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ABSTRACT

Determining causal effects of temporal multi-intervention assists decision-
making. Restricted by time-varying bias, selection bias, and interactions of multi-
ple interventions, the disentanglement and estimation of multiple treatment effects
from individual temporal data is still rare. To tackle these challenges, we propose
a comprehensive framework of temporal counterfactual forecasting based on bal-
anced representation from an individual multiple treatment perspective (TCFimt).
TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection
and time-varying bias and designs a contrastive learning-based block to decouple
a mixed treatment effect into separated main treatment effects and causal interac-
tions which further improves estimation accuracy. Through implementing experi-
ments on two real-world datasets from distinct fields, the proposed method shows
satisfactory performance in predicting future outcomes with specific treatments
and in choosing optimal treatment type and timing than state-of-the-art methods.

1 INTRODUCTION

Causal analysis in temporal scenarios is to explore which factors lead to the results in the future,
which could assist in decision-making. In real-life scenarios, decision-makers are often faced with
the dilemma of which decision or even a combination of options to choose, hence it is particularly
important for them to reliably estimate the effects of distinct interventions and intervention inter-
actions. For example, in the game field, game companies are really concerned about the changing
revenue, which reflects various states of a game. As shown on the left of Figure 1, when a noticeable
change in a game indicator is observed, which is due to several mixed mega-events (e.g., game an-
niversary, the newly opened game server, and new gameplay) going on during this period. To weigh
costs and benefits, they are eager to know what will happen if adopting other mixed interventions.
Similarly, in the field of health care, doctors pay more attention to changes in vital signs, leading
to what treatment regimens are needed. However, due to the physical characteristics of different
patients, the treatment plans should be varied. The doctors also want to know what will happen in
if the treatment is changed (right panel of Figure 1). The above questions motivate our research on
counterfactual forecasting of mixed interventions on time-series data in this paper.

Existing causal inference techniques under the longitudinal setting such as Recurrent Marginal
Structural Networks (RMSN, Lim et al., 2018) and Counterfactual Recurrent Network (CRN, Bica
et al., 2020) cannot be applied to conduct causal inference of multiple treatments in temporal data.
First of all, only one of the multiple treatment result (factual outcome) can be observed, while the re-
sults of other interventions at that moment (counterfactual outcomes) are not available. This makes
us never obtain the entire vector of outcomes. Second, the observational data is prone to multiple
treatment selection biases. For example, it is easier for the rich to get better treatment, which causes
the distribution of features among patients to vary drastically across different choices of treatments.
Third, these observed outputs are the result of mixed effects of multiple interventions, making it
difficult to estimate the effects of a single intervention and the causal interactions.

Accordingly, to solve the above-mentioned challenges, this paper designs a Temporal Counterfactual
Forecasting network from an Individual Multiple Treatment perspective (TCFimt), for enhancing
prediction accuracy and inference effectiveness. Different from causal graphs or do-calculus, TC-
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Figure 1: Counterfactual forecasting in real-world cases.

Fimt can effectively estimate multiple treatment effects for individual levels without graph search. in
Specifically, we consider the following settings to address these issues: 1) For unobserved counter-
factual data, we design a corruption function to generate the pseudo-counterfactual data of multiple
treatments. 2) Moreover, by simultaneously maximizing the error of the treatment classification task
and minimizing the error of the outcomes prediction task, the selection bias and time-varying bias
are alleviated by employing an adversarial training way. 3) Finally, an effect disentanglement block
based on contrastive learning is dedicated to further enhancing the prediction of effects under mixed
interventions. The contributions of this research are summarized as follows:

• To our best knowledge, our paper is the first to explore the interventional effect decoupling
and causal interaction issue in temporal data, which is an attempt at causal inference in
complex scenarios.

• The proposed TCFimt method combines the way of adversarial training and contrastive
learning, which is beneficial to solving the issues of temporal counterfactual forecasting
with mixed interventions in one treatment plan.

• We provide a theoretical analysis of algorithms for learning the balanced representation in
temporal individual multiple treatment effects estimation.

• The implemented experiments on real-world data in two different fields validate the effec-
tiveness of our methods.

2 PRELIMINARY

In this section, we will employ the following notations1. For time any t > 0, we denote time-
varying feature variables by Xt ∈ X ⊂ RDx , a binary time-dependent treatment action by At =
{A1,t, . . . , AK,t} ∈ {0, 1}K , where, for k = 1, . . . ,K, Ak,t = 1 if treatment k is received and
0 if not at time t, and the corresponding interventional features by Vt = (V1,t, . . . , VK,t) ∈ V ⊂
RDv×K , where Vk denotes the features of treatment k. In particular, K > 2 means the outcome is
caused by multiple interventions. It is worth mentioning that, instead of using one-hot treatments of
the mixed interventions to correspond to one intervention plan, we explore each of the intervention
actions that make up the mixed intervention regimen.

Following the potential outcomes framework proposed by Rubin in 1978 Rubin (1978) and extended
in 2008 Robins & Hernan (2008) to account for time-varying treatments, we let Y [at] denote the
individual potential outcome at time t for the treatment At = at, and Yt = Y [At] is the individual
observed outcome at time t of treatment At. Consider a random sample of size N , for each individ-
ual i = 1, . . . , N , we observe discrete time series data {V(i)

s ,A
(i)
s ,X

(i)
s , Y

(i)
s }ts=1 for some positive

integer t, distributed as {Vs,As,Xs, Ys}ts=1.

To adapt the unconfoundedness assumption, we let
←−
Ht = (

←−
A t−1,

←−
V t,
←−
X t), where

←−
A t−1 =

(A1, . . . ,At−1) is the historical treatment assignments,
←−
V t = (V1, ..., Vt) is the adopted inter-

ventional feature up to time t, and
←−
X = (X1, ..., Xt) is the time-varying state vector.

