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ABSTRACT

Large-scale pre-trained language models have shown outstanding performance
in a variety of NLP tasks. However, they are also known to be significantly
brittle against specifically crafted adversarial examples, leading to increasing
interest in probing the adversarial robustness of NLP systems. We introduce RSMI,
a novel two-stage framework that combines randomized smoothing (RS) with
masked inference (MI) to improve the adversarial robustness of NLP systems. RS
transforms a classifier into a smoothed classifier to obtain robust representations,
whereas MI forces a model to exploit the surrounding context of a masked token
in an input sequence. RSMI improves adversarial robustness by 2 to 3 times
over existing state-of-the-art methods on benchmark datasets. We also perform
in-depth qualitative analysis to validate the effectiveness of the different stages of
RSMI and probe the impact of its components through extensive ablations. By
empirically proving the stability of RSMI, we put it forward as a practical method
to robustly train large-scale NLP models. Our code and datasets are available at
https://anonymous.4open.science/r/RSMI.

1 INTRODUCTION

Large-scale pre-trained language models have achieved veritable success on virtually any task in
NLP (Devlin et al., 2019; Liu et al., 2019). However, they are also known to be considerably
vulnerable to specifically crafted examples, called adversarial examples (Ebrahimi et al., 2018; Jin
et al., 2020). The severity of the problem has triggered a variety of methods dedicated to address
the adversarial robustness of NLP systems (Goyal et al., 2022; Ye et al., 2020; Zhou et al., 2021;
Dong et al., 2021). Formulating an adversarially robust system typically involves a saddle point
problem that consists of maximization and minimization of a system’s loss function (Madry et al.,
2018). The maximization component models a potential threat or adversary, while the minimization
component models robustness to the adversary. Existing defense approaches in NLP typically tackle
the maximization problem by substituting a target word with its synonym through a heuristic search
in a predefined synonym set. This is followed by optimizing the minimization component, which
aims at training the system on the perturbed examples until it achieves a certain level of robustness
(Dong et al., 2021; Zhou et al., 2021; Ye et al., 2020). However, as shown recently by Li et al. (2021),
such synonym-substitution-based defense algorithms generally show a significant performance drop
when they have no access to the perturbation sets of the potential attacks. Assuming access to the
potential perturbation sets is often unrealistic in practical settings with a deployed NLP system.

To address the adversarial vulnerability of NLP systems, we propose RSMI, a novel two-stage
framework that leverages randomized smoothing (RS) and masked inference (MI). Randomized
smoothing is a generic class of methods that transform a classifier into a smoothed classifier via
a randomized input perturbation process (Cohen et al., 2019; Lécuyer et al., 2019). It has come
recently into the spotlight due to its simplicity and theoretical guarantee that ensures certifiable
robustness within a ball around an input point (Cohen et al., 2019; Salman et al., 2019). Moreover, its
robustness enhancement is highly scalable to modern large-scale deep learning setups (Cohen et al.,
2019; Lécuyer et al., 2019). These properties render it a promising research direction towards robust
and reliable deployment of deep learning systems. However, there exists a non-trivial challenge in
introducing RS to NLP systems due to the discrete nature of the text. In our work, we sidestep the
issue and adapt RS to NLP problems by injecting noise at the hidden layers of the deep neural model.
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The RS stage is followed by a gradient-guided masked inference (MI) to further reinforce the
smoothing effect of RS. MI draws an inference on an input sequence via a noise reduction process
that masks adversarially “salient” tokens in the input that are potentially perturbed by an attack
algorithm. The adversarially salient tokens are achieved via a gradient-based feature attribution
analysis rather than random selections as commonly done in pre-training language models (Devlin
et al., 2019). The effectiveness of our novel MI can be attributed to several aspects: First, it is a
natural regularization for forcing the model to make a prediction based on the surrounding contexts of
a masked token in the input (Moon et al., 2021). Second, it works without any prior assumption about
potential attacks, which renders it an attack-agnostic defense approach and is more practical in that it
requires no sub-module for synonym-substitution. Finally, it has a close theoretical connection to
the synonym-substitution-based approaches, as MI can be regarded as a special case of the weighted
ensemble over multiple transformed inputs, as we show later in §3.2.

We evaluate the performance of RSMI through comprehensive experimental studies on large-scale
pre-trained models trained with three benchmark datasets against TextFooler (Jin et al., 2020), PWWS
(Ren et al., 2019) and BAE (Garg & Ramakrishnan, 2020) adversarial attacks. Our empirical obser-
vations show that RSMI obtains improvements of 2 to 3 times against strong adversarial attacks in
terms of robustness metrics over state-of-the-art defense methods (§5.1). We also conduct theoretical
analysis to validate the effectiveness of our adapted RS (§3.1) and MI (§3.2). We further analyze
the scalability of RSMI, the influence of hyperparameters, its impact on the latent representation
of the system and its stochastic stability (§5.2). Our theoretical and empirical analyses validate the
effectiveness of RSMI presenting it as a potential practical method for training adversarially robust
scalable NLP systems.

The main contribution of this work can be summarized as follows:

• We propose a novel defense algorithm RSMI based on randomized smoothing and masked inference,
which requires no assumption on potential attacks and no sub-modules for identifying synonyms.

• Our theoretical analyses validate the effectiveness of RSMI (c.f., §3.1 and §3.2).
• We conduct large-scale empirical studies to validate the effectiveness of RSMI and its sub-stages

RS and MI, respectively (c.f., §5.1 and §5.2).

2 BACKGROUND AND RELATED WORK

Defense algorithms Defense methods against adversarial attacks typically involve solving a min-
max optimization problem, consisting of an inner maximization that seeks the worst (adversarial)
example and an outer minimization that aims to minimize a system’s loss over such examples (Madry
et al., 2018). The solution to the inner maximization problem can be obtained through iterative
optimization algorithms such as stochastic gradient descent. In NLP, the gradients can be computed
with respect to word embeddings of an input sequence as done in (Miyato et al., 2016; Zhu et al., 2020;
Wang et al., 2021a). An interesting result is that embedding-level adversarial training approaches for
text classification tasks often show improvements in standard test accuracy (Zhu et al., 2020; Wang
et al., 2021a; Ghaddar et al., 2021). Another prevailing approach is to substitute input words with their
synonyms sampled from a pre-defined synonym set. Since many textual attack algorithms perturb
input texts at a word level (Ren et al., 2019; Alzantot et al., 2018; Jin et al., 2020), synonym-based
defense (SDA) algorithms have emerged as a prominent defense approach (Ye et al., 2020; Zhou
et al., 2021; Dong et al., 2021). However, Li et al. (2021) recently pointed out that they tend to show
a significant brittleness if they have no access to the perturbation sets of the potential attacks.

Textual adversarial attacks In computer vision, iterative optimization-based attacks such as pro-
jected gradient descent (PGD) have been considered as the standard attack algorithms for evaluating
the robustness of defense algorithms (Athalye et al., 2018a; Madry et al., 2018). However, there is
still no general consensus about the standard attack algorithms in NLP. Due to the absence of such
standards, defense algorithms in NLP are generally evaluated against multiple attacks based on an
assumption that a security hole in a benchmarked defense algorithm can be found via different attack
algorithms. Nevertheless, TextFooler (Jin et al., 2020) and Probability Weighted Word Saliency or
PWWS (Ren et al., 2019) are the two attack algorithms that have been widely adopted in a variety
of defense methods (Dong et al., 2021; Zhou et al., 2021; Wang et al., 2021a; Li et al., 2021). They
construct perturbation sets through two different synonym sets (Mrkšić et al., 2016; Fellbaum, 1998)
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and identify target token positions via deletion and replacement, respectively. Their popularity
can be attributed to their high attack success rate and high quality adversarial examples given a
limited number of query budget (Hauser et al., 2021; Li et al., 2021). Another interesting attack
approach is to construct a perturbation set via a large-scale pre-trained language model such as BERT
(Devlin et al., 2019). BERT-based Adversarial Examples (BAE) (Garg & Ramakrishnan, 2020) aims
to generate an adversarial example with better retention of semantics and grammaticality through
BERT’s perturbation candidate selections.

