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ABSTRACT

Recent works have developed detailed understanding of large neural networks’
behaviors via their infinite-width limits, e.g., the neural tangent kernel (NTK)
and the feature learning (µ) limits. These theories were developed for stochastic
gradient descent. Yet, in practice, all large NN are trained using Adam or other
adaptive gradient optimizers (AGO), which are not covered by such previous works.
Here, we close this gap via the Tensor Programs framework. Specifically, for deep
MLPs, we derive the NTK and µ parametrizations as well as their infinite-width
limits. We find 1) The NTK limit of AGO, in contrast to that of SGD, now depends
nonlinearly on the loss derivative but nevertheless still fails to learn features; 2)
this is fixed by the µ limit of AGO (as in the case of SGD). To obtain these results,
we extend the Tensor Programs language with a new instruction that allows one to
express the gradient processing done by AGOs.

1 INTRODUCTION

Infinite width limits of neural networks have been a major focus of study in the last several years,
underlying some of the most profound recent breakthroughs in our theoretical understanding of deep
learning. Specifically, two types of limits have garnered the lions share of attention from the research
community. The kernel limit, popularized by the seminal work of Jacot et al. (2018) refers to a
regime of training where weights remain roughly in their initialized values, and training may be
entirely characterized in function space by a constant kernel of a particular form, which depends on
the network architecture. While easier to analyze, this limit does not permit updates to the internal
representation of the network, hence it cannot account for data dependent feature learning, a staple
of deep learning in practice. In contrast, the µ limit (of which the well-known mean field limit
is a specific case in 1-hidden-layer perceptrons) refers to a regime of training where the weights
adapt to the data during training in a nonlinear fashion, facilitating representation learning. It was
recently shown in Yang & Hu (2020) that, under vanilla gradient based training, the precise setting
of various hyperparameters relating to initialization scale and learning rate determine the type of
infinite-width limit one can associate with a trained neural network. Notably, the µ parameterization
was identified as the unique parameterization which gives rise to "maximal" feature learning dynamics
in the infinite-width limit, where maximal refers to the fact that every layer learns features. However,
quite remarkably, no such limits have yet been formally established for adaptive gradient based
optimization of neural networks, which we make the focus of the present paper. Our main results
in the paper are the identification and prescription of two types of infinite-width limits relating to
popular AGO, the counterparts of the kernel and feature learning limits for vanilla GD. For the kernel
limit counterpart, we uncover a fundamentally different dynamics for adaptive optimization, referred
to as the adaptive neural tangent kernel (ANTK) regime. In this limit, the training dynamics can no
longer be described by kernel gradient descent, since the kernel function itself depends non-linearly
on the loss derivative. Our results lay a clear path to theoretically analyze the implicit biases of AGO
in the infinite-width limit.

Key Technical Contribution: Analyzing the dynamics of adaptive optimization of arbitrary neural
network architectures in the infinite-width limit presents a major technical challenge. As a main
technical tool, we build upon the TP framework introduced and developed in a series of recent
papers Yang (2019; 2020a;b). At a high level, the mechanics of the TP technique involves 1) write
∗Please see arxiv.org for the full, updated version of this paper
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down the relevant neural network computation (e.g. the first forward pass in the NNGP case) as a
principled composition of matrix multiplication and coordinatewise nonlinearities, called a Tensor
Program, and 2) recursively calculate the distribution of coordinates of each vector via what’s called
the Master Theorem. However flexible, the "language" of TP is not expressive enough to represent
the necessary computations involving adaptive optimization since it does not support the application
of nonlinear functions to high order tensors. In the present paper, we solve this issue by expanding
the TP framework with additional functionities, and proving a new master theorem which enables
our analysis. While we present a simple application of our new framework on MLPs in Theorem 4.1
and Theorem 4.2, it is applicaple in a much wider setting, including most practical architectures and
algorithms. As an additional technical contribution, we prove a O(n−1/2) (where n represents the
width) convergence rate guarantee for all variables produced by the program, which might be of
independent interest.

Our Contributions: This paper presents the following major contributions:

1. We present the first rigorous infinite-width analysis of adaptive optimization of MLPs
parameterized using the ANTK and µ parameterizations. Our results rigorously equate
training of such networks to discrete time dynamical equations.

2. We develop a new tensor program framework along convergence rate guarantees, unlocking
the infinite-width analysis of adaptive optimization in an architecturally universal sense.

Paper Organization: This paper is organized as follows: We survey related work in Section 2.
In Section 3 we set up preliminaries and notations used extensively in Section 4. In Section 4 we
illustrate ANTK and µ limits for MLPs. Section 5 is dedicated to a formal introduction to the new TP
framework. Although it is used as a main tool to prove our results in Section 4, Section 5 is more
general and can be read as a standalone.

2 RELATED WORK

A large body of literature exists on both the kernel (NTK) limit Arora et al. (2019); Jacot et al.
(2018); Lee et al. (2019); Yang (2020c); Yang & Littwin (2021) and the mean field limit for 2
layer neural network Chizat & Bach (2018); Mei et al. (2018b); Nguyen & Pham (2020); Rotskoff
& Vanden-Eijnden (2018); Sirignano & Spiliopoulos (2020). Various papers describe the kernel
and feature learning regimes more generally without taking an infinite-width limit. Chizat et al.
(2019) describes the "lazy training" regime in arbitrary differentiable programs, and is controlled
by a single parameter α which scales the output. It is shown that when α is large, the weight need
only move slightly to fit the training data, and network essentially performs kernel learning. Many
papers Allen-Zhu et al. (2019); Huang & Yau (2020); Mei et al. (2018a) view the kernel and feature
learning regimes as learning in different timescales, explicitly incorporating the time dependence in
the infinite-width limit, and others derive finite width corrections to the NTK for finite width networks
Hanin & Nica (2020); Littwin et al. (2020a). In this paper, we consider training time to be constant,
and take only the width to infinity. This way, kernel and feature learning behaviour are separated by
the parameterization employed at initialization, and not width or training time. TPs, first introduced
in Yang (2019) and expanded upon in Yang (2020a;b), were developed as a theoretical framework to
analyze the infinite-width limits of any architecture expressible in the TP language, in an attempt
to rid the per architecture analysis prevalent in the literature Alemohammad et al. (2021); Du et al.
(2019); Hron et al. (2020); Littwin et al. (2020b). Yang & Hu (2020) defined a natural space of neural
network parametrizations (abc-parametrizations), and classified all resulting infinite-width limits
into two possible catagories: 1) the kernel limit, in which weights and activations remain roughly in
their initialization state, and 2) feature learning limit, in which weights move substantially and adapt
to data. The µ parameterization was then identified as the "optimal" parameterization for arbitrary
architectures in which all layers learn features, and was later heuristically extended to AGOs Yang
et al. (2021). Unrelated, AGOs Duchi et al. (2010); Kingma & Ba (2015); Zhou et al. (2018) and
their variants were developed to accelerate learning by adapting the learning rate on a per parameter
basis, and currently serve as a prerequisite for training large scale transformer models Huang et al.
(2020); Liu et al. (2020); Zhang et al. (2019). Crucially, no previous work has yet developed a theory
for infinite-width neural network trained with AGOs.
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3 PRELIMINARIES

Adaptive Optimizers: Generically, if g0, g1, ..., gt ∈ R denote the gradients of some scalar pa-
rameter w ∈ R at steps 0, 1, ..., t, an adaptive update ∆wt = wt+1 − wt at step t takes the form
∆wt = −η m√

v+ε
where η is the learning rate and m and v are both functions of the past gradients

g0, . . . , gt. For example, in Adam, m and v are the exponential moving averages of g(i) and g2
(i).

Here, we consider an even more general notion of adaptive updates, encompassing all modern AGOs.

Definition 3.1. We say an update ∆wt ∝ Qt(g0, g1, ..., gt; ε) to a weight w at time t is adap-
tive if it is proportional (up to a constant factor) to a function Qt : Rt+1 → R such that
∀c6=0, Qt(cg0, cg1, ..., cgt; cε) = Qt(g0, g1, ..., gt; ε). Moreover, if Qt(g0, g2, ..., gt; ε) = Q(gt; ε)
(only depends on gt), then we furthermore say ∆wt is memoryless.

To maximize clarity, we focus on the simpler case of memoryless adaptive updates in the main text.
For example, in Adam this implies setting β1, β2 = 0. This simplification will already highlight the
key differences between the adaptive and non-adaptive case. We provide an extension of these results
to the case of AGOs with memory in Appendix C, and provide numerical verification of our results in
Appendix D.

MLPs and ABC(D) Parameterization: We use a standard scalar output MLP f with L hidden
layers as a working example to illustrate the adaptive kernel and feature learning limits. Given an
input sample ξ ∈ Rdin , weight matrices WL+1 ∈ Rn, {W l}Ll=2 ∈ Rn×n,W 1 ∈ Rn×din and an
activation function φ which we assume has a pseudo lipschitz first derivative, the output f(ξ) ∈ R is
given by:

f(ξ) = WL+1>xL(ξ),

{
xl(ξ) = φ(hl(ξ)) for 1 ≤ l ≤ L
x0(ξ) = ξ

, ∀1≤l≤L h
l(ξ) = W lxl−1(ξ) (1)

We adopt the ABC parameterization convention from Yang & Hu (2020). Namely, for any layer
l, each weight matrix is parameterized using W = n−alwl where wl are the learnable weights,
which are initially sampled iid from a normal distribution N (0, n−2bl). Finally, the learning rate is
parameterized using ηn−cl where we plug η = 1 for simplicity. In this paper, we assign specific values
to {al}l, {bl}l, {cl}l for the ANTK and µ parameterizations. Additionally, we will parameterize the
ε parameter in the AGO with εl = n−dlε, where ε > 0. The per-layer scaling for εl will turn out to
be crucial to prevent the adaptive gradients from collapsing to either 0 or a step function as n→∞.
We summarize the two parameterizations in the following table:

Parameterization al bl cl dl

ANTK
{

1
2 l > 1

0 else
0

{
1 L+ 1 > l > 1
1
2 else

{
1 L+ 1 > l > 1
1
2 else

µ


− 1

2 l = 1
1
2 l = L+ 1

0 else

1
2

{
1 L+ 1 > l > 1
1
2 else

{
1 L+ 1 > l > 1
1
2 else

Table 1: ANTK and µ parameterizations.

Representing (pre)Activation Vectors via Random Variables: As we will see, as width becomes
large, the entries of the activation and preactivation vectors will become roughly iid (just like in
the SGD case), both at initialization (which is easy to see) and training (which is harder to see).
Hence a vector’s behavior can be tracked via a random variable that reflects the distribution of its
entries. Concretely, if x ∈ Rn is one such vector, then we write Zx for such a random variable,
such that x’s entries look like iid samples from Zx. When x is scaled to have typical entry size
independent of n,1 then Zx can be taken to be a random variable independent of n as well. In general,
given two such vectors x, y ∈ Rn, their random variables Zx and Zy will be correlated, in such a

1i.e., kxk2/n = �(1) as n ! 1
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way that limn→∞
x>y
n = EZxZy. Generally, inferring with initialized networks entail computing

expectations with gaussian Z variables, which take a relatively simple form. However, a fundamental
question is how the Z variables evolve during training, which we address next.

4 ADAPTIVE OPTIMIZATION OF AN MLP

In the following section we illustrate the infinite-width limits of adaptive optimization for simple
MLPs. For each parameterization, we begin by laying the basic intuition, culminating in Theorem 4.1
and Theorem 4.2. For a cleaner presentation, we assume the first and last layers are fixed, however
our results are easily extended to the general case. In our setup we assume the network is trained
using an AGO according to Definition 3.1,and a batchsize of 1.

Notations: Slightly abusing notation, we use subscripts to denote both the step index t, and
coordinates of vectors with α, β. We assume ξt is a training sample fed to the neural network at
step t (starting from ξ0). and we use yt(ξ) for any input dependent vector/scalar y to denote its
evaluation given ξ at step t. To reduce clutter we remove explicit dependency on input if it is
implied by the step index (i.e yt = yt(ξt) and y = y0(ξ0)). We use ỹt = yt(ξ̃) to express the
dependency of y on an arbitrary input ξ̃ at step t. We will also denote ∆yt(ξ) = yt+1(ξ) − yt(ξ)
and δyt(ξ) =

√
n∆yt(ξ). We assume the network is trained using a generic loss function L, with a

loss derivative L′t = ∇ftLt. We use the notation dhl based on context: for ANTK parameterization,

we set dhl(ξ) def
=
√
n ∂f
∂hl

(ξ) ∈ Rn, whereas for µ parameterization, we set dhl(ξ) def
= n ∂f

∂hl
(ξ) ∈ Rn.

This context dependent notation is convenient since it insures that the components of dhl(ξ) are
roughly in the order of Θ(1) for both parameterizations. Finally, we use •̊ to denote the infinite-width

limit of a (possibly random) scalar • (i.e limn→∞ f̃t =
˚̃
ft). Using the above notation, we can express

the gradient of any intermediate layer wl at step t for both parameterizations by 1
ndh

l
tx
l−1>
t Lt. Using

Definition 3.1 the adaptive weight update ∆wl for both parameterizations is given by:

∀1<l≤L, ∆wlt = − 1

n
Q(

1

n
dhltx

l−1>
t L′t;

ε

n
) = − 1

n
Q(dhltx

l−1>
t L′t; ε) (2)

where the function Q is applied element-wise on the matrix dhltx
l−1>
t L′t ∈ Rn×n. For the remainder

of the paper we will suppress the explicit the dependency on ε and simply absorb it into Q.

