = sigmoid(µ(H(l)

p W (l)(H(l))⊤

¬p )) ∈ (0, 1)Np , (7)

H
′(l)
p = H(l)

p + β(l)
p ⊙ FC(H(l)

p ) ∈ RNp×H . (8)

where ¬p denotes the protein other than p, µ(·) computes the average along the second dimension of
the input matrix, ⊙ implies element-wise multiplication, and FC(H

(l)
p ) is conducted on each row of

H
(l)
p individually. The updated features H

′(l)
p are considered as the input of the next layer.

We have the following conclusion.

Proposition 1 The proposed model EPIT is independent SE(3)-equivariant and translation-
invariant, indicating that if V⃗

(L)
1 ,H

(L)
1 , V⃗

(L)
2 ,H

(L)
2 = EPIT(X⃗1,H1, E1, X⃗2,H2, E2),

then, we have V⃗
(L)
1 Q1,H

(L)
1 , V⃗

(L)
2 Q2,H

(L)
2 = EPIT(X⃗1Q1 + t⃗1,H1, E1, X⃗2Q2 +

t⃗2,H2, E2),∀Q1,Q2 ∈ SO(3), t⃗1, t⃗2 ∈ R3.

The proof is given in Appendix. Such property is desirable and it will ensure our later docking
process to be generalizable to arbitrary poses of the input proteins.

3.3 ELLIPTIC PARABOLOID

We briefly discuss the rationale for choosing an elliptical paraboloid as the interface. On the
one hand, using planes, spheres or other symmetric 2D manifolds to model the interface will
easily cause the docking ambiguity issue since there are usually different ways to transform a 2D
manifold from one pose to another. On the other hand, using complex manifolds may introduce
bias and higher computational complexity to obtain the docking solutions. Thus we choose elliptic
paraboloids to model the binding interface, which are appropriately defined in 3D space and their
SE(3) transformations can be devised in a closed form. We provide mathematical details below.

For each point x⃗ = [x1, x2, x3] ∈ R3 located on the surface of a elliptic paraboloid, we have the
standard form (without loss of generality, we might assume that it is symmetric about the z axis):

ax2
1 + bx2

2 + cx3 = 0, a, b ∈ R+, c ∈ R. (9)
The general form obtained by SE(3) transformations from the standard form belongs to a family of
quadric surfaces:

⟨Ax⃗, x⃗⟩+ ⟨b, x⃗⟩+ c = 0, A ∈ R3×3, b ∈ R3, c ∈ R. (10)
Actually, any SE(3) transformation of an elliptical paraboloid results in the change of the coefficients
given by the following proposition.

Proposition 2 If we transform the elliptical paraboloid in Eq. 10 as x⃗′ = Qx⃗+t⃗ via a rotation matrix
Q ∈ SO(3) and a translation vector t⃗ ∈ R3, then the elliptical paraboloid becomes ⟨A′x⃗′, x⃗′⟩ +
⟨b′, x⃗′⟩+c′ = 0, where A′ = QAQ⊤, b′ = Qb−Q(A+A⊤)Q⊤t⃗, c′ = c+ t⃗⊤QAQ⊤t⃗− t⃗⊤Qb.

To fulfil our task, we construct a function Φ to predict an elliptic paraboloid of the general form for
each of the input proteins:

A1, b1, c1,A2, b2, c2 = Φ(X⃗1,H1, E1, X⃗2,H2, E2). (11)
We further assume that (A1, b1, c1) shares the same standard form as (A2, b2, c2) since the ligand
and the receptor do share the same interface after docking.

Specifically, the function Φ should require hard constraints to achieve the following property:

Independent equivariance For simplicity, we only take the ligand for example while the conclusion
holds similarly for the receptor. For any SE(3) transformation of the input ligand, namely, ∀Q ∈
SO(3), t⃗ ∈ R3, we obtain the new predicted elliptic paraboloids by A′

1, b
′
1, c

′
1,A2, b2, c2 = Φ(V⃗1Q+

t⃗,H1, E1, V⃗2,H2, E2). It should be guaranteed that (A′
1, b

′
1, c

′
1) is transformed from (A1, b1, c1) in

the same way as stated in Proposition 2.
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Figure 2: Docking process via interface fitting. We decompose the docking process into four steps:
1) predict elliptic paraboloid interfaces for two proteins respectively, 2) conduct general to standard
transformations based on the ligand interface, 3) rotation refinement, 4) conduct standard to general
transformations based on the receptor interface.