Assumption 1. (unconfoundedness) Base on given notations, unconfoundedness assumption at
time t is defined as:

{Y [at]}at∈{0,1}K ⊥⊥ At |
←−
Ht . (1)

1Complete background on treatment effect inference is provided in appendix due to the length limit.
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Our goal is to estimate the conditional average treatment effect (CATE) for each treatment k,
k = 1, . . . ,K, in the future. For notational simplicity in defining our CATE, we let Y [ak,t] be
the potential outcome Y [at] with treatment k being ak,t ∈ {0, 1} and aj,t = 0 for all j ̸= k, and let
Y [a0,t] be the potential outcome with none of the K treatments (i.e. a1,t = . . . = aK,t = 0). Then,
the CATE we aim to estimate is defined as

δ[ak,t+τ ] = E(Y [ak,t+τ ] |
←−
Ht)− E(Y [a0,t+τ ] |

←−
Ht) , (2)

for ak,t+τ = 1, k = 1, . . . ,K, τ ≥ 0 an integer, where t+ τ represents a future time step. We hope
the future individual potential outcome could be estimated when we decide on specific treatment
ak,t+τ , to facilitate decision making. For this purpose, we introduce the following assumption.

Assumption 2. (causal interactions) Assuming that the potential outcomes of multiple treatments
can be divided into separated treatment effects and causal interactions. That is, we can define the
causal interaction for any combination of the K treatments at ∈ {0, 1}K , δCI [at], as follows:

δCI [at] = E((Y [at]− Y [a0,t]) |
←−
Ht)

−
K∑

k=1

E((Y [ak,t]− Y [a0,t]) |
←−
Ht) .

(3)

3 METHOD

Most existing methods estimate individual treatment effects in static setting without considering the
time-varying confounders. Those temporal causal inference methods focus on single treatment reg-
imen, ignoring realistic situations of multiple treatment assignments. More importantly, the causal
interactions under mixed treatments is difficult to be accurately estimated. Considering the chal-
lenges of time-varying bias, multiple treatment selection bias, and causal interactions in time series
prediction task, in this section, we propose TCFimt to forecast the future target value under mixed
treatments and quantify the individual treatment effects for decision making.

Figure 2: The architecture of our proposed method TCFimt.

The whole framework could be divided into three main parts, as shown in Figure 2. To solve the
unobserved counterfactual data problem, we first design a corruption function to generate pseudo-
counterfactual data with treatment actions and interventional features. The corruption function de-
sign also plays an auxiliary role in subsequent intervention effects separation. Second, we solve
the time-varying bias issue and selection bias issue by conducting domain adversarial training in
the individual potential outcome estimation task and the multiple treatment action classification
tasks, then the balanced representation which is invariant to the treatment at present moment can be
learned. In particular, individual outcomes are estimated through an encoder-decoder framework,
whose decoder module supports the multi-horizon prediction. Note that due to the similar inputs
and shared parameters, only employing the individual outcome estimate module cannot well decou-
ple the colliding intervention effects. We propose to perform balanced representation learning and
prediction on both factual and pseudo-counterfactual data. By applying the contrastive learning of
factual and pseudo-counterfactual outcome and interaction effect assumption, our method decouple
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Figure 3: Encoder-decoder framework for potential outcome estimation.

the mixed treatment effect effectively. In the later section, we theoretically show that such a strategy
improves estimation accuracy under the setting of multiple treatments. In the third part, an effect
disentanglement block is applied. By modeling the relationship between treatments and correspond-
ing potential outcomes via the contrastive learning strategy, this block further highlights the effects
of current interventions in the training process.

3.1 PSEUDO-COUNTERFACTUALS GENERATION

Due to the unobserved nature of counterfactual samples, it brings difficult to train a model with
good generalization performance. Especially in the process of time series forecasting task, only one
decision is usually adopted at the present moment, while the results of other decisions are unknown.
To explore the outcomes under other treatment options and the reasons for not taking them, it is
necessary to complete the datasets at first. Instead of learning a joint distribution of causal variables
and treatments, we generate the pseudo-counterfactual data with the interventional features Ṽ and
treatment actions Ã. In detail, a corruption function C(·) is proposed with V and A as input:

(Ṽ, Ã) = C(V,A) . (4)

The corruption function is implemented based on experiment results, as described below. For each
time step a per sample, we randomly specify an intervention position to be changed, then reverse
operation is carried out on the intervention features and intervention actions on this position. The re-
verse operation can be like subtracting by identity vector, to obtain the corresponding counterfactual
samples. Our experimental results prove that this strategy is effective.

3.2 INDIVIDUAL OUTCOME ESTIMATION

The observational data can be used to train a supervised learning model to forecast the final outcome
Yt. However, in the mixed intervention action scenario, the final result is produced by the combined
action of multiple treatments, which is not conducive to discovering the role of each treatments/in-
terventions. While potential outcomes under different treatment are unavailable, furthermore, due to
the existence of time-varying confounders in time series, it introduces the time-varying bias which
leads the model cannot be reliably used for making causal predictions. Hence, inspired by adver-
sarial learning, TCFimt removes this bias through domain adversarial training and estimates the
individual potential outcomes both on factual and counterfactual samples, for any intended future
treatment assignment.

The basic idea of individual outcome estimation is to learn a balanced treatment-invariant representa-
tion at each moment, and subsequently apply the balanced representation and the latest intervention
information for potential outcome forecasting in future time steps. Here the balanced representation
learning process is most critical.