4.1 THE ANTK LIMIT

In the NTK limit, intuitively, the weights of the neural network move by a negligible amount during
training, such that the network function may be approximated by its first order Taylor expansion
around its initialization. This intuition carries over to the ANTK limit as well. At a high level,
the following hold at any step t: ∆h̃lt for any layer l will be of order Θ(n−

1
2 ). By definition

h̃lt+1 = h̃lt + ∆h̃lt, hence the coordinates of h̃lt for any layer l do not change in the limit, and, for
any input, the coordinate distributions remain constant ∀l∈[1,l]Z

~hlt = Z
~hl , Zd

~hlt = Zd
~hl . Instead of

training f , we consider training the first order linearization of f , denoted by f lin, around its initial
parameters. The function updates ∆f̃ lin

t are given by

∆f̃ lin
t = − 1

n2

L∑
l=2

dh̃l>Q
(
dhltx

l−1
t L′t

)
x̃l−1 (3)

Under the ANTK parameterization, as with SGD, training f lin and f using AGO is equivalent. The

following theorem describes the evolution of ˚̃
ft exactly:

Theorem 4.1. Let f(ξ) ∈ R denote an MLP as in Eq. (1) parameterized using the ANTK parameter-
ization described in Section 4.1, where φ′ is pseudo-Lipschitz. Assume layers {wl}Ll=2 are trained
using a memoryless AGO with a pseudo-Lipschitz function Q according to Definition 3.1 and a
batchsize of 1, using a loss function L with a pseudo-Lipschitz first derivative. Then, at any step t
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and for any sample ξ̃, it holds that f̃t
a.s→ ˚̃
ft where ∆

˚̃
ft = −KAdp(ξt, ξ̃|L̊′t), where:

KAdp(ξt, ξ̃|L̊′t) =

L∑
l=2

E
[
Zd

~hlQ
(
Zdh

l(ξt)Zx
l�1(ξt)L̊′t

)
Z ~xl�1]

(4)

L̊′t = L′t(f̊t(ξt)) (5)

where the expectation is taken over all Z variables at initialization.

Let us discuss Theorem 4.1 in a bit more detail. First, note that after the output values f̃t, and by
extension the loss derivatives L′t are deterministic after conditioning on the outputs f at initialization,
hence the only source of randomness in Eq. (162) is from the Z variables at initialization 2. Second, it
is straightforward to show that by setting Q(x) = x we would get the SGD equivalent (when setting

the learning rate to be 1) of Eq. (162), which takes the form f̃ sgd
t ≈ −

∑L
l=2

dhl>t d~hlt
n

xl�1>
t ~x1�1

t

n L′t.
For SGD, one may naively apply the the law of large numbers argument (LLN) and derive the

infinite-width limit under plain SGD: ∆
˚̃
f sgd
t

a.s→ −K(ξt, ξ̃)L̊′t where K is the NTK function defined
as:

K(ξt, ξ̃) =

L∑
l=2

E[Zdh
l(ξt)Zd

~hl ]E[Zx
l�1(ξt)Z ~xl�1

] (6)

Hence Theorem 4.1 is a generalization of the well known NTK limit. At a glance, the transition
from Eq. (3) to its infinite-width counterpart seems like a straightforward application of LLN.
However, the validity of Theorem 4.1 is not at all straightforward, and cannot be obtained by applying
gaussian conditioning based arguments as in Yang & Littwin (2021), even for the first weight update.
Technically, the complication arises from nonlinearity of the Q function: unlike SGD where nonlinear
functions are only applied to vectors, in Eq. (3) we construct a matrix (more generally a tensor) using
a nonlinear function Q. Operations of this type make even the simplest case, where all inputs are iid
gaussian, tricky to analyze. Developing a general framework to handle such operations will be key to
developing a general framework to prove our main results later on. We discuss this technicality in
more detail in Section 6.

For general adaptive updates, Theorem 4.1 implies that KAdp is nonlinear in the loss derivative L′t,
inducing a fundamentally different dynamics then the kernel gradient descent featured with SGD, and
we leave the more in depth analysis of its nature for future work. Similar to NTK however, the ANTK
limit does not allow data dependent feature learning, since the weights and activations remain roughly
at their initialized values. This allows us to adopt a function space view of the training dynamics,
where the output updates depend solely on the values of the outputs in the previous iteration, and
without any dependence on the state of the internal representation computed by the network, which
remain unchanged. In contrast, the µ parameterization allows data dependent feature learning in the
infinite-width limit, which we analyze next.

4.2 FEATURE LEARNING WITH µ PARAMETERIZATION

We now turn to analyzing the infinite-width training dynamics under µ parameterization. Funda-
mentally, each weight update ∆wlt will cause each preactivation vector h̃lt to change entrywise by
something of order Θ(1), and the coordinate distributions at the limit will evolve non-trivially. Gen-
erally, the dynamical equations equivalent of an infinite-width neural network in the feature learning
regime (using µ or otherwise) is much more complex to derive for deep networks. Although our new
TP formulation discussed in Section 5 provides a complete set of tools to tackle most architectures,
we will be content with illustrating the main points using a 2 hidden layer MLP where only the middle
layer weights w2 are trained. Using Eq. (2), we can express h̃2

t+1, x̃
2
t+1, f̃t+1 using:

h̃2
t+1 = h̃2

t −
1

n
Q(dh2

tx
1>
t L′t)x̃1, x̃2

t+1 = φ(h̃2
t+1), f̃t+1 =

√
nw3>x̃2

(t+1)

n
(7)

Note that under µ the coordinates of
√
nw3 are randomly distributed according as N (0, 1), hence

we expect ∆f̃t to be Θ(1). Due to the Q function applied to the gradient, the components of the
2The Z variables are in fact independent from the outputs f(ξ). This is made rigorous in the proof.
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Rn×n matrix Q(dh2
txtL′t) are not vanishing as n → ∞, and the update 1

nQ(dh2
tx

1>
t L′t)x̃1 is by

consequence generally not vanishing as well. Since the updates ∆h̃2
t are non vanishing, the feature

vector x̃2
t evolves substantially (for non degenerate φ), which enables feature learning. Taking

the limit of Eq. (7) to derive dynamical equations is again not an easy task. Consider the case
where Q = Identity, which results in the update equation h̃2

t+1 = h̃2
t −

~x1>x1(ξt)
n dh2

tL′t, and can be
expressed purely using operations between vectors. For general nonlinear Q functions, we must deal
with a matrix - vector multiplication as in Eq. (7). This implies that unlike with SGD where we must
reason about how a finite collection of Rn vectors behave in the limit, we must now reason about the
behaviour of Rn×n matrices (see Section 6 for further discussion on this). The following theorem

describes the evolution of ˚̃
ft under µ exactly:

Theorem 4.2. Let f(ξ) ∈ R denote an MLP as in Eq. (1) with L = 2 parameterized using the
µ parameterization described in Section 4.1, where φ′ is pseudo-Lipschitz. Assume layers w2 is
trained using an AGO with a pseudo-Lipschitz function Q function according to Definition 3.1 and a
batchsize of 1, using a loss function L with a pseudo-Lipschitz first derivative. Then at any step t and

for any sample ξ̃, it holds that f̃t
a.s→ ˚̃
ft where ˚̃

ft can be computed as follows:

Z
~h2
t+1 = Z

~h2
t − EZx1(ξt),Zx̃1

[
Q(ζφ′(Zh

2
t )Zx

1(ξt)L̊t)Z ~x1]
(8)

Z ~x2
t = φ(Z

~h2
t ), f̃0 = 0, f̃t = E[ζZ ~x2

t ], L̊′t = L′t(f̊t(ξt)) (9)

where the expectations are taken over all Z variables (including ζ d
= N (0, 1)).3

From Theorem 4.2 it is clear in what sense µ parameterization enables feature learning in the limit:
from Eq. (8) the random variable encoding the updates to the hidden representation Z~h2

t is of order
Θ(1) for non degenerate Q and φ functions, and is generally no longer gaussian at steps t > 0,
allowing the neural network to learn data dependent features. Once again, substituting Q(x) = x
would default the equations in Eq. (8) back to those of SGD with an appropriate step size, hence our
Theorem 4.2 generalizes feature learning with SGD.

5 A TENSOR PROGRAM FOR ADAPTIVE OPTIMIZERS

In Section 4 we have derived two types of limits in a relatively restricted setting of training an MLP.
In the following section, we go into more detail into the TP framework that allows such principled
derivations in a much broader setting. While doing so, we will highlight the additional functionities
introduced in the present paper that are key to unlocking the analysis of adaptive optimization,
and removing certain assumptions preventing previous iterations from achieving full architectural
generality. In the previous section we have provided intuitive calculations for computing the infinite-
width limits of trained neural networks by explicitly expressing the updates to the network internal
representation and output at step t, and then naively converting coordinates of vectors to iid samples
from a known distribution (the Z variables) . However, these computations become exceedingly
complex with an arbitrary number of updates and complex architectures, and it is not clear whether
these arguments can be applied in a general setting. Tensor programs is a framework designed
to automate these computations, while providing theoretical guarantees. Generally, computations
involving adaptive optimization of most architectures contain a few repeating operations (i,e matrix
multiplications, point wise non linearities...), applied to variables of different types (i.e matrices,
vectors and scalars). This brings forth the notion of a program: A directed computational graph where
nodes represent variables (typically Rn vectors or scalars), and edges represent operations performed
on the variables. As a concrete example, the forward pass of an MLP given some input can be
expressed as a tensor program where the input represents the root node, and the affine transformation
in each layer represent an edge between nodes. We give a more formal description of our framework
in the following.

5.1 NE⊗ORT PROGRAMS

Definition 5.1. A NE⊗ORT program is a sequence of Rn-vectors and R-scalars inductively generated
via one of the following ways from an initial set C of random scalars, V of random Rn vectors, and

3Once again, the loss derivatives L′t are deterministic in Eq. (8)
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a setW of random Rn×n matrices (which will be sampled with iid Gaussian entries in Setup 5.2).
Concretely, using weightsW and some pseudo-lipschitz function ψ : Rk(r+1)+l → R for k, l, r ∈ N,
the program generates new vectors and scalars from previously generated vectors x = {x1, ..., xk} ∈
Rn and scalars Θ = {θ1, θ2, ..., θl} ∈ R by the following instructions (using the notation xi =
{x1

i , ..., x
k
i }):

TENSOR Generates a vector x ∈ Rn by xα = 1
nr

∑n
β1,...,βr=1 ψ(xα,xβ1

, ...,xβr ; Θ).

TENSORMOMENT Generates a scalar θ ∈ R by θ = 1
nr+1

∑n
α,β1,...,βr=1 ψ(xα,xβ1

, ...,xβr ; Θ).

MATMUL Generates a vector x ∈ Rn by x = Wx̄ or x = W>x̄ where x̄ ∈ x,W ∈ W .

Let us unpack Definition 5.1. We can think of the TENSOR operation as a generalized version of the
standard pointwise nonlinearity which acts on vectors (or tensors where only one dimension increases
to infinity, akin to the NONLIN instruction in Yang (2020b). Instead, the TENSOR instruction applies
a pointwise nonlinearity ψ to a tensor of rank r + 1 where all dimensions are of size n, and then
contracts r dimensions to produce a vector. We note that the instruction subsumes the standard
applications of (non)linear functions applied to vectors by setting r = 0. The TENSORMOMENT
operation allows us to fully contract a tensor of rank r+ 1 to a scalar. Finally, the MATMUL operation
is copied over from Yang (2020b), and implements a standard linear layer.

The initial sets of vectors and scalars V, C, and weights W are randomly sampled according to
Setup 5.2:
Setup 5.2. 1) For each initial W ∈ W , we sample iid Wαβ ∼ N (0, σ2

W /n) for some variance
σ2
W associated to W , independent of other W ′ ∈ W; 2) for some multivariate Gaussian ZV =
{Zx : x ∈ V} ∈ RV , we sample the initial set of vectors V like {xα : x ∈ V} ∼ ZV iid for each
α ∈ [n]. 3) For each initial scalar θ ∈ C, we require ∀p>0, n

1−p(θ−θ̊)2 a.s.−−→ 0 for some deterministic
θ̊ ∈ R.

Note that the initial set of vectors V are assumed to be gaussian in Rn. In a typical neural network
training scenario, the initial vectors correspond to input/output layer weights and biases at initializa-
tion, and the initial matrices correspond to hidden layer weights at initialization, so their Gaussian
sampling reflects their Gaussian initialization.