3.4 INTERFACE PREDICTION AND DOCKING VIA EPIT

In this subsection, we introduce how to implement the function Φ through our EPIT. The whole
process of docking via interface fitting is illustrated in Figure 2. Based on Proposition 2, we can
decompose the prediction of an elliptic paraboloid interface by first regressing its standard coefficients
and then estimating the SE(3) transformation from the standard from.

We first obtain equivariant vectors V⃗
(L)
1 ∈ RN1×H×3, V⃗

(L)
2 ∈ RN2×H×3 and invariant features

H
(L)
1 ∈ RN1×H ,H

(L)
2 ∈ RN2×H from the output of EPIT, then we aggregate the information along

all nodes of the receptor (ligand) to get graph-level outputs:

Fp =

Np∑
j=1

FC(H(L)
p [j]⊙ sigmoid(µ(H(L)

p [j]W ′(HL
¬p)

⊤))) ∈ R4, W ′ ∈ RH×H , p ∈ {1, 2},

(12)

E⃗p =

Np∑
j=1

LinearNoBias(H(L)
p [j]⊙ V⃗ (L)

p [j]) ∈ R(3M+1)×3, M ∈ N+, p ∈ {1, 2}, (13)

where M (in our experiment, M = 3) is a hyperparameter, H(L)
p [j] and V⃗

(L)
p [j] denote the j-th

rows of H(L)
p and V⃗

(L)
p , respectively. It is proved that Fp still satisfies SE(3)-invariance and E⃗p

satisfies SO(3)-equivariance.

Predicting Standard Forms The standard coefficients are obtained with the invariant outputs F1

and F2 by:

Λ∗
1 = Λ∗

2 =

[
ζ(F1[0] + F2[0])

ζ(F1[1] + F2[1])
0

]
, b∗1 = b∗2 =

[
0
0

F1[2] + F2[2]

]
. (14)

where ζ(·) denotes the softplus operation. The standard form of the predicted elliptic paraboloid is
given by:

⟨Λ∗
px⃗, x⃗⟩+ ⟨b∗p, x⃗⟩ = 0, p ∈ {1, 2}. (15)

Predicting SE(3) Transformations We first use the equivariant output E⃗p to generate intermediate
variables Rp, t⃗

′
p, p ∈ {1, 2} that maintain SO(3)-equivariance:

Rp =

M−1∑
j=0

E⃗p[3j : 3(j + 1)] ∈ R3×3, t⃗p = E⃗p[3M ] ∈ R3, p ∈ {1, 2}. (16)

5



Published as a conference paper at ICLR 2024

Here M aims at ensuring Ri to be non-singular. We should make sure det(Rp) > 0 to derive
a rotation matrix instead of a reflection matrix, otherwise let Rp = −Rp. We then generate a
SO(3)-equivariant rotation matrix Qp based on Proposition 3:

Proposition 3 Given a SO(3)-equivariant matrix R ∈ R3×3 which satisfies det(R) > 0, we can
generate a SO(3)-equivariant rotation matrix Q from

U = (RR⊤)
1/2,Q = U−1R.

As t⃗1, t⃗2 only satisfy SO(3)-equivariance, we generate SE(3)-equivariant vectors by simply adding
the coordinate center c⃗l of the ligand and c⃗r of the receptor:

t⃗1 = t⃗1 + c⃗l ∈ R3, t⃗2 = t⃗2 + c⃗r ∈ R3. (17)

Now we obtain the transformations (Q1, t⃗1) for the ligand, and (Q2, t⃗2) for the receptor, and their
corresponding elliptic paraboloids of the general form based on Proposition 2:

Ap = QpΛ
∗
pQ

⊤
p , bp = Qpb

∗
p−2QpΛpQ

⊤
p t⃗p, cp = t⃗⊤p QpΛ

∗
pQ

⊤
p t⃗p−t⃗⊤p Qpb

∗
p, p ∈ {1, 2}. (18)

In our task formulation, we fix the receptor and only dock the ligand towards the receptor. Since
(Q1, t⃗1) and (Q2, t⃗2) are the transformations from the general interface to the standard interface, we
re-formulate their values as the relative transformation between the ligand and the receptor based on
Proposition 4:

Proposition 4 Denote Q1→2 ∈ SO(3), t⃗1→2 ∈ R3 as the relative transformation of the unbound
ligand to the docked pose with the receptor fixed, then we have

Q1→2 = Q2Q
⊤
1 , t⃗1→2 = t⃗2 −Q2Q

⊤
1 t⃗1.

