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1 Abstract1

Ongoing efforts that span over decades show a rise of AI methods for scientific discovery and2

hypothesis creation [Fajtlowicz, 1988, Petkovsek et al., 1996, Wolfram et al., 2002, Buchberger et al.,3

2006, Bailey et al., 2007, Raayoni et al., 2021, Davies et al., 2021, Fawzi et al., 2022]. Despite4

the significant advances in the impact of AI for science, number theory in mathematics remains5

a persistent challenge for AI. Specifically, AI methods were not effective in creation of formulas6

for mathematical constants because such formulas are either true or false, with no continuous7

adjustments that can enhance their correctness. This entire field lacked a “distance metric” between8

two formulas that can guide progress. The absence of a systematic method left the realm of formula9

discovery elusive for automated methods. In this work, we propose a systematic methodology10

for categorization, characterization, and pattern identification of such formulas. The key to our11

methodology is introducing metrics based on the convergence dynamics of the formulas, which we12

utilize for the first automated clustering of mathematical formulas. We demonstrate this methodology13

on Polynomial Continued Fraction formulas, which are ubiquitous in their intrinsic connections to14

mathematical constants [Lagarias, 2013, Bowman and McLaughlin, 2002, Laughlin and Wyshinski,15

2004], and generalize many mathematical functions and structures. We test our methodology on16

a set of 1,768,900 such formulas, identifying many known formulas for mathematical constants,17

and discover previously unknown formulas for π, ln(2), Gauss, and Lemniscate constants. The18

uncovered patterns enable a direct generalization of individual formulas to infinite families, unveiling19

rich mathematical structures. This success paves the way towards a generative model that creates20

continued fractions fulfilling specified mathematical properties, potentially accelerating by orders of21

magnitude the rate of discovery of useful formulas.22

2 Introduction23

Historically, formulas of mathematical constants were a symbol of aesthetics and beauty. Continued24

fraction formulas such as those for the Golden Ratio ϕ and tan(x)25

1 +
1

1 + 1
1+ 1

1+···

= ϕ
x

1− x2

3− x2

5−···

= tan(x) (1)

enable calculating infinitely many digits for these constants. Discovering such formulas often leads26

to profound revelations regarding the properties and underlying structure of fundamental constants.27

For example, the continued fraction formula for tan(x), shown in Eq. 1, was used by Johann28

Heinrich Lambert in the first proof of the irrationality of Pi [Berggren et al., 2004]. Unfortunately,29

such formulas are notoriously hard to find on-demand, often relying on a mathematician’s profound30

intuition. Part of the challenge is the lack of a well-defined ’distance’ between a formula and a given31

constant. i.e., there is no known way to tell whether a formula is nearly accurate. The formula either32

works, or it does not. In other fields of science, a prediction accurate to 1000 digits is accurate enough33

for any practical need. However, in mathematics, if the 1001st digit is wrong, the formula is incorrect34
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and gives no insight regarding a correct formula. This is a substantial hurdle both for human efforts35

and for automated analysis, as gradient descent is generally unsuitable for binary metrics.36

Recent efforts used large scale distributed computation to discover a multitude of formula hypotheses37

for mathematical constants [Raayoni et al., 2021, Elimelech et al., 2023]. These efforts relied mostly38

on exhaustive search methods. Other older applications of AI to mathematical discovery in other39

fields include Automated Theorem Proving [Petkovsek et al., 1996] (such as Malarea [Urban, 2007]40

and Flyspeck [Kaliszyk and Urban, 2012]), and Automated Conjecture Generation [Wang, 1960]41

(such as the Automated Mathematician [Lenat, 1982], EURISKO [Lenat and Brown, 1983, Davis42

and Lenat, 1982], and Graffiti [Fajtlowicz, 1988]).43

This work proposes a fundamentally new methodology for automated investigation of formulas for44

mathematical constants. We constructed a large dataset of continued fractions, and enriched it with45

metrics based on their convergence dynamics, which are found to embody fundamental information46

about each continued fraction. This dataset enables the identification and generalization of patterns47

within the data. Through a process of categorization and clustering (Fig. 1), we identified subsets of48

continued fractions that relate to important mathematical constants. This novel method of formula49

discovery allowed us to identify both previously known and completely new formulas for constants50

such as π, ln(2), cot(1), the Golden Ratio, square roots of multiple integers, Gauss and Lemniscate51

constants. Often, once such a subset of formulas is identified, all its members relate to the same52

mathematical constant, thus exposing an internal structure that can be generalized into infinite families53

of such formulas.54

Figure 1: Systematic clustering and labeling of formulas by dynamical metrics. Our methodology
analyzes Polynomial Continued Fractions (PCFs) in two main stages. Clustering: (a) Filter degener-
ate PCFs. (b) Evaluate PCFs and extract their dynamics-based metrics (section 3). (c) Choose the
best few metrics (using the Davies-Bouldin Clustering Index [Davies and Bouldin, 1979] - see table
1) and use them to cluster the data. Labeling: In every cluster, look for PCFs known in the literature
and use them as anchors. (d) If anchors are found in the cluster, validate that they do not contradict
each other, i.e., relate to different constants, which indicates that the cluster should be split. (d.1) If
all anchors are in agreement, choose a random subset of other points in the cluster and use PSLQ to
validate that they also relate to the same constant. If the validation is successful, the cluster is labeled.
If not, the cluster should be split. (d.2) If the anchors relate to different constants, the cluster should
be split – return to step c for finer clustering of the data. When focusing on a specific cluster, the best
metrics could be different than those for the full dataset. (e) If no anchor is found in a certain cluster,
attempt to label by (e.1) choosing a small subset of PCFs in the cluster and running a PSLQ search
for each of them against a large set of potential constants. If a connection is found, the cluster now
has an anchor – return to step d. (e.2) If an anchor is still not found, attempt to connect a sample of
data points within the cluster using PSLQ. If successful, conclude that the cluster is correct, but has
no identified constant. Define a new label for that cluster. If PSLQ failed to connect points within the
cluster, return to step c for finer clustering. If no further refinement is appropriate, flag the cluster for
further analytical investigation.

As a result of our methodology, we present the most complete classification of polynomial continued55

fractions known to date.56

Traditional clustering methods attempt to relate data points by calculating distance metrics based57

on the parameters of these data points. The most common approaches (like SVM) rely on linear58
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classification, while more advanced methods rely on non-linear kernel transformations - but usually59

use various functions calculated directly on the data parameters. In our dataset, each point is a60

continued fraction formula defined by the polynomials used to construct it. We find that it is the61

dynamics of the continued fraction generated by these polynomials, rather than any direct function62

on their coefficients, which provides the most useful metrics for analysis. In other words, we find63

that the useful underlying metrics to extract from each data point are embedded within the intricate64

progression of the sequence created by the formula, rather than the explicit value (limit) of that65

formula, or the coefficients defining it. Thus, in order to assess the distance between two polynomial66

continued fractions, and identify relations between such formulas, it is imperative to characterize the67

nuanced behaviour of their sequences, analyzing trends spanning over numerous terms.68

Some of the metrics we extract, such as the irrationality measure, are well-known in the mathematical69

community, yet were never considered for a large-scale classification effort. We develop a new70

algorithm - the Blind-δ algorithm - to enable the evaluation of the irrationality measure of formulas71

on a large scale, previously impossible.72

This approach allows us to employ a novel methodology to the formula discovery challenge. We73

cluster formulas by their ’closeness’ to other formulas according to these new metrics, which we use74

to identify promising formulas regardless of their numerical value (Fig. 1left). Once a candidate75

formula is found, we numerically validate it by calculating its value to a large precision and then76

identifying its relation to a mathematical constant using algorithms such as PSLQ [Ferguson and77

Bailey, 1992] (Fig. 1right). The “generate ⇒ validate” approach is inspired by works in AI-driven78

code generation [Ridnik et al., 2024] and problem solving in geometry [Trinh et al., 2024].79

3 Methodology for Data-Driven Discovery80

3.1 Definitions81

Polynomial Continued Fractions82

In this work we chose to focus on polynomial continued fraction (PCF) formulas as our test case83

due to the combination of their simplicity and expressive power. PCFs relate to a wide range of84

mathematical fields, represent a variety of constants, are equivalent to infinite sums [Euler, 1748],85

and cover mathematical functions such as Bessel functions, trigonometric functions, and generalized86

hypergeometric functions [Cuyt et al., 2008]. A PCF at depth n is defined as:87

a0 +
b1

a1 +
b2

. . . +
bn

an

=
pn
qn

, (2)

where an = a(n) and bn = b(n) are evaluations of polynomials with integer coefficients. The PCF88

value is the limit L = lim
n→∞

pn
qn

(when it exists). The converging sequence of rational numbers pn

qn
89

provides an approximation of L, which is known as a Diophantine approximation.90

The Irrationality Measure of a Number91

While irrational numbers cannot be expressed using a simple quotient of integers, they can be92

approximated by them. Moreover, some approximations are “better” than others, and one way to93

evaluate their quality is by a quantity called the irrationality measure [Hardy et al., 1979].94

For every L ∈ R, the irrationality measure of L is defined as the supremum of all possible δ for95

which there is a sequence of distinct rational numbers pn

qn
→ L; pn

qn
̸= L that satisfies96 ∣∣∣∣L−

pn

qn

∣∣∣∣ < 1

q1+δ
n

. (3)