Randomized smoothing Randomized perturbation has been studied at different granularity (Sri-
vastava et al., 2014; Bishop, 1995). They often provide a better generalization performance by acting
as a regularization technique (Ghaddar et al., 2021; Vasiljevic et al., 2016). Especially, it has been
shown that training a model with samples perturbed by Gaussian noise is equivalent to regularizing a
model with Tikhonov regularization (Bishop, 1995; Tikhonov & Arsenin, 1977). In an effort towards
devising a scalable robustness improvement algorithm, randomized smoothing has been introduced to
modern deep learning setups in some prior studies (Lécuyer et al., 2019; Cohen et al., 2019). Despite
its simplicity, it provides certifiable robustness within a radius of a ball around an input point (Lécuyer
et al., 2019; Cohen et al., 2019). Its simplicity and theoretical guarantee lead many to extend it to the
text domain. However, due to the discrete nature of texts, it had to be re-framed to fit it in the NLP
systems. Previous methods (Zhou et al., 2021; Ye et al., 2020) propose to randomly perturb raw input
sequences or their latent representation. But, they significantly underperform without an access to the
perturbation sets of potential attacks as shown by Li et al. (2021).

3 RANDOMIZED SMOOTHING WITH MASKED INFERENCE (RSMI)

We consider a standard text classification task with a probabilistic model Fθ : Rd → P(Y), where
P(Y) is the set of possible probability distributions over class labels Y = {1, . . . , C}, and θ ∈ Rp

denotes the parameters of the model Fθ (or F for simplicity). The model F is trained to fit a data
distribution D over pairs of an input sequence s = (s1, . . . , sT ) of T tokens and its corresponding
class label y ∈ Y . The distributed representation of s (or word embedding) is represented as
x = [x1, . . . , xT ]. We assume the model is trained with a loss function L such as cross-entropy. We
denote the final prediction of the model as ŷ = argmaxi F (s)i and the ground truth label as y∗.

3.1 RANDOMIZED SMOOTHING VIA NOISE LAYERS

Given the model F , our method exploits a randomized smoothing (Lécuyer et al., 2019; Cohen et al.,
2019) approach to obtain a smoothed version of it, denoted by G : Rd → P(Y), which is provably
robust under isotropic Gaussian noise perturbation δ at an input query u (e.g., an image). This can be
expressed as:
Definition 1. Given an original probabilistic neural network classifier F , the associated smoothed
classifier G at a query u can be denoted as (a.k.a. Weierstrauss Transform (Ahmed I, 1996)):

G(u) = (F ∗ N (0, σ2I))(u) = Eδ∼N (0,σ2I)[F (u+ δ)] . (1)

The standard deviation of the Gaussian noise σ is a hyperparameter that controls the robust-
ness/accuracy tradeoff of the resulting smoothed model G. The higher the noise level is, the more
robust it will be, while the prediction accuracy may decrease. The asterisk ∗ denotes a convolu-
tion operation (Oppenheim et al., 1996) which, for any two functions h and ψ, can be defined as:
h ∗ ψ(x) =

∫
Rd h(t)ψ(x − t)dt. In practice, G(u) can be estimated via Monte-Carlo sampling

(Cohen et al., 2019; Salman et al., 2019).

Cohen et al. (2019) showed that the smoothed model G is robust around a query point u within a L2

radius R given by:
R =

σ

2
(Φ−1(pa)− Φ−1(pb)) , (2)

where Φ−1 is the inverse of the standard Gaussian CDF, pa and pb are the probabilities of the two
most likely classes a and b, denoted as: a = argmaxy∈Y G(x)y and b = argmaxy∈Y\aG(x)y .

As per Eq. (1), a simple approach to obtain G is to perturb the input u by the noise δ and train with
it. However, for a textual input, the token sequence cannot be directly perturbed by δ due to the its
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discrete nature. To deviate from the issue, we inject noise at the hidden layers of the model to achieve
stronger smoothness. For a given layer fl, a noise layer fδl draws a noise δ ∼ N (0, σ2I) and adds it
to the output of fl in every forward pass of the model. The stronger smoothness resulting from the
multi-layer noise is provably guaranteed by the following theorem:

Theorem 1. Let F : Rd → P(Y) be any soft classifier which can be decomposed as F = f1◦f2◦· · ·◦
fL andG = g1◦g2◦· · ·◦gL be its associated smoothed classifier, where gl(x) = (fl ∗N(0, σ2

l I))(x)
with 1 ≤ l ≤ L and σl > 0. Let a = argmaxy∈Y G(x)y and b = argmaxy∈Y\aG(x)y be two most
likely classes for x according to G. Then, we have that argmaxy∈Y G(x

′)y = a for x′ satisfying

∥x′ − x∥2 ≤ 1

2σ1

L∏
l=2

(1 + σ2
l )(Φ

−1(pa)− Φ−1(pb)) .

We provide a proof of the theorem with Lipschitz continuity in Appendix A considering a case when
the noise is injected into the word embeddings.

3.2 GRADIENT-GUIDED MASKED INFERENCE

For an input sequence s, our method attempts to “denoise” its adversarially perturbed counterpart s′
by attributing saliency of input tokens through a simple gradient-based attribution analysis. Due to
the discrete nature of tokens, we compute the gradients of the loss function L with respect to the word
embeddings xt. The loss is computed with respect to the labels y, which is set to be the ground-truth
labels y∗ during training and model predictions ŷ during inference. Formally, the gradients gt for a
token st ∈ s (correspondingly xt ∈ x) can be computed as follows:

gt = ∇xt
L(G(x), y) ≈ −∇xt

(
log

(
1

ν

ν∑
i=1

G(x+ δi)

))
. (3)

Eq. (3) exploits a Monte-Carlo approximation to estimate the gradient gt as done in (Salman et al.,
2019). Subsequently, the amount of stimulus of the input tokens toward the model prediction is
measured by computing the L2-norm of gt, i.e., ||gt||2. The stimulus is regarded as the saliency score
of the tokens and they are sorted in descending order of the magnitude (Li et al., 2016). Then, we
sample M tokens from the top-N tokens in s, and mask them to generate a masked input sequence
m = [s1, . . . ,mt, . . . , sT ], where t is the position of a salient token and mt is the mask token,
[MASK]. In the training stage, we mask the top-M positions (i.e., N =M ), while the mask token
selection procedure is switched to a sampling-based approach during inference as detailed later
in §3.3. Finally, the gradients gt computed for generating the masked sequence is repurposed for
perturbing the word embeddings xt (i.e., δ = gt) to obtain robust embeddings as shown previously in
(Zhu et al., 2020; Wang et al., 2021a; Miyato et al., 2017).

Our gradient-guided masked inference offers several advantages. First, it yields a natural regular-
ization for forcing the model to exploit surrounding contexts of a masked token in the input (Moon
et al., 2021). Second, the masking process can provide a better smoothing effect by masking ‘salient’
tokens that are potentially adversarial perturbations generated by an attack algorithm. In such cases,
it works as a denoising process for reducing the strength of an attacks. In Appendix A.6, we discuss
the denoising effect of the gradient-guided masked inference in terms of Lipschitiz continuity of a
soft classifier.