3.5 ROTATION REFINEMENT

According to Section 3.3, we only restrict quadratic coefficients of the elliptic paraboloid with an
inequality such that nodes should be inside (or outside) the interface utmostly, which is considered to
be a loose constraint and leads to unexpected degrees of freedom in x-y directions, after the interface
of the ligand being transformed to the standard form. So we need an additional rotation to refine x-y
angles. Specifically, denote θ = F1[3]− F2[3] ∈ R, we compute the rotation matrix for refinement:

Qr =

[
cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

]
∈ SO(3). (19)

Then the final docking transformation with rotation refinement conducted is given by:

Q1→2 = Q2QrQ
⊤
1 ∈ SO(3), t⃗1→2 = t⃗2 −Q2QrQ

⊤
1 t⃗1 ∈ R3. (20)

3.6 TRAINING OBJECTIVE

Fitness Loss. Suppose X⃗∗
1 , X⃗

∗
2 as the coordinates in the docked state, from which we select all

pairs of nodes Y⃗ ∗
1 , Y⃗ ∗

2 ∈ RK×3 such that ||Y⃗ ∗
1k − Y⃗ ∗

2k|| < 8Å, ∀1 ≤ k ≤ K, where K denotes
the number of such point pairs. Then we regard the midpoints of those pairs to be functional sites,
P⃗ ∗

1 = P⃗ ∗
2 = 1

2 (Y⃗
∗
1 + Y⃗ ∗

2 ). In the unbound state, those point sets should follow transformations
of corresponding proteins, we denote them as P⃗1 and P⃗2. For clarity, if X⃗1 = X⃗∗

1Q + t⃗, then
P⃗1 = P⃗ ∗

1 Q+ t⃗. Naturally, we expect those pockets to be exactly located on our predicted interface.
Furthermore, we propose a stricter constraint to represent how interface acts with each other, that is,
we choose to minimize the distance between pockets and the tangent plane at the peak of the interface.
Formally, denote r⃗p ∈ R3 as the peak of the predicted interface and n⃗p ∈ R3 as the normal vector of
the tangent plane at the peak (p ∈ {1, 2}), we enforce the optimization objective as follows:

Lfit =
1

K

∑
p∈{1,2}

K∑
k=1

(||⟨ApP⃗p[k], P⃗p[k]⟩+ ⟨bp, P⃗p[k]⟩+ cp||2 + |⟨P⃗p[k]− t⃗p, n⃗p⟩|). (21)
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Overlap Loss. One of the crucial issues in previous works is that they encounter steric clashes
during the docking process. We address this issue by restricting receptor and ligand to either side
of the interface in the standard form, such that the interface spatially isolates protein pairs. Denote
ϕp(·) = ⟨Ap·, ·⟩+ ⟨bp, ·⟩+ cp, p ∈ {1, 2}, we can tell whether a node x⃗ is inside or outside of the
interface p by checking the sign of the formula ϕp(x⃗), from which we define the training objective:

Loverlap = min{ 1

N1

N1∑
j=1

(

√
ReLU(ϕ1(X⃗1[j])) +

1

N2

N2∑
j=1

(

√
ReLU(−ϕ2(X⃗2[j])),

1

N1

N1∑
j=1

(

√
ReLU(−ϕ1(X⃗1[j])) +

1

N2

N2∑
j=1

(

√
ReLU(ϕ2(X⃗2[j]))}.