It is known that for irrational numbers this measure is ≥ 1 (Dirichlet theorem for Diophantine97

approximations), and for rationals it is 0.98
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Given a sequence pn

qn
and its limit L, we define the irrationality measure of a sequence as99

δ =

− log

∣∣∣∣L−
pn

qn

∣∣∣∣
log |q̃n|

− 1, q̃n =
qn

gcd(pn, qn)
(4)

For a sufficiently large n. Note that the irrationality measure of L is greater or equval to the100

irrationality measure of any specific sequence converging to the same L.101

3.2 δ-Predictor Formula102

The classification of a large number of continued fraction formulas requires an efficient and accurate103

calculation of the irrationality measure δ for each formula. This calculation is challenging because104

it depends on the asymptotic behavior of the converging sequence, and because δ appears as an105

exponent of a large number. The δ-Predictor formula that we present here provides a way around this106

challenge - requiring no specific knowledge about the convergence rate and trajectory, or even about107

the sequence limit itself:108

δpredicted = lim
n→∞

n · log
∣∣∣λ1(n)
λ2(n)

∣∣∣
log |q̃n|

− 1 (5)

where λ1(n) and λ2(n) are the eigenvalues of the matrix
(
0 bn
1 an

)
, |λ1(n)| > |λ2(n)|.109

This formula extends a hypothesis made in a previous work [David et al., 2021], which was limited110

to PCFs with balanced polynomial degrees and with a q̃n that grows exponentially. As we found111

in this work, Eq.5 works for any converging PCF. It was validated numerically and proven for the112

balanced-degree case in Appendix D. This formula provides a substantial advantage in the estimate113

of the irrationality measure, a critical dynamical metric for our work. Specifically, the asymptotic114

behavior of q̃n and λ1/λ2 are still required for finding δpredicted, but they are usually easier to derive.115

3.3 Discovery of Formulas by Unsupervised Learning116

Each PCF formula is defined by the polynomials that generate it. This work focuses on polynomials117

up to 2nd degree: a = A2n
2 +A1n+A0, b = B2n

2 +B1n+B0, with integer coefficients in the118

domain −5 ≤ Ai ≤ 5, −5 ≤ Bi ≤ 5. We removed the a = 0 and b = 0 cases, as they break the119

PCF structure, leaving us with 1,768,900 formulas. Some of these PCFs do not converge to a single120

limit, rendering their measured metrics meaningless (see Appendix B for the classification method we121

developed to predict PCF convergence). We filtered out all formulas that do not converge, providing122

the final filtered dataset of 1,543,926 formulas.123

Our methodology relies on dynamics-based metrics. The following metrics are calculated for each124

formula:125

• The coefficients of the polynomials a and b, (A2, A1, A0, B2, B1, B0). We also define the126

useful characteristic of which polynomial dominates the dynamics: when 2 deg(a) > deg(b)127

the PCF is A-dominated, when 2 deg(a) < deg(b) the PCF is B-dominated, and when128

2 deg(a) = deg(b) the PCF is balanced.129

• The numerical limit of the PCF, evaluated at depth n = 2000.130

• The irrationality measure: for each PCF, we calculate δpredicted by substituting n = 109131

into Eq.5, and measure δ directly using the Blind-δ algorithm (presented in section 3.4) at132

depth n = 1000 (see Fig.2a for example δ evaluations).133

• The convergence rate dynamics, comprised of three parameters: we estimate the approx-134

imation error, which scales as ϵ(n) ∼ n!η · eγn · nβ for large n. We fit a curve of this135

form numerically (see Appendix A for more details) and store the estimate of the η, γ, β136

parameters (η - factorial coefficient, γ - exponential coefficient, β - polynomial coefficient).137

• The growth rate of q̃n. As n grows, q̃n ∼ n!η
′ · eγ′n · nβ′

. We fit a curve of this form138

numerically and store the estimate of the η′, γ′, β′ parameters.139
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Based on this set of metrics, we applied unsupervised clustering for unlabeled data (the density-based140

OPTICS algorithm [Ankerst et al., 1999]) and created a complete algorithm for mathematical formula141

discovery (Fig.1). A variety of useful formulas, formula families and data patterns were identified142

(see sections 4.1, 4.2 and 4.3 for selected results).143

Figure 2: Dynamics-based metrics for formulas of mathematical constants. Analysing the
convergence of polynomial continued fraction (PCF) formulas provide dynamical metrics that prove
useful for their automated clustering and identification. (a) Irrationality measure vs. PCF depth. The
simplest formula candidate identification method we used is filtering by high numeric δ. These are 2
examples of formulas for mathematical constants (cot(1) and the Silver Ratio) found this way. The
irrationality measure of these constants is known to be 1 (green dashed line). The blue dots show
how the numerical evaluations of δ (Eq.4) converge to the correct irrationality measure. Red dots are
evaluations of the δ-Predictor (Eq.5) at finite n values. The prediction follows the numerical delta very
closely in the Silver Ratio formula, while taking a completely different (and much slower) trajectory
in the cot(1) formula - yet both converge to the correct value δ = 1. (b) δ (at depth n = 1000) vs.
limit value for PCFs in our set. While δ values seem to follow a pattern, the limit value distribution
doesn’t contain relevant information - the higher density of PCFs near the Y axis caused by our choice
of a dataset with small coefficient polynomials. Note the multitude of irrationality-proving formulas,
most of which are still not linked to any known constant. (c) Exponential growth coefficients of q̃n
and ϵ(n) for balanced PCFs. Note the surprising “band” structure that this view reveals. A few of the
clusters have been characterized, but the reason for the appearance of these “bands”, as well as the
properties of most clusters remain open questions for future research. (d) Examples of PCFs in the
dataset that converge to a value close to the constant cot(1) (±10−5 or closer), and yet are not related
to cot(1) or its formula shown in (a) - showcasing the challenge of mathematical formula discovery.
Error bars not shown for visual clarity, see Appendix A for a discussion regarding measurement
errors.

3.4 The Blind-δ Algorithm144

The irrationality measure of a PCF is of mathematical interest, and (as we will see in section 4) is a145

powerful dynamical metric of a formula. Unfortunately, even if we limit ourselves to the numerically146

estimated δ (given a specific series and a specific depth), Eq.4 requires knowing the series limit L,147

making its calculation for a large set of unlabeled PCFs impossible.148

The Blind-δ algorithm was created in order to circumvent this limitation. Instead of inspecting the149

convergence behavior of pn

qn
→ L, we inspect the convergence behavior of pn

qn
→ pm

qm
for some150

m > n.151

This solves the prior knowledge issue, but how is it related to the actual series delta?152

Given a rational approximation pn

qn
→ L, we approximate the error rate |ϵ(n)| where ϵ(n) := pn

qn
−L

with
pn
qn

− pm
qm

= ϵ(n) ·
(
1− ϵ(m)

ϵ(n)

)
.
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So if 0 < s <
∣∣∣1− ϵ(m)

ϵ(n)

∣∣∣ < S is bounded away from zero and infinity for all n large enough, then153

this approximation has the same order of magnitude. This means that the error and the convergence154

behave similarly enough whether we use the true limit L or its approximation pm

qm
. This condition155

holds whenever |ϵ(n)| → 0 fast enough, which is true for the vast majority of PCFs (see Appendix D156

for details).157

Note that m has to grow with n. In practice the algorithm uses m = 2n, so in order to study δ up to158

n = 1000, we use m = 2000.159

3.5 Choice of Metrics for Clustering160

As part of the automated formula discovery flow we choose the best metrics (for each step), in161

terms of representation power, which is measured by applying the Davies-Bouldin Index [Davies162

and Bouldin, 1979] on clustering using a single metric (table 1 shows results for a randomly chosen163

sample of 25K converging PCFs). Note the extremely poor performance of the PCF limit L, in164

agreement with Fig.2b,d. This dimensionality reduction is important both for efficiency during the165

clustering step (especially since the size of the data set grows exponentially with PCF degree and166

polynomial coefficient magnitude), and for better explainability.167

Table 1: Comparison of the representation power of the main dynamic metrics (lower is better).
Metric Davies-Bouldin Index
Limit L 67.23
Irrationality measure δ 1.11
Reduced denominator q̃n growth factors
q̃n ∼ n!η

′ · eγ′n · P (n)

Exponential coefficient γ′ 0.51
Factorial coefficient η′ 0.13

Error rate |e(n)| growth factors |e(n)| ∼
n!η · eγn · P (n)

Exponential coefficient γ 14.83
Factorial coefficient η 0.77

4 Results168

4.1 Discovered Formulas for Mathematical Constants169

The first step in validating the dynamical metrics approach is using basic heuristics on the metric
space to find PCFs related to mathematical constants. There are some PCFs in the dataset that have a
known irrational limit (like the examples in Eq.1 and the PCF family

B

A+
B

A+
. . .

=
2B

A+
√
A2 + 4B

for constant A and B), so we expected to find some of them. Through this test, we also found170

previously unknown PCF formulas related to mathematical constants.171

Note that known mathematical formulas are both the anchors for labeling and a test set in our method.172

Formulas related to the same constant or having other common properties are expected to be clustered173

together.174

Since we are looking for irrationals, a series that converges to one of them could have an irrationality175

measure of 1 (or above). A natural heuristic is inspecting PCFs with δ ≈ 1. Another heuristic we176

used is focusing on PCFs with η′ ≈ 0, as it was a very strong indicator for mathematical constant177

formulas in a previous work [Elimelech et al., 2023]. Combining the two gives a subset (see Fig.3a178

top left) that contains PCFs such as:179

5 +
− 10

. . . +
− 5n2 − 5n

5n+ 5 +
. . .