Connection to synonym-based defense methods: Another interesting interpretation is that the
masked inference has a close connection to the synonym-based defense methods (Wang et al., 2021b;
Ye et al., 2020; Wang & Wang, 2020; Zhou et al., 2021). Assuming only position in s is masked and
treating the mask as a latent variable s̃t that could take any token from the vocabulary V , we can
express the masked inference as:

p(y|m) =
∑
s̃t∈V

p(y, s̃t|m) =
∑
s̃t∈V

p(y|m, s̃t)p(s̃t|m) ≈
∑
s̃t∈Vt

p(y|m, s̃t)p(s̃t|m) , (4)

where |Vt| ≪ |V | is the number of words to be at position t with a high probability mass. As shown
in the equation, the masked inference can be factorized into a classification objective and a masked
language modeling objective, which can be further approximated into a weighted ensembled inference
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Algorithm 1 Training and prediction procedure of RSMI.
1: Initialize. s, M , N , σ, ν, k0, k1, α, step size η, and a gradient scale parameter β.
2: Compute L :=

[
||g1||2, · · · , ||gT ||2

]
via Eq. (3). ▷ Gradients w.r.t. word embeddings

3: Sort L in descending order and keep top-N items
4: Get a masked sequence m by masking top-M tokens based on L.
5: if Training then
6: x := x+ β(g1, · · · ,gT ) ▷ Noise to word embeddings
7: θ := θ − η∇θL(G(x), y∗)
8: else if Prediction then
9: ϕ(m)0 =

∑k0

i=1[I(ŷ(i)(m) = y1), · · · , I(ŷ(i)(m) = yc)] ▷ First vote
10: na = maxϕ(m)0
11: p-value = BINOMTEST(na, k0, 0.5,one-tail)
12: if p-value > α then
13: Return argmaxy∈Y ϕ(m)0
14: else
15: [m(1), · · · ,m(k1)] ∼ RANDGRADMASK(k1, L)
16: ϕ(m)1 =

∑k1

i=1[I(ŷ(m(i)) = y1), · · · , I(ŷ(m(i)) = yc)] ▷ Second vote
17: Return argmaxy∈Y ϕ(m)1
18: end if
19: end if

with |Vt| substitutions of s with the highly probable tokens (e.g., synonyms) corresponding to the
original word st. If we assume p(s̃t|m) to be a probability of sampling uniformly from a synonym
set such as the one from the WordNet (Fellbaum, 1998), then the masked inference is reduced to a
synonym-substitution based defense approach with no necessity of an explicit synonym set.

3.3 TWO-STEP MONTE-CARLO SAMPLING FOR EFFICIENT INFERENCE

The prediction procedure of RSMI involves averaging predictions of k Monte-Carlo samples of
G(m) to deal with the variations that come from the noise layers. A large number of k is typically
required for a robust prediction but the computational cost increases proportionally as k gets larger.
To alleviate the computational cost, we propose a two-step sampling-based inference (Alg. 1).

In the first step, we make k0 predictions by estimating G(m) for k0 times (k0 forward passes). We
then make an initial guess about the label of the masked sample m by taking a majority vote of the
predictions. Following Cohen et al. (2019), this initial guess is then tested by a one-tailed binomial
test with a significance level of α. If the guess passes the test, we return the most probable class based
on the vote result. If it fails, then we attempt to make a second guess with a set of k1 masked input
sequences M = [m(1), · · · ,m(k1)]. Note that the masked input m used in the first step is generated
by masking the top-M tokens from the top-N candidates as we do during training. However, in
the second step, we randomly sample M masking positions from the N candidates to create each
masked sequence m(i) of M in order to maximize variations in the predictions; this step is denoted
as RANDGRADMASK in Alg. 1.

Our two-step sampling based inference is based on an assumption that textual adversarial examples
are liable to fail to achieve consensus from the RSMI’s predictions compared to clean samples. In
other words, it is considerably harder for adversarial examples to estimate the optimal perturbation
direction towards the decision boundary of a stochastic network (Däubener & Fischer, 2022; Athalye
et al., 2018a; Cohen et al., 2019).

4 EXPERIMENT SETUP

Table 1: A summary of the datasets.
Dataset Train Dev Test # Classes

IMDb 22.5k 2.5k 25k 2
AG 108k 12k 7.6k 4
QNLI 105k 5.5k 5.5k 2

Datasets Table 1 summarizes the statics of bench-
marking datasets adopted in our experiments. We
evaluate RSMI on two conventional NLP tasks: text
CLaSsification (CLS) and Natural Language Infer-
ence (NLI). We adopt IMDB (Maas et al., 2011) and
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AG’S NEWS (Zhang et al., 2015) datasets for the classification task. The IMDB contains movie
reviews labeled with positive or negative sentiments. The AG’S NEWS (AG) dataset consists of
news articles collected from more than 2K news sources and the samples are grouped into four
coarse-grained topic classes. For NLI, we compare the defense algorithms on the Question-answering
NLI (QNLI) dataset, which is a part of the GLEU benchmark (Wang et al., 2018). In QNLI, a model
is asked to determine an entailment relationship between a pair of a question and a paragraph that may
contain the answers. We build development sets for IMDB, AG, and QNLI by randomly drawing
10% samples from each training set via a stratified sampling strategy. For QNLI, we use the original
dev set for evaluataions.

Evaluation metrics The performance of defense algorithms is evaluated in terms of four different
metrics as proposed in (Li et al., 2021): (i) Standard accuracy (SAcc) is the model’s accuracy on clean
samples. (ii) Robust accuracy (RAcc) measures the model’s robustness against adversarial attacks.
(iii) Attack success rate (ASR) is the ratio of the inputs that successfully fool the victim models.
(iv) Finally, the average number of queries (AvgQ) needed to generate the adversarial examples.

Baselines We select FreeLB (Zhu et al., 2020), InfoBERT (Wang et al., 2021a), and SAFER (Ye
et al., 2020) as baselines and apply them over BERT-base (Devlin et al., 2019) and RoBERTa-base
(Liu et al., 2019) models. We train the baseline algorithms according to their default configurations
mentioned in the respective papers. We run them three times with a different random initialization
and choose the best model to reproduce the robustness evaluation results in (Li et al., 2021).

4.1 TEXTUAL ADVERSARIAL ATTACKS

We generate adversarial examples via TextFooler (TF) (Jin et al., 2020), Probability Weighted
Word Saliency (PWWS) (Ren et al., 2019) and BERT-based Adversarial Examples (BAE) (Garg &
Ramakrishnan, 2020). These attack algorithms are widely adopted in a variety of defense work as
adversarial robustness benchmarking algorithms (Yoo & Qi, 2021; Dong et al., 2021). TF identifies a
target token via cosine similarity between counter-fitting word embeddings (Mrkšić et al., 2016) of
candidate tokens. PWWS is a greedy attack algorithm that samples a candidate perturbation from
WordNet (Fellbaum, 1998). BAE adopts a pre-trained BERT for perturbing target tokens. For our
experiments, we adopted a replacement-based attack model called BAE-R1.

We randomly draw 1,000 samples from each test set following (Dong et al., 2021; Li et al., 2021;
Ye et al., 2020) and perturb them via an attack to generate the corresponding adversarial examples
for all experiments unless stated otherwise. We implement all attacks through the publicly available
TextAttack library (Morris et al., 2020) and use their default configurations.

For robustness evaluation of RSMI against the attacks, we modify the second step of the two-step
inference to make a final decision by averaging logit scores of k1 Monte-Carlo samples instead of the
majority voting approach in Alg. 1. We do this to prevent obfuscating the perturbation processes of
TF and PWWS that are devised to identify target tokens via the change of the model’s confidence,
which can give a false impression about the robustness of RSMI. Nonetheless, we investigate the
effectiveness of majority voting based inference as a practical defense method in §5.2. Further details
about the attack algorithms and parameter settings of the algorithms are provided in Appendix B.

5 RESULTS AND ANALYSIS

5.1 ADVERSARIAL ROBUSTNESS COMPARISON

We empirically compare the performance of RSMI with the baselines in Table 2. We observe that the
standard fine-tuned models are extremely vulnerable to adversarial attacks, as also shown in previous
work (Li et al., 2021). Overall, we observe that RSMI outperforms all the baselines by quite a large
margin across the majority of the metrics such as RAcc, ASR and AvgQ. In particular, it achieves
about 2 to 3 times improvements against strong attack algorithms (e.g., TextFooler and PWWS) in
terms of ASR and RAcc, which are key metrics for evaluating the robustness of defense algorithms.
RSMI also outperforms other existing methods such as TAVAT (Li & Qiu, 2020), MixADA (Si et al.,

1We observe that BAE significantly changes the semantics of the original input compared to TF and PWWS.
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Table 2: Performance comparison of adversarial robustness of RSMI with the baselines. RSMI-
NoMask excludes masking during inference time. Avg. stands for an average of evaluation results.