(22)

Refinement Loss. As described in Section 3.5, we conduct a rotation refinement when the interface
is transformed to the standard form. We expect to minimize the distance between the docked pockets

in the standard form (denoted as ˆ⃗
P1 and ˆ⃗

P2) only in x and y dimensions, which can be measured

by Kabsch algorithm (Kabsch, 1976). For clarity, we have ˆ⃗
P1[k] = Q⊤

1 P⃗1[k] − Q⊤
1 t⃗1,

ˆ⃗
P2[k] =

Q⊤
2 P⃗2[k]−Q⊤

2 t⃗2 (1 ≤ k ≤ K), and the refinement loss is defined as

Lref = ||Qr[: 2, : 2]−Kabsch(
ˆ⃗
P1[: 2],

ˆ⃗
P2[: 2])||2. (23)

Dock Loss. Since the degrees of freedom of rigid docking is limited, we avoid applying the MSE
loss between predicted coordinates and the ground truth to prevent a large number of floating-
point calculation errors. During the training process, as we randomly sample the rotation matrix
Qgt ∈ SO(3) and the translation vector t⃗gt ∈ R3 to get the unbound ligand pose X⃗1i = QgtX⃗

∗
1i +

t⃗gt, 1 ≤ i ≤ N1, it’s possible to directly evaluate the transformation error by

Ldock = ||Q1→2 −Q⊤
gt||2 + ||t⃗1→2 +Q⊤

gtt⃗gt||2. (24)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Baselines We mainly compare our model ElliDock with one of the-state-of-the-art protein complex
structure prediction model Alphafold-Multimer1 (Evans et al., 2021), the template-based docking
server HDock2 (Yan et al., 2020), the regression-based docking model EquiDock3 (Ganea et al.,
2021) and the diffusion-based docking model DiffDock-PP4 (Ketata et al., 2023). Note that, we train
EquiDock and DiffDock-PP from scratch with their recommended hyperparameters before testing on
the corresponding dataset, while we use pre-trained models of other baselines.

Datasets We utilize the following two datasets for our experiments:

Docking benchmark version 5. We first leverage the Docking benchmark version 5 database (DB5.5)
(Vreven et al., 2015), which is a gold standard dataset with 253 high-quality complex structures. We
use the data split provided by EquiDock, with partitioned sizes 203/25/25 for train/validation/test.

The Structural Antibody Database. To further simulate real drug design scenarios and study the
performance of our method on heterodimers, we select the Structural Antibody Database (SAbDab)
(Dunbar et al., 2014) for training. SAbDab is a database of thousands of antibody-antigen complex
structures that updates on a weekly basis. Datasets are split based on sequence similarity measured
by MMseqs2 (Steinegger & Söding, 2017), with partitioned sizes 1,781/300/0 for train/validation/test.
We then use the RAbD database (Adolf-Bryfogle et al., 2018), a curated benchmark on antibody
design with 54 complexes (note that PDB 5d96 will result in NaN IRMSD, so it has been removed
here), as the test set of antibody-antigen complexes. To prevent data leakage, we put proteins with
sequence correlation greater than 0.8 into the same cluster and ensure that no clusters included in
RAbD appear in the training set and the validation set.

1https://github.com/YoshitakaMo/localcolabfold.
2http://huanglab.phys.hust.edu.cn/software/hdocklite.
3https://github.com/octavian-ganea/equidock_public.
4https://github.com/ketatam/DiffDock-PP.
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Table 1: Complex prediction results (DB5.5 test). Note that * means we use the pre-trained model,
otherwise we train from scratch on the corresponding dataset before testing.

CRMSD (↓) IRMSD (↓) DockQ (↑)
Methods median mean std median mean std median mean std Inference time

HDock* 0.327 3.745 7.139 0.289 3.548 6.842 0.981 0.791 0.386 11478.4
Multimer* 1.987 7.081 7.258 1.759 7.141 7.889 0.629 0.482 0.418 56762.5

EquiDock 14.136 14.726 5.312 11.971 13.233 4.931 0.036 0.044 0.034 60.1
DiffDock-PP 14.109 15.419 8.160 15.060 16.881 11.397 0.025 0.035 0.033 2103.1

ElliDock 12.995 14.413 6.780 11.134 12.480 4.966 0.037 0.060 0.060 36.7

Table 2: Complex prediction results (SAbDab test). Note that * means we use the pre-trained
model, otherwise we train from scratch on the corresponding dataset before testing.