Balanced representation. In time series data, we observed the historical information
←−
Ht =

(
←−
At−1,

←−
Vt,
←−
Xt) at time step t, which the historical time-varying variable

←−
Xt, intervention fea-

tures
←−
Vt and treatment assignment

←−
At−1 all have an impact on the next potential outcomes. Notice

that the current treatment information is excluded from the balanced representation learning for bet-
ter exploring the impact of the current intervention. To remove the temporal dependence of the
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treatments, we hope the balanced representation summarizes the past temporal states
←−
Ht, but is not

predictive of the treatment At. Let Φ denote the representation function that maps the history
←−
Ht

to a representation space R. To obtain unbiased treatment effects, Φ needs to construct treatment
invariant representations for each treatment K such that P(Φ(

←−
Ht)|Ak = 1) = P(Φ(

←−
Ht)|Ak = 0).

To achieve this and to estimate the potential outcomes under a planned sequence of treatments, the
domain adversarial training framework combing with a sequence-to-sequence architecture is pro-
posed.

Encoder-decoder framework. This framework mainly contains two tasks, as shown in Figure 3.
By separately predicting the current treatment actions Ât and the next individual outcomes under
each treatment option, the balanced representation is learned in the hidden space via the recurrent
networks.

Specifically, to estimate the future individual outcomes in the encoder module, we adopt the re-
current network (e.g., RNN) to capture the temporal states of observed factual samples as well as
the generated pseudo-counterfactual ones. Intuitively, by inputting the treatment actions A(Ã),
interventional features V(Ṽ) and time-varying variables X into RNN module, the balanced repre-
sentation is learned for subsequent prediction in two targets. To aid the representation, we define
for time step s ≥ t,

←−
Ωs = (

←−
Ht, {Âj}s−1

j=t , {Ŷj}sj=t+1), where Âj is an estimated treatment assign-
ment at time j, and {Ŷj}tj=t+1 = ∅. Let Ŷ [at+τ ] be the prediction of individual outcome under
the mixed intervention on time step t + τ . The function Gy makes outcome estimation based on
the intervention from the last time step, whose parameter θy is shared on factual and counterfactual
samples.

Ŷ[at+τ ] = Gy(Φ(
←−
Ωt+τ ),At+τ = at+τ ; θy) (5)

The final outcome is calculated by summarizing these estimated individual outcomes, then we can
use the outcome to back-propagate. In addition to the individual outcome estimation, another task
is to classify the current treatment action, which forms a confrontation for learning the treatment in-
variant representation. Via K classifiers Ga = (Ga1

,Ga2
, ...,GaK

) with parameter θa, the treatment
assigned at the current time is determined.

Ât = Ga(Φ(
←−
Ωt); θa) . (6)

Similarly, the decoder module also contains these two tasks, but it aims to predict the outcomes of
unobserved samples for a sequence of future treatments, which is also called counterfactual predic-
tion. To maintain the temporal information, the decoder network uses the balanced representation
computed by the encoder to initialize the state of an RNN. Different from the encoder network, the
decoder adopts the auto-regressive way to do predictions on account of the unavailable ground-truth
outcomes. Specifically, it uses the (predicted) outcomes from the last time step like Ŷt+1 and Ŷt+2

combining with previously known treatment actions and intervention features as inputs.

3.3 EFFECT DISENTANGLEMENT BLOCK

As the prediction from the above individual outcome estimation module is based on the balanced
representation learned in a variety of intervention scenarios, it has limitations on the estimation of
separated treatment effects and causal interactions. Specifically, the optimization procedure for mul-
tiple treatment estimation will mingle the causal effect of each treatment. To tackle this challenge,
we design an effect disentanglement block to rectify it by enhancing representation.

Thanks to the pseudo-counterfactuals generation module, we have factual samples and pseudo-
counterfactual samples. Let Ŷ F [ak,t+1] and Ŷ CF [ãk,t+1] be the factual and counterfactual indi-
vidual outcome under the k-th intervention on time step t + τ . The function Gy makes outcome
estimation based on the intervention from the last time step, whose parameter θy is shared on factual
and counterfactual samples.

ŶF [ak,t+1] = Gy(Φ(
←−
Ht+1),At+1 = ak; θy)

ŶCF [ãk,t+1] = Gy(Φ(
←−
Ht+1), Ãt+1 = ãk; θy)

(7)

In order to disentangle the effect under multiple interventions and more accurately learn the rela-
tionship between the estimated outcomes and the corresponding interventions, we adopt a mutual
information-based contrastive learning strategy.
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Figure 4: Training Procedure of the whole architecture.

In particular, as shown in the dashed circle of Figure 4, considering the learned balancing represen-
tation and the treatment information of factual data, we learn a medium representation and obtain
an anchor to distinguish counterfactual from factual data in the estimated potential outcomes. The
medium representation Zt = (Z1,t, ...,ZK,t) is calculated via a representation function Ψ with
dimension of the number of treatment options and a parameter θz:

Zk,t = Ψ(Φ(
←−
Ht),At; θz) . (8)

Then the anchor, denoted as Ot = (O1,t, ...,OK,t), is calculated with the factual potential outcome
YF as:

Ok,t = Ak,t ⊙ Zk,t ⊙YF [ak,t] . (9)

Based on the anchor and inspired by CPC (contrastive predictive coding)Oord et al. (2018), to mea-
sure the relationship on the present state with specific intervention and next individual outcome, we
calculate the mutual information I(Ok,t, Ŷ[ak,t+1]) between them. For brevity, we denote Ok,t by
O and Ŷ[ak,t+1] by Ŷ:

I(O, Ŷ) =
∑
o,ŷ

p(O, Ŷ) log
p(Ŷ | O)

p(Ŷ)
. (10)