Example: A program encoding the first forward,backward and adaptive update (Eq. (7)) using µ
parameterization is provided in Table 2

Expression Op type Implementation
h2 = W 2x1 MATMUL
x2 = φ(h2) TENSOR ψ(h2) for ψ(a) = φ(a)

f =
√
nw3>x2

n TENSORMOMENT 1
n

∑n
α=1 ψ(

√
nw3

α, x
2
α) for ψ(a, b) = ab

L′(f) TENSORMOMENT 1
n

∑n
α=1 ψ(; f) for ψ(; θ) = L′(θ)

dh2 TENSOR ψ(
√
nw3, h2) for ψ(a, b) = aφ′(b)

∆h̃2 TENSOR 1
n

∑n
β=1 ψ(dh2, x1

β , x̃
1
β ;L′)

for ψ(a, b, c; θ) = Q(abθ)c

Table 2: A NE⊗ORT Program encoding the forward/backward and adaptive update of an MLP.
In the above, a, b, c, θ ∈ R represent inputs to some function ψ implementing a TENSOR or a
TENSORMOMENT instruction.

5.2 THE MASTER THEOREM

We can guarantee certain properties hold for vectors and scalars generated by a tensor program in the
infinite-width limit. In short, any generated scalar θ will almost surely converge to a deterministic
limit θ̊ as n→∞, at a rate of O( 1√

n
). For any generated vector x ∈ Rn, the coordinates of x will

approach iid samples from some distribution. Adopting the notation from Section 3, we denote by

7
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Zx a random variable distributed like the coordinates of x as n→∞. The following constructs the
random variable Zx for every vector x and a deterministic scalar θ̊ for every scalar θ in the program,
where we assume x = {x1, ..., xk},Θ = {θ1, ..., θl} are previously generated vectors and scalars,
and we use the abbreviated Zx to denote the set of k random variables {Zxi}ki=1 for all xi ∈ x.

Definition 5.3 (Zx and θ̊). We recursively define Zx def
= Ẑx + Żx for each vector x and θ̊ for each

scalar θ as follows:

ZINIT If x ∈ V , then Zx is defined as in Setup 5.2. We also set Ẑx def
= Zx and Żx def

= 0.

ZTENSOR If x is generated by TENSOR (see Definition 5.1), then Zx def
= f(Zx) where f(ζ)

def
=

EZx1 ,...,Zxr [ψ(ζ, Zx1 , Z
x
2 , Z

x
r ; Θ̊)] with Zxi being iid copies of Zx.

ZTENSORMOMENT If θ is generated by TENSORMOMENT (see Definition 5.1), then θ̊
def
=

EZx,Zx1 ,...,Zxr [ψ(Zx, Zx1 , ..., Z
x
r ; Θ̊)]. Here Θ̊ = θ̊1, . . . , θ̊l are deterministic, so the ex-

pectation is taken over Zx, Zx1 , ..., Z
x
r , where {Zxj }rj=1 are r iid samples drawn from the

same distribution as Zx.

ZMATMUL If x = Wx̄ for x̄ ∈ x,W ∈ W then ZWx def
= ẐWx + ŻWx, where:

ZHAT ẐWx is a Gaussian variable with zero mean. Let VW denote the set of all vec-
tors in the program of the form Wy for some y. Then {ẐWy : Wy ∈ VW } is
defined to be jointly Gaussian with zero mean and covariance Cov

(
ẐWx, ẐWy

)
def
=

σ2
W EZxZy, for any Wx,Wy ∈ VW .. Furthermore, {ẐWy : Wy ∈ VW } is

mutually independent from {Ẑv : v ∈ V ∪
⋃

�W 6=W V �W }, where W̄ ranges over
W ∪ {A> : A ∈ W}.

ZDOT We can always unwind Zx = Φ(· · · ), for some arguments (· · · ) =

({ẐW>yi}ki=1, {Ẑz
i}ji=1; {θ̊i}li=1), zi 6∈ VW> (where VW> is defined in 5.3), and

deterministic function Φ : Rk+j+l → R. Define ∂Zx/∂ẐW
>yi def

= ∂iΦ(· · · ). Then
we set ŻWx def

= σ2
W

∑k
i=1 Z

yi E ∂Zx

∂ẐW>yi
There is some nuance in this definition, so

see Remark A.1 and A.2.

The following theorem ties the symbolic nature of the Zs to the analytic nature of a Tensor Program.

Theorem 5.4 (NE⊗ORT Master Theorem). Fix a NE⊗ORT program initialized accordingly to
Setup 5.2. Assuming all nonlinearities are pseudo-Lipschitz in all arguments, then

1. For any collection of vectors x = {x1, ..., xk} and scalars Θ = {θ1, ..., θl} in the program,
and for any pseudo-Lipschitz ψ : Rk(r+1)+l → R, as n→∞:

1

nr+1

n∑
α,β1,...,βr=1

ψ(xα,xβ1
, ...,xβr ; Θ)

a.s.−−→ EZx1 ,Zx2 ,...,Zxr+1
[ψ(Zx1 , Z

x
2 , ..., Z

x
r+1; Θ̊)]

(10)
where {Zxj }

r+1
j=1 are r + 1 iid samples drawn from the same distribution as Zx, and

Zx = {Zz1

, ..., Zx
k} are defined according to Definition 5.3.

2. Any scalar θ in the program tends to θ̊ almost surely such that ∀p>0, n
1−p(θ − θ̊)2 a.s.−−→ 0,

where θ̊ is as defined in Definition 5.3.

Theorem 5.4 along with Definition 5.3 provide a general tool set to analyze adaptive (and standard)
training of neural networks in the infinite-width limit, as long as the computational graph expressing
the training process can be implemented in a NE⊗ORT program. Moreover, Theorem 5.4 provides a
universal O(n−1/2) asymptotic rate of convergence for all scalars produced by the program.

8
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6 PROOF SKETCH

NE⊗ORT programs equipped with Theorem 5.4 provide the main tool to proving Theorem 4.1 and
Theorem 4.2, and indeed their generalization to most common architectures and adaptive (and non
adaptive) optimizers. This is done by adopting the following strategy: express the optimization
dynamics using a NE⊗ORT program, mechanically compute the Z variables according to Defini-
tion 5.3, and apply Theorem 5.4 to compute the limit (see proofs in appendix Appendix B). What
remains is to prove Theorem 5.4 using a strategy which we now outline.

In a program, all vectors can be collected into an n×M matrix V where n is the dimension of each
vector, and M is the total number of vectors. The Master Theorem can be interpreted as saying that
each row of V (i.e., the slice for each α ∈ [n]) is roughly an iid sample from some distribution D on
RM (which can be derived via the calculus of Z random variables as in Definition 5.3). Specifically,
Theorem 5.4 and all previous versions of the Master Theorem formalize this by saying: this matrix
V of vectors looks similar to a matrix V ′ of iid samples from D, as measured by applying arbitrary
pseudo-Lipschitz “test function ψ” to both sides and taking averages.

Core Insight: Our core insight here is that V is in fact similar to V ′ in a stronger sense without
needing to refer to any test function ψ: There is a “small” matrix δV of the same size as V such that
V − δV is distributed exactly the same as V ′. In general, if this happens, then we say V is equivalent
to V ′. The definition of “small” roughly means that each entry of δV has typical size O(n−1/2).
Then, to recover Theorem 5.4, we just note that the test function ψ is (by assumption) smooth enough
that δV contributes a vanishing amount to the LHS of Eq. (10).

To prove this core insight, there are two parts.

Part 1: We show that, in any NETSOR> program (i.e., a program with no scalar variables and
no TENSOR operation), V is equivalent to V ′. This can be done by re-analyzing the proof of the
NETSOR>Master Theorem in (Yang, 2020b) in a fairly straightforward way.

Part 2: For any NE⊗ORT program π (the subject of our work here), we construct a parallel
NETSOR> program and show, by induction, that the vectors of the two programs are equivalent (i.e.,
distributed exactly the same after subtracting “small” vectors). This parallel program essentially
replaces 1) all scalar variables in the original program by their deterministic limits, as computed
in Definition 5.3(ZTENSORMOMENT), and 2) all TENSOR operations by NONLIN operations, as
computed in Definition 5.3(ZTENSOR).

In this induction, we need to prove and use a lemma that, in the simplest case as an illustration, says
the following: For any pseudo-Lipschitz function ψ : Rk → R and random vector x ∈ Rn with iid
standard Gaussian entries, the following two tensors T and T ′ are equivalent: 1) the tensor T with
entries Tβ1...βk = ψ(xβ1

, . . . , xβk), and 2) the tensor T ′ with entries T ′β1...βk
= ψ(x1

β1
, . . . , xkβk)

where x1, . . . , xk are iid copies of x. The proof of this lemma interestingly requires Baranyai’s
theorem, a classical theorem from the theory of combinatorial design.

7 CONCLUSION

Adaptive optimizers are a staple in the modern deep learning toolkit, an are a necessary ingredient in
most large scale neural network training. In this work, we have derived adaptive counterparts to the
NTK and µ limit in prior works, which had only been derived for SGD. More generally, we have
extended the Tensor Programs framework to allow the expression of any computation graph involving
adaptive optimizers and the calculation of their large width limits. Our work lays a path to study the
implicit bias of adaptive optimizers by studying their evolution equations in the infinite-width limit.
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Appendix organization The appendix is organized as follows:
In Appendix A we prove Theorem 5.4, which serves as the main tool to prove Theorem 4.1 and
Theorem 4.2.
We then proceed to prove Theorem 4.1 and Theorem 4.2 in Appendix B. In Appendix C we extend
the proofs of Theorem 4.1 and Theorem 4.2 to the case of AGOs with memory, and provide numerical
verification to our results in Appendix D.

A FULL PROOF OF THEOREM 5.4

In this section we provide the proof for Theorem 5.4, restated:
Theorem 5.4 (NE⊗ORT Master Theorem). Fix a NE⊗ORT program initialized accordingly to
Setup 5.2. Assuming all nonlinearities are pseudo-Lipschitz in all arguments, then

1. For any collection of vectors x = {x1, ..., xk} and scalars Θ = {θ1, ..., θl} in the program,
and for any pseudo-Lipschitz ψ : Rk(r+1)+l → R, as n→∞:

1

nr+1

n∑
α,β1,...,βr=1

ψ(xα,xβ1
, ...,xβr ; Θ)

a.s.−−→ EZx1 ,Zx2 ,...,Zxr+1
[ψ(Zx1 , Z

x
2 , ..., Z

x
r+1; Θ̊)]

(10)
where {Zxj }

r+1
j=1 are r + 1 iid samples drawn from the same distribution as Zx, and

Zx = {Zz1

, ..., Zx
k} are defined according to Definition 5.3.

2. Any scalar θ in the program tends to θ̊ almost surely such that ∀p>0, n
1−p(θ − θ̊)2 a.s.−−→ 0,

where θ̊ is as defined in Definition 5.3.
Remark A.1 (Partial derivative). The partial derivative in 5.3 should be interpreted as follows. By a
simple inductive argument, Zx for every vector x in the program is defined uniquely as a deterministic
function ϕ(Ẑx

1

, . . . , Ẑx
k

) of some x1, . . . , xk in V or introduced by MATMUL (notationally, we are
suppressing the possible dependence on limit scalars θ̊1, . . . , θ̊l). For instance, if in a program we
have A ∈ W, v ∈ V , y = Av, x = A>y, then Zx = Ẑx + Ẑv, so ϕ is given by ϕ(a, b) = a + b.
Then

∂Zx/∂Ẑx
i def

= ∂iϕ(Ẑx
1

, . . . , Ẑx
k

), and ∂Zx/∂Ẑz
def
= 0 for any z 6∈ {x1, . . . , xk}.

Note this definition depends on the precise way the program is written, not just on the underlying
mathematics. For example, if y, z ∈ V and x = φ(W (y + z)), then Zx = φ(ẐW (y+z)) so that
∂Zx/∂ẐWy = ∂Zx/∂ẐWz = 0. If instead, we have x = φ(Wy+Wz), thenZx = φ(ẐWy+ẐWz)

so that ∂Zx/∂ẐW (x+y) = 0. However, in both cases, ŻW
>x = (Zy + Zz) Eφ′(ẐW (y+z)).

Remark A.2 (Partial derivative expectation). The quantity E ∂Zx

∂ẐW>y
is well defined if Zx is differen-

tiable in ẐW
>y . However, even if this is not the case, e.g. if x = θ(W>y) where θ is the Heavyside

step function, we can still define this expectation by leveraging Stein’s lemma:

In 5.3, suppose {W>yi}ki=1 are all elements of VW> introduced before x. Define the matrix

C ∈ Rk×k by Cij
def
= EZyiZyj and define the vector b ∈ Rk by bi

def
= E ẐW>yiZx. If a = C+b

(where C+ denotes the pseudoinverse of C), then in 5.3 we may set

σ2
W E

∂Zx

∂ẐW>yi
= ai. (11)

This definition agrees with the partial derivative expectation by Stein’s lemma when the latter is well
defined.

Pseudo-Lipschitz functions are, roughly speaking, functions whose weak derivatives are polyno-
mially bounded.
Definition A.3. A function f : Rk → R is called pseudo-Lipschitz of degree d if |f(x)− f(y)| ≤
C‖x − y‖(1 +

∑k
i=1 |xi|d + |yi|d) for some C. We say f is pseudo-Lipschitz if it is so for any

degree.

12
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Here are some basic properties of pseudo-Lipschitz functions:

• The norm ‖ · ‖ in Definition A.3 can be any norm equivalent to the `2 norm, e.g. `p, p ≥ 1,

norms. Similarly,
∑k
i=1 |xi|d + |yi|d can be replaced by ‖x‖dp + ‖y‖dp, for any p ≥ 1.