CRMSD (↓) IRMSD (↓) DockQ (↑)
Methods median mean std median mean std median mean std Inference time

HDock* 0.323 2.792 6.798 0.262 2.677 6.803 0.982 0.861 0.310 37328.8
Multimer* 13.598 14.071 6.091 12.969 12.548 5.435 0.050 0.104 0.172 197503.1

EquiDock 14.301 15.032 5.548 12.700 12.712 5.390 0.034 0.055 0.067 274.5
DiffDock-PP 11.764 12.560 6.241 12.207 12.401 6.353 0.045 0.076 0.090 8308.7

ElliDock 11.541 13.402 6.306 11.319 11.550 4.681 0.054 0.082 0.084 91.2

Evaluation metrics We apply Complex Root Mean Squared Deviation (CRMSD), Interface Root
Mean Squared Deviation (IRMSD) and DockQ (Basu & Wallner, 2016) to evaluate the predicted
complex quality. See Appendix for specific definitions.

4.2 COMPARISONS OF THE INFERENCE TIME

Given real world applications (for example, simulating the binding process of artificially edited
proteins), faster inference time will nicely support a large number of simulated docking processes
within an acceptable time, such that we can locate the desirable protein candidate from its huge amino
acid space. Here we conduct the inference time test for different methods on two test sets and results
are shown in Table 1, 2, accordingly. For fairness, all models are tested under the same environment
on one single GPU (instead of HDock, which can only run on CPU).

As expected, the traditional template-based docking method HDock takes an extremely long time to
run because it needs to generate tens of thousands of structure templates for further update. Multimer
is a deep learning model, yet it requires multiple sequence alignment during inference with GB level
parameters, which may attribute to its longest inference time. In comparison, generative-based and
regression-based deep learning models are 10~1,000 times faster. Among them, DiffDock-PP runs
slower because it requires dozens of diffusion steps, each step requires re-running the model. On
the contrary, ElliDock and EquiDock are both regression models without an order of magnitude
difference in speed. We show ElliDock is 2~3 times faster than EquiDock, which is more likely due
to the amount of model parameters, number of model layers and so forth.

Figure 3: CRMSD of antibody-antigen dock-
ing on SAbDab test set.

Figure 4: IRMSD of antibody-antigen docking
on SAbDab test set.

Figure 5: The comparison of DockQ between
ElliDock and Alphafold-Multimer on SAbDab
test set.
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4.3 RESULTS OF THE COMPLEX PREDICTION

The complex prediction results on the DB5.5 test set and RAbD are illustrated in Table 1 and Table
2 respectively, with statistically processed data shown in Figure 3, 4, 5. We show that, ElliDock
outperforms the other regression-based model, EquiDock, on both DB5.5 and SAbDab based on
IRMSD and CRMSD. Meanwhile, Our method beats DiffDock-PP on all metrics on DB5.5, while
the CRMSD metric is slightly inferior to the latter on SAbDab. We assume that this is because
the training objective of DiffDock-PP is completely based on the entire molecules, on the contrary,
our method focuses more on pockets in localized regions of the protein. For the comparison with
Alphafold-Multimer, we illustrate in Figure 5 that ElliDock has better prediction results on most
samples on SAbDab, yet Multimer achieves extremely amazing accuracy on specific samples, which
may be attributed to the powerful representation ability of Alphafold. For pre-trained models like
HDock, we respect for its promising performance, yet we have some concerns about its possible data
leakage.

4.4 ABLATION STUDIES

Table 3: Ablation studies. We report CRMSD
median and IRMSD median of the corresponding
best validated model on DB5.5.

Methods CRMSD (↓) IRMSD (↓)
Full model 13.00 11.13

- Lfit 13.20 13.02
- Loverlap 13.95 12.35
- Lref 13.23 12.49
- Lfit, Loverlap 13.98 13.24
- Lfit, Lref 14.71 13.94
- Loverlap, Lref 14.48 11.71
- Qr 13.05 13.22

Training objectives. To illustrate contributions
of different training objectives, we conduct mul-
tiple experiments and rule out some of the train-
ing objectives each time. Models are trained and
tested on DB5.5 only.

Without rotation refinement. With a view to
verify the validity of the rotation refinement, we
removed Qr in the calculation of the docking
transformation Q(X⃗1|X⃗2), t⃗(X⃗1|X⃗2). Simi-
larly, we train and test the model on DB5.5.

Ablation study results are shown in Table 3. We
conclude that Lfit and the rotation refinement
influence the docking process by searching for
better binding interface, with a great impact on
IRMSD. Another training objective, Loverlap,
designed for tackling conformation overlap, does help to find proper docking positions for ligand,
which results in lower CRMSD.