Similar to the CPC method, we do not predict future potential outcome Ŷ [ak,t+1] directly with a
generative model p(Ŷ [ak,t+1] | Ok,t). Instead, we model a density ratio which preserves the mutual
information between Ok,t and Ŷ[ak,t+1] as:

f(Ok,t, Ŷ[ak,t+1]) ∝
p(Ŷ[ak,t+1] | Ok,t)

p(Ŷ[ak,t+1])
. (11)

where ∝ means ‘proportional to’. The density ratio function is applied as an absolute difference
model, to measure the distance between the anchor and individual treatment outcomes:

f(Ok,t, Ŷ[ak,t+1]) =| Zk,t ⊙ Ŷ[ak,t+1]−Ok,t | . (12)

After estimating outcomes of multiple treatments Y [at+1] and outcomes of individual treatments
Y [ak,t+1] , the causal interactions δ̂CI can be estimated for sample i at time t (by Assumption 2):

δ̂CI = (Ŷ [at+1]
(i) − Ŷ [a0,t+1]

(i))

−
K∑

k=0

(Ŷ [ak,t+1]
(i) − Ŷ [a0,t+1]

(i)) .
(13)

3.4 TRAINING PROCEDURE

In this subsection, we present the training details of our whole architecture. To remove the bias from
time-dependent confounders, it requires that the distance in the distribution of Φ(

←−
Ht) between any
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two pairs of treatments to be minimized. The normally used idea is to assume that the K different
treatments represent K pairs of distinct domains (Kth treatment implement or not), then based on an
adversarial framework of domain adaption to build a representation, which achieves the maximum
error in domain classification and the minimum error in outcome prediction.

TCFimt uses domain adversarial training to build a representation of the history Φ(
←−
Ht) that is both

invariant to the treatment action At given at time step t. Specifically, the domain adversarial training
is mainly realized through a GRL (Gradient Reversal Layer) Ganin & Lempitsky (2015), which
leaves the input unchanged during forwarding propagation and reverses the gradient by multiplying
it by a negative scalar during the back-propagation. Further, we add a self-supervised training loss
for learning the disentangled intervention effects. The whole training procedure is shown in Figure 4.
The total loss consists of three loss functions:

• The treatment classification loss L(i)
a,t is as follows:

L(i)
a,t = −

K∑
k=1

∑
j=0,1

I{a(i)
k,t

=j} log (G
ak,t=j
a (Φ(

←−
Ht; θr); θa)) . (14)

• The potential outcome forecasting loss L(i)
y,t is as follows:

L(i)
y,t = ||Y

(i)
t+1 −Gy(Φ(

←−
Ht; θr); θy)||2 . (15)

• The contrastive learning loss is based on InfoNCE loss:

L(i)
d,t = −

K∑
k=0

log
f(Ok,t, Ŷ

F [ak,t+1])

f(Ok,t, ŶCF [ak,t+1])

= −
K∑

k=0

log
| Zk,t ⊙ ŶF [ak,t+1]−Ok,t |
| Zk,t ⊙ ŶCF [ak,t+1]−Ok,t |

.

(16)

In a nutshell, our final objective function is to maximize treatment loss, minimize potential outcome
loss and minimize the InfoNCE loss Oord et al. (2018). Thus, the overall loss L(i)

t at timestep t is
given by:

L(i)
t (θr, θa, θy, θz) =

N∑
i=1

L(i)
y,t − λ1L(i)

a,t + λ2L(i)
d,t . (17)

The hyperparameters λ1 and λ2 are used to balance the loss scale. For the choice of the hyperparam-
eters, we start with an initial value for λ1 and λ2 use an exponentially increasing schedule during
training and get relatively stable results.

3.5 THEORETICAL ANALYSIS

In this section, we theoretically show that the developed method is effective. Specifically, we show
that our overall loss function can effectively bound the expected error of multi-treatment effect es-
timation. To uncover this, we first show in Theorem 1 that the overall expected error of treatment
effect estimation can be bounded by the sum of ϵF and ϵCF , where ϵF is the expected factual loss
and ϵCF is the expected counterfactual losses. We note that ϵF is upper bounded by L(i)

y,t and trans-
form the inestimable ϵCF (because counterfactual data are not observed) to the difference, ϵCF -
ϵF , which is upper bounded by the discrepancy of treated and control distributions. We then show in
Theorem 2 that the discrepancy can be upper bounded by L(i)

a,t. Therefore, the overall expected error
of multi-treatment effect estimation can be bounded by the combination of the potential outcome
forecasting loss L(i)

y,t and the treatment classification loss L(i)
a,t in the adversarial framework, which

ensures the estimability of multiple treatment effects. Finally, we show in Theorem 3 that minimiz-
ing the contrastive learning loss L(i)

d,t maximizes the lower bound of mutual information of anchors
and outcomes, which further enhances the balanced representation, facilitating the estimation of
separated main treatment effects and causal interactions.

Theorem 1. Upper Bound of Estimation Let ϵPEHE(f) denote the expected error in estimating
the individual treatment effect of a function2. Let disc(., .) denote the discrepancy, let pak,t

Φ be
2See the details of definition and proof in the appendix.
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treated and control distributions induced by Φ on R, then :

ϵPEHE(h,Φ)

≤ 2(ϵCF (h,Φ) + ϵF (h,Φ)− 2σ2
Y )

≤ 2(ϵ
ak,t=0

F (h,Φ) + ϵ
ak,t=1

F (h,Φ)

+ disc(p
ak,t=1

Φ , p
ak,t=0

Φ ))

(18)

According to Theorem 1, ϵPEHE is upper bounded by the sum of the expected factual loss ϵF
and expected counterfactual loss ϵCF . And discrepancy of treated and control distributions can be
effective upper bound of the difference ϵCF − ϵF of treatment k at time t. The proof of Theorem 1
is based on the theory in CFR Shalit et al. (2017).