• A pseudo-Lipschitz function is polynomially bounded.

• A composition of pseudo-Lipschitz functions of degrees d1 and d2 is pseudo-Lipschitz of
degree d1 + d2.

• A pseudo-Lipschitz function is Lipschitz on any compact set.

Indexing notations We use superscripts to distinguish between different tensors in the program, and
subscripts to index into coordinates of tensors. (i.e xij denotes the j’th coordinate of vector xj ∈ Rn.
We typically use β = {β1, β2, ..., βr} to denote a set of coordinates (typically containing r coordi-
nates unless specified otherwise). For any vector x ∈ Rn, xβ denotes the set {xβ1 , xβ2 , ..., xβr}. For

summation over all indices in β, we use the abbreviated notation
∑n
β=1

def
=
∑n
β1=1 ...

∑n
βr=1. We

typically use x to denote a set of vectors {x1, ..., xk}, where the size of the set is implied by the
context. The notation xβ refers to the set of scalars {x1

β1
, ..., xkβ1

, ..., x1
βr
, ..., xkβr} (note that in this

case |xβ| = kr. We additionally use α to index into tensors. The notation xα,β for a vector x refers
to the set {xα, xβ1 , ..., xβr}. Similarly, the notation xα,β for x = {x1, ..., xk} refers to the set of
scalars {x1

α, ..., x
k
α, x

1
β1
, ..., xkβ1

, ..., x1
βr
, ..., xkβr} (in this case |xα,β| = k(r + 1). We use c, C, C̃ as

arbitrary constant scalars throughout the appendix (Their value might change between in different
lines).

Proof. As in previous versions of Tensor Programs, we prove Theorem 5.4 by inducting on the
vectors and scalars in the program. We use the following definitions throughout the proof:

Definition A.4. For any set of vectors x = {x1, x2, ..., xk} in the program, define the matrix Λx ∈
Rk×k : Λxα,β = xα>xβ

n . We say the set x has stable rank if limn→∞ rank(Λx)
a.s
= rank(limn→∞ Λx).

Definition A.5. We say a random vector x ∈ Rn is vanishing if ∀p>0 limn→∞
‖x‖2
np

a.s
= 0.

Definition A.6. We say a random vector x ∈ Rn is regular with constants {č(p), ĉ(p)} if for all
p ∈ (0,∞) there exists constants 0 < č(p) ≤ ĉ(p) < ∞ such that č(p) ≤ limn→∞

‖x‖pp
n ≤ ĉ(p)

almost surely.

Definition A.7. We say a random scalar θ ∈ R is vanishing if it converges almost surely to θ̊, and it
holds that ∀p>0, limn→∞

(θ−�θ)2

np�1

a.s
= 0. Equivalently, (θ − θ̊)1n is a vanishing vector.

Definition A.5 and Definition A.6 extend naturally to tensors, which will come in handy in our analysis.
We index a rank r tensor x ∈ ⊗rRn with indices β = {β1, ..., βr}, such that xβ = x[β1, β2, ..., βr].

Definition A.8. We say a rank r random tensor x ∈ ⊗rRn is vanishing if ∀p>0 limn→∞
‖x‖2
np

a.s
= 0.

Definition A.9. We say a rank r random tensor x ∈ ⊗rRn is regular with constants {č(p), ĉ(p)} if for
all p ∈ (0,∞) there exists constants 0 < č(p) ≤ ĉ(p) <∞ such that č(p) ≤ limn→∞

‖x‖pp
nr ≤ ĉ(p)

almost surely.

A.1 INDUCTION HYPOTHESIS

Setup A.10 (Induction Setup). We will keep track of a set of vanishing scalars Θ (see Definition A.7),
and two sets of vectors: The core set x which contains regular vectors produced by a MATMUL
operation (see Definition A.6 and Definition 5.1), and a vanishing set x̂ of vanishing vectors (see
Definition A.5). We will denote by xW the set of vectors y : Wy ∈ x. Given the sets of vanishing
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scalars Θ, corset x and vanishing set x̂ at some step m in the program, let h ∈ Rn, θ ∈ R define a
new vector and scalar via TENSOR and TENSORMOMENT operations respectively. Namely:

hα =
1

nr

n∑
β=1

ψ(xα,β; x̂α,β; Θ), θ =
1

n

n∑
α=1

hα (12)

where ψ : R(|x|+|x̂|)(r+1)+l → R is pseudo lipschitz in all of its arguments. We further define:

h0
α =

1

nr

n∑
β=1

ψ(xα,β; 0; Θ̊) (13)

h̄α = EZx1 ,Zx2 ,...,Zxr
[
ψ(xα, Z

x
1 , Z

x
2 , ..., Z

x
r ; 0; Θ̊)

]
(14)

∆h = h− x0 (15)

∆h̄ = h0 − h̄ (16)

Our induction hypothesis IH(m) asserts that the following hold simultaneously:

1. ReWrite(m) Any vector produced by MATMUL can be written as a linear combination of
vectors from x and x̄.

2. StableRank(m) For any W ∈ Rn×n, the set xW has a stable rank.

3. Dichotomy(m) It holds that:

(a) h̄ is either a regular or a vanishing vector.
(b) ∆h,∆h̄ are vanishing vectors.

4. TensorMoment(m) It holds that θ a.s→ θ̊, where:

θ̊ = EZx1 ,...,Zxr+1

[
ψ(Zx1 , ..., Z

x
r+1; 0; Θ̊)

]
(17)

5. ConvRate(m) It holds that θ ∈ R is a vanishing scalar, or:

∀p>0,
(θ − θ̊)2

np−1

a.s→ 0 (18)

A.2 HELPER LEMMAS

We use the following Lemmas regularly throughout the proof. Note that some of the lemmas are
stated for the vector, however their extension to tensors are immediate.

Lemma A.11. If u, v ∈ Rn are vanishing vectors, then ν = u+ v is a vanishing vector.

Proof.

∀p>0,
‖ν‖2

np
=
‖u‖2 + ‖v‖2 + 2u� v

np
≤ 3
‖u‖2

np
+ 3
‖v‖2

np
a.s→ 0 (19)

Lemma A.12. If u, v ∈ Rn are regular vectors, then ν = |u|+ |v| is a regular vector.

Proof. for p ∈ [1,∞), using triangle inequality for p norms:

∀p≥1,
‖ν‖pp
n

=
‖|u|+ |v|‖pp

n
≤
((‖u‖pp

n

) 1
p +

(‖v‖pp
n

) 1
p

)p a.s
≤
(
ĉu(p)

1
p + ĉv(p)

1
p

)p
(20)

For p ∈ (0, 1):

∀0<p<1,
‖ν‖pp
n

=
‖|u|+ |v|‖pp

n
≤
‖u‖pp
n

+
‖v‖pp
n

a.s
≤ ĉu(p) + ĉv(p) (21)

One the other hand the lower bound is trivially ∀p≥1,
‖ν‖pp
n

a.s
≥ max(ču(p), čv(p)).
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Lemma A.13. If u ∈ Rn is a vanishing vector, then for any p > 0, it holds that 1
n‖u‖

p
p

a.s→ 0 (i.e u
has vanishing moments).

Proof. For p ≥ 2, we have that:

‖u‖pp
n
≤ ‖u‖

p

n
=
(‖u‖2
n

2
p

) p
2 a.s→ 0 (22)

For 0 < p < 2, using the fact that ∀0<p<q, ‖u‖p ≤ n
1
p−

1
q ‖u‖q and assigning q = 2:

‖u‖pp
n
≤ n1− p2 ‖u‖p

n
=
(‖u‖2
n

) p
2 a.s→ 0 (23)

which proves the claim.

Lemma A.14. If u ∈ Rn is a vanishing vector, and v ∈ Rn is a regular vector, then ν = u+ v is a
regular vector.

Proof. This is immediate from Lemma A.13 and Lemma A.12, and setting the constants for u
{ču(p), ĉu(p)} = {0, 0}.

Lemma A.15. If u ∈ Rn is a vanishing vector, then for any r ≥ 1, ν = |u|r is a vanishing vector. If
u ∈ Rn is a regular vector, then for any r ≥ 0, ν = |u|r is a regular vector.

Proof. For vanishing u, using elementary norm bounds, that ∀1<p<q, ‖u‖q ≤ ‖u‖p and assigning
q = 2:

∀p>0,
‖ν‖2

np
=
‖u‖2r2r
np

≤ ‖u‖
2r

np
=
(‖u‖2
n
p
r

)r a.s→ 0 (24)

The proof for regular u follows immediately from the definition of a regular vector.

Lemma A.16. If u ∈ Rn is a vanishing vector, and v ∈ Rn is a regular vector with constants
{č(p), ĉ(p)}, then ν = u� v is a vanishing vector.

Proof. For any p > 0, choose m, l ∈ (0, 1) such that p > m, and l + m = 1. Using Holders
inequality:

∀p≥0,
‖ν‖2

np
=

n∑
i=1

u2
i

np−m
v2
i

nm
≤
( n∑
i=1

|ui|
2
l

n
p�m
l

)l( n∑
i=1

|vi|
2
m

n

)m
(25)

≤
(‖|u| 1l ‖2
n
p�m
l

)l( n∑
i=1

|vi|
2
m

n

)m
=
(‖|u| 1l ‖2
n
p�m
l

)l(‖v‖ 2
m
2
m

n

)m a.s
≤ 0 ·

(
ĉ(

2

m
)
)m

= 0 (26)

where we used Lemma A.15 to assert that ‖|u|
1
l ‖2

n
p�m
l

a.s→ 0.

Lemma A.17. If θ is a vanishing scalar, then f(θ) for f : R→ R is a vanishing scalar if f is locally
lipschitz at θ̊, and f(θ̊) = 0.

Proof. WLOG assume ∀(θ−�θ)2<εf(θ) < A|θ − θ̊| for some ε ∈ R. Define :

g(θ) =

{
A|θ − θ̊| (θ − θ̊)2 ≤ ε
f(θ) else

(27)

Since θ → θ̊ almost surely, this implies that Prob(limn→∞(θ − θ̊)2 < ε) = 1, hence (θ − θ̊)2 < ε
almost surely. Therefore:

∀p>0, lim
n→∞

f(θ)

n1−p ≤ lim
n→∞

g(θ)

n1−p
a.s
= lim
n→∞

A
(θ − θ̊)2

n1−p
a.s
= 0 (28)
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Lemma A.18. Let x, x̂ denote sets of regular and vanishing vectors, and let ψ : R|x|+|x̂| → R be
pseudo lipschitz. Then:

lim
n→∞

1

n

n∑
α=1

ψ(xα; x̂α) = lim
n→∞

1

n

n∑
α=1

ψ(xα; 0) (29)

Proof. We have that:

ψ(xα; 0)−
∣∣∣ψ(xα; x̂α)− ψ(xα; 0)

∣∣∣ ≤ ψ(xα; x̂α) ≤ ψ(xα; 0) +
∣∣∣ψ(xα; x̂α)− ψ(xα; 0)

∣∣∣ (30)

Since ψ is pseudo lipschitz:∣∣∣ψ(xα; x̂α)− ψ(xα; 0)
∣∣∣ ≤ ‖x̂α‖(1 + ‖x̂α‖dd + ‖xα‖dd

)
(31)

Define the vectors uα =
(
1 + ‖x̂α‖dd + ‖xα‖dd

)
, vα = ‖x̂α‖Note that u, v are regular and venishing

vectors respectively, hence by Lemma A.16 u � v is a vanishing vector. Then by Lemma A.13,
1
n

∑n
α=1(u� v)α → 0 almost surely. Plugging into Eq. (30) and taking the limit, we have that:

lim
n→∞

1

n

n∑
α=1

ψ(xα; 0)− 0 ≤ lim
n→∞

1

n

n∑
α=1

ψ(xα; x̂α) ≤ lim
n→∞

1

n

n∑
α=1

ψ(xα; 0) + 0 (32)

proving the claim.

Note that Lemmas A.11 to A.16 and A.18 trivially extend to vanishing and regular tensors.

Lemma A.19. If u ∈ ⊗r+1Rn, r ≥ 1 is a vanishing tensor, then ν ∈ Rn : να = 1

n
n
2

∑n
β=1 uα,β is

a vanishing vector.

Proof. Using the elementary inequality ‖v‖1 ≤
√
n‖v‖ for any vector v ∈ Rn, we have:

∀p>0,
‖ν‖2

np
≤
∑n
α=1

(∑n
β=1

∣∣uα,β∣∣)2
nr+p

≤

∑n
α=1

(√
nr
√∑n

β=1 u
2
α,β

)2
nr+p

(33)

=
nr
∑n
α,β=1 u

2
α,β

nr+p
=

∑n
α,β=1 u

2
α,β

np
a.s→ 0 (34)

Lemma A.20. Let {xn}n>0 be a sequence of random variables. If for some t ∈ N, and for all n it
holds that Ex2t

n ≤ cn−1−λ for c, λ > 0 then xn → 0 almost surely.