5 CONCLUSION

We propose a new method for rigid protein-protein docking based on elliptic paraboloid interfaces
prediction and fitting, which is strongly competitive with state-of-the-art learning-based methods
for particularly antibody-antigen docking. Meanwhile, we design a global level, pairwise SE(3)-
equivariant message passing network called EPIT, serving as a solution to message passing and
updating through nodes when the graph cannot be efficiently constructed as connected.

In the future, we look forward to incorporate more domain knowledge to our method, for example,
chemical properties on the protein surface. We also hope the interface-based docking paradigm can
give an insight into rigid docking or further flexible docking, and provide more possible research
directions.

Limitations. First, our model is targeted on rigid protein-protein docking regardless of conformational
changes of receptor and ligand, which may not be applicable in all scenarios. A potentially more
valuable follow-up direction is to study flexible docking, which takes the conformation changes
during docking process into consideration. Moreover, we still use soft constraints in our model, so
that the prediction results may not fully meet all properties that we require. Hard constraints can be
further implemented in the model architecture for improvement.
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APPENDIX

A SOURCE CODE

Our source code is available at https://github.com/yaledeus/ElliDock.

B DETAILS OF PROTEIN REPRESENTATION

We construct the protein graph at residue level, each node in the graph corresponds to a residue that
makes up the protein and each edge between two nodes represents an interaction. Here we show
details on how to extract node features and edge features from the raw protein data.

B.1 NODE FEATURES

Residue Type Embedding. The key to different amino acid types lies in their side chains, which plays
an important role in biological functions of the protein. Since most natural proteins are composed
of only 20 amino acids, we can establish an embedding of residue types to D dimension vectors to
capture side chain features.

Relative Positional Embedding. A motif is a fundamental structure representing specific biological
functions with a group of adjacent residues. So the relative position of residues can reflect protein
functionality. Given a protein chain composed of N residues, we construct relative positional
embedding for residue i (i ∈ {0, 1, · · · , N − 1}) as follows:

RPi = concatd([i sin(10000
−2d
D ), i cos(10000

−2d
D )]) ∈ RD, d ∈ {0, 1, · · · , D

2
− 1}. (25)

B.2 EDGE FEATURES

We adopt protein representation methods in EquiDock to construct relative position, relative orien-
tation and distance based edge features. Here we introduce a new SE(3)-invariant edge feature to
better understand the protein structure-function relationship.

N-order Resultant Force. The structure of a protein is essentially due to the interactions between
residues and atoms. Based on this, we establish the force relationship between residues. Denote s⃗i→j

as the vector starting at node j and ending at node i, n⃗i,α = norm(
∑

j∈Ni
||s⃗i→j ||−α−1s⃗i→j) as

the direction of the resultant α-order force from neighbors on node i. Then we calculate the inner
product between resultant forces of node i and j as the SE(3)-invariant edge feature

fi,α = ⟨n⃗i,α, n⃗j,α⟩ ∈ R, α ∈ {2, 3, 4}. (26)

C MODEL ARCHITECTURES

We show the intra-part architecure of our model EPIT in Figure 6.

D PROOFS OF THE MAIN PROPOSITIONS

Proof of Proposition 1 In the work of PAINN (Schütt et al., 2021), it has been proved that if
V⃗ ,H ′ = PAINN(X⃗,H), we have V⃗ Q,H ′ = PAINN(X⃗Q+ t⃗,H), ∀Q ∈ SO(3), t⃗ ∈ R3, here
we only need to prove that the graph transformer layer and the inter-part architecture have the same
properties.
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Figure 6: The intra-part architecture of EPIT with the Graph Transformer Layer (GTL) (a) as well
as the message (b) and update blocks (c) of the equivariant message passing. The message block and
the update block together form one EPIT layer.

First, we prove the graph transformer layer satisfies SE(3)-invariance. Given SE(3)-invariance
feature mj→i, from Equation 2, we know that q(u)

j→i,k
(u)
j→i,v

(u)
j→i still satisfy SE(3)-invariance since

mj→i remains the same for any roto-translation transformation. Thus GTL satisfies SE(3)-invariance,
which means the intra-part architecture of EPIT satisfies SE(3)-invariance for features and SO(3)-
equivariance for vectors as well.