Theorem 2. Balanced representation Let Pj denote the distribution of Ht conditional on ak,t = i,
let Gak=i

a denote the output of Ga for treatment ak,t = i. Then the objective for Φ becomes:

min
Φ

max
Ga

K∑
k=1

∑
i=0,1

E←−
Ht∼Pak

[log (Gak=i
a (Φ(

←−
Ht; θr); θa))]

s.t. k ∈ 1, 2, ..,K,
∑
i=0,1

Gak=i
a (Φ(

←−
Ht)) = 1

=

K∑
k=1

JSD(P
ak=0
Φ (x′)∥P ak=1

Φ (x′))− 2Klog2.

(19)

The result of Theorem 2 shows L(i)
a,t has a global minimum which is attained if and only P ak=0

Φ =

P ak=1
Φ for each k ∈ 1, 2, ..,K. And L(i)

a,t can be replacement of Jensen-Shannon Divergence
JSD(·∥·) without the time dependency. Combined with the result of Theorem 1 and Theorem
2, L(i)

a,t can be the upper bound of the difference ϵCF − ϵF in temporal multi-intervention.

Theorem 3. Estimating the Mutual Information with InfoNCE Let I(·, ·) denote mutual infor-
mation, then the infoNCE loss:

L(i)
d,t = −

K∑
k=0

log
f(Ok,t, Ŷ

F [ak,t+1])

f(Ok,t, ŶCF [ak,t+1])

≥ −
K∑

k=0

I(Ok,t, Ŷ
F [ak,t+1]).

(20)

Theorem 3 shows the infoNCE loss is a low bound of mutual information between Ok,t and
ŶF [ak,t+1]. The result proves that L(i)

d,t enhances the representation learning in the estimation of
separated treatment outcomes and causal interactions. For details, see the appendix.

4 EXPERIMENTS

We mainly focus on the following research questions:

Q1: How is the prediction performance of the proposed TCFimt method for future outcomes?
Q2: What is the auxiliary ability of the TCFimt method for future intervention decision making

and the suitable timing of intervention?
Q3: After the separation of intervention effects, what is the prediction performance of causal

interactions between different treatments?

Counterfactual Forecasting Performance. To demonstrate the effectiveness of the TCFimt method
on future forecasting for counterfactual samples, we compare it with the above baselines on the
Games dataset with two percentage metrics,3 as shown in Table 1. Since the real intervention are
obtained with time-series data in this dataset, the comparison result is more authentic and reliable.

3Experimental settings are provided in appendix due to length limit.
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Method Game1 Game2
RMSE(%) MAE(%) RMSE(%) MAE(%)

ARMA 6.75 3.88 7.11 3.72
ARIMA 6.52 4.13 6.96 3.92
Prophet 5.91 3.84 6.29 4.11
LSTM 6.20 3.62 7.08 4.36
TCN 5.93 4.69 6.43 5.04
CFR 6.69 4.75 8.04 4.90

TARNet 6.73 4.92 8.02 4.98
CRN 5.94 4.85 6.05 4.31

TCFimt(Ours) 4.78 3.60 5.95 4.09

Table 1: Performance of next-one factual prediction on two game datasets.

γc = 5, γr = 5 γc = 5, γr = 0 γc = 0, γr = 5
τ CRN TCFimt∗ TCFimt CRN TCFimt∗ TCFimt CRN TCFimt∗ TCFimt

RMSE

3 6.65% 6.32% 5.92% 2.07% 2.03% 2.02% 3.09% 2.89% 2.44%
4 7.94% 7.24% 6.23% 2.08% 2.01% 1.96% 2.46% 2.38% 2.32%
5 8.03% 7.84% 7.26% 2.41% 2.32% 2.26% 3.06% 2.86% 2.66%
6 7.23% 7.09% 7.02% 2.67% 2.63% 2.42% 2.76% 2.63% 2.48%
7 9.62% 9.03% 8.14% 2.83% 2.73% 2.58% 2.81% 2.79% 2.74%

Tr Acc.

3 63.0% 72.0% 74.6% 69.4% 71.6% 73.4% 69.4% 70.4% 71.4%
4 65.2% 70.2% 73.2% 71.2% 72.3% 72.9% 70.8% 70.8% 71.0%
5 65.4% 69.3% 72.4% 70.0% 70.9% 71.8% 65.2% 68.2% 69.4%
6 66.2% 68.7% 71.0% 65.8% 69.8% 70.2% 65.8% 67.3% 69.3%
7 63.4% 65.4% 70.2% 65.2% 67.6% 70.2% 66.2% 67.2% 68.8%

TrT Acc.

3 36.0% 37.3% 38.8% 29.6% 37.2% 38.8% 35.0% 35.5% 35.8%
4 34.0% 35.3% 36.0% 35.9% 36.3% 36.6% 34.0% 34.9% 36.8%
5 35.6% 35.6% 35.8% 35.8% 36.4% 37.6% 31.2% 35.3% 36.4%
6 36.0% 36.4% 36.8% 34.0% 35.2% 36.0% 33.8% 34.2% 35.3%
7 35.2% 36.3% 37.2% 35.2% 36.3% 36.8% 39.8% 39.8% 39.9%

Table 2: Performance of recommending the correct treatment and timing of treatment on Tumour
dataset. TCFmit∗ is the TCFmit without effect disentanglement block and contrastive learning.

From the table, we have the following observations: The TCFimt achieves the best performance on
the Game1 dataset. For the Game2 dataset, our proposed method also beats all baselines on the
RMSE metric and is slightly inferior to the first type of comparison method on the MAE metric.
This illustrates that the learned balanced representation by TCFimt is more effective in predicting
the potential outcomes of subsequent counterfactual samples. Through the data analysis of Game1
and Game2 datasets, the fluctuations in the Game2 dataset are greater than that of Game1. There-
fore, from the comparison of the MAE results on Game2, the ARMA and ARIMA model are more
inclined to predict an average result, which leads to the corresponding MAE result is smaller.