Dataset Model SAcc (↑) RAcc (↑) ASR (↓) AvgQ (↑)
TF PWWS BAE Avg. TF PWWS BAE Avg. TF PWWS BAE Avg.

IMDb

BERT-base
+ FineTuned 90.60 5.90 0.60 27.30 11.27 93.49 99.34 69.87 87.57 440 1227 377 681
+ FreeLB (Zhu et al., 2020) 92.90 10.50 14.22 45.30 23.34 88.70 84.71 51.24 74.88 909 1400 442 917
+ InfoBERT (Wang et al., 2021a) 92.90 26.40 26.80 50.00 34.40 71.58 71.15 46.18 62.97 1079 1477 458 1005
+ SAFER (Ye et al., 2020) 91.80 23.80 30.90 38.20 30.97 74.08 66.34 58.39 66.27 1090 1504 618 1071
+ RSMI-NoMask (Our) 91.00 34.90 57.00 58.40 50.10 61.65 37.36 35.83 44.95 1395 1733 817 1315
+ RSMI (Our) 92.20 56.40 58.70 80.20 65.10 38.83 36.34 13.02 29.40 1651 1764 1287 1567
RoBERTa-base
+ FineTuned 93.10 0.50 1.10 22.60 8.07 99.46 98.82 75.73 91.34 588 1248 398 745
+ FreeLB (Zhu et al., 2020) 93.20 17.30 21.20 49.50 29.33 81.44 77.25 46.89 68.53 999 1433 461 964
+ InfoBERT (Wang et al., 2021a) 94.00 7.60 13.20 36.10 18.97 91.92 85.96 61.60 79.83 855 1388 418 887
+ SAFER (Ye et al., 2020) 93.20 31.80 39.20 45.40 38.80 65.88 57.94 51.29 58.37 1276 1575 678 1176
+ RSMI-NoMask (Our) 93.30 47.00 54.00 52.10 51.03 49.63 42.12 44.16 45.30 1455 1684 764 1301
+ RSMI (Our) 93.00 73.40 76.20 83.00 77.53 21.08 18.07 10.75 16.63 1917 1863 1314 1698

AGNews

BERT-base
+ FineTuned 93.90 16.80 34.00 81.00 43.93 82.11 63.79 13.74 53.21 330 352 124 269
+ FreeLB (Zhu et al., 2020) 95.00 24.40 48.20 84.10 52.23 74.32 49.26 11.47 45.02 383 367 131 294
+ InfoBERT (Wang et al., 2021a) 94.81 19.90 40.90 84.90 48.57 79.01 56.86 10.45 48.77 371 365 126 287
+ SAFER (Ye et al., 2020) 93.70 46.30 64.00 80.00 63.43 50.59 31.70 14.62 32.30 447 379 170 332
+ RSMI-NoMask (Our) 92.60 60.40 75.30 77.90 71.20 34.77 18.68 15.88 23.11 497 395 203 365
+ RSMI (Our) 92.70 63.20 76.10 86.10 75.13 31.82 17.91 7.12 18.95 503 397 573 491
RoBERTa-base
+ FineTuned 93.91 23.90 49.30 80.00 51.07 74.55 47.50 14.80 45.62 353 367 130 283
+ FreeLB (Zhu et al., 2020) 95.11 23.90 48.20 83.00 51.70 74.87 49.32 12.73 45.64 393 374 127 298
+ InfoBERT (Wang et al., 2021a) 94.00 30.20 52.30 79.80 54.10 67.87 44.36 15.11 42.45 396 374 134 301
+ SAFER (Ye et al., 2020) 93.60 49.30 68.90 81.60 66.60 47.33 26.39 12.82 28.85 452 386 172 337
+ RSMI-NoMask (Our) 94.10 66.40 79.00 82.80 76.07 29.44 16.05 12.01 19.17 504 396 213 371
+ RSMI (Our) 94.30 74.10 81.90 88.60 81.53 21.42 13.15 6.04 13.54 530 401 576 502

QNLI

BERT-base
+ FineTuned 79.50 13.20 26.40 52.10 30.57 83.40 66.79 34.47 61.55 189 218 97 168
+ FreeLB (Zhu et al., 2020) 85.60 13.10 28.00 54.50 31.87 84.70 67.29 36.33 62.77 191 221 96 169
+ InfoBERT (Wang et al., 2021a) 84.40 18.50 30.50 54.60 34.53 78.08 63.86 35.31 59.08 201 219 97 172
+ SAFER (Ye et al., 2020) 88.30 33.70 43.00 52.00 42.90 61.83 51.14 41.11 51.36 229 221 109 186
+ RSMI-NoMask (Our) 90.60 30.60 42.40 53.40 42.13 66.23 53.20 41.06 53.50 222 223 117 187
+ RSMI (Our) 90.57 41.20 54.20 60.10 51.83 54.51 40.15 33.52 47.73 256 230 120 202
RoBERTa-base
+ FineTuned 91.90 19.80 34.00 51.20 35.00 78.48 62.93 44.35 61.92 189 217 91 166
+ FreeLB (Zhu et al., 2020) 92.10 27.30 37.70 55.70 40.23 70.36 59.07 39.52 56.32 215 223 95 178
+ InfoBERT (Wang et al., 2021a) 91.60 23.00 36.50 53.80 37.77 74.89 60.15 41.27 58.77 204 221 92 172
+ SAFER (Ye et al., 2020) 90.80 33.80 45.50 49.70 43.00 62.82 49.67 45.26 52.58 232 227 109 189
+ RSMI-NoMask (Our) 91.50 34.10 46.80 50.50 43.80 62.73 48.73 45.86 52.44 218 225 113 185
+ RSMI (Our) 91.81 49.00 60.10 60.60 56.57 46.63 34.54 34.05 38.41 266 240 330 279

2020), A2T (Yoo & Qi, 2021), and ASCC (Dong et al., 2021) which we do not report in Table 2 as
they show lower performance than our baselines, c.f., Li et al. (2021).2

The strong performance of RSMI can be attributed to four factors: (i) A provable robustness guarantee
by the randomized smoothing approach helps attain higher robustness. To support this claim, we
evaluate the robustness of RSMI without the proposed masking process during inference and the
results are reported as RSMI-NoMask in Table 2. As we can see, RSMI-NoMask outperforms
the baselines in most experiment scenarios. (ii) The randomized smoothing denoises adversarial
perturbations in the latent space of systems. Our experiments in Appendix C bolster this claim by
showing the significant noise reduction in hidden representations of RSMI. (iii) The gradient-guided
masked inference leads to a reduction in the noise of the adversarial perturbations. This claim can be
strongly supported again by comparing the results of RSMI with and without the masking strategy
during inference (c.f., RSMI-NoMask and RSMI in Table 2). (iv) The two-step sampling-based
inference makes it harder for the attack algorithms to estimate the optimal perturbation direction
to fool the model for an input sample. In Appendix F, we show the effectiveness of the two-step
sampling by comparing the performance of RSMI with and without the two-step sampling.

5.2 CLOSER ANALYSIS

Majority voting-based inference The inference of RSMI involves a combination of individual
predictions. During evaluations in §5.1, RSMI is modified to draw a final decision about an input

2Also Li et al. (2021) put constraints to make the attack algorithms weaker which we did not do in our work.
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Table 3: Performance of the majority-voting based inference of RSMI. The round brackets next to
each number denote the change of score compared to logit averaging based inference.