Then we prove the inter-part architecture satisfies SE(3)-invariance. From Equation 7, we know that
β
(l)
p ,H

′(l)
p satisfy SE(3)-invariance since H(l)

p is the output of the intra-part layer of EPIT, satisfying
SE(3)-invariance. We have proved that the inter-part architecture of EPIT satisfies SE(3)-invariance.

Proof of Proposition 2 From x⃗′ = Qx⃗+ t⃗ we have x⃗ = Q⊤(x⃗′− t⃗). Substitute x⃗ into the surface
equation before transformation:

(x⃗′⊤ − t⃗⊤)QAQ⊤(x⃗′ − t⃗) + (x⃗′⊤ − t⃗⊤)Qb+ c = 0. (27)

x⃗′⊤QAQ⊤x⃗′ + x⃗′⊤(Qb−Q(A+A⊤)Q⊤t⃗) + t⃗⊤QAQ⊤t⃗− t⃗⊤Qb+ c = 0. (28)

It illustrates that x⃗′ is on the elliptic paraboloid with parameters:

A′ = QAQ⊤, b′ = Qb−Q(A+A⊤)Q⊤t⃗, c′ = c+ t⃗⊤QAQ⊤t⃗− t⃗⊤Qb. (29)

Proof of Proposition 3 Denote L = RR⊤ (then U = L1/2), we can easily show that L is a
positive semidefinite matrix.

∀v⃗ ∈ R3, v⃗⊤Lv⃗ = v⃗⊤RR⊤v⃗ = (R⊤v⃗)⊤(R⊤v⃗) ≥ 0. (30)

For clarity. Since L is symmetric, denote L = SΛS⊤ where S is orthogonal and Λ is diagonal, then
U = L1/2 = SΛ1/2S⊤ is defined as the matrix square root of L, which is unique since L satisfies
positive semidefinite.

For ∀W ∈ SO(3), denote R′ = WR,L′ = R′R′⊤,U ′ = L′1/2, we have

U ′ = (R′R′⊤)
1/2 = (WLW⊤)

1/2 = (WSΛS⊤W⊤)
1/2 = (WS)Λ

1/2(WS)⊤ = WUW⊤.
(31)

Then we can derive that Q satisfies SO(3)-equivariance:

Q′ = U ′−1R′ = (WUW⊤)−1WR = WU−1W⊤WR = W (U−1R) = WQ. (32)
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Next, we show that Q is orthogonal:

Q⊤Q = (U−1R)⊤U−1R

= R⊤(SΛ
1/2S⊤)⊤(SΛ

1/2S⊤)R

= R⊤SΛ−1S⊤R

= R⊤L−1R

= R⊤(RR⊤)−1R

= I.

(33)

Finally, since det(R) > 0,det(L) = det(RR⊤) = det(R)2 > 0, we have

det(Q) = det(U−1R) = det(U−1) det(R) = det(L)−
1/2 det(R) > 0. (34)

So we assert det(Q) = 1, which means Q is a rotation matrix with SO(3)-equivariance.

Proof of Proposition 4 Denote I∗1 , I
∗
2 as the corresponding standard-form elliptic paraboloid

surfaces of ligand and receptor, we can derive the transformation from general form to standard form:

Q(Ip|I∗p ) = Qp, t⃗(Ip|I∗p ) = t⃗p, Q(I∗p |Ip) = Q⊤
p , t⃗(I

∗
p |Ip) = −Q⊤

p t⃗p, p ∈ {1, 2}. (35)

When the receptor is fixed, the transformation of the ligand is the superposition of 1) the transfor-
mation from general to standard of its predicted elliptic paraboloid and 2) the transformation from
standard to general of receptor’s predicted elliptic paraboloid. We show that:

Q1→2 = Q(I2|I∗2 ) ◦Q(I∗1 |I1) = Q2Q
⊤
1 , (36)

t⃗1→2 = Q(I2|I∗2 ) ◦ t⃗(I∗1 |I1) + t⃗(I2|I∗2 ) = t⃗2 −Q2Q
⊤
1 t⃗1. (37)

E MORE EXPERIMENTAL DETAILS

Training details Our models are trained and tested on an Intel(R) Xeon(R) Gold 5218 CPU @
2.30GHz and a NVIDIA GeForce RTX 2080 Ti GPU. We save the top-10 models with the lowest
loss evaluated on the whole validation set and apply early stopping with the patience of 8 epochs.
After the training process, we test CRMSD and IRMSD on the test set of all 10 best validated models
and record the best performance. During training process, we randomly select SO(3) rotation and R3

translation to apply to ligand coordinates and get the unbound structures as the input for the model.