Treatment Recommending Performance. To validate the second question Q2 and Q3, we conduct
experiments on the Tumour dataset as to which treatment actions were taken and when4. We first
calculate the RMSE of the prediction of the tumour volume and causal interactions by assumption
2. We then calculate the accuracy of taking the right treatments (Tr Acc.) for patients, and then
the accuracy of treatment timing (TrT Acc.) when the right treatment was selected. Based on the
such rule, the TrT Acc. is bound to be smaller than Tr Acc. In Table 2, the parameter τ means
the predicted horizon, γc and γr are the hyperparameters to generate distinct Tumour datasets with
varied treatment assignments. The results show that our proposed method TCFimt achieves higher
accuracy than the CRN method in most cases, i.e., the TCFimt model has certain advantages in
assisting the formulation of treatment. The prediction accuracy decrease as the increase of parameter
τ , but TCFmit has better performance than the related work at any parameter τ .

5 CONCLUSION

In this paper, we propose a novel method named TCFimt for counterfactual forecasting of time-
series data in multiple mixed intervention scenarios. We first design a function to generate pseudo
counterfactual samples, which helps to mitigate the selection bias. Via the adversarial loss of po-
tential outcome prediction and treatment classification tasks, a treatment invariant representation
was learned for alleviating the time-varying bias. Finally, the intervention mixing problem is solved
based on a contrastive learning way, which also enhanced the forecasting of individual potential
outcomes. Extensive experiments exhibited the superiority of our proposed model on counterfactual
forecasting and choosing the correct treatments. Our study is an attempt at causal inference under
mixed treatment effects, it may bring some new insights in this direction.

4See the appendix for more details.
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Appendix

In the appendix, we provide additional information about related work, the Rubin-Neyman causal
model, the proofs of theorems, and the details of experiments and the case study.

A RELATED WORK

The related work about the future prediction of time series data from the causal inference aspect
could be split into three parts, individual treatment effects (ITE) estimation5, the estimation of treat-
ment effects over time, and the estimation of multiple treatment effects and causal interactions.
Previous works on ITE estimation mainly consider the binary treatment situation, which can be di-
vided into three categories. The first one is using a separate model to learn each treatment, such a
learning way is biased towards the distribution of different treatment populations, which does not
account for the selection bias problem. The second one combines the treatment as a feature, by using
one model to learn overall treatments, and the distribution mismatch between the treated and control
distributions is adjusted in order to settle selection bias. In this category, non-deep learning methods
like the tree-based models Chipman et al. (2010); Lu et al. (2018), doubly-robust methods Porter
et al. (2011), propensity and matching based methods Lunceford & Davidian (2004); Lopez & Gut-
man (2017) are previously proposed. In recent years, some researchers are more focused on using
the deep learning approaches in the ITE estimation. For example, Johansson, Shalit, and Sontag
(2016) designed a deep representation network to embed the original contexts, to guarantee that the
distribution of the contexts after the representation is similar between two different treatments, as
well as the small regression loss Johansson et al. (2016). In their later version, a theoretical upper
bound on the expected ITE is given to yield a more rigorous estimation algorithm Shalit et al. (2017).
However, the methods of balanced representation based on discrepancy measures are not generalize
to multiple treatments in temporal settings. The third one is based on the multi-task approach. For
example, Alaa et al. used a deep multitask network with a set of shared layers among the factual
and counterfactual outcomes. Besides, a multi-task Gaussian process was adopted for bayesian in-
ference of ITE problem Alaa & van der Schaar (2017). Recently, a few works pay more attention
to varied forms of treatments that appeared in many real scenarios. For instance, Liu et al.explored
the individual effects in the advertising area with multiple continuous treatments Liu et al. (2019),
Yoon et al. introduced the idea of a generative adversarial network (GAN) into ITE estimation for
fitting any number of treatments Yoon et al. (2018). Moreover, the recent work Zou et al. (2020)
learned the latent representation of bundle treatments via variational autoencoder (VAE). Different
from these studies, we explore multiple treatments from the new perspective of effect decoupling.

The earliest research on exploring treatment effects over time can be traced back to the Structural
Nested Models and Marginal Structural Models (MSMs) Robins (1994; 1999). These methods used
predictors performing logistic/linear regression which limited the ability for handling complex time
dependencies. To address that, methods based on Bayesian non-parametric or recurrent neural net-
works as part of these frameworks have been proposed Lim et al. (2018). Moreover, Bica et al.
employed an encoder-decoder framework via adversarial framework(CRN) to estimate the individ-
ual causal effect of different treatments. Different from CRN, the TCFimt estimates the multiple
treatment effects and the combination of treatment effects in temporal via adversarial training (the
new loss functions to alleviate selection bias of mixed treatments) and contrastive learning.

Most of the research about multiple treatments and causal interactions focused on average treatment
effect(ATE) in the static setting. Multiple treatment methods for ATE include Bayesian Additive
Regression Trees (BART) Hu et al. (2020), regression adjustment on the multivariate spline of gen-
eralized propensity scores (RAMS) and inverse probability of treatment weighting (IPTW) Feng
et al. (2012). And some search algorithms have been developed for causal interaction detection like
the Multiple beam search algorithm (MBS) Jiang et al. (2010) and the data-driven approach to causal
interaction discovery (DACID) Ma et al. (2019). Different from the above methods, our method pro-
vides a view of multiple treatments and causal interactions of individual temporal intervention.