Proof. by markov’s inequality, for any ε > 0:

P (|xn| > ε) = P (x2t
n > ε2t) ≤ Ex2t

n

ε2t
(35)

∞∑
n=1

P (|xn| > ε) ≤
∞∑
n=1

c

ε2tn1+λ
<∞ (36)

By the Borel-Cantelli Lemma, xn → 0 almost surely.

Lemma A.21. Let m,n, r ∈ N such that n is divisible by r. Let {νi}mi=1, ∀i, νi ∈ Rn
r denote

random (possibly dependent), zero mean vectors with iid coordinates and finite moments of any order
∀q∈N,E[(νiα)2q] = C2q. Define Si = 1√

n

∑n
r
α=1 ν

i
α. Then, there exists a function f(q) ∈ [0,∞)

independent on n,m such that:

E
[( m∑

i=1

Si

m

)2q] ≤ f(q)C2q (37)
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Proof. Using Hölder’s inequality:

E
[ m∑
i=1

Si

m

]2q
=

1

m2q

m∑
β1,...,β2q=1

E
[ 2q∏
l=1

Sβl
]

(38)

≤ 1

m2q

m∑
β1,...,β2q=1

1
2q

√√√√ 2q∏
l=1

E
[
(Sβl)2q

]
(39)

The inner expectations are given by:

E
[
(Si)2q

]
= E

[( n
r∑

α=1

νiα√
n

)2q]
=

1

nq

n
r∑

α1,...,α2q=1

E
[ 2q∏
j=1

νiαj

]
(40)

Note that since the random variables νiα have zero mean, the expectation E
[∏2q

j=1 ν
i
αj

]
does not

vanish only when the indices α1, ..., α2q do not contain an entry which appears in isolation. In other
words, the number of non-zero terms n? in the sum is:

n? =
∑

{ui}qi=1∈N
uq≥uq�1≥...≥u1

∀i,ui 6=1∑q
i=1 ui=2q

(
2q

uq

)(
2q − uq
uq−1

)
...

(
2q −

∑q
i=2 ui

u1

) n
r !

(nr −
∑q
i=1 1ui>0)!

(41)

Note that the the only term which depends on n is
n
r !

(nr−
∑q
i=1 1ui>0)!

, which is bounded by:

n
r !

(nr −
∑q
i=1 1ui>0)!

≤
n
r !

(nr − q)!
≤ (

n

r
)q f̃(q) (42)

where f̃(q) <∞ independent on n,m. It follows:

n? ≤ (
n

r
)q f̃(q)

∑
{ui}qi=1∈N

uq≥uq�1≥...≥u1

∀i,ui 6=1∑q
i=1 ui=2q

(
2q

uq

)(
2q − uq
uq−1

)
...

(
2q −

∑q
i=2 ui

u1

)
(43)

≤ n

r

q
f(q) where: (44)

f(q)
def
= f̃(q)

∑
{ui}qi=1∈N

uq≥uq�1≥...≥u1

∀i,ui 6=1∑q
i=1 ui=2q

(
2q

uq

)(
2q − uq
uq−1

)
...

(
2q −

∑q
i=2 ui

u1

)
(45)

In addition, from Hölder’s inequality:

E
[ 2q∏
j=1

νiαj
]
≤ 1

2q

√√√√ 2q∏
j=1

E
[
(νiαj )

2k
]

= C2q (46)

Hence it follows that E
[
(Si)2q

]
≤ (nr )qf(q)

nq C2q = f(q)
rq C2q . Inserting into Eq. (38), we finally get:

E
[( m∑

i=1

Si

m

)2q] ≤ 1

m2q

m∑
β1,...,β2q=1

1
2q

√√√√ 2q∏
l=1

[f(q)

rq
C2q

]
(47)

≤ f(q)

rq
C2q ≤ f(q)C2q (48)
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Before delving into the full proof of the induction hypothesis, we note the following fact that
immediately holds at any arbitrary step in the induction. Let h, h0,∆h, θ be defined as in Setup A.10.

Then the following claim holds:

Claim A.1. ∆h is a vanishing vector.

Proof. Since ψ is psuedo lipshitz, there exists some d ≥ 0 such that:∣∣∆hα∣∣ =
1

nr

∣∣∣ n∑
β=1

(
ψ(xα,β; x̂α,β; Θ)− ψ(xα,β; 0; Θ̊)

)∣∣∣ (49)

≤ 1

nr

n∑
β=1

√
‖Θ− Θ̊‖2 + ‖x̂α‖2 + ‖x̂β‖2

(
1 + ‖Θ‖dd + ‖Θ̊‖dd + ‖xβ‖dd + ‖x̂β‖dd... (50)

+ ‖xα‖dd + ‖x̂α‖dd
)

(51)

≤ 1

n
r
2

n∑
β=1

τα,βTα,β (52)

where we have defined the tensors τ, T ∈ ⊗r+1Rn such that:

Tα,β = 1 + ‖Θ‖dd + ‖Θ̊‖dd + ‖xβ‖dd + ‖x̂β‖dd + ‖xα‖dd + ‖x̂α‖dd (53)

τα,β =
‖Θ− Θ̊‖1 + ‖x̂β‖1 + ‖x̂α‖1

n
r
2

(54)

Note that by Lemmas A.11 to A.15, T is a regular tensor, while τ is a vanishing tensor. Hence, T � τ
is a vanishing tensor by Lemma A.16, hence ∆h is a vanishing vector by Lemma A.19.

Claim A.1 is useful due to the following general claim:

Claim A.2. If Dichotomy(m),TensorMoment(m) and ConvRate(m) apply for the vector h (as
defined in Setup A.10), then it applies for h+ δ if δ is a vanishing vector.

Proof. This is true due to the function ψ being pseudo lipschitzness. More specifically:

1. If Dichotomy(m) holds for h, then it holds for h+ δ This is trivially true due since we can
expand x̂ := x̂ ∪ δ, and invoke Lemmas A.11 and A.14.

2. If TensorMoment(m) holds for h, then it holds for h + δ. This is since we may trivially
assert that: θ = 1

n

∑n
α=1(hα + δα)→ 1

n

∑n
α=1 hα, which stems from Lemma A.13.

3. If ConvRate(m) holds for h, then it holds for h+ δ. This is since:

∀p>ε>0,
1

np−1
(

1

n

n∑
α=1

δα + θ − θ̊)2 =
1

np−1
(

1

n

n∑
α=1

δα)2 +
2

np

n∑
α=1

δα(θ − θ̊) (55)

+
1

np−1
(θ − θ̊)2 (56)

≤ (
‖δ‖1
n
p+1

2

)2 + 2

√
n(θ − θ̊)2

n
p�ε

2

√
‖δ‖2
n
ε
2

+
1

np−1
(θ − θ̊)2 (57)

≤ ‖δ‖
2

np
+ 2

√
(θ − θ̊)2

n
p�ε

2 −1

√
‖δ‖2
n
ε
2

+
(θ − θ̊)2

np−1

a.s→ 0 (58)

Given Claim A.2 and Eq. (53), we may prove Dichotomy(m),TensorMoment(m) and Con-
vRate(m) for h0 instead of h.
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Figure 1: Baranyai’s Theorem. A graphical illustration of Baranyai’s Theorem for n = 8, r = 2. A
partition of 8 vertices into 1 factors, represented by different colors. Each 1 factor is a partition of the
vertices into hyperedges (in this case, since r = 2, simply edges) where no vertex is shared between
two edges, and no edge is shared between two 1 factors. Baranyai’s Theorem states that there are(

8
2

)
2
8 = 7 such 1 factors.

A.2.1 HYPERGRAPHS AND Baranyai’s theorem

Baranyai’s theorem in combinatorial mathematics deals with the number of ways one can partition a
complete hypergraph into 1-factors. A complete hypergraph Gnr is a hypergraph containing n vertices
in which every subset of r vertices forms a hyperedge. A 1 factor of this graph is a partition of the
hypergraph into n

r hyperedges in which each vertex touches exactly one hyperedge. Theorem A.22
gives an informal statement of Baranyai’s theorem.

Theorem A.22 (Baranyai’s theorem - Informal). The n vertices of a hypergraph Gnr |n, r ∈ N such
that r divides n can be partitioned into 1-factors in

(
n
r

)
r
n different ways such that each hyperedge in

Gnr appears in exactly one of the partitions (see Fig. 1 for a graphical illustration).

Theorem A.22 turns out to be useful in getting the almost sure convergence as is stated in The-
orem 5.4. Concretely, we will need to reason about the moments of infinite sums of random
variables. Specifically, let {z1, ..., zk} ∈ Rn denote independent and normally distributed vectors,
let ψβ = ψ(z1

β1
, ..., zkβr ) where ψ : Rkr → R is polynomialy bounded and ∀β,E[ψβ] = 0. Consider

the expression:

mq =Ez1,...,zk
[( n∑
β=1

ψβ
nr−0.5

)2q]
(59)

Theorem A.23. There exists C(q) ∈ [0,∞) such that limn→∞mq ≤ C(q).

Proof. We can express mq by breaking the sum
∑n
β=1:

mq =
[( 1

nr−0.5

n∑
β=1

ψβ1β1 6=β2 6=... 6=βr +
1

nr−0.5

n∑
β=1

ψβ(1− 1β1 6=β2 6=...6=βr )
)2q]

(60)

≤ A(n) +B(n) where: (61)

A = C̃
[( 1

nr−0.5

n∑
β=1

ψβ1β1 6=β2 6=... 6=βr
)2q]

(62)

B = C̃
[( 1

nr−0.5

n∑
β=1

ψβ(1− 1β1 6=β2 6=...6=βr )
)2q]

(63)
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where C̃ ∈ [0,∞) does not depend on n. We now prove the following:

1. limn→∞B → 0. To see this, notice that there are nr − n!
(n−r)! non zero terms in the sum∑n

β=1 ψβ(1− 1β1 6=β2 6=...6=βr ), hence:

B ≤ C̃
(nr − n!

(n−r)!

nr−0.5

)2q

max
β

E
[(
ψβ
)2q]

(64)

Notice that limn→∞
nr− n!

(n�r)!
nr�0.5 → 0, and maxβ E

[(
ψβ
)2q]

is bounded and does not depend
on n. We can therefore conclude B vanishes as n→∞.

2. We use Lemma A.21 and Theorem A.22 to show that limn→∞A ≤ C(q) for some C(q) <

∞. Let Θ = {β1,β2, ...,β
n!

(n�r)! } denote the set of all possible configurations of r indices
β such that β1 6= β2 6= ... 6= βr. Let {Θi}mi=1 denote m sets where each set Θi contains n

r

configurations Θi = {β1,i, ...,β
n
r ,i} such that:

(a) ∀i;β,β0∈�i|β 6=β0 , β ∩ β′ = ∅
(b) ∀i6=j;β∈�i;β0∈�j , β 6= β′

Finally, let R denote the remaining configurations that do not appear in any set {Θi} (i.e
R = Θ/(Θ1 ∪Θ2 ∪ ... ∪Θm). We then have:

1

nr−0.5

n∑
β=1

ψβ1β1 6=β2 6=... 6=βr =

m∑
i=1

Si

nr−1
+

1

nr−0.5

∑
β∈R

ψβ (65)

where Si =
1√
n

∑
β∈�i

ψβ (66)

Note that by construction of the sets {Θi}mi=1, and since the vectors z1, ..., zk contain iid
coordinates, we can conclude that for all i, random variables {ψβ}β∈�i are independent.
Provided we can construct m = rnr−1 −O(nr−2) sets, then |R| = O(nr−1). In that case,
then by Lemma A.21:

lim
n→∞

A ≤ lim
n→∞

C̃(
m

nr−1
)2qE

[( m∑
i=1

Si

m

)2q]
+ lim
n→∞

C̃E
[( 1

nr−0.5

∑
β∈R

ψβ
)2q]

(67)

≤ C(q) + lim
n→∞

C̃(
|R|

nr−0.5
)2q max

β
E[(ψβ)2q] (68)

= C(q) + 0 (69)

We are then left with proving that we can in fact partition the set Θ into {Θi}mi=1 ∪R where
m = rnr−1−O(nr−2). To show this, we define a complete hypergraph Gnr with n vertices
in which every vertex corresponds to an integer in {1, 2, ..., n}. We can think of a hyperedge
in Gnr as an edge connecting r integers without ordering, hence the set of all hyperedges in
Gnr has cardinality 1

r! |Θ| (this is since ordering matters in Θ). By Theorem A.22, we can
partition the vertices in Gnr into n

r hyperedges (sets of r unique integers with no ordering) in(
n
r

)
r
n different ways, where each hyperedge appears in a single partition. For each partition

i, we can assign Θi where any β ∈ Θi corresponds to a single hyperedge in partition i, with
the ordering of the vertices decided arbitrarily. Notice that for each partition Θi, we can
construct (r!− 1) additional partitions by reordering β in any β ∈ Θi Therefore, the total
number of valid partition is given by

(
n
r

)
r
nr! = rnr−1 −O(nr−2), proving the theorem.
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A.3 BASE CASE

WLOG, we start with an initial corset of Gaussian iid vectors x = {x1, ..., xk} (which are regu-
lar), an initial vanishing set of vanishing vectors x̂ = {x̂1, ..., x̂k

0} and a set of vanishing scalars
Θ = {θ1, ..., θl}. Note that ReWrite(1) and StableRank(1) trivially hold. We proceed to prove
Dichotomy(1),TensorMoment(1) and ConvRate(1).