Metrics We give specific definitions of CRMSD, IRMSD and DockQ below.

CRMSD. Given the ground truth and predicted complex structure X⃗∗, X⃗ ∈ RN×3, N = N1 +N2,
we first conduct point cloud registration by Kabsch algorithm (Kabsch, 1976), and compute CRMSD

=
√

1
N ||X⃗∗ − X⃗||2.

IRMSD. Interface RMSD is similar to CRMSD but only computed among pocket points. We
have already obtained the ground truth pockets P⃗ ∗

1 , P⃗
∗
2 for ligand and receptor, then we select

nodes with the same index as P⃗ ∗
1 , P⃗

∗
2 from the predicted complex structure, denoted as P⃗ ′

1, P⃗
′
2.

After concatenating P⃗ ∗
1 , P⃗

∗
2 and P⃗ ′

1, P⃗
′
2 respectively we get the pocket nodes of the complex,

P⃗ ∗, P⃗ ′ ∈ R2K×3. We compute IRMSD in the same way as CRMSD with ground truth and predicted
pocket nodes P⃗ ∗ and P⃗ ′.

DockQ. DockQ is a weighted average of three terms including contact accuracy, interface RMSD and
ligand RMSD, which is a quality measure for protein-protein docking models. We compute DockQ
with the public tool5.

5https://github.com/bjornwallner/DockQ.
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Test sets All test samples can be found in PDB (Burley et al., 2017), here we only list the entry IDs
of complexes in the corresponding test set.

DB5.5 test set. 1AVX, 1H1V, 1HCF, 1IRA, 1JIW, 1JPS, 1MLC, 1N2C, 1NW9, 1QA9, 1VFB, 1ZHI,
2A1A, 2A9K, 2AYO, 2SIC, 2SNI, 2VDB, 3SZK, 4POU, 5C7X, 5HGG, 5JMO, 6B0S, 7CEI.

SAbDab test set (RAbD). 3MXW, 3O2D, 3K2U, 3BN9, 3HI6, 4DVR, 4G6J, 1FE8, 4ETQ, 4FFV,
1NCB, 3W9E, 3RKD, 5BV7, 5HI4, 5J13, 4CMH, 1N8Z, 3L95, 3S35, 1W72, 3NID, 4XNQ, 1A2Y,
4KI5, 1IC7, 4OT1, 1A14, 5D93, 5GGS, 1UJ3, 4DTG, 3CX5, 2ADF, 2B2X, 4G6M, 2XWT, 4FQJ,
2DD8, 5L6Y, 5MES, 2XQY, 2VXT, 4LVN, 5NUZ, 4H8W, 4YDK, 5B8C, 5EN2, 1OSP, 4QCI, 5F9O,
1IQD, 2YPV.

It should be noted that HDock is unable to conduct docking on PDB 5HI4 and PDB 5MES, thus the
results of HDock reported in Table 2 have excluded the two samples.

Hyperparameters We show hyperparameter choices for training in Table 4 and bold the best
performing ones after evaluating on the corresponding validation set.

Visualization The comparison of the predicted complex structures from different methods on PDB
1W72 has been illustrated in Figure 7. We also provide visualization of elliptic paraboloid interfaces
predicted by ElliDock on protein complex samples in Figure 8.

Table 4: Hyperparameters of the training process. The bold marks represent the optimal parameters
among their candidates based on validation results.

Params DB5.5 SAbDab
learning rate 2e-4 2e-4, 3e-4, 5e-4
layers of EPIT L 2, 3 2, 3, 4, 5
embed size D 64 64
hidden size H 128 128
attention heads U 16 4, 8, 16, 20
neighbors 10 10
RBF size 20 20
radial cut (Å) 3.0 1.0, 2.0, 3.0
dropout rate 0.1 0.1
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Figure 7: Visualization of the predicted complex structures from different methods on PDB 1W72
(from RAbD).

Figure 8: Visualization of elliptic paraboloid interfaces predicted by ElliDock on protein complex
samples (from DB5.5). Red: ligand, green: receptor, blue: the predicted interface.
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