5To briefly clarify the usage of ITE (in the appendix), here ITE is actually the estimation of causal effect for
each sample of CATE or ATE (mentioned in the main article).
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B RUBIN-NEYMAN CAUSAL MODEL

The Rubin-Neyman causal model also called the Rubin causal model (RCM), is a causal inference
method based on the framework of the potential outcome. There are several potential outcomes for a
few intervention states before the interventions are realized. Once the intervention is achieved, only
one potential outcome can be observed, which is the factual outcome, and the other potential out-
comes are counterfactual outcomes. We follow the Rubin-Neyman potential outcomes framework.
Specifically, let A = {A1, ..., AK} ∈ {0, 1}K represent the binary random treatment or interven-
tion vector with K treatments that an individual may receive, Y [a] denote the potential outcome
under treatment A = a ∈ {0, 1}K and we also observe some features of the individual, denoted by
X. The following two assumptions are commonly made in treatment effect inference:

Assumption 1. (Overlap) For all k ∈ {1, ...,K},

0 < P(Ak = 1 | X = x) < 1 .

This assumption ensures that each intervention is likely to occur in any feature value.

Assumption 2. (Unconfoundedness) Conditioned on X, the potential outcome Y [a] is independent
of A for all a ∈ {0, 1}K , i.e.

{Y [a]}a∈{0,1}K ⊥⊥ A | X .

This assumption also refers to conditional ignorability, which means after controlling the covariate
X, the allocation of individual intervention is independent of the potential outcome. In general,
the allocation mechanism of classical randomized experiments satisfies this assumption and the
allocation function is already known. While for observational studies, the purpose is to identify the
unknown allocation mechanism and thus estimate causal effects.

C PROOFS

C.1 UPPER BOUND OF ESTIMATION

This section will give the proof of an upper bound on the expected error in estimating the individual
treatment effect for a given representation. The proof of the upper bound is based on the theory in
CFR Shalit et al. (2017) and extends the theory to temporal multi-intervention.

Definition 1. (Estimation of Heterogeneous Effect) Let ϵPEHE(f) denote the expected error in
estimating the individual treatment effect of a function. Let f : X × {ak = 0, 1} → Y be an
hypothesis. Let p(x) be distribution on X × {ak = 0, 1}, then:

ϵPEHE(f) =

∫
X
(δ̂[ak,t]− δ[ak,t])

2p(x)dx (21)

Definition 2. (The Expected Treated and Control Losses) Let Φ : X → R be a representation
function. Let h : R × 0, k → Y be a hypothesis defined over the representation space R. Let Ψ
denote the inverse function of Φ, mapping from R to X . Let L : Y × Y → R+. be a loss function.
Let pak,t(x) := p(x, ak,t) = p(x|ak,t) be the distribution of the features x conditioned on treatment
k at time t. let ℓh,Φ(x, t) =

∫
Y L(Yt, h(Φ(x), t))p(Yt|x)dYt be the expected loss for the unit and

treatment pair, then:
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ϵF (h,Φ) =

∫
X×{0,1}

ℓh,Φ(x, ak,t)p(x, ak,t = 1)dxdak,t

ϵCF (h,Φ) =

∫
X×{0,1}

ℓh,Φ(x, ak,t)p(x, ak,t = 0)dxdak,t

ϵ
ak,t=1

F (h,Φ) =

∫
X
ℓh,Φ(x, ak,t = 1)pak,t=1(x)dxdak,t

ϵ
ak,t=0

F (h,Φ) =

∫
X
ℓh,Φx, ak,t = 0)pak,t=0(x)dxdak,t

ϵ
ak,t=1

CF (h,Φ) =

∫
X
ℓh,Φ(x, ak,t = 0)pak,t=1(x)dxdak,t

ϵ
ak,t=0

CF (h,Φ) =

∫
X
ℓh,Φx, ak,t = 1)pak,t=0(x)dxdak,t

(22)

Definition 3. (Discrepancy) Let disc(., .) denote the discrepancy, let pak,t

Φ be treated and control
distributions induced by Φ on R:

disc(p
ak,t=1

Φ , p
ak,t=0

Φ ))

= max
h,h′∈H

∣∣∣∣∫
X
(p

ak,t=0

Φ (r)− p
ak,t=1

Φ (r))L(h′(x), h(x))dx

∣∣∣∣ (23)

Definition 4. (The expected variance) The expected variance of Yt with respect to a distribution
p(x, ak,t):

σ2
Yt
(p(x, t)) =

∫
X×Y(Yt −mt(x))

2

× p(Yt|x)p(x, ak,t)dYtdx

(24)

and,

σ2
Yt

= min(σ2
Yt
(p(x, ak,t = 1)), σ2

Yt
(p(x, ak,t = 0)))

σ2
Y = min(σ2

Y [ak,t=0], σ
2
Y [ak,t=1])

(25)

Lemma 1. Let uk = p(ak,t = 1), u0 = p(ak,t = 0) then:

ϵF (h,Φ) = ukϵ
ak,t=1

F (h,Φ) + u0ϵ
ak,t=0

F (h,Φ)

ϵCF (h,Φ) = u0ϵ
ak,t=1

CF (h,Φ) + ukϵ
ak,t=0

CF (h,Φ)
(26)

Proof.(of Lemma 1)

ϵF (h,Φ) =

∫
X×{0,1}

ℓh,Φ(x, ak,t)p(x, ak,t)dxdak,t

= p(ak,t = 1)

∫
X
ℓh,Φ(x, 1)p

ak,t=1(x)dx

+ p(ak,t = 0)

∫
X
ℓh,Φ(x, 1)p

ak,t=0(x)dx

= p(ak,t = 1)ϵ
ak,t=1

F (h,Φ)

+ p(ak,t = 0)ϵ
ak,t=0

F (h,Φ)