Dataset Model SAcc (↑) RAcc (↑) ASR (↓) AvgQ (↑)
TF PWWS TF PWWS TF PWWS

IMDb BERT-base 91.70(-0.50) 77.20(+20.80) 77.80(+19.10) 15.81(-23.02) 15.16(-21.18) 1989(+338) 1877(+113)
RoBERTa-base 94.30(+1.3) 81.90(+8.50) 82.70(+6.50) 13.15(-7.93) 12.30(-5.77) 2031(+114) 1916(+53)

AGNews BERT-base 92.90(+0.20) 85.40(+22.20) 87.20(+11.10) 8.07(-23.75) 6.14(-11.77) 572(+69) 408(+11)
RoBERTa-base 94.10(-0.20) 86.10(+12.00) 88.40(+6.50) 8.50(-12.91) 6.06(-7.08) 571(+41) 407(+6)

QNLI BERT-base 90.00(-0.57) 63.60(+22.40) 71.30(+17.10) 29.33(-25.18) 20.78(-19.37) 321(+65) 246(+16)
RoBERTa-base 91.89(+0.08) 68.00(+19.00) 76.40(+16.30) 26.00(-20.63) 16.86(-17.68) 329(+63) 251(+11)

Table 4: Performance comparison of adversarial robustness of RSMI on large-scale pre-trained
masked language models. The round brackets next to each number denote the change of score
compared to its base-model.

Dataset Model SAcc (↑) RAcc (↑) ASR (↓) AvgQ (↑)

IMDb

BERT-large + FineTuned 92.50(+1.90) 29.50(+23.60) 68.11(-25.38) 1130(+690)
BERT-large + RSMI (Our) 93.16(+0.96) 79.30(+22.90) 14.88(-23.95) 1980(+329)

RoBERTa-large + FineTuned 94.30(+1.20) 21.20(+20.70) 77.52(-21.94) 1034(+446)
RoBERTa-large + RSMI (Our) 95.06(+2.06) 87.40(+14.00) 8.06 (-13.02) 2092(+175)

AGNews

BERT-large + FineTuned 95.30(+1.40) 20.60(+3.80) 78.38(-3.73) 358 (+28)
BERT-large + RSMI (Our) 94.60(+1.90) 85.70(+22.50) 9.41 (-22.41) 568 (+65)

RoBERTa-large + FineTuned 94.06(+0.15) 41.50(+17.60) 55.88(-18.67) 433 (+80)
RoBERTa-large + RSMI (Our) 94.60(+0.30) 88.10(+14.00) 6.87 (-14.55) 577 (+47)

sequence by averaging logit scores of multiple Monte-Carlo samples for a fair comparison, because the
majority voting obfuscates the perturbation processes of attack algorithms by hiding model prediction
scores. However, the majority voting-based inference (c.f., Alg.1 and §3.3) can be a practical defense
method against adversarial attacks that require access to a victim model’s prediction probabilities
for their perturbation process since most attack algorithms require the prediction information (e.g.,
TextFooler, PWWS, and BAE). To validate the effectiveness of the majority vote, we conduct
additional experiments. As shown in Table 3, the majority voting-based inference significantly
outperforms the logit averaging approaches.

Large scale parameterization and adversarial robustness We investigate the scalability of RSMI
and the impact of model size on robustness. To this end, we conduct experiments on large-scale
pre-trained masked language models. During the experiments, RoBERTa-large and BERT-large
models are adopted for each task and adversarial examples are generated via TextFooler attack
algorithm. Table 4 summarizes our experiment results. The fine-tuned large-scale models show
significantly improved robustness and standard task performance compared to their smaller version,
RoBERTa-base and BERT-base. We also observe the significant improvements of robustness and
standard task performance in the large models with RSMI.

Table 5: Study on noise size (σ), number of masks
(M ), and number of noise layers (Nl).

σ M Nl ASR(↓) SAcc(↑)

0.2 2 3 35.26 93.15
0.2 2 4 32.73 93.26
0.2 2 5 29.90 93.11

0.2 2 3 35.26 93.15
0.3 2 3 26.05 92.96
0.4 2 3 24.17 92.70

0.4 2 3 24.17 92.70
0.4 3 3 22.39 92.49
0.4 4 3 20.99 92.13

Impact of standard deviation for noise size, num-
ber of masks, and number of noise layers. Ta-
ble 5 shows the impact of different hyperparameters
of RSMI. As observed, the overall ASR tends to
decrease as we inject more noises into models by
increasing noise size (σ), replacing more input words
with the mask token (M ), and adding more noise lay-
ers (Nl). Specifically, we observe that ASR gradually
decreases as we put more noise layers in the model.
Also, ASR steadily declines as we increase the stan-
dard deviation of noise. Finally, we observe that the
increased number of masks effectively decreases ASR. However, we observe that these improvements
in ASR come at the cost of a decreasing SAcc.
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Table 6: ASR of random masking (RM) and gradient-guided masking
(GM) for combinations of M masked tokens and k masked sequences.

Model ASR(↓)
k = 1 k = 5 k = 10 k = 50

M = 1
RM 86.65 97.95 99.68 100
GM 96.55

M = 2
RM 76.57 90.84 93.11 96.27
GM 83.12

M = 3
RM 70.05 86.34 90.08 92.76
GM 90.81

M = 4
RM 65.34 78.86 79.74 82.64
GM 81.34

M = 5
RM 68.35 86.31 90.70 96.26
GM 80.72

Effectiveness of gradient-guided masking
We probe the effectiveness of the gradient-
guided masking strategy by ablating the noise
layers and the two-step sampling of RSMI. The
resulting model, namely the gradient-guided
masking (GM) is compared to a model trained
on randomly masked inputs, namely the random
masking model (RM). Note that GM predicts
and masks inputs in a deterministic way due to
the absence of noise layers. Table 6 summa-
rizes our study of ASR changes of GM and RM
over different number of mask tokens M in an
input sequence as well as k randomly masked
sequences drawn for estimating an expectation of RM prediction. RM tends to show a similar pattern
that is observed in the experiment about the variation of SAFER in Appendix F. Specifically, it tends
to achieve its best performance at k = 1, but shows vulnerability as k increases. On the other hand,
ASR of GM tends to decrease as we increase M , validating the effectiveness of gradient-guided
masking for denoising adversarial perturbations injected by attack algorithms.

Table 7: Run time comparison of RSMI with the baselines.
Dataset Model Train (↓) Inference (↓)

QNLI

FineTuned 1.0 1.0
FreeLB(Zhu et al., 2020) ×2.8 ×1.0
InfoBERT(Wang et al., 2021a) ×5.4 ×1.0
SAFER(Ye et al., 2020) ×1.0 ×1.0
RSMI NoMask (Our) ×1.9 ×1.0
RSMI (Our) ×1.9 ×3.5

Run time analysis We compare the com-
putation speed of RSMI with the baselines
on the RoBERTa-base model fine-tuned on
QNLI. All experiments are conducted on
an Intel Xeon Gold 5218R CPU-2.10GHz
processor with a single Quadro RTX 6000
GPU. For a fair comparison, the number of
gradient computation steps of FreeLB and
InfoBERT is set to 3 and other parameters
are configured to the default settings provided by the original papers. Also, we do not include the
preprocessing time of SAFER. As shown in Table 7, RSMI is approximately 1.9x slower than the
Fine-Tuned model during training and 3.5x slower during inference. The latency of RSMI is mainly
caused by the additional backpropagation and forward propagation for computing the gradients. The
inference speed of RSMI can be improved by removing the masking step during inference, but there
exist a trade-off between the inference speed and robustness as shown in Table 2.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

We have proposed RSMI, a novel two-stage framework to tackle the issue of adversarial robustness of
large-scale deep NLP systems. To this end, we first adapted the randomized smoothing (RS) strategy
for discrete text inputs. We followed it up by devising a novel gradient-guided masked inference
(MI) approach that reinforces the smoothing effect of RS. We have evaluated RSMI by applying it to
large-scale pre-trained models on three benchmark datasets and obtain 2 to 3 times improvements
against strong attacks in terms of robustness evaluation metrics over state-of-the-art defense methods.
We have also studied the scalability of RSMI and performed extensive qualitative analyses to examine
the effect of RSMI on the latent representations of the original and perturbed inputs as well as the
change in its stability owing to its non-deterministic nature. Our thorough ablations and experiments
validate the effectiveness of RSMI as a practical approach to train adversarially robust NLP systems.