= 2 + ϕ − 3 +
1

. . . +
1

−3 +
. . .

=
−2√
13− 3 (6)
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Figure 3: Discovery of mathematical structures via analysis of dynamic metrics of formulas.
(a) Projecting the data on the δ vs. η′ (q̃n factorial coefficient) plane, it’s easy to see the emerging
subsets. We focus on PCFs with η′ ≈ 0, as a previous work [Elimelech et al., 2023] indicated this
is an important property. (b) Clustering in the δ vs. γ′ (q̃n exponential coefficient) plane shows
examples of common properties within a cluster, like rationality or convergence to a specific constant
(up to a linear fractional transformation). Focusing deeper on the B-dominant cluster (as it is a clear
anomaly in the η′ ≈ 0 subset), we used a PSLQ algorithm to identify links between these formulas
and mathematical constants (which was feasible since we identified a promising subset ∼ 5, 000
times smaller than the initial dataset) and got (c) - a surprising number of novel formulas related to
mathematical constants (π, ln(2),

√
2, Gauss and Lemniscate constants). (d) Keeping only PCFs

with B2 = 1 we are left with a highly symmetrical “checkerboard pattern” of formulas for π and
ln(2), which was generalized into infinite formula families hypotheses (see section 4.3). Error bars
not shown for visual clarity, see Appendix A for a discussion regarding measurement errors.

Removing the requirement of sub-factorial q̃n growth rate, one can find the cot(1) formula shown in180
Fig.2a:181

1 +
− 1

. . . +
− 1

2n+ 1 +
. . .

= cot(1)
(7)

On the other hand, relaxing the limitation on δ, focusing only on η′ ≈ 0, a rich structure emerges182

(Fig.3b). Diving deeper into the B-dominated subset, we find formulas (Fig.3c) for the Gauss constant183

GGA [Finch, 2003]:184

4 +
6

. . . +
4n2 + 2n

4 +
. . .

=
2GGA

4GGA − 3
4 +

4

. . . +
4n2 + 2n− 2

4 +
. . .

=
4GGA − 1

3GGA − 2 (8)

Lemniscate constant LLemniscate [Finch, 2003]:185

4 +
2

. . . +
4n2 − 2n

4 +
. . .

=
−6

LLemniscate − 4 (9)

As well as for second order roots, π and ln(2) (see section 4.3). Note that unlike the formulas in Eq.6186

and Eq.7, which are analytically proven, the formulas in Eq.8 and Eq.9 are (to the best of the authors’187

knowledge) novel. Their limits were numerically validated to a large precision, yet formal proofs for188

these formula hypotheses remain an open challenge.189
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It should be noted that usually in number theory research a bigger δ is considered “good” while a190

smaller (often negative) δ is considered “bad”. We use δ as a metric, without “judgment”. These191

novel formulas (Eq.8, Eq.9 and the infinite family of formulas shown in section 4.3), which have192

“bad” δ ≈ −1, are a demonstration of the advantage of our ”non-judgmental” approach.193

4.2 Clustering in Dynamics-Based Metric Latent Space194

Figure 4: Automated Formula Discovery Results: Showcasing the automated clustering and
labeling of PCFs using a set of 306 anchor formulas, connected to constants such as π, e, e2, the
continued fraction constant, the golden ratio ϕ,

√
2,
√
3, and

√
17. 454 PCFs were labeled. 332

are equivalent to an anchor, while 122 are novel automatically discovered mathematical formula
hypotheses. For the presentation here, the PCFs were projected to a 2D grid using tSNE (perplexity
= 10), revealing clusters that coalesce in the full metric space. For visual clarity not all points are
shown and error bars aren’t shown, see Appendix A for a discussion regarding measurement errors.

This section shows that clusters in the latent space of dynamics-based metrics group together different195

formulas that share multiple properties including the mathematical constant to which they relate.196

We’ll start with 2 concrete examples for this effect. Looking at the top left cluster in Fig.3b (defined197

by q̃n exponential coefficient < 0.6 and δ > 0.9), we recognize the canonical form of the Golden198

Ratio PCF (shown in Eq.1) - but also 21 additional PCFs, with different generating polynomials,199

some of higher degree. As it turns out, all of them are linear fractional transformations of
√
5 (see200

Appendix C), which were labeled by the formula discovery algorithm (Fig.1). Another example of201

property preservation within a cluster is the rational cluster marked in green on Fig.3b. The limits of202

the PCFs in this subset are varied, and its spread is real (not only due to numerical imperfections),203

and yet all its members share the rationality property - which isn’t directly measured by any of the204

latent space dimensions.205

Fig.4 showcases a collection of clusters with shared properties, visualized via tSNE. Using a set of206

306 (mathematically unique) known anchor formulas, 454 PCFs were labeled. 332 are equivalent to207

an anchor, while 122 are novel automatically discovered mathematical formula hypotheses.208

This clustering is a result of a single iteration of the formula discovery algorithm (hence the multi-209

anchor clusters). Note the multi-anchor clusters of e and e2, as well as the second order algebraic210

roots: these clusters failed to single out a specific constant, yet relate to constants of similar nature -211

suggesting meaningful clustering nevertheless.212

4.3 Detecting Patterns and Underlying Structure213

As mentioned in section 4.1, focusing on the B-dominant, η′ ≈ 0 cluster, gave rise to a multitude of214

formulas representing mathematical constants (see Fig.3c and d). They were discovered via a PSLQ215
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algorithm, identifying linear fractional relations between the limit values of PCFs in the subset and216

notable mathematical constants (such as π or e). This is a computationally heavy operation, and217

it would be challenging to run it on all 1.5M formulas in the data set. Yet by first identifying the218

promising clusters, we reduce the search space ∼ 5, 000 times, allowing for a deeper inspection of219

each PCF.220

Once the “checkerboard” pattern in Fig.3d was discovered, we expanded the hypothesis into 2 infinite221

families of PCFs with sub-exponential convergence relating to π and ln(2):222

• an = i + 2j + 1, bn = n2 + (i + k)n, with integers i, j ≥ 0, and k ∈ {0, 1}. This is223

expected to be related to π if k = 1, and to ln(2) if k = 0 (in fact, this pattern can be224

generalized even further, into a novel 3-dimensional Conservative Matrix Field, provided in225

Appendix C. See [Elimelech et al., 2023] for the definition of Conservative Matrix Fields).226

Another formula family was discovered via clustering in the γ vs. γ′ space. The algebraic roots227

subset (marked by a green circle in Fig.2c) was generalized into:228

• an = −2n+ j − 1, bn = −n2 + jn+ k for integer j, k such that bn has real roots that are229

not positive integers. This is expected to converge to a root of bn.230

These are novel experimental results and mathematical hypotheses - awaiting proof.231

5 Discussion and Outlook232

This work marks an important step toward the vision of automated on-demand formula creation233

in mathematics. Going beyond all previous algorithms in this field, we connect the challenge of234

formula creation to modern approaches in AI for Science. The wide variety of novel results, from235

novel, automatically generated, conjectures to underlying mathematical structures and proofs, all236

demonstrate the power of our methodology.237

The next research step directly building on our methodology could help to finally reveal the complete238

intricate mathematical structure of PCFs. For example, starting with the “band” structure found in239

Fig.2c. Further exploration of our conjectures from section 4 could have more impact on mathematics,240

perhaps achieving complete proofs and further generalizations.241

The technique presented here can be applied to a larger scope of continued fractions and for completely242

different types of formulas. For more general continued fractions, dynamical metrics such as243

the numerical trajectories and the corresponding sequences of δ (in addition to its final value)244

hold valuable information even in continued fractions that do not converge at all. We expect245

these dynamical metrics to provide a “fingerprint” for wider families of continued fractions and246

perhaps even for the mathematical constants themselves. This approach will directly apply for247

higher polynomial degrees, larger polynomial coefficients, and for continued fractions not based on248

polynomials. Looking beyond continued fractions, metrics that are derived from the dynamics of a249

numerical calculation of certain formulas are an especially good fit for automated computer-assisted250

investigations. Such metrics can be measured for a variety of mathematical structures, like infinite251

sums, integral formulas, and partial differential equations. We believe that such dynamical metrics252

can unveil patterns and underlying structures in broad fields of mathematics and in other areas of253

science.254

Our work was based on a limited-size dataset and on a small set of metrics. It would be intriguing255

to test the extracted conjectures on larger datasets, which can help reveal additional, more intricate,256

phenomena. Considering the success we had using a relatively small set of metrics, we would like to257

use an order-of-magnitude larger set of metrics and find what new predictions can be recovered, and258

whether qualitatively different types of predictions will arise.259

Taking a broader perspective, the methodology presented in this work can be seen as a general260

prescription for tackling scientific discovery challenges, especially the ones considered as requiring261

intuitive leaps of extraordinary creativity, as in mathematics, theoretical physics, and a range of other262

fields of science and engineering.263
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A Numerical Measurements and Curve Fitting346

When characterizing PCFs, we use several metrics extracted from the dynamic behavior of the347

formula:348

• The growth coefficients η, γ, β (of the form n!η · eγn · nβ) of the convergence rate ϵ(n).349