We define the functions ψ : Rk → R, ψ̄ : R(r+1)k → R, ψ̄ : Rk → R using the pseudo lipschitz
function ψ : R(r+1)k → R and vectors x:

ψ(y)
def
= EZx1 ,Zx2 ,...,Zxr

[
ψ
(
y;Zx1 , Z

x
2 , ..., Z

x
r

)]
(70)

ψ̄(y;xβ)
def
= ψ(y,xβ)− ψ(y) (71)

ψ̄(y)
def
=

1

nr

n∑
β=1

ψ̄(y;xβ) (72)

h̄α
def
= ψ(xα) (73)

∆h̄α
def
= ψ̄(xα) (74)

Note that ψ̄(y) is a random function that depends on the vectors x.

Theorem A.24. ∆h̄ is a vanishing vector.

Proof. From Lemma A.20, it suffices to show that for every p > 0, there exists t ∈ N such that

E
(∑n

α=1
�ψ(xα)2

)t
ntp ≤ cn−1−λ for some c, λ > 0 (which may depend on p). Fix p > 0, and choose

t = 1+λ
p , and let q = dte. Then by Jensen’s inequality:

E
((∑n

α=1 ψ̄(xα)2
)

np

)t
≤ 1

n1+λ
E
[( n∑
α=1

ψ̄(xα)2
)q]

(75)

=
1

n1+λ
E
[( n∑

α=1

( n∑
β=1

ψ̄(xα,xβ)

nr
)2)q]

(76)

≤ 1

n1+λ
E
[( n∑

β=1

ψ̄(x1,xβ)

nr−0.5

)2q]
(77)

We are now left with the task of proving that E
[(∑n

β=1

�ψ(x1,xβ)
nr�0.5

)2q]
is finite for any (fixed) integer

q and for n→∞. Firstly, we may express the over all indices
∑n
β=1 as

∑n
β=2 +

∑n
β|∃j:βj=1. That

is, we first sum over all the indices where each one is bigger than 1, and then sum over all indices
where at least one of them is 1. Then we have:

E
[( n∑

β=1

ψ̄(x1,xβ)

nr−0.5

)2q]
= E

[( n∑
β=2

ψ̄(x1,xβ)

nr−0.5
+

n∑
β|∃j:βj=1

ψ̄(x1,xβ)

nr−0.5

)2q]
(78)

≤ C̃E
[( n∑

β=2

ψ̄(x1,xβ)

nr−0.5

)2q]
+ C̃E

[( n∑
β|∃j:βj=1

ψ̄(x1,xβ)

nr−0.5

)2q]
(79)

where C̃ ≤ ∞ does not depend on n. we now make the following observations:

Claim A.3. There exists a constant C < ∞ that is independent of n such that

∀n,r, E
[(∑n

β|∃j:βj=1

�ψ(x1,xβ)
nr�0.5

)2q]
≤ C. To see this, note that the summation (i.e

∑n
β|∃j:βj=1)

effectively sums over nr− (n−1)r ∼ O(nr−1) terms. Since ψ̄ is a centered pseudo lipschitz function
of normally distributed variables, we can bound the second expectation:

∀n,r, E
[( n∑

β|∃j:βj=1

ψ̄(x1,xβ)

nr−0.5

)2q]
≤ C̃

nq
max
β

E
[
ψ̄(x1,xβ)2q

]
≤ C (80)
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for some C̃ <∞ that do not depend on n.

Claim A.4. There exists a constant C < ∞ that is independent of n such that

∀n,r, E
[(∑n

β=2

�ψ(x1,xβ)
nr�0.5

)2q]
≤ C. Note that since the summation over the indices β do not

include the first index, the random variable xβ can be treated as independent from x1. WLOG we
can then bound the following term instead:

∀n,r, E
[( n∑

β=1

ψ̄(y,xβ)

nr−0.5

)2q]
≤ C (81)

For some random variable y independent of xβ for all values of β, with the same dimensions as x1.
We can now condition on y, and apply Theorem A.23 to complete the proof.

Now, we can express h = h̄+ ∆h+ ∆h̄, where ∆h,∆h̄ are vanishing vectors. Invoking Claim A.2,
it is enough to prove the base case holds for h̄ alone:

1. TensorMoment(1) is immediate from the law of large numbers given that x are iid gaus-
sians. Namely:

1

n

n∑
α=1

ψ(xα)
a.s
= EZxψ(Zx). (82)

2. Dichotomy(1) holds since ψ is a smooth, pseudo lipschitz (given by gaussian averaging of
ψ) function. From TensorMoment(1), for any p > 0:

1

n
lim
n→∞

‖h̄‖pp = lim
n→∞

∑n
α=1 |h̄α|p

n
→a.s

= EZx
[
|ψ(Zx)|p

]
=

∫
Zx
|ψ(Zx)|pdN (Zx)dZx

(83)

where N (Zx) is the gaussian measure. Therefore, if 1
n limn→∞ ‖h̄‖pp = 0 for some p > 0,

then ψ is identically zero. In that case, we can write h = 0+∆h+∆h̄, which is a vanishing
vector. If ψ is not identically zero, then h is a regular vector from TensorMoment(1),
proving Dichotomy(1).

3. ConvRate(1) holds since for all p > 0:

lim
n→∞

1

np−1
(

∑n
α=1(h̄α − θ̊)

n
)2 = lim

n→∞

1

np
(

∑n
α=1(h̄α − θ̊)√

n
)2 a.s

= 0 (84)

which holds from Theorem A.24 and assigning r = 0.

We have therefor concluded the base case.

A.4 INDUCTION STEP

We prove the induction step assuming IH(m) holds. Namely, we must show that IH(m)→ IH(m+1).
Assume a new vector is introduced via MATMUL, namely Wν where ν is given by TENSOR operation
of corset x, vanset x̂ and vanishing scalars Θ. By Dichotomy(m), we may express ν = ν̄+∆ν+∆ν̄
where ∆ν + ∆ν̄ is a vanishing vector, and ν̄ is either regular or vanishing.

A.4.1 IH(m)→ REWRITE(m+ 1) + STABLERANK(m+ 1)

We can express Wν = Wν̄ +W (∆ν + ∆ν̄), and point to the following fact:

Claim A.5. If ν̄ is a regular vector, then Wν̄ is a regular vector. Moreover, for any vanishing vector
δ ∈ Rn, Wδ is a vanishing vector.
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Proof. If δ is vanishing then Wδ is vanishing: This is true since W is a gaussian matrix with a
uniformally bounded (in n) operator norm. The first part Claim A.5 holds since ν̄ depends only on
vectors from x, for which the set xW has a stable rank from StableRank(m). We can therefore use
the gaussian conditioning trick (conditioning on all vectors in x and xW ).

We can now expand the vanset with x̂ := x̂ ∪W (∆ν + ∆ν̄), and proceed by casework:

1. If ν̄ is vanishing then we expand x̂ := x̂ ∪Wν̄. In that case x remains unchanged and
StableRank(m+ 1) trivially holds.

2. If ν̄ is regular then we expand x := x ∪ Wν̄, and we get StableRank(m + 1) using
Theorem A.25.

Theorem A.25. Let x1, ..., xk ∈ xW . If Zx = α1Z
x1

+ α2Z
x2

+ ...+ Zx
k

, then almost surely, for
large enough n, x = α1x

1 + α2x
2 + ...+ αkx

k.

Proof. The set x is constructed as a standard NETSOR>program (without scalars), and we may
immediately apply theorem 6.3 in Yang (2020b).

A.4.2 IH(m) + REWRITE(m+ 1) + STABLERANK(m+ 1)→ IH(m+ 1)

We are left with proving Dichotomy(m+ 1), TensorMoment(m+ 1) and ConvRate(m+ 1). Note
that if ν̄ is a vanishing vector, the set x remains unchanged, and we immediately get IH(m+ 1) by
Claim A.2. Hence we proceed assuming ν̄ (hence Wν̄ is a regular vector.

Getting Dichotomy(m + 1) Assume a new vector is introduced in the program via a TENSOR
operation:

hα =
1

nr

∑
β

ψ(xα,β, (Wν̄)α,β; x̂α,β; Θ) (85)

Where we made explicit the inclusion to x of the new vector Wν̄. Let h0, h̄,∆h,∆h̄ be defined
as in Eq. (13). Note that ∆h is vanishing by Claim A.1, which holds generally. We next prove
∆h̄ = h0 − h̄ is a vanishing vector, where (using ψ(−) ≡ ψ(−; 0; Θ̊) to ease notational burden):

∆h̄α =
1

nr

n∑
β=1

ψ(xα,β, (Wν̄)α,β)− EZx1 ,ZWν̄
1 ,...,Zxr ,Z

Wν̄
r

[
ψ(xα, (Wν̄)α,Z

x
1 , Z

W �ν
1 , ...,Zxr , Z

W �ν
r )

]
(86)

The key insight to proving ∆h̄ = h0− h̄ is indeed vanishing is that both h0, h̄ can be written as a sum
of a shared regular vector, and a vanishing vector (i.e we can express h0 = µ+ δ1, h̄ = µ+ δ2 where
µ is regular, and δ1, δ2 are vanishing). Their difference h0− h̄ = δ1−δ2 is therefore the difference of
two vanishing vectors, which is itself vanishing. To show this, we can make explicit the distribution of
Wν̄ by using the gaussian conditioning trick (see Appendix A.5). Denote by X,Y ∈ Rn×r, U, V ∈
Rn×s the matrices with {xi} ∈ x, {yi} ∈ xW , {ui} ∈ x, {vi} ∈ xW> as columns respectively,
representing previously generated vectors in the program, such that X = WY,U = W>V . Using
the Gaussian conditioning trick (conditioning on all the vectors in x), g = Wν̄ is distributed as:

Wν̄
d
=
∑
i

dix
i +
∑
i

eiv
i + σΠ⊥V z (87)

where d→ d̊, e→ e̊, σ → σ̊, and z ∼ N (0, In). Define:

a =
∑
i

d̊ix
i +
∑
i

e̊iv
i + σ̊z (88)

b = g − a =
∑
i

(di − d̊i)xi +
∑
i

(ei − e̊i)vi + (σΠ⊥V − σ̊)z (89)

We now note that:
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• ∀i, (di− d̊i)xi is a vanishing vector since xi is regular (x ∈ xW ), and (di− d̊i) is vanishing
by the induction hypothesis, and Lemma A.17.

• ∀i, (ei− e̊i)vi is a vanishing vector since vi is regular (v ∈ xW> ), and (ei− e̊i) is vanishing
by the induction hypothesis, and Lemma A.17.

• (σΠ⊥V − σ̊)z is a vanishing vector. To see this, note that:

(σΠ⊥V − σ̊)z = (̊σ − σ)z + V (V V >)†V >z (90)

(̊σ − σ)z is vanishing due to the induction hypothesis and Lemma A.17. V (V V >)†V >z is
vanishing as well. To see this, note that:

∀p>0,
‖V (V V >)†V >z‖2

np
=
‖ 1
nV (V V

>

n )†V >z‖2

np
(91)

=
z>V (V V

>

n )†V >z

np+1
=

1

np
z>V√
n

(V V >
n

)†V >z√
n

(92)

By the induction hypothesis (V V
>

n )† converges almost surely (V has stable rank). Then
it is enough to show that ∀i,p>0, limn→∞

1

n
p
2

z>vi√
n

a.s→ 0. From TensorMoment(m) and
ConvRate(m):

∀i,p>0, lim
n→∞

1

n
p
2

z>vi√
n

= lim
n→∞

√
n1−p(

z>vi

n
)2 (93)

=

√
lim
n→∞

n1−p(
z>vi

n
)2 a.s→ 0 (94)

We therefore conclude that b = g − a is vanishing. We have:

h0 =
1

nr

n∑
β=1

ψ
(
xα,β, gα,β

)
=

1

nr

n∑
β=1

ψ
(
xα,β, aα,β; bα,β

)
= A(m) +B(m) (95)

where A(m) =
1

nr

n∑
β=1

ψ
(
xα,β, (

∑
i

d̊ix
i +
∑
i

e̊iv
i + σ̊z)α,β

)
(96)

B(m) =
1

nr

n∑
β=1

[
ψ
(
xα,β, aα,β; bα,β

)
− ψ

(
xα,β, (

∑
i

d̊ix
i +
∑
i

e̊iv
i + σ̊z)α,β

)]
(97)

From Claim A.1, B(m) is a vanishing vector. Furthermore, a is a deterministic function of previous
vectors in x, and an iid gaussian noise vector z.
We can now recursively expand A(m) = A(m − 1) + B(m − 1) where B(m − 1) is a vanishing
vector, until we are left with A(1) (i.e A(m) = A(1) +

∑m−1
m0=1B(m′), where {B(m′)}m0 are all

vanishing vectors). Note that A(1) can be expressed as a pseudo lipschitz function of normally
distributed vectors, with coordinate distributions given by Zg, Zx

1

, ..., Zx
jxj

. We can apply the same
decomposition to h̄ and get h̄ = Ā(1) +

∑m−1
m0=1 B̄(m′). We have that:

∆h̄ = h0 − h̄ = A(1)− Ā(1) +

m−1∑
m0=1

(
B(m′)− B̄(m′)

)
(98)

Finally, it is easy to see that A(1) = Ā(1), and hence we may invoke the base case (in particular
Theorem A.24) and conclude that A(m)− Ā(m), and by extension ∆h̄ are vanishing.