A major component of RSMI has been developed with the concept of randomized smoothing which is
known to be certifiably robust within a radius of a ball around an input point. Though we have proved
the robustness for the perturbed samples within this given ball, there is no theoretical guarantee that
a perturbed sample will always lie within the ball. Accordingly, our study is limited to empirical
validation of the effectiveness of RSMI, although it has theoretical robustness within a L2 norm ball
as shown in §3. Nevertheless, certified robustness is a critical research direction for robust and reliable
deployment of NLP systems. In our future work, we will explore the theoretical understanding of the
certified-robustness of NLP systems and textual adversarial examples in-depth.
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A PROOF

This section provides a proof of Theorem 1. The sketch of the new theorem is as follows:

Consider a simple case where a noise is added to the output of a single intermediate layer and word
embeddings of a soft neural network classifier with normalization layers. The network is denoted as
F : Rd → P(Y) and word embeddings of an input sequence s are represented as x. Then, F can be
deemed as a composite function as follows:

F = f1 ◦ f2 = f1(f2(x)),

where f1: Rd′ → P(Y) and f2: Rd → Rd′
. After injecting a noise, the new smoothed classifier can

be represented as follows:
G = g1 ◦ g2,

where gi is the Weierstrauss Transform (Ahmed I, 1996) of fi as stated in the following definition:

Definition 2. Denote the original soft neural network classifier as f , the associated smooth classifier
(Weierstrauss Transform (Ahmed I, 1996)) can be denoted as g:

g(x) = (f ∗ N (0, σ2I))(x) = E
δ∼N (0,σ2I)

[f(x+ δ)]. (5)

In the following sections, we will prove L-Lipschtzness of g1 and g2. Subsequently, we will show that
the output argmaxy∈Y G(x)y does not change within a certain radius of input x (c.f., Theorem 2).
Eventually, we will generalize the simplified case towards a general case where multiple layers of
activations are perturbed and its radius increases exponentially as we add more noise layers to the
classifier (c.f., Theorem 1).

We also provide justifications for the gradient-guide masking strategy (i.e., MI) and show that it acts
as a denoising process that enhances the smoothing effect of the proposed approach (Appendix A.6).
Note that we adopt Lemma 1, Lemma 2, and Lemma 6 from Li (2019) and follow its proofs.

A.1 LIPSCHITZNESS OF THE SMOOTHED CLASSIFIERS

We will first show that g1 is
√

2
πσ2 -Lipschitz in ℓ2 norm. Note that g1 is the Weierstrauss Transform

(Ahmed I, 1996) of a classifier f1 (c.f., Eq. (5)).

Lemma 1. Let σ > 0, let h : Rd → [0, 1]d be measurable, and let H = h ∗ N (0, σ2I). Then H is√
2

πσ2 -Lipschitz in ℓ2.

Proof. In ℓ2, we have:

∇H(x) = ∇
(

1

(2πσ2)
d
2

∫
Rd

h(t) exp

(
− 1

2σ2
∥x− t∥22

)
dt

)
=

1

(2πσ2)
d
2

∫
Rd

h(t)
t− x

σ2
exp(− 1

2σ2
∥x− t∥22)dt .

(6)

Let v ∈ Rd be a unit vector, the norm of ∇H(x) is bounded:

|⟨v,∇H(x)⟩| =
∣∣∣∣ 1

(2πσ2)
d
2

∫
Rd

h(t)

〈
v,
t− x

σ2

〉
exp

(
− 1

2σ2
∥x− t∥22

)
dt

∣∣∣∣
≤ 1

(2πσ2)
d
2

∫
Rd

∣∣∣∣〈v, t− x

σ2

〉∣∣∣∣ exp(− 1

2σ2
∥x− t∥22

)
dt

=
1

σ2 E
Z∼N (0,σ2)

[|Z|] =
√

2

πσ2
,

(7)

where the second line holds since h : Rd → [0, 1]d.
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By Lemma 1, g1 is
√

2
πσ2 -Lipschitz.

Lemma 2. Let σ > 0, let h : Rd → [0, 1], and letH = h∗N (0, σ2I). Then the function Φ−1(H(x))
is σ-Lipschitz.

Proof. Let’s first consider a simple case where σ = 1. Then, we have that

∇Φ−1(H(x)) =
∇H(x)

Φ′(Φ−1(H(x)))
,

where Φ−1 is the inverse of the standard Gaussian CDF. Then, we need to show the following
inequality holds for any unit vector v.

⟨v,∇H(x)⟩ ≤ Φ′(Φ−1(H(x))) =
1√
2π

exp

(
− 1

2
Φ−1(H(x))2

)
.

By Stein’s lemma (Stein, 1981), the LHS is equal to

EX∼N (0,I)[⟨v,X⟩ · h(x+X)].

We need to bound the maximum of this quantity to have the constraint that h(x) ∈ [0, 1] for all x and
Ex∼N (0,I)[h(x+X)] = p. Let f(z) = h(z + x), the problem becomes:

max E
X∼N (0,I)

[⟨v,X⟩ · f(X)]

s.t. f(x) ∈ [0, 1] and E
X∼N (0,I)

[f(X)] = p .
(8)

The solution of the optimization problem is given by the halfspace ℓ(z) = 1[⟨u, z⟩ > −Φ−1(p)] and
it is a valid solution to the problem. To show its uniqueness, let f be any other possible solution and
A be the support of ℓ. Then, by assumption, EX∼N (0,I)[ℓ(X)− f(X)] = 0. In particular, we must
have:

E
X∼N (0,I)

[(ℓ(X)− f(X))1A] = E
X∼N (0,I)

[(ℓ(X)− f(X))1AC ] .

However, for any z ∈ A and z′ ∈ AC , we have that ⟨v, z⟩ ≥ ⟨v, z′⟩. Hence,

E
X∼N (0,I)

[⟨v,X⟩(ℓ(X)− f(X))1A] ≥ E
X∼N (0,I)

[⟨v,X⟩(ℓ(X)− f(X))1AC ],

where this uses that ℓ(z) ≥ f(z) if z ∈ A and f(z) ≥ ℓ(z) otherwise. Rearranging, yields

E
X∼N (0,I)

[⟨v,X⟩ℓ(X)] ≥ E
X∼N (0,I)

[⟨v,X⟩f(X)]

as claimed. Now, we simply observe that

E
X∼N(0,I)

[⟨v,X⟩ℓ(X)] = E
Z∼N (0,1)

[Z · 1Z>−Φ−1(p)]

=
1√
2π

∫ ∞

−Φ−1(p)

xe−x2/2dx

= exp

(
− 1

2
Φ−1(p)2

)
= exp

(
− 1

2
Φ−1(H(x))2

)
,

(9)

as claimed.

To extend the simple case to a general σ, we can take the auxiliary function h̃(z) = h(z/σ), and the
corresponding smoothed function H̃ = h̃ ∗N(0, 1). Then H̃(σx) = H(x). By the same proof as
before, Φ−1 ◦ H̃ is 1-Lipschitz, and this immediately implies that Φ−1 ◦H is σ-Lipschitz.

Therefore, Φ−1(g1(x)) is a σ-Lipschitz smooth classifier.
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A.2 LIPSCHITZNESS OF THE SMOOTHED INTERMEDIATE LAYERS

Lemma 3. Let h : Rd → N (0, Id) and H = h ∗ N (0, σ2Id). Then, they are Lh-Lipschitz and
LH -Lipschitz, respectively, where Lh = 1√

2π
e−

1
2 and LH = 1

1+σ2Lh.

Proof. In general, a Gaussian distribution ϕ ∼ N (µ, σ2I) is 1
σ2

√
2π
e−

1
2 -Lipschitz, where ϕ(x) can

be represented as follows:

ϕ(x) =
1√
2πσ2

exp

(
− (x− µ)T I(x− µ)

2σ2

)
.