• q̃n (as defined in Eq.4) growth coefficients: η′, γ′ (of the form n!η ′ · eγ′n).350

• The δ (as defined in Eq.4) calculated using the Blind-δ Algorithm described in section 3.4.351

To measure the growth coefficients of q̃n and ϵ(n), the values of log (ϵ(n)) (see section 3.4) and of352

log (q̃n) were evaluated up to depth 1000.353

The most resource-intensive values that are generated are pn, qn and gcd(pn, qn) - all other values354

are calculated from them (and require less precision). For the worst case PCF this requires 36MB of355

memory (without optimizations) and ∼ 1.9 seconds of run time on a single core of a basic workstation,356

which translates to an upper cap of ∼ 900 hours for the whole data set. In practice we used a high357

power cluster with 64 cores, which ran each iteration of the measurements in ∼ 8.5 hours.358

Once these values are calculated, using scipy [Virtanen et al., 2020] and numpy [Harris et al., 2020] a359

fit of the form log
(
n!η · eγn · nβ

)
was calculated for q̃n and ϵ(n), producing the dynamic metrics.360

A curve fit using 1000 points is a fairly heavy operation, unsuited for large scale investigations.361

Instead, we used an extreme down-sampling. Specifically, only 5 points were used for the fit. One362

may justifiably wonder if 5 data points are sufficient to fit accurately enough the desired metrics.363

A test comparing between a 5 data point fit and a 1000 data point fit was done. As the test set, 50364

PCFs were randomly chosen out of each of 9 categories (450 total test cases). The categories were365

all combinations of deg(a) = 0, 1, 2 and deg(b) = 0, 1, 2. Focusing on the dominant coefficients366

(γ and η), for each case, a full (1000 point) fit was performed (producing γf , ηf ), and compared to367

the down sampled fit of 5 points (producing γp, ηp). We tested 2 methods of choosing the 5 points,368

even (i = 6, 206, 406, 606, 806) and logarithmic (i = 6, 125, 250, 500, 1000). The relative error was369

then calculated ( |γp−γf |
|γf | and |ηp−ηf |

|ηf | ) for ϵ(n) and q̃n. The relative errors were then averaged over370

the test set (results summarised in table 2) - showing the 5-point fit to be almost as good as the full371

1000-point fit. In our measurements we use the logarithmic point distribution as it gives better results372

for most metrics.373

Table 2: Comparison between 1000 point fit results and 5 point fits results (even spread and logarithmic
spread).

Behavior q̃n Convergence Rate
Coefficient γ′ η′ γ η

Relative Error Average (even spread) 0.0124 0.0007 0.0078 0.0005
Relative Error Average (logarithmic spread) 0.0175 0.0004 0.0024 0.00012

Licences and versions of Python packages (used for curve fitting, clustering and large number374

mathematics):375

Scipy (Version: 1.11.3) - BSD License (Copyright (c) 2001-2002 Enthought, Inc. 2003-2024, SciPy376

Developers. All rights reserved.)377

gmpy2 (Version: 2.1.5) - GNU Lesser General Public License v3 or later378

Numpy (Version 1.26.1)- BSD License (Copyright (c) 2005-2023, NumPy Developers. All rights379

reserved.)380

B Classification of Continued Fractions381

Not all PCFs converge. Clearly, if pn

qn
does not have a well defined limit, then some of our numerically382

measured metrics lose their meaning. Though we had algorithmic safeguards to detect such cases and383
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remove them from the analyzed set, it was valuable to identify a pattern and formulate a rule-set that384

predicts the convergence of a PCF.385

For that purpose we turned to the matrix representation of a continued fraction to depth n (see386

Appendix D.1 for details):387

[
pN−1 pN
qN−1 qN

]
=

N−1∏
n=1

[
0 bn
1 an

]
=

=

(
N−1∏
n=1

an−1

)[
1 0

0 1
a0

](N−1∏
n=1

[
0 bn

anan−1
1 1

]) [
1 0
0 aN−1

]

Assuming an ̸= 0 for n ≥ 0.388

Analyzing the eigenvalues of the matrices within the matrix product as n → ∞ allows for examining389

the asymptotic behavior of the continued fraction. Their characteristic polynomial is λ2−λ− bn
anan−1

,390

and we propose observing the discriminant of this polynomial - more specifically its dominant power391

of n:392

∆n = 1 +
4bn

anan−1
= Csn

s +O(ns−1) (10)

Here we assume Cs ̸= 0 and s is some integer. Based on the data, we compiled table 3 as a summary393

of the conjectured behavior of any polynomial continued fraction based on s and Cs.

Table 3: Summary of PCF behavior characterized by s and Cs as defined in Eq.10.

Convergence Cs > 0 Cs < 0
✗ s ≥ 3 s ≥ 0
✓ s ≤ 2 s ≤ −1

394
We can further elaborate on the converging cases by discussing the conjectured rate of convergence.395

Usually, a PCF is expected to converge at a sub-exponential rate, but in the case of s = 0, C0 > 0 it396

is expected to converge faster:397

• If C0 ̸= 1 then the PCF will converge at an exponential rate, and the exact rate of convergence398

increases monotonically as C0 → 1, with a vertical asymptote at C0 = 1. The convergence399

rate is identical for C0 and 1
C0

.400

• If C0 = 1 then the PCF will converge at a factorial rate. More specifically, if we find the401

second most dominant power ∆n = C0+
Ct

nt +O( 1
nt+1 ) for some Ct ̸= 0 and integer t > 0402

then the precision will grow at a rate of O(n!t).403

We used these rules (in conjunction with the measurements mentioned in section 3.3) to validate that404

all PCFs we analyze and cluster do converge and their measured metrics are well defined.405

C Discovering equivalence of continued fractions406

Polynomial continued fractions use two polynomials an = a(n) and bn = b(n) to generate a407

sequence of rationals pn/qn. However, the same sequences with identical behaviour can be generated408

using more then one set of polynomials. By identifying transformations under which the dynamics409

of pn/qn remains invariant, we can formally prove equivalence between data points, validating the410

clustering power of the chosen metrics.411
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By rearranging the continued fraction definition, we can see how equivalent an and bn series can412

arise:413

a0+
b1

a1 +
b2

a2 +
b3

. . . +
bn

an +
. . .

= a0


1 +

b1
a0a1

1 +
b2

a1a2

1 +
b3

a2a3

. . . +
bn

anan−1

1 +
. . .


=

a0c0
c0



1 +
b1c0c1

a0c0a1c1

1 +
b2c1c2

a1c1a2c2

1 +
b3c2c3

a2c2a3c3

. . . +
bncncn−1

ancnan−1cn−1

1 +
. . .



.

(11)

Indeed, by defining a new pair of polynomials a′n = ancn; b
′
n = bncncn−1 we get an equivalent414

continued fraction which converges to c0pn

qn
. Clearly, since the resulting sequence p′

n

q′n
is identical to415

the original one, it exhibits the same dynamics. We call this process “Inflation by cn”. In particular,416

when cn = −1, we observe that the sign of a does not affect the dynamics of the sequence - only417

flips the sign of the limit to −L. For every PCF its inflation by -1 is also contained in the data set,418

and clearly will have the same dynamics-based metrics. This equivalence single handedly de-facto419

cuts the size of the data set by half (to 771,963 converging formulas).420

The metrics we are interested in are mostly not affected by a finite number of elements in the sequence.421

For example, both the convergence rate and δ discuss an overall trend as n grows. Consequently, we422

can initiate the sequence at different values of n ̸= 0 without changing the latent parameters. When423

expressing these transformations as modification to the continued fraction definition, we see that the424

limit of the continued fraction might change due to this shift in sequence initiation, but only by a425

rational fractional transform.426

a0 +
b1

a1 +
b2

a2 +
b3

. . . +
bn

an +
. . .

=
pn
qn

⇒ a1 +
b2

a2 +
b3

. . . +
bn

an +
. . .

=
b1

pn

qn
− a0

For example, we consider the cluster of formulas related to the golden ratio shown in figure 3b. A427

large portion of these PCFs stem from transforming the known formula for the golden ratio shown in428

Eq.1 via the methods aforementioned. The exact transformations are depicted in Table 4.429

D Analysis of the convergence rate430

The growth rate for simple continued fraction or equivalently for constant linear recurrences is well431

understood, and usually boils down to the matrix defining the recurrence, and its eigenvalues. In our432

case, the coefficient in the recurrence also depend on n, so their study is more involved, however the433

ideas are similar, which we now describe434

D.1 Approximating the error rate435

To find whether or not the sequence pn

qn
converges and if so what is its convergence rate, we note the436

continued fraction formula437

b (1)

a (1) +
b (2)

a (2) +
b (3)

. . . + b(n−1)
a(n−1)+0

=
pn
qn

,
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Table 4: Continued fractions converging to linear fractional transformations of the Golden Ratio ϕ,
found using the top left cluster of Figure 3b. Numerous data points in this cluster exhibit identical
sequence dynamics and are equivalent under the inflation and index indentation transformations. The
equivalent data points create families of continued fractions in the cluster. Discrepancies between
the calculated irrationality measure within the same family is ascribed to numerical inaccuracies,
typically on the order 0.001. However, when comparing families, discrepancies in the irrationality
measure rise to a magnitude of 0.04, suggesting potential deeper distinctions among these PCFs.