Getting TensorMoment(m+1) and ConvRate(m+1) These are immediate since we can express
h = Ā(1) + δ where Ā(1) is a function of gaussian vectors, and δ is a vanishing vector, and by
Claim A.2 invoke the base case on Ā(1).
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A.5 GAUSSIAN CONDITIONING

Let g = Wh where g, h ∈ Rn are vectors in a NETSOR>program.

Denote by X,Y ∈ Rn×r, U, V ∈ Rn×s the matrices with {xi}, {yi}, {ui}, {vi} as columns respec-
tively, representing previously generated vectors in the program, such that X = WY,U = W>V .
Using the Gaussian conditioning trick (conditioning on all the vectors in x), g = Wh is distributed
as:

g
d
= (E + Π⊥V W̃Π⊥Y )ν0 = A+B

where we have defined A = Eν0, B = Π⊥V W̃Π⊥Y h , ΠV ,ΠY are projection matrices, and W̃ is a
fresh iid sample of W , and:

E = XY + + V +>U> − V +>U>Y Y +

Rewriting the conditional distribution of g, we get:

g
D
= Θ + σΠ⊥V z (99)

with Θ
def
= Eh ∈ Rn, σ

def
= σA

√
‖Π⊥Y h‖2

n
∈ R (100)

Moreover, σ converges to a deterministic limit σ̊, and Θ can be written as:

Θ = X(d̊+ ε̂) + V (̊e+ ε̌) (101)

where ε̂ ∈ Rr, ε̌ ∈ Rs are vanishing vectors, and d̊ ∈ Rr, e̊ ∈ Rs are deterministic vectors.

B PROOFS OF THEOREM 4.1 AND THEOREM 4.2

Now that we have proven Theorem 5.4, we prove Theorem 4.1 and Theorem 4.2 by writing out the
TPs which implements the training process, and apply the master theorem. To accomplish this, we
start by expressing the explicit computation done at each training step at finite width, implement it as
a set of TP instructions, convert it to infinite-width computation according to Definition 5.3 and apply
the master theorem.

B.1 THE TENSOR PROGRAM FOR THEOREM 4.1

In the next section, we construct the Tensor Program that encodes the training of an L-hidden layer
MLP as inEq. (1) under the ANKT parametrization. Here we first describe the initial matrices, vectors,
and scalars of the program, along with necessary notations.

Initial Matrices, Vectors and Scalars We first define the initial set of matricesW , vectors V and
scalars C:

• Initial matrices {wl}Ll=2 ∈ Rn×n are all sampled iid from N (0, 1). We set W = W 2 ∪
W 3 ∪ ... ∪WL+1.

• The initial vectors V are given by the first layer h1(ξ) for all inputs, and the last weight
vector wL+1 ∈ Rn, all samples iid from N (0, 1).

• Initial scalar C = { 1√
n
}.

Notations We use := to more clearly denote assignment happening in the
program, as opposed to mathematical equality. We will use the notation
TENSOR(y1, .., yk; Θ), TENSORMOMENT(y1, .., yk; Θ) to denote an arbitrary implementation of
these instructions give vectors y1, ..., yk and scalars Θ.
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Initial Forward Pass Starting with our initial vectors h1(ξ) := w1ξ , we compute all
{xl(ξ)}Ll=1, {hl(ξ)}Ll=2 using TENSOR and MATMUL instructions:

∀1≤l≤L, x
l(ξ) := ψ(hl) for ψ(y)

def
= φ(y) (102)

∀1<l≤L, h
l(ξ) := W lxl−1(ξ) (103)

The initial outputs are given by f(ξ) = wL+1>xL(ξ)√
n

since TENSORMOMENT only allows division
by nr for integer r, rather than

√
n. However recall that in Theorem 4.1 we assume WLOG that the

outputs for any input ξ is fixed to f(ξ) = g(ξ). Let X denote a matrix composed of all xL(ξ) as
columns. Denote by e the event that f(ξ) = 0 for all inputs. Then, using gaussian conditioning, the
conditional distribution of wL+1

e given e is:

wL+1
e

D
= Πw̃L+1 (104)

where w̃L+1 is an independent sample of wL+1, and Π = I − 1
nX(X

>X
n )†X> and •† is the

pseudo-inverse of •. Then, we can write:

wL+1
e

D
= w̃L+1 −X(

X>X

n
)†
X>w̃L+1

n
(105)

By the master theorem X>X
n

a.s→ γ, (X
>X
n )†

a.s→ γ† and X> ~wL+1

n

a.s→ 0. Hence, after conditioning on
f(ξ) = 0, the distribution of wL+1

e is still identical to that of wL+1 at the limit. At this point we can
just implement wL+1 in the program with w̃L+1 −X(X

>X
n )†X

> ~wL+1

n which can be implemented
with TENSOR and TENSORMOMENT instructions. We now have a program that encodes the initial
forward pass of the MLP conditioned on f(ξ) = 0 for all ξ.

Initial Backward Pass and Loss Derivatives For any input sample ξ̃, we can implement dh̃l using
TENSOR:

dh̃L := TENSOR(hL(ξ), wL+1) for TENSOR(y1, y2)
def
= φ′(y1)� y2 (106)

Then, for all 1 ≤ l < L, using MATMUL and TENSOR:

dh̃l := TENSOR(W l+1>dh̃l+1, h̃l) for TENSOR(y1, y2)
def
= φ′(y1)� y2 (107)

The initial loss derivatives L′(ξ) are all deterministic scalars since we have conditioned on the initial
outputs f(ξ).

Forward and Backward Passes at Any t The forward and backward and loss computation for
any t are given by:

h̃lt =
(
W l +

1√
n

t−1∑
t0=0

∆wlt0
)
x̃l−1
t (108)

dh̃Lt = φ′(h̃Lt )� wL+1 (109)

∀1≤l<L, dh̃
l
t =

[(
W l+1 +

1√
n

t−1∑
t0=0

∆wl+1
t0

)>
dh̃l+1

t

]
� φ′(h̃lt) (110)

with the weight updates given by:

∆wlt = − 1

n
Q(dhltx

l−1>
t L′t) (111)

which can all be implemented with TENSOR and Matmul operations as before.
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Adaptive Update at Time t Using Eq. (2) and wlt = wl +
∑t
t0=0 ∆wlt0 (recall wl =

√
nW l), we

have that:
δh̃2

t = ∆w2
t h̃

1 (112)

∀2<l≤L, δh̃lt = ∆wltx̃
l−1
t +

1√
n

(
wl +

t∑
t0=0

∆wlt0
)
δx̃l−1
t +

1√
n

∆wltδx̃
l−1
t (113)

= − 1

n
Q(dhltx

l−1>
t L′t)x̃l−1

t +
(
W l − 1

n
√
n

t∑
t0=0

Q(dhlt0x
l−1>
t0 L′t0)

)
δx̃l−1
t (114)

− 1

n
√
n
Q(dhltx

l−1>
t L′t)δx̃l−1

t (115)

δx̃lt =
√
nφ(h̃lt +

δh̃lt√
n

)−
√
nφ(h̃lt) (116)

which can be implemented using TENSOR:

δh̃2
t := TENSOR(dh2

t , x
1
t , x̃

1
t ;L′t) for TENSOR(y1, y2, y3; θ)

def
= − 1

n
Q(y1y2>θ)y3 (117)

δx̃2
t := TENSOR(h̃2

t , δh̃
2
t ;

1√
n

) for TENSOR(y1, y2; θ)
def
=

{
1
θφ(y1 + θy2)− 1

θφ(y1) θ > 0

φ′(y1)� y2 θ = 0

(118)

and similarly for any layer 2 < l ≤ L.

The (pre)activations at any step t can be implemented as follows using TENSOR:

∀1<l≤L, h̃
l
t+1 := TENSOR(h̃lt, δh̃t;

1√
n

) for TENSOR(y1, y2; θ)
def
= y1 + θy2 (119)

∀1<l≤L, x̃
l
t+1 := TENSOR(x̃lt, δx̃t;

1√
n

) for TENSOR(y1, y2; θ)
def
= y1 + θy2 (120)

Output Updates The function updates can be implemented using TENSORMOMENT:

∆f̃t := TENSORMOMENT(wL+1, δx̃Lt ) for TENSORMOMENT(y1
, y

2)
def
=

1

n

n∑
α=1

y1
αy

2
α (121)

The loss derivatives can be implemented using using TENSORMOMENT:

L′t := TENSORMOMENT(; ft) for TENSORMOMENT(; θ)
def
=

1

n

n∑
α=1

L′(θ) (122)

B.2 PROOF OF THEOREM 4.1

After writing the program using TP operations, we are ready to prove Theorem 4.1 by taking
the infinite-width limit. First, note that from Eqs. (119), (120) and (166) and ?? and applying
Definition 5.3, we have that:

∀1≤l≤L, Z
~hlt = Z

~hl (123)

∀1≤l≤L, Z
~xlt = Z ~xl (124)

∀1≤l<L, Z
d~hlt = Zd

~hl = ZW
l+1d~hl+1

φ′(Z
~hl) (125)

Zd
~hLt = Zd

~hL = Zw
L+1

φ′(Z
~hL) (126)

Applying Definition 5.3 to Eqs. (117) and (118), we have that:

Zδ
~h2

= −EZx1 ,Zx̃1

[
Q
(
Zdh

2

Zx
1

L̊′
)
Z ~x1]

(127)

Zδ~x2

= φ′(Z
~h2

)Zδ
~h2

(128)
(129)
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And similarly for Eqs. (113) and (116):

∀2<l≤LZ
δ~hl = −E

Zxl�1 ,Zx̃l�1

[
Q
(
Zdh

l

Zx
l�1

L̊′
)
Z ~xl�1]

+ ZW
lδ~xl�1

(130)

∀2≤l≤LZ
δ~xl = φ′(Z

~hl)Zδ
~hl (131)

(132)

where we have that ZW
lδ~xl�1

= ẐW
lδ~xl�1

+ ŻW
lδ~xl�1

according to Definition 5.3. Then using
Theorem 5.4:

∆f̃ = E
[
Zw

L+1

Zδ~xLt
]

(133)

= E
[
Zw

L+1

φ′(Z
~hL)Zδ

~hL
]

(134)

= −E
[
Zw

L+1

φ′(Z
~hL)EZxL�1 ,Zx̃L�1

[
Q
(
Zdh

L

Zx
L�1

L̊′t
)
Z ~xL�1]]

(135)

+ E
[
Zw

L+1

φ′(Z
~hL)ZW

Lδ~xL�1]
(136)

= −E
[
Zd

~hLQ
(
Zdh

L

Zx
L�1

L̊′t
)
Z ~xL�1]

(137)

+ E
[
Zd

~hLŻW
Lδ~xL�1]

(138)

We now use lemma L.3 from Yang (2020b) restated:

Lemma B.1. For any x, y ∈ Rn and W ∈ Rn×n in the program, it holds that:

E[ZxŻWy] = E[ZW
>xZy] (139)

Applying Lemma B.1 to Eq. (138):

E
[
Zd

~hLŻW
Lδ~xL�1]

= E
[
ZW

L>d~hLZδ~xL�1]
(140)

= −E
[
Zd

~hL�1(
EZxL�2 ,Zx̃L�2

[
Q
(
Zdh

L�1

Zx
L�2

L̊′
)
Z ~xL�2]

− ZW
L�1δ~xL�2)]

(141)

= −E
[
Zd

~hL�1

Q
(
Zdh

L�1

Zx
L�2

L̊′
)
Z ~xL�2]

+ E
[
Zd

~hL�1

ZW
L�1δ~xL�2]

(142)

Similarly expanding E
[
Zd

~hL�1

ZW
L�1δ~xL�2]

we arrive at:

∆f̃ = −
L∑
l=2

E
[
Zd

~hlQ
(
Zdh

l

Zx
l�1

L̊′t
)
Z ~xl�1]

= −K(ξ, ξ̃|L̊′) (143)

Finally, using Eq. (152):

∆f̃t = −Kadp(ξt, ξ̃|L̊′t) (144)

B.3 THE TENSOR PROGRAM FOR THEOREM 4.2

In the next section, we construct the Tensor Program that encodes the training of an 2-hidden
layer MLP as inEq. (1) under the µ parameterization. Since the last layer is not trained, we define
w̄3 =

√
nw3, so the output is given by f(ξ) = 1

n w̄
3>x2(ξ). Here we first describe the initial

matrices, vectors, and scalars of the program, along with necessary notations.

Initial Matrices, Vectors and Scalars We first define the initial set of matricesW , vectors V and
scalars C:

• Initial matrices w2 ∈ Rn×n sampled iid from N (0, 1
n ). We setW = W 2.

• The initial vectors V are given by the first layer h1(ξ) for all inputs, and the last weight
vector w̄3 ∈ Rn. Notice that w̄3 is normally distributed.

• Initial scalar C = { 1√
n
}.
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Notations As in the ANTK case, we use := to more clearly denote assignment happening in the
program, as opposed to mathematical equality. To clearly demonstrate the application of TENSOR,
we will also freely introduce function symbols ψ to put things into TENSOR form.