Then, the derivate of ϕ is given by

ϕ′(x) =
1√
2πσ2

µ− x

σ2
exp

(
− (x− µ)T I(x− µ)

2σ2

)
.

The maximum of ∥ϕ′(x)∥ can be obtained by taking the derivative of its square and set it to zero as
follows:

d

dx
∥ϕ′(x)∥2 =

1

2πσ6

(
− 2∥x− µ∥2(x− µ)

σ2
exp

(
− ∥x− µ∥2

σ2

)
+ 2(x− µ) exp

(
− ∥x− µ∥2

σ2

))
= 0 .

Note that the square of the norm is a monotonic function as the norm is greater than 0. Thus, we have

∥x− µ∥2 = σ2 .

This equation implies that the maximum of ϕ′ can be found at a distance of σ from µ. For any unit
vector v ∈ Rd, the maximum value of ϕ′ occurs at:

x = µ+ σv

Subsequently, the norm of the maximum gradient is given by:

∥ϕ′(µ+ σv)∥ =
1√
2πσ2

exp

(
− 1

2

)
.

Since ∥ϕ′(x)∥ ≤ 1√
2πσ2

exp(− 1
2 ) , Lipschitz continuity of ϕ can be shown by the Mean Value

Theorem:

∥ϕ(x)− ϕ(y)∥ ≤ sup
x∈Rd

∥ϕ′(x)∥∥x− y∥ =
1√
2πσ2

exp

(
− 1

2

)
∥x− y∥ .

Therefore, ϕ ∼ N (µ, σ2I) is 1
σ2

√
2π
e−

1
2 -Lipschitz. Since h maps to the standard normal distribution,

h(t) is 1√
2π
e−

1
2 -Lipschitz.

To show the Lipschitz constraint of H(x), we exploit the fact that the convolution of two Gaussian
distributions ϕ1 ∼ (µ1, σ

2
1) and ϕ1 ∼ (µ2, σ

2
2) is another Gaussian distribution ϕ = ϕ1 ∗ ϕ2 ∼

(µ1 + µ2, σ
2
1 + σ2

2), which could be extended to the standard multi-dimensional independent
Gaussian variables with no covariance (Bromiley, 2003). This property leads to an equality of
H(x) = h ∗N(0, σ2Id) = N(0, Id) ∗N(0, σ2Id) ∼ N(0, (1 + σ2)Id), which shows that H(x) is

1√
2π(1+σ2)

e−
1
2 I -Lipschitz. Thus, LH = 1

1+σ2Lh.

Lemma 3 implies that randomized smoothing imposes a stronger smoothness of the function, since
the Lipschitz bound of the original function will be reduced by a factor of 1

1+σ2 as 1 + σ2 > 1.
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A.3 LIPSCHITZNESS OF THE OVERALL COMPOSITE FUNCTION

Lemma 4. If f and g are L1-Lipschitz and L2-Lipschitz, respectively, then the composite function
f ◦ g is L1L2-Lipschitz.

Proof.

|f ◦ g(x′)− f ◦ g(x)| = |f(g(x′))− f(g(x))|
≤ L1|g(x′)− g(x)|
≤ L1L2|x′ − x| .

(10)

Lemma 2, Lemma 3, and Lemma 4 lead to the following lemma:

Lemma 5. Φ−1(G) = Φ−1 ◦ g1 ◦ g2 is
(

σ1

1+σ2
2

)
-Lipschitz when

g1(x) = (f1 ∗ N (0, σ2
1I))(x) = E

δ∼N (0,σ2
1I)

[f1(x+ δ)]

and
g2(x) = (f2 ∗ N (0, σ2

2I))(x) = E
δ∼N (0,σ2

2I)
[f2(x+ δ)]

Proof. If a noise is only added to the input x, then the inverse of the standard Gaussian CDF of the
smoothed classifier , i.e., Φ−1 ◦ g(x), is σ1-Lipschitz, as stated in Lemma 2. We can consider g as a
composite function , where g = g′1 ◦ g′2, then Φ−1 ◦ g′1 ◦ g′2(x) is still σ1-Lipschitz.

Let the Lipschitz constant of Φ−1 be LΦ. Note that g′1(x) is L1-Lipschitz since gradients of g′1 is
clipped during a training phase. Also g′2 is L2-Lipschitz as it is a soft classifier. Lemma 4 leads to the
following observation:

LΦL1L2 = σ1

Subsequently, we consider a case where the intermediate outputs of the composite function are
perturbed. In other words, we also apply Weierstrauss transform to the layer f1 (i.e.,f1 to g1).
Thus, g1 is

(
1

1+σ2
2
L1

)
-Lipschitz by Lemma 3. Then, Lemma 3 with Lemma 4 results in the new

Lipschitzness constant for Φ−1(G), which is given by

LΦ
1

1 + σ2
2

L1L2 =
σ1

1 + σ2
2

.

A.4 ROBUST RADIUS OF INPUT

Lemma 6. Let m : R → R be a monotone, invertible function. Suppose that F : Rd → P(Y) is
a soft classifier, and moreover, the function x 7→ m(F (x)y) is L-Lipschitz in norm || · ||, for every
y ∈ Y . Let a and b are the most likely classes which are denoted as a = argmaxy∈Y G(x)y and b =
argmaxy∈Y\aG(x)y, respectively, and their corresponding probabilities are pa and pb, then, we
have that argmaxy∈Y F (x

′) = a for all x′ so that ||x′ − x|| < 1
2L (m(pa)−m(pb)).

Proof. As x 7→ m(F (x)y) is L-Lipschitz, we know that for any x′ within ball 1
2L (m(pa)−m(pb)),

we have:

|m(F (x′)a)−m(F (x)a)| = |m(F (x′)a)−m(pa)| ≤ L∥x′ − x∥ < 1

2
(m(pa)−m(pb))

In particular, this implies that m(F (x′)a) >
1
2 (m(pa) +m(pb)). However, for any y ̸= a, by the

same logic,

m(F (x′)y) < m(F (x)y) +
1

2
(m(pa)−m(pb)) ≤

1

2
(m(pa) +m(pb)) < m(F (x′)a)

Hence, argmaxy∈Y F (x
′) = a.
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Theorem 2. Let F : Rd → P(Y) be any soft classifier, let σ > 0, and let G be its associated soft
classifier, Let

a = argmax
y∈Y

G(x)y and b = argmax
y∈Y\a

G(x)y

be two most likely classes for x according to G. Then, we have that argmaxy∈Y G(x
′)y = a for x′

satisfying

∥x′ − x∥2 ≤ 1 + σ2
2

2σ1
(Φ−1(pa)− Φ−1(pb))

Proof. Follows from Lemma 5 and Lemma 6.

Theorem 2 implies that a prediction of the smoothed network is robust around the input x within
a radius of 1+σ2

2

2σ1
(Φ−1(pa)− Φ−1(pb)). The robust radius of the proposed randomized smoothing

approach is scaled by a factor of (1 + σ2
2) > 1.

A.5 GENERALIZATION TO MULTI-LAYER

Theorem 2 can be generalized to a multi-layer perturbation approach for a multi-layer network
F = f1 ◦ f2 ◦ · · · ◦ fL by repetitively applying Lemma 3. Then, the new smoothed classifier G is
σ1/

∏L
l=2(1 + σ2

l )-Lipschitz and it yields Theorem 1 with Lemma 6 by iterative use of Lemma 3
with Lemma 6.