An Bn Limit Transformation Irrationality measure δ

1 1 ϕ Family’s canonical form δ = 1.00168
−1 1 -ϕ Inflation by cn = −1 δ = 1.00168
2 4 2ϕ Inflation by cn = 2 δ = 1.00023
−2 4 -2ϕ Inflation by cn = −2 δ = 1.00023

n + 1 n(n + 1) ϕ Inflation by cn = n + 1 δ = 1.00168
−(n + 1) n(n + 1) -ϕ Inflation by cn = −(n + 1) δ = 1.00168
n + 2 (n + 1)(n + 2) 2ϕ Inflation by cn = n + 2 δ = 1.00023

−(n + 2) (n + 1)(n + 2) -2ϕ Inflation by cn = −(n + 2) δ = 1.00023
2n + 1 (2n − 1)(2n + 1) ϕ Inflation by cn = (2n + 1) δ = 1.00168

−(2n + 1) (2n − 1)(2n + 1) -ϕ Inflation by cn = −(2n + 1) δ = 1.00168
2(n + 1) 4n(n + 1) 2ϕ Inflation by cn = 2(n + 1) δ = 1.00023
−2(n + 1) 4n(n + 1) -2ϕ Inflation by cn = −2(n + 1) δ = 1.00023

5 −5 ϕ + 2 Family’s canonical form δ = 1.00168
−5 −5 −(ϕ + 2) Inflation by cn = −1 δ = 1.00168

5(n + 1) −5n(n + 1) ϕ + 2 Inflation by cn = n + 1 δ = 1.00168
−5(n + 1) −5n(n + 1) + 0 −(ϕ + 2) Inflation cn = −(n + 1) δ = 1.00168

n + 2 n(n + 3) (30ϕ + 6)/19 Family’s canonical form δ = 0.96967
−(n + 2) n(n + 3) −(30ϕ + 2)/19 Inflation by cn = −1 δ = 0.96967
n + 3 (n + 1)(n + 4) (30ϕ + 2)/11 Indent n → n + 1 δ = 0.97245

−(n + 3) (n + 1)(n + 4) −(30ϕ + 2)/11 Indent n → n + 1 and inflation by cn = −1 δ = 0.97245

n + 3 n(n + 5) (750ϕ + 240)/361 Family’s canonical form δ = 0.95243
−(n + 3) n(n + 5) −(750ϕ + 240)/361 Inflation by cn = −1 δ = 0.95243

can be rewritten in matrix form as438 (
pn−1 pn
qn−1 qn

)
=

n−1∏
1

(
0 b (k)
1 a (k)

)
.

In particular this implies that both pn and qn satisfy the same linear recurrence:439

un+1 = a (n)un + b (n)un−1,

with initial conditions440 (
p0 p1
q0 q1

)
=

(
1 0
0 1

)
.

Trying to determine if there is convergence, we use the Cauchy condition. For any m ≥ n we have441

that442

pm
qm

−pn
qn

=

m−1∑
n

(
pk+1

qk+1
− pk

qk

)
=

m−1∑
n

pk+1qk − qk+1pk
qkqk+1

= −
m−1∑
n

det

(
pk pk+1

qk qk+1

)
qkqk+1

= −
m−1∑
n

(−1)
k∏k

j=1 b (j)

qkqk+1
.

The sequence K∞
1

b(n)
a(n) converges if and only if

∑∞
1

∏k
j=1 b(j)

qkqk+1
converges, and to the same limit L.443

More over, the convergence rate is444

ϵ (n) :=

∣∣∣∣pnqn − L

∣∣∣∣ =
∣∣∣∣∣
∞∑
n

(−1)
k∏k

j=1 b (j)

qkqk+1

∣∣∣∣∣ .
This suggests that we should understand the growth rate of both qk and

∏k
j=1 b (j). Note that the445

convergence and its rate might depend on the sign of
(−1)k

∏k
j=1 b(j)

qkqk+1
.446
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1. Suppose that
∣∣∣∣ (−1)k

∏k
j=1 b(j)

qkqk+1

∣∣∣∣ = 1
kd . If the signs do not alternate, then447 ∣∣∣∣∑∞

n

(−1)k
∏k

j=1 b(j)

qkqk+1

∣∣∣∣ =
∑∞

n
1
kd . This diverge if d = 1 and has order of magnitude448

1
kd−1 for d > 1. However, with alternating signs we get the smaller bound449

∞∑
2n

(−1)
k

kd
=

∞∑
n

(
1

(2k)
d
− 1

(2k + 1)
d

)
=

∞∑
n

(
(2k + 1)

d − (2k)
d

(2k)
d
(2k + 1)

d

)
∼

∞∑
n

d (2k)
d−1

4k2d
∼ 1

nd
.

Thus, it always converges and with better rates.450

2. However, for faster converging sequences we do not expect alternating sign to affect the451

convergence rate. For example, if
∣∣∣∏m−1

1 (−b(k))
qmqm−1

∣∣∣ = λm for some 0 < λ < 1, then with only452

positive signs the limit will be λn

1+λ while for alternating signs it will be (−λ)n

1+λ , so in any453

case the convergence rate is exponential.454

D.2 Growth rate of
∏m−1

k=1 |b (k)|455

Let b (x) be a polynomial of degree d, with leading coefficient of absolute value B. Then there exists456

a constant C > 0 such that for any integer N we have457

(Ne)
−C ≤

N∏
k=1

∣∣∣∣b (k)Bkd

∣∣∣∣ ≤ (Ne)
C
.

Proof. We may assume that the leading coefficient of b is positive. Writing b (x) =
∑d

0 bjx
j with458

bd = B ̸= 0, we want to approximate the product (of the absolute value) of459

b̃ (k) = 1 +

d−1∑
0

bj
B

1

kd−j
.

Hence, we can find an integer constant C0 ≥ 1 such that for all k ≥ 1 we have460 (
1− C0

k

)
≤
∣∣∣b̃ (k)∣∣∣ ≤ (1 + C0

k

)
.

For all k large enough, all the expression above are positive, so we get461

ln

(
1− C0

k

)
≤ ln

∣∣∣b̃ (k)∣∣∣ ≤ ln

(
1 +

C0

k

)
.

With the goal of summing up these expressions from 1 to infinity, we claim that there is some constant462

M > 0 such that for any C ′ ∈, and 2 |C ′| ≤ n < N we have that463 ∣∣∣∣∣
N∑
n

ln

(
1 +

C ′

k

)
− C ′ ln

(
N

n− 1

)∣∣∣∣∣ ≤ M. (12)

Given this claim we conclude that464

− (C0 ln (N) + [M − C0 ln (2C0)]) ≤
N∑

k=2C0+1

ln

∣∣∣∣b (k)Bkd

∣∣∣∣ ≤ C0 ln (N) + [M − C0 ln (2C0)] .

For another C large enough (independent of N ), we can start the summation from k = 1 to get465

−C (ln (N) + 1) ≤
N∑

k=1

ln
∣∣∣b̃ (k)∣∣∣ ≤ C (ln (N) + 1) .
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Finally, exponenting it back we get the result we wanted:466

(Ne)
−C ≤

N∏
k=1

∣∣∣b̃ (k)∣∣∣ ≤ (Ne)
C
.

We are left to prove Equation (12).467

Using the Taylor expansion of ln (1 + x) for |x| ≤ 1
2 , we know that there is some large enough468

0 < M0 such that469

|ln (1 + x)− x| ≤ M0x
2.

It follows that for 2 |C ′| ≤ n < N we have470 ∣∣∣∣∣
N∑

k=n

(
ln

(
1 +

C ′

k

)
− C ′

k

)∣∣∣∣∣ ≤ M0C
′2

N∑
n

1

k2
≤ M0C

′2ζ (2) .

In addition, we have that
∣∣∣∑N

n
1
k −

∫ N

n−1
1
x

∣∣∣ ≤ 1, and471 ∫ N

n−1

1

x
= ln

(
N

n− 1

)
.

Therefore472 ∣∣∣∣∣
N∑
n

ln

(
1 +

C ′

k

)
− C ′ ln

(
N

n− 1

)∣∣∣∣∣ ≤ |C ′|+M0C
′2ζ (2)

is uniformly bounded.473

D.3 Growth rate of qn474

The sequence qn satisfies the linear recurrence475

qn+1 = a (n) qn + b (n) qn−1,

or in matrix form476

(qn, qn+1) = (qn−1, qn)

M(n)︷ ︸︸ ︷(
0 b (n)
1 a (n)

)
.