Initial Forward and Backward Passes Starting with our initial vectors h1(ξ) := w1ξ , we
compute x1(ξ), h2(ξ), x2(ξ), dh2(ξ), f(ξ),L′(ξ) for all inputs using TENSOR, TENSORMOMENT
and MATMUL instructions at step any t:

x1(ξ) := TENSOR(h1(ξ)) for TENSOR(y)
def
= φ(y) (145)

h2(ξ) := W 2x1(ξ) (146)

x2(ξ) := TENSOR(h2(ξ)) for TENSOR(y)
def
= φ(y) (147)

f(ξ) := TENSORMOMENT(w̄3, x2(ξ)) for TENSORMOMENT(y1, y2)
def
=

1

n

n∑
α=1

y1
αy

2
α (148)

L′(ξ) := L′t := TENSORMOMENT(; ft) for TENSORMOMENT(; θ)
def
=

1

n

n∑
α=1

L′(θ) (149)

dh2(ξ) := TENSOR(w̄3, h2(ξ))for TENSOR(y1, y2)
def
= y1 � φ′(y2) (150)

Note that with µ parameterization we can express the output f(ξ) directly without conditioning using
a TENSORMOMENT.

Expressing h̃2
t+1 Using Eq. (2), we have:

h̃2
t+1 := TENSOR(h̃2

t , dh
2
t , x

1
t , x̃

1
t ;L′t) for TENSOR(y1, y2, y3, y4; θ)

def
= y1 − 1

n
Q(y2y3>θ)y4

(151)

B.4 PROOF OF THEOREM 4.2

After writing the program using TP operations, we are ready to prove Theorem 4.2 by taking the
infinite-width limit. Applying Theorem 5.4 to Eqs. (145) to (151), we have that:

Z
~h2
t+1 = Z

~h2
t − EZx1(ξt),Zx̃1

[
Q(Zdh

2
tZx

1(ξt)L̊t)Z ~x1]
(152)

Z ~x2
t = φ(Z

~h2
t ) (153)

Zd
~h2
t = Z ~x1

tφ′(Z
~h2
t ) (154)

f̃t = E[Z �w3

Z ~x2
t ] (155)

where Z �w3 ∼ N (0, 1).

C EXTENSIONS OF THEOREM 4.1 AND THEOREM 4.2 TO AGOS WITH
MEMORY

So far we have dealt with the case of memoryless adaptive optimizers, and a batchsize of 1, however
our results can be trivially extended to the more general case. To illustrate this, we now show how the
proofs of Theorem 4.1 and Theorem 4.2 can be easily adapted to general AGOs with memory, and
a general batchsize. Recall from definition Definition 3.1, if g0, g1, ..., gt ∈ R denote gradients of
some scalar parameter w at times 0, 1, ..., t, a general adaptive update can be described by a function
Qt ∈ Rt+1 → R such that ∆wt ∝ Qt(g0, g1, ..., gt; ε). Concretely, in the case of Adam, Q takes the
following form (replacing β1, β2 with γ1, γ2 to prevent confusion with other indices):

Qt(g0, g1, ..., gt; ε)
def
=

(1−γ1)
1−γt1

∑t
i=0 γ

t−i
1 gi√

(1−γ2)
1−γt2

∑t
i=0 γ

t−i
2 g2

i + ε
(156)
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In the context of optimizing an MLP, we can write the equivalent of Eq. (2) for a general Q function,
and a general batchsize for both parameterizations:

∀1<l≤L, ∆wlt = (157)

− 1

n
Qt(

∑
β0
dhlβ0

xl−1>
β0
L′β0

n
,

∑
β1
dhlβ1

xl−1>
β1
L′β1

n
, ...,

∑
βt
dhlβtx

l−1>
βt
L′βt

n
;
ε

n
) (158)

= − 1

n
Qt(
∑
β0

dhlβ0
xl−1>
β0
L′β0

,
∑
β1

dhlβ1
xl−1>
β1
L′β1

, ...,
∑
βt

dhlβtx
l−1>
βt
L′βt ; ε) (159)

where
∑
βt

denotes summation over samples in the minibatch βt at step t (i.e if βt := {ξi, ξj , ξk}
then

∑
βt
uβt = ut(ξi) + ut(ξj) + ut(ξk)), and Qt operates element-wise on the components of

its inputs. Note that we have used Definition 3.1 to conveniently remove the 1
n factors from inside

the Q function, as in Eq. (2). Since ε is a constant, we will absorb it into the definition of Q from
now onward. Note that for any vector v, the matrix vector product ∆wltv can be implemented as a
TENSOR instruction (see Definition 5.1):

∆wltv = TENSOR({dhlβ0
}, {xl−1

β0
}, ..., {dhlβt}, {x

l−1
βt
}βt , v; {L′βt}) (160)

:= − 1

n
Qt(
∑
β0

dhlβ0
xl−1>
β0
L′β0

, ...,
∑
βt

dhlβtx
l−1>
βt
L′βt)v (161)

where {uβt}βt is a collection of all vectors u evaluated at time t on minibatch βt (and likewise for
scalars). We can now conveniently plug in Eq. (160) into the tensor programs in Theorem 4.1 and
Theorem 4.2 to prove a more general result.

C.1 EXTENSION OF THEOREM 4.1 (NTK)

We now state a general theorem for an AGO with memory and arbitrary batchsize.
Theorem C.1. Let f(ξ) ∈ R denote an MLP as in Eq. (1) parameterized using the ANTK pa-
rameterization described in Section 4.1, where φ′ is pseudo-Lipschitz. Assume layers {wl}Ll=2
are trained using an AGO applied on minibatches of arbitrary size, where Qt is pseudo-
Lipschitz defined according to Definition 3.1, using a loss function L with a pseudo-Lipschitz

first derivative. Then, at any step t and for any sample ξ̃, it holds that f̃t
a.s→ ˚̃

ft where

∆
˚̃
ft = −KAdp({ξβ0

}, ..., {ξβt}, ξ̃|{L̊
′
β0
}, ..., {L̊′βt}), where:

KAdp({ξβ0
}, ..., {ξβt}, ξ̃|{L̊

′
β0
}, ..., {L̊′βt}) = (162)

L∑
l=2

E
[
Zd

~hlQt
(∑
β0

Zdh
l
β0Zx

l�1
β0 L̊′β0

, ...,
∑
βt

Zdh
l
βtZx

l�1
βt L̊′βt

)
Z ~xl�1]

(163)

L̊′t = L′t(f̊t(ξt)) (164)
where the expectation is taken over all Z variables at initialization.

Proof. The proof of Theorem C.1 is a straightforward extension of the proof of Theorem 4.1. The
forward and backward passes for any t are again given by:

h̃lt =
(
W l +

1√
n

t−1∑
t0=0

∆wlt0
)
x̃l−1
t (165)

dh̃Lt = φ′(h̃Lt )� wL+1 (166)

∀1≤l<L, dh̃
l
t =

[(
W l+1 +

1√
n

t−1∑
t0=0

∆wl+1
t0

)>
dh̃l+1

t

]
� φ′(h̃lt) (167)

only with weight updates that are given by:

∆wlt = − 1

n
Qt(
∑
β0

dhlβ0
xl−1>
β0
L′β0

, ...,
∑
βt

dhlβtx
l−1>
βt
L′βt) (168)
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As in the memoryless case, using Eq. (2) and wlt = wl +
∑t
t0=0 ∆wlt0 (recall wl =

√
nW l), we have

that:

δh̃2
t = ∆w2

t h̃
1 (169)

∀2<l≤L, δh̃lt = ∆wltx̃
l−1
t +

1√
n

(
wl +

t∑
t0=0

∆wlt0
)
δx̃l−1
t +

1√
n

∆wltδx̃
l−1
t (170)

δx̃lt =
√
nφ(h̃lt +

δh̃lt√
n

)−
√
nφ(h̃lt) (171)

For any vector v, the matrix vector product ∆wltv can be implemented as a TENSOR instruction:

∆wltv = TENSOR({dhlβ0
}, {xl−1

β0
}, ..., {dhlβt}, {x

l−1
βt
}βt , v; {L′βt}) (172)

= − 1

n
Qt(
∑
β0

dhlβ0
xl−1>
β0
L′β0

, ...,
∑
βt

dhlβtx
l−1>
βt
L′βt)v (173)

where {uβt}βt is a collection of all vectors u evaluated at time t on minibatch βt (and likewise for
scalars). Hence, we may proceed exactly as in the base proof of Theorem 4.1 (i.e expressing the
optimization process as a tensor program, applying Definition 5.3 to get the coordinate distributions
in the limit, and applying Theorem 5.4). Note that in the concrete case of Adam, we get the following
function update:

KAdp({ξβ0
}, ..., {ξβt}, ξ̃|{L̊

′
β0
}, ..., {L̊′βt}) = (174)

L∑
l=2

E
[
Zd

~hl
(1−γ1)
1−γt1

∑t
i=0 γ

t−i
1

∑
βi
Zdh

l
βiZ

xl�1
βi L̊′βi√

(1−γ2)
1−γt2

∑t
i=0 γ

t−i
2 (

∑
βi
Z
dhlβiZ

xl�1
βi L̊′βi)

2 + ε

Z ~xl�1]
(175)

C.2 EXTENSION OF THEOREM 4.2 (µP)

Theorem C.2. Let f(ξ) ∈ R denote an MLP as in Eq. (1) with L = 2 parameterized using the µ
parameterization described in Section 4.1, where φ′ is pseudo-Lipschitz. Assume layers w2 is trained
using an AGO with a pseudo-Lipschitz function Q function according to Definition 3.1 (for general
batchsize), using a loss function L with a pseudo-Lipschitz first derivative. Then at any step t and for

any sample ξ̃, it holds that f̃t
a.s→ ˚̃
ft where ˚̃

ft can be computed as follows:

Z
~h2
t+1 = Z

~h2
t − EZx1(ξ�),Zx̃1

Qt
∑
β0

ζφ′(Zh
2
β0 )Zx

1(ξβ0
)L̊β0

, . . . ,
∑
βt

ζφ′(Zh
2
β0 )Zx

1(ξβt )L̊βt

Z ~x1


(176)

Z ~x2
t = φ(Z

~h2
t ), f̃0 = 0, f̃t = E[ζZ ~x2

t ], L̊′t = L′t(f̊t(ξt)) (177)

where the expectations are taken over all Z variables (including ζ d
= N (0, 1)).4

Proof. A similarly straightforward application of the Master Theorem Theorem 5.4 to the tensor
program in described in Theorem 4.2 together with Eq. (160) in µP.

D NUMERICAL VERIFICATION

We conduct numerical experiments to verify our results. For both parameterizations, the exact
network dynamics at the infinite width limit is not tractable in the general case, since the expectations
involved do not admit an analytical solution (unlike the standard NTK for ReLU networks). Even for

4Once again, the loss derivatives L′t are deterministic in Eq. (8)
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the ANTK parameterization, the infinite-width dynamics cannot be separated to a fixed kernel and a
loss derivative, as with the NTK dynamics for SGD. We therefore must resort to MC simulations to
approximate the expectations involved in evaluating the infinite width dynamics in both regimes. We
verify Theorem C.1 and Theorem C.2 by training a ReLU MLP (L = 4 for ANTK and L = 2 for µ)
on R10 gasussian inputs and a unit output. For a loss we use the standard L2 loss function, regressing
to random targets. We train networks with varying widths using Adam with β1 = 0.9, β2 = 0.99
in full batch mode, on 100 training samples, and run 10 trials per width. We use a learning rate of
0.2
n , and ε = 1e−4

n (where n is the width). In order to account for different initial outputs and loss
derivative per weight initialization, we subtract the initialized network output from the output for
each sample, such that the output is identically zero at initialization for all inputs. To approximate the
infinite-width training dynamics, we approximate the expectation in Eq. (174) and Eq. (176) using
MC simulations where we sample the Z random variables from gaussian processes corresponding to
the network architecture at initialization. Since the initial loss derivatives are deterministic (given that
the outputs are zero), the infinite width dynamics can be approximated without actually constructing
a network. To compare the evolution of the finite vs infinite architectures, we evaluate the output at
each iteration on random inputs. Our results are summarized in Fig. 2 and Fig. 3. As expected, as the
width increases the training dynamics converge to that of the infinite dynamics.

(a) (b) (c)

Figure 2: Training dynamics of finite and infinite-width networks in the ANTK parameterization. We
train networks of widths 64 (a), 512 (b), 7000 (c) , and track the outputs for 4 random inputs (one per
row) at each iteration as the network trains. We compute the output distribution over 10 independent
runs for each network, and compare with the infinite-width dynamics (black curve). As the width
grows, the network function converges to that of the infinite-width dynamics captured in Eq. (174)
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(a) (b) (c)

Figure 3: Training dynamics of finite and infinite-width networks in the µ parameterization. We train
networks of widths 64 (a), 512 (b), 7000 (c) , and track the outputs for 4 random inputs (one per row)
at each iteration as the network trains. We compute the output distribution over 10 independent runs
for each network, and compare with the infinite-width dynamics (black curve). As the width grows,
the network function converges to that of the infinite-width dynamics captured in Eq. (176)
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