A.6 DE-NOISING EFFECT OF THE GRADIENT-GUIDED MASKED INFERENCE

The de-noising effect of the gradient-guided masked inference (MI) can be understood via its impact
on the Lipschtiz continuity of a soft classifier F : Rd → P(Y). Let’s consider a case where we have
an input sequence s and its perturbed sequence s′. Then, their distributed representations are x and
x′, respecitvely. Subsequently, let L be the maximum gradient for masking, then a classifier F is
L-Lipschitz, as the first derivatives is bounded by the max gradient L. The Lipschitz property is given
by

|F (x′)− F (x)| ≤ L|x′ − x| .
The proposed gradient-guided masking process lowers the Lipschtiz constant of F through masking
a token under a guidance of max gradient signals. It implies that F will become L′-Lipschitz, where
L′ < L and it can be represented as follows:

|F (x̂)− F (x)| ≤ L′|x̂− x| < L|x′ − x| ,

where x̂ is the max gradient-guided masked word embeddings. As shown in the above equation, MI
can effectively lower the upper bound of the prediction change and increases a chance of pushing the
model prediction to fall into the robustness radius derived by the randomized smoothing method.

B EXPERIMENT DETAILS

Experiment environment All of the experiments are conducted on an Intel Xeon Gold 5218R
CPU-2.10GHz processor with a single Quadro RTX 6000 GPU under Python with PyTorch (Paszke
et al., 2019).

Models used The models used in this work are pre-trained RoBERTa-base (Liu et al., 2019) and
BERT-base (Devlin et al., 2019), both of which have 124 milion parameters. We adopt Huggingface
library (Wolf et al., 2020) for training the models on the benchmark datasets.

Parameter settings of RSMI RSMI and the fine-tuned models are optimized by AdamW
(Loshchilov & Hutter, 2019)with a linear adaptive learning rate scheduler. The maximum sequence
length of input sequences is set to 256 during experiments. Further details are summarized in Table 8.
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Table 8: Parameter settings of RSMI and the fine-tuned models. AL denotes the adaptive linear
learning rate scheduler.

Model IMDb AGNews QNLI
RSMI Fine-Tuned RSMI Fine-Tuned RSMI Fine-Tuned

RoBERTa-base

Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Batch size 16 16 24 24 36 36
Epochs 10 10 10 10 10 10
Learning rate 10−5 5× 10−5 10−5 5× 10−5 10−5 10−5
Learning rate scheduler AL AL AL AL AL AL
Maximum sequence length 256 256 256 256 256 256
M 4 - 4 - 2 -
σ 0.4 - 0.4 - 0.2 -
# Noise layers 3 - 3 - 3 -
ν 1 - 1 - 1 -
k0 5 - 5 - 5 -
k1 50 - 50 - 50 -
α 0.98 - 0.98 - 0.98 -
β 1 - 1 - 1 -

BERT-base

Optimizer AdamW AdamW AdamW AdamW AdamW AdamW
Batch size 16 16 24 24 36 36
Epochs 10 10 10 10 10 10
Learning rate 10−5 5× 10−5 10−5 5× 10−5 10−5 10−5
Learning rate scheduler AL AL AL AL AL AL
Maximum sequence length 256 256 256 256 256 256
M 3 - 2 - 2 -
σ 0.3 - 0.2 - 0.2 -
# Noise layers 4 - 3 - 3 -
ν 1 - 1 - 1 -
k0 5 - 5 - 5 -
k1 50 - 50 - 50 -
α 0.98 - 0.98 - 0.98 -
β 1 - 1 - 1 -

Textual attack algorithm We employed the publicly available TextAttack library (Morris et al.,
2020) for TextFooler (TF) (Jin et al., 2020), PWWS (Ren et al., 2019), and BAE (Garg & Ramakrish-
nan, 2020) attack algorithms. We follow the default settings of each algorithm. Note that TextAttack
does not include the named entity (NE) adversarial swap constraint in its PWWS implementation to
extend PWWS towards a practical scenario where NE labels of input sequences are not available. As
a consequence, PWWS attack in TextAttack tends to show stronger attack success rates.

C ANALYSIS OF HIDDEN REPRESENTATIONS OF PERTURBED SAMPLES

We investigate the change in latent representation of input samples upon perturbation with respect to
the original latent representations on using RSMI. We compare the L2 distance and cosine similarity
between a hidden representation of clean sample hl(s) and that of its corresponding adversarial
example hl(s′) for each layer l of the fine-tuned base models with that of RSMI. Fig. 1 (Right)
shows that the changes of L2 distance and cosine similarity of the fine-tuned RoBERTa and BERT
stay quite constant until later 8. However, for subsequent layers, we observe a rapid increase in
L2 distance and a sudden fall in cosine similarity for these models. At the final layer (l = 12),
we see the largest differences. In contrast, RSMI tends show abrupt changes at l1, l5, and l9 with
small standard deviations, probably due to the Gaussian noise perturbation processes for these layers.
However, at the final layers, especially at l = 12 that is used for prediction, we observe very minor
L2 distance and high cosine similarity. This further validates RSMI’s ability to more effectively
represent the perturbed samples in the latent representation space in accordance with the original
samples, eventually leading to higher adversarial robustness.
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Figure 1: Analysis of hidden representations of RSMI.
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Figure 2: Stochastic stability of RSMI.

D STOCHASTIC STABILITY OF RSMI

As RSMI is stochastic in nature, we examine its stability in classifying clean as well as adversarial
samples. We first randomly draw 1,000 clean examples and evaluate them with RSMI with 1,000
independent runs. Next, we perform inference repeatedly using adversarial examples that were
successful in fooling RSMI with 1,000 independent runs. As all the evaluations are independent,
each evaluation involves a different noise sampling and masking process. Fig. 2 shows that RSMI’s
evaluation on clean samples is significantly stable. On the other hand, most of the adversarial
examples are correctly classified during each individual evaluation around the median of RSMI’s
RAcc. This shows that the attack success rate of adversarial attack algorithms become stochastic
rather than deterministic due to RSMI’s non-deterministic nature.

E EFFECT OF EARLY STOPPING DURING FINE-TUNING

We make some interesting observations while investigating the effect of early stopping during fine-
tuning of models on their adversarial robustness. From Fig. 3, we observe that RoBERTa, without
any fine-tuning on the datasets (“0” Iteration), inherently possesses robustness to adversarial attacks.
We further observe that models fine-tuned for less number of steps possess stronger robustness to
adversarial attacks. As we fine-tune them further, their standard accuracies rapidly improve at the
loss of adversarial robustness. A potential explanation of this result may be related to the robustness
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Figure 3: (a) and (b) respectively show changes in attack success rate (ASR) and standard accuracy
(SAcc) of fine-tuned models over tuning iterations.

improvements from self-supervised training approaches (Hendrycks et al., 2019). However, their
robustness is compromised by the fine-tuning process that only aims to optimize the training for a
higher standard accuracy (Ilyas et al., 2019).
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Figure 4: Variation of robust accuracy (RAcc) in ex-
pectation over input transformations.

As SAFER and RSMI transform inputs in their
prediction phase, we study the impact of their in-
put transformation processes on their adversarial
robustness through expectation over transforma-
tions (EOT) (Athalye et al., 2018b;a). Specifi-
cally, we take an average of models’ predictions
over multiple transformed inputs corresponding
to a given input sample while varying the num-
ber of transformed samples, k. We also report
RAcc of RSMI without conducting the second
sampling step (c.f., line 11-19 in Algorithm 1, de-
noted by w/o TS in Fig. 4) for a fair comparison
with SAFER and understand the impact of the
two-step sampling. Fig. 4 shows that RAcc of
SAFER peaks at k = 1 and steadily decreases as
k increases. We claim that this tendency might
be attributed to an attack obfuscation issue that
attempts to defend an NLP system via disturbing
a perturbation process of an attack algorithm by
an input transformation such as a random word-
substitution. However, attack algorithms can de-
viate the obfuscation by approximating the op-
timal perturbation through a larger number of
queries for estimating an expectation of perturbation directions over transformed samples. In contrast
to SAFER, RAcc of RSMI remains stable or even increases steadily for both BERT and RoBERTa.
Also, the two-step sampling significantly enhances the RAcc. We credit this robustness to the trans-
form proceess of RSMI, which transforms an input text into a masked input and perturbs their hidden
representation with Gaussian noise. This behaves as a mixture of two stochastic transformations and
makes it harder for the attack algorithms to estimate the optimal perturbation direction.
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