If both a (x) , b (x) are constant, and therefore M = M (n) is a constant matrix, then this problem477

reduces to simply (qn, qn+1) = (q0, q1)M
n. Its a standard exercise to approximate qn using the478

eigenvectors decomposition of M . However, in general not only M (n) is non-constant, its entries479

have different orders of magnitude.480

Thus, we would like to move to an “equivalent” system where at the very least M (n) converges481

to some matrix M∞, and then hope to show that the behavior of qn can be read from the system482

with Mn
∞. This equivalent system will be built in two steps: first we “balance” the matrix, so its483

coordinates growth rate are the same, and then taking it outside as a scalar, the remaining sequence of484

matrices will converge.485

D.3.1 Matrix balancing486

This balancing is split into two cases according to the degrees of da = deg (a (x)) , db = deg (b (x)).487

Let d = max
{
da,

1
2db
}

and denote by A,B the coefficients of xd, x2d of a (x) , b (x) respectively.488

Note that both A,B are either the corresponding leading coefficients or zero, depending on whether489

da = d, respectively db = 2d. If 2da < db and db is odd, then da < d = db

2 , and we still consider A490

to be zero. Regardless of the choice of d, we see that at least one of A or B is not zero (and both if491

2da = db, which we call a “balanced” PCF).492

With this choice, taking q̃n = qn
(n!)d

, we obtain the linear recurrence493

q̃n+1 =
a (n)

(n+ 1)
d
q̃n +

b (n)

(n (n+ 1))
d
q̃n−1.
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Figure 5: Convergence with variable coefficients

Letting ã (n) = a(n)

(n+1)d
and b̃ (n) = b(n)

(n(n+1))d
, by our choice of d we see that the coefficient or the494

recurrence converge, and not both to zero:495

lim
n→∞

ã (n) = A

lim
n→∞

b̃ (n) = B.

Here too we can also write it in a matrix form, namely496

(q̃n, q̃n+1) = (q̃n−1, q̃n)

(
0 b̃ (n)
1 ã (n)

)
.

We now have a limit matrix, and the dynamics of such a matrix is well known. If both eigenvalues497

are real which are distinct in absolute value, then we expect exponential convergence. If both are non498

real, and therefore complex conjugate we expect it to behave like a rotation, and therefore will not499

converge. In both of these cases, since the eigenvalues are distinct in the limit, this holds for almost500

all n, so this behavior should hold in general.501

In the discriminant zero, the situation is much more delicate, since we can converge to zero in many502

ways. For example, the discriminant along the way can be negative, positive or zero. In this notes we503

will restrict the study only to the two real eigenvalues with different absolute values.504

D.3.2 Asymptotics of the continued fraction recurrence505

The main goal of this section is to approximate the growth rate of a solution un to the recurrence506

un+1 = anun + bnun−1,

where both an, bn converge (and not both to zero) or in matrix form507

( vn vn+1 ) = ( vn−1 vn )Mn , Mn =
(
0 bn
1 an

)
,

where Mn → M :=

(
0 b
1 a

)
.508

The first step is the standard conjugation to a simpler matrix. Indeed, if D = PMP−1 is simpler, e.g.509

diagonal, then Dn := PMnP
−1 → D , and

∏n
1 Mi = P−1

∏n
1 DiP , so we more or less need to510

understand
∏n

1 Di.511

In the constant diagonal case Dn =

(
λ1 0
0 λ2

)
with λ1 > |λ2|, we expect that for almost every512

initial condition
∥∥(α1, β1)D

k
∥∥ ∼ λk

1 . This is true as long as the initial vector is not in ·e2, and we513

have similar behaviour for other type of matrices. When the Dn are not constant, we need to take a514

little bit more care. The image you should have in mind is the following:515

Instead of the two eigenvectors being on the X and Y axes, they only converge to it, so we only know516

that they are somewhere inside the red and blue regions. Thus, to understand this system we first need517

a separation condition saying that these regions are disjoint. Assuming the X-axis is the pulling axis518

18



(larger eigenvalue), we will need at least one point outside the error region around the Y axis, which we519

call the initial condition. Once both these conditions hold, a standard investigation of diagonalizable520

product will show that the point’s orbit converge towards the eigenvector in the X-region. As this521

region shrinks to X in the limit, we see that the limit of the orbit is there as well. Suppose that522

Dn → D where D =
(

λ+ 0
0 λ−

)
with 0 ≤

∣∣∣λ−
λ+

∣∣∣ < 1 and let κn = 1
|λ+| maxk≥n ∥Dk −D∥∞.523

Fix some initial z1 and let zk = (z1)
∏k−1

1 Dn. Assuming that for some n we have524

• Separation condition:
∣∣∣λ−
λ+

∣∣∣+ 4κn < 1 and525

• Initial condition: |zn| <
µn+

√
(µn−2κn)(µn+2κn)

2κn
, µn = 1−

∣∣∣λ−
λ+

∣∣∣− 2κn.526

Then lim
k→∞

|zk| = 0.527

Note that µn+
√

(µn−2κn)(µn+2κn)

2κn
∼ 1−|λ|

κn
→ ∞ as κn → 0, so this initial condition becomes easier528

to satisfy as n → ∞.529

Proof. First, proving the claim for 1
λ+

Dn instead of Dn, we may assume that the limit is D =530 (
1 0
0 λ

)
where λ = λ−

λ+
.531

Next, note that whenever µ := 1 − |λ| − 2κ > 2κ > 0, we have that
√
(µ− 2κ) (µ+ 2κ) =532 √

µ2 − 4κ2 < µ. Setting533

ν± (κ) =
µκ ±

√
(µκ − 2κ) (µκ + 2κ)

2κ
,

we get that 0 < ν− (κ) < ν+ (κ) are real numbers, and the condition in the assumption is |zn| <534

ν+ (κn). Our main goal is to prove our process satisfies:535

1. |zk| < ν+ (κn) for all k ≥ n and,536

2. We have lim supk |zk| ≤ ν− (κn) .537

Assuming these two steps are true, the full proof is not too far behind. Indeed, since Dn → D, the538

sequence κn := sup
k≥n

∥Dn −D∥ converges to zero, and note that as κn → 0 we get that ν+ (κn) ↗ ∞539

and ν− (κn) ↘ 0. Assuming step (1), for k ≥ m ≥ n we have |zk| < ν+ (κn) ≤ ν+ (κm), and by540

step (2) we get that lim supk |zk| ≤ ν− (κm) → 0.541

For the remaining of the proof, without loss of generality we may assume that n = 1 and just write542

κ, µ instead of κn, µn.543

To prove these two steps, consider the change from zk to zk+1. Writing Dk =
(

1+ε1,1 ε1,2
ε2,1 λ+ε2,2

)
,544

since zk+1 = (zk)Dk and ∥D −Dk∥∞ ≤ κ, we get that545

|zk+1| =
∣∣∣∣ε1,2 + zk (λ+ ε2,2)

(1 + ε1,1) + zkε2,1

∣∣∣∣ ≤ κ+ |zk| (|λ|+ κ)

1− κ− κ |zk|
.

Note that the final denominator is positive, so that the last inequality is valid. Indeed, using the546

conditions of the claim we get547

1− κ (1 + |zk|) ≥ 1− κ

(
1 +

µ+
√
(µ− 2κ) (µ+ 2κ)

2κ

)
> 1− (κ+ µ) = |λ|+ κ > 0.

Thus, we can rewrite the inequality as548

|zk+1| ≤ Mε (|zk|) , Mε =

(
|λ|+ κ κ
−κ 1− κ

)
. (13)
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The goal now is to show that if |zk| is “large”, then |zk+1| is much smaller, and if |zk| is small, then549

|zk+1| cannot increase too much.550

A simple computations shows that the eigenvalues of this matrix are551

γ± =
|λ|+ 1±

√
(µ+ 2κ) (µ− 2κ)

2
,

and since
√
(µ+ 2κ) (µ− 2κ) ≤ µ ≤ 1− |λ|, we get that552

γ+ > γ− > 0.

Finally, the corresponding (right) eigenvectors are553

v± =

(
ν∓
1

)
.

To simplify the notations, let us conjugate by the matrix T =

(
ν+ ν−
1 1

)
to obtain554

T−1MεT =

(
γ− 0
0 γ+

)
.

Note that the Mobius map555

T−1 (z) :=
1

ν+ − ν−

(
1 −ν−
−1 ν+

)
(z) = −z − ν−

z − ν+
= −1 +

ν− − ν+
z − ν+

sends ν− 7→ 0, ν+ 7→ ∞ and 0 7→ −ν−
ν+

< 0. In particular, it is monotone increasing on [0, ν+), so556

that our two steps from above are equivalent to557

1. T−1 (|zk|) ∈ [−ν−
ν+

,∞),558

2. lim supk T
−1 (|zk|) ∈

[
−ν−

ν+
, 0
]
,559

and the claim’s original assumption is that T−1 (|z1|) ∈ [−ν−
ν+

,∞). However, now this claim is560

simple, since in these notations we get that561

T−1 (Mε (|zk|)) =
(
T−1MεT

) (
T−1 (|zk|)

)
=

γ−
γ+

· T−1 (|zk|) ,

and 0 < γ−
γ+

< 1. Thus, if T−1 (|zk|) ∈ [−ν−
ν+

,∞), then so is T−1 (Mε (|zk|)) ∈ [−ν−
ν+

,∞), so by562

Equation (13) and the monotonicity of T , we obtain that563

T−1 (|zk+1|) ≤
γ−
γ+

· T−1 (|zk|) ,

which implies the two steps.564

Returning back to the recursion, we get the following565

Suppose that we have a solution to the recurrence vn+1 = anvn + bnvn−1, where an → a, bn →566

b and suppose that λ± are the roots of x2 = ax + b with 0 ≤ |λ−| < λ+. Writing κ′
n =567

1
|λ+|max

k≥n
max {|ak − a| , |bk − b|} and C (λ±) :=

1+|λ+|
|λ+−λ−| , Assume that for some n we have568

• Separation condition:
∣∣∣λ−
λ+

∣∣∣+ 4C (λ±)κ
′
n < 1 and569

• Initial condition:
∣∣∣λ− − vn

vn−1

∣∣∣ ≥ C (λ±)κ
′
n

|λ+−λ−|
1−

∣∣∣λ−
λ+

∣∣∣−4C(λ±)κ′
n

,570

Then571
vn

vn−1
→ λ+.
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Proof. Set Mn =
(
0 bn
1 an

)
and M = ( 0 b

1 a ) as in the beginning of this section. With P =
(

1 λ+

1 λ−

)
572

and P−1 = 1
λ−−λ+

(
λ− −λ+

−1 1

)
we have that D = PMP−1 =

(
λ+ 0
0 λ−

)
. We would like to apply573

Lemma D.3.2 to the matrices Dn = PMnP
−1.574

For the separation condition on the infinity norm, we have575 ∥∥PMnP
−1 −D

∥∥
∞ =

∥∥P (Mn −M)P−1
∥∥
∞ =

1

|λ− − λ+|

∥∥∥( 1 λ+

1 λ−

) (
0 bn−b
0 an−a

) (
λ− −λ+

−1 1

)∥∥∥
∞

=
1

|λ− − λ+|

∥∥∥( 1 λ+

1 λ−

) (
b−bn bn−b
a−an an−a

)∥∥∥
∞

≤

C(λ±)︷ ︸︸ ︷
1 + |λ+|
|λ+ − λ−|

∥Mn −M∥∞ .

Thus, the separation condition of this theorem implies the separation condition of Lemma D.3.2:576 ∣∣∣∣λ−

λ+

∣∣∣∣+ 4κn ≤
∣∣∣∣λ−

λ+

∣∣∣∣+ 4C (λ±)
1

|λ+|
max
k≥n

∥Mn −M∥∞ < 1

Next, for the initial condition , setting577

(vk−1 vk) := (v0 v1)

(
k−1∏
1

Mn

)
= (v0 v1)P

−1

(
k−1∏
1

Dn

)
P

we have578

(αk, βk) = (v0 v1)P
−1

(
k−1∏
1

Dn

)
= (vk−1, vk)P

−1.

Setting zn = βn

αn
, we get that579

|zn| =
∣∣∣∣βn

αn

∣∣∣∣ = ∣∣∣∣−λ+vn−1 + vn
λ−vn−1 − vn

∣∣∣∣ =
∣∣∣∣∣1 + λ+ − λ−

λ− − vn
vn−1

∣∣∣∣∣ ≤ 1 +

∣∣∣∣∣ λ+ − λ−

λ− − vn
vn−1

∣∣∣∣∣ = (∗) .

Using the assumption that
∣∣∣λ− − vn

vn−1

∣∣∣ ≥ C (λ±)κ
′
n

|λ+−λ−|
1−

∣∣∣λ−
λ+

∣∣∣−4C(λ±)κ′
n

≥ κn
|λ+−λ−|

1−
∣∣∣λ−
λ+

∣∣∣−4κn

, we see580

that the expression above is581

(∗) ≤ 1+
|λ+ − λ−|

κn
|λ+−λ−|

1−
∣∣∣λ−
λ+

∣∣∣−4κn

= 1+
1−

∣∣∣λ−
λ+

∣∣∣− 4κn

κn
=

2µn − 2κn

2κn
<

µn +
√
(µn − 2κn) (µn + 2κn)

2κn
.

This was the second condition needed for Lemma D.3.2 , so we can now conclude that582 ∣∣∣∣∣1 + λ+ − λ−

λ− − vn

vn−1

∣∣∣∣∣ =
∣∣∣∣βn

αn

∣∣∣∣→ 0

which implies that vn
vn−1

→ λ+.583

D.4 Conclusion584

We return now to the original problem with α = K∞
1

b(n)
a(n) and assume that a (x) , b (x) have degrees585

da, db . As mentioned before, we split our study into two cases:586

The balanced case587

Assume that db = 2da = 2d, and let A,B be the leading coefficients of a (x) , b (x) respectively.588

In this case the limit matrix is M∞ =

(
0 B
1 A

)
, and we assume that the roots λ± of x2 = Ax+B589

satisfy 0 < |λ−| < λ+. Using Theorem D.3.2 once the two conditions hold, we obtain590

qn+1

qn
(n+ 1)

d
=

qn+1/ (n+ 1)!d

qn/n!d
→ λ+,
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implying that qn = n!dλn
+ exp (o (n)). As for the product of the b (k), using Claim D.2 we have that591

N∏
k=1

|b (k)| = exp (o (N)) ·BN ·N !2d.

Putting them together as in the error rate expression, we get :592 ∏m−1
k=1 |b (k)|
|qm−1qm|

=
|B|m−1 · (m− 1)!2d

(m− 1)!d (m)!dλ2m−1
+

exp (o (m)) = (∗) .

Note that |B| = |det (M∞)| = |λ−λ+|, so that the expression above is593

(∗) = |λ−/λ+|m · exp (o (m)) = exp (m log |λ−/λ+|+ o (m)) .

Thus, for given ε > 0 where
∣∣∣λ−
λ+

∣∣∣ + ε < 1, and for any m large enough we see that (∗) ≤594 (∣∣∣λ−
λ+

∣∣∣+ ε
)m−1

. We conclude that the error rate for all n large enough is bounded from above by595 ∣∣∣∣pnqn − α

∣∣∣∣ ≤ ∞∑
m=n+1

∏m−1
k=1 |b (k)|
|qm−1qm|

≤
∞∑

m=n+1

(∣∣∣∣λ−

λ+

∣∣∣∣+ ε

)m−1

=

(∣∣∣∣λ−

λ+

∣∣∣∣+ ε

)n
1

1−
(∣∣∣λ−

λ+

∣∣∣+ ε
) .

It follows that596

ln

∣∣∣∣pnqn − α

∣∣∣∣ ≤ n ln

((∣∣∣∣λ−

λ+

∣∣∣∣+ ε

))
− ln

(
1−

(∣∣∣∣λ−

λ+

∣∣∣∣+ ε

))
∼ n ln

(∣∣∣∣λ−

λ+

∣∣∣∣) .

The unbalanced case597

Suppose now that db < 2da = 2d, so that B = lim
n→∞

b (n)

(n (n+ 1))
da

= 0. This time the two598

roots of x2 = Ax + 0 are λ = 0, A. If needed, we can use a simple continued fraction inflation599

K∞
1

(−1)2b(n)
(−1)a(n) and assume that A > 0. Using Theorem D.3.2, if the two conditions hold, we obtain600

qn = n!dAn exp (o (n)).601

Letting B̂ be the leading coefficient of b (x) in absolute value, Claim D.2 implies that602

N∏
k=1

|b (k)| = exp (o (N)) · B̂N ·N !db .

Again, together we obtain that603 ∏m−1
k=1 |b (k)|
|qm−1qm|

=
B̂m−1 · (m− 1)!db

(m− 1)!dm!dA2m−1
exp (o (m)) =

1

(m− 1)!2da−db
·

(
B̂

A2

)m

exp (o (m))

Similarly to the previous case, given ε > 0, and using the fact that 2da − db ≥ 1, for all n large604

enough we obtain605 ∣∣∣∣pnqn − α

∣∣∣∣ ≤ ∞∑
m=n+1

∏m−1
k=1 |b (k)|
|qm−1qm|

≤
∞∑

m=n+1

1

(m− 1)!2da−db
·

(
B̂

A2
+ ε

)m−1

=
1

n!2da−db

(
B̂

A2
+ ε

)n ∞∑
m=0

(
n!

(n+m)!

)2da−db

·

(
B̂

A2
+ ε

)m

≤ 1

n!2da−db

(
B̂

A2
+ ε

)n [ ∞∑
m=0

(
1

m!

)2da−db

·

(
B̂

A2
+ ε

)m]
.

The infinite sum in the last exression converges to some finite limit C̃, so we conclude that606

ln

∣∣∣∣pnqn − α

∣∣∣∣ ≤ (db − 2da) ln (n!) + n ln

∣∣∣∣∣ B̂A2
+ ε

∣∣∣∣∣+ ln
∣∣∣C̃∣∣∣ ∼ (db − 2da)n · ln |n| .
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sions to provide some reasonable avenue for reproducibility, which may depend on the699

nature of the contribution. For example700

(a) If the contribution is primarily a new algorithm, the paper should make it clear how701

to reproduce that algorithm.702

(b) If the contribution is primarily a new model architecture, the paper should describe703

the architecture clearly and fully.704

(c) If the contribution is a new model (e.g., a large language model), then there should705

either be a way to access this model for reproducing the results or a way to reproduce706

the model (e.g., with an open-source dataset or instructions for how to construct707

the dataset).708

(d) We recognize that reproducibility may be tricky in some cases, in which case709

authors are welcome to describe the particular way they provide for reproducibility.710

In the case of closed-source models, it may be that access to the model is limited in711

some way (e.g., to registered users), but it should be possible for other researchers712

to have some path to reproducing or verifying the results.713
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5. Open access to data and code714

Question: Does the paper provide open access to the data and code, with sufficient instruc-715

tions to faithfully reproduce the main experimental results, as described in supplemental716

material?717

Answer: [Yes]718

Justification: The code is submitted for review, and the git repository will be linked in719

the camera-ready version. The data set is mathematical formulas and constants - so freely720

available to all.721

Guidelines:722

• The answer NA means that paper does not include experiments requiring code.723

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/724

public/guides/CodeSubmissionPolicy) for more details.725

• While we encourage the release of code and data, we understand that this might not be726

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not727

including code, unless this is central to the contribution (e.g., for a new open-source728

benchmark).729

• The instructions should contain the exact command and environment needed to run to730

reproduce the results. See the NeurIPS code and data submission guidelines (https:731

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.732

• The authors should provide instructions on data access and preparation, including how733

to access the raw data, preprocessed data, intermediate data, and generated data, etc.734

• The authors should provide scripts to reproduce all experimental results for the new735

proposed method and baselines. If only a subset of experiments are reproducible, they736

should state which ones are omitted from the script and why.737

• At submission time, to preserve anonymity, the authors should release anonymized738

versions (if applicable).739

• Providing as much information as possible in supplemental material (appended to the740

paper) is recommended, but including URLs to data and code is permitted.741

6. Experimental Setting/Details742

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-743

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the744

results?745

Answer: [Yes]746

Justification: In this work we are using unsupervised recurring clustering as the main747

machine learning method, and the results are mostly validated using the (test) subset of748

known PCF formulas for mathematical constants. This subset was included in the full data749

set but wasn’t given any special treatment during clustering (as mentioned in section 4.1).750

Guidelines:751

• The answer NA means that the paper does not include experiments.752

• The experimental setting should be presented in the core of the paper to a level of detail753

that is necessary to appreciate the results and make sense of them.754

• The full details can be provided either with the code, in appendix, or as supplemental755

material.756

7. Experiment Statistical Significance757

Question: Does the paper report error bars suitably and correctly defined or other appropriate758

information about the statistical significance of the experiments?759

Answer: [Yes]760

Justification: The main errors in this work originate in the dynamical metrics measurement761

stage. Error bars are not shown (for visual clarity), but these errors are discussed in Appendix762

A, and mentioned in every figure that shows measured dynamical metrics.763

Guidelines:764

• The answer NA means that the paper does not include experiments.765
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-766

dence intervals, or statistical significance tests, at least for the experiments that support767

the main claims of the paper.768

• The factors of variability that the error bars are capturing should be clearly stated (for769

example, train/test split, initialization, random drawing of some parameter, or overall770

run with given experimental conditions).771

• The method for calculating the error bars should be explained (closed form formula,772

call to a library function, bootstrap, etc.)773

• The assumptions made should be given (e.g., Normally distributed errors).774

• It should be clear whether the error bar is the standard deviation or the standard error775

of the mean.776

• It is OK to report 1-sigma error bars, but one should state it. The authors should777

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis778

of Normality of errors is not verified.779

• For asymmetric distributions, the authors should be careful not to show in tables or780

figures symmetric error bars that would yield results that are out of range (e.g. negative781

error rates).782

• If error bars are reported in tables or plots, The authors should explain in the text how783

they were calculated and reference the corresponding figures or tables in the text.784

8. Experiments Compute Resources785

Question: For each experiment, does the paper provide sufficient information on the com-786

puter resources (type of compute workers, memory, time of execution) needed to reproduce787

the experiments?788

Answer: [Yes]789

Justification: There are no special or extreme resource requirements, so we did not focus on790

this question, but a brief discussion of required memory and runtime is in Appendix A.791

Guidelines:792

• The answer NA means that the paper does not include experiments.793

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,794

or cloud provider, including relevant memory and storage.795

• The paper should provide the amount of compute required for each of the individual796

experimental runs as well as estimate the total compute.797

• The paper should disclose whether the full research project required more compute798

than the experiments reported in the paper (e.g., preliminary or failed experiments that799

didn’t make it into the paper).800

9. Code Of Ethics801

Question: Does the research conducted in the paper conform, in every respect, with the802

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?803

Answer: [Yes]804

Justification: This work does not involve human participants, special data sets, does not805

have implications for the broader public (only for scientists) and cannot be used to do harm.806

Guidelines:807

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.808

• If the authors answer No, they should explain the special circumstances that require a809

deviation from the Code of Ethics.810

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-811

eration due to laws or regulations in their jurisdiction).812

10. Broader Impacts813

Question: Does the paper discuss both potential positive societal impacts and negative814

societal impacts of the work performed?815

Answer: [NA]816
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Justification: Although our work is applied ML, its impact is on mathematical research, not817

society at large.818

Guidelines:819

• The answer NA means that there is no societal impact of the work performed.820

• If the authors answer NA or No, they should explain why their work has no societal821

impact or why the paper does not address societal impact.822

• Examples of negative societal impacts include potential malicious or unintended uses823

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations824

(e.g., deployment of technologies that could make decisions that unfairly impact specific825

groups), privacy considerations, and security considerations.826

• The conference expects that many papers will be foundational research and not tied827

to particular applications, let alone deployments. However, if there is a direct path to828

any negative applications, the authors should point it out. For example, it is legitimate829

to point out that an improvement in the quality of generative models could be used to830

generate deepfakes for disinformation. On the other hand, it is not needed to point out831

that a generic algorithm for optimizing neural networks could enable people to train832

models that generate Deepfakes faster.833

• The authors should consider possible harms that could arise when the technology is834

being used as intended and functioning correctly, harms that could arise when the835

technology is being used as intended but gives incorrect results, and harms following836

from (intentional or unintentional) misuse of the technology.837

• If there are negative societal impacts, the authors could also discuss possible mitigation838

strategies (e.g., gated release of models, providing defenses in addition to attacks,839

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from840

feedback over time, improving the efficiency and accessibility of ML).841

11. Safeguards842

Question: Does the paper describe safeguards that have been put in place for responsible843

release of data or models that have a high risk for misuse (e.g., pretrained language models,844

image generators, or scraped datasets)?845

Answer: [NA]846

Justification: The methods in this paper do not pose such risks.847

Guidelines:848

• The answer NA means that the paper poses no such risks.849

• Released models that have a high risk for misuse or dual-use should be released with850

necessary safeguards to allow for controlled use of the model, for example by requiring851

that users adhere to usage guidelines or restrictions to access the model or implementing852

safety filters.853

• Datasets that have been scraped from the Internet could pose safety risks. The authors854

should describe how they avoided releasing unsafe images.855

• We recognize that providing effective safeguards is challenging, and many papers do856

not require this, but we encourage authors to take this into account and make a best857

faith effort.858

12. Licenses for existing assets859

Question: Are the creators or original owners of assets (e.g., code, data, models), used in860

the paper, properly credited and are the license and terms of use explicitly mentioned and861

properly respected?862

Answer: [Yes]863

Justification: The only existing assets that were used are open source Python packages, that864

were properly credited in Appendix A.865

Guidelines:866

• The answer NA means that the paper does not use existing assets.867

• The authors should cite the original paper that produced the code package or dataset.868
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• The authors should state which version of the asset is used and, if possible, include a869

URL.870

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.871

• For scraped data from a particular source (e.g., website), the copyright and terms of872

service of that source should be provided.873

• If assets are released, the license, copyright information, and terms of use in the874

package should be provided. For popular datasets, paperswithcode.com/datasets875

has curated licenses for some datasets. Their licensing guide can help determine the876

license of a dataset.877

• For existing datasets that are re-packaged, both the original license and the license of878

the derived asset (if it has changed) should be provided.879

• If this information is not available online, the authors are encouraged to reach out to880

the asset’s creators.881

13. New Assets882

Question: Are new assets introduced in the paper well documented and is the documentation883

provided alongside the assets?884

Answer: [Yes]885

Justification: The code is released as open source with a readme and documentation.886

Guidelines:887

• The answer NA means that the paper does not release new assets.888

• Researchers should communicate the details of the dataset/code/model as part of their889

submissions via structured templates. This includes details about training, license,890

limitations, etc.891

• The paper should discuss whether and how consent was obtained from people whose892

asset is used.893

• At submission time, remember to anonymize your assets (if applicable). You can either894

create an anonymized URL or include an anonymized zip file.895

14. Crowdsourcing and Research with Human Subjects896

Question: For crowdsourcing experiments and research with human subjects, does the paper897

include the full text of instructions given to participants and screenshots, if applicable, as898

well as details about compensation (if any)?899

Answer: [NA]900

Justification: This research does not involve crowdsourcing nor research with human901

subjects.902

Guidelines:903

• The answer NA means that the paper does not involve crowdsourcing nor research with904

human subjects.905

• Including this information in the supplemental material is fine, but if the main contribu-906

tion of the paper involves human subjects, then as much detail as possible should be907

included in the main paper.908

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,909

or other labor should be paid at least the minimum wage in the country of the data910

collector.911

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human912

Subjects913

Question: Does the paper describe potential risks incurred by study participants, whether914

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)915

approvals (or an equivalent approval/review based on the requirements of your country or916

institution) were obtained?917

Answer: [NA]918

Justification: This research does not involve crowdsourcing nor research with human919

subjects.920
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Guidelines:921

• The answer NA means that the paper does not involve crowdsourcing nor research with922

human subjects.923

• Depending on the country in which research is conducted, IRB approval (or equivalent)924

may be required for any human subjects research. If you obtained IRB approval, you925

should clearly state this in the paper.926

• We recognize that the procedures for this may vary significantly between institutions927

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the928

guidelines for their institution.929

• For initial submissions, do not include any information that would break anonymity (if930

applicable), such as the institution conducting the review.931
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