= ukϵ
ak,t=1

F (h,Φ) + u0ϵ
ak,t=0

F (h,Φ)

(27)

Lemma 2.
ϵCF (h,Φ) ≤u0ϵ

ak,t

F (h,Φ) + ukϵ
a0,t

F (h,Φ)

+ disc(p
ak,t

Φ , p
a0,t

Φ )
(28)
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Proof.(of Lemma 2)

ϵCF (h,Φ)− [u0ϵ
ak,t=1
F (h,Φ) + ukϵ

ak,t=0
F (h,Φ)]

= [u0ϵ
ak,t=1
CF (h,Φ) + ukϵ

ak,t=0
CF (h,Φ)]

− [u0ϵ
ak,t=1
F (h,Φ) + ukϵ

ak,t=0
F (h,Φ)]

= [u0ϵ
ak,t=1
CF (h,Φ)− u0ϵ

ak,t=1
F (h,Φ)]

+ [ukϵ
ak,t=0
CF (h,Φ)− ukϵ

ak,t=0
F (h,Φ)]

(29)

= u0

∫
X
ℓh,Φ(x, k)(p

ak,t=0(x)− pak,t=1(x))dx

+ uk

∫
X
ℓh,Φ(x, 0)(p

ak,t=1(x)− pak,t=0(x))dx

= u0

∫
R
ℓh,Φ(Ψ(r), k)(p

ak,t=0

Φ (r)− p
ak,t=1

Φ (r))dr

+ uk

∫
R
ℓh,Φ(Ψ(r), 0)(p

ak,t=1

Φ (r)− p
ak,t=0

Φ (r))dr

≤ u0 max
h,h′∈H

∣∣∣∣∫
R
(p

ak,t=0

Φ (r)− p
ak,t=1

Φ (r))L(h′(x), h(x)dx

∣∣∣∣
+ uk max

h,h′∈H

∣∣∣∣∫
R
(p

ak,t=0

Φ (r)− p
ak,t=1

Φ (r))L(h′(x), h(x)dx

∣∣∣∣
= max

h,h′∈H

∣∣∣∣∫
R
(p

ak,t=0

Φ (r)− p
ak,t=1

Φ (r))L(h′(x), h(x)dx

∣∣∣∣
= disc(p

ak,t=1

Φ , p
ak,t=0

Φ ))

(30)

Theorem 1.
ϵPEHE(h,Φ)

≤ 2(ϵCF (h,Φ) + ϵF (h,Φ)− 2σ2
Y )

≤ 2(ϵ
ak,t=0

F (h,Φ) + ϵ
ak,t=1

F (h,Φ)

+ disc(p
ak,t=1

Φ , p
ak,t=0

Φ ))

(31)

Proof.(of Theorem 1) let mi(x) = E(Yt[ak,t = i] | Φ) then:

ϵPEHE(h,Φ)

=

∫
X
((f(x, 1)− f(x, 0))− (m1(x)−m0(x)))

2p(x)dx

= 2

∫
X
(f(x, 1)−m1(x))

2p(x, ak,t = 1)

+ 2

∫
X
(m0(x)− f(x, 0))2p(x, ak,t = 0)

+ 2

∫
X
(f(x, 1)−m1(x))

2p(x, ak,t = 0)

+ 2

∫
X
(m0(x)− f(x, 0))2p(x, ak,t = 1)

= 2

∫
X
(f(x, ak,t = 1)−mt(x))

2p(x, ak,t = 1)dxdak,t

+ 2

∫
X
(f(x, ak,t = 1)−mt(x))

2p(x, ak,t = 0)dxdak,t

≤ 2(ϵCF (h,Φ) + ϵF (h,Φ)− 2σ2
Y )

(32)
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And according to Lemma 1 and Lemma 2:

2(ϵCF (h,Φ) + ϵF (h,Φ)− 2σ2
Y )

≤ 2(ϵ
ak,t=0
F (h,Φ) + ϵ

ak,t=1
F (h,Φ)

+ disc(p
ak,t=1
Φ , p

ak,t=0
Φ ))

(33)

C.2 BALANCED REPRESENTATION

The loss function L(i)
a,t has a global minimum which is attained if and only of when the learned

representations are invariant across all treatments.

Lemma 3. For fixed Φ, let x′ =
←−
Ht. The optimal prediction probabilities of Ga are given by:

G
a∗
k,t

a (x′) =
P

ak,t

Φ (x′)∑
i=0,1 P

ak,t=i
Φ (x′)

(34)

Proof.(of Lemma 3) By applying Lagrange multiplies,

G∗a = argmax
Ga

∑
i=0,1

∫
x′
log(G

ak,t=i
a (x′))P

ak,t=i

Φ (x′)dx′

subject to
∑
i=0,1

G
ak,t=i
a (x′) = 1

(35)

G∗a = argmax
Ga

∑
i=0,1

log(G
ak,t=i
a (x′))P

ak,t=i

Φ (x′)

+λ(
∑
i=0,1

G
ak,t=i
a (x′)− 1)

(36)

Derive this expression and make it equal to 0

G
a∗
k,t

a (x′) = −
P

ak,t

Φ (x′)

λ

λ = −
K∑
i=0

P
ak,t=i
Φ (x′)

(37)

Theorem 2.

min
Φ

max
Ga

K∑
k=1

∑
i=0,1

E←−
Ht∼Pak,t

[log (Gak,t=i
a (Φ(

←−
Ht; θr); θa))]

s.t. k ∈ 1, 2, ..,K,
∑
i=0,1

Gak,t=i
a (Φ(

←−
Ht)) = 1

(38)

has a global minimum which is attained if and only P
ak,t=0
Φ = P

ak,t=1
Φ for each k ∈ 1, 2, ..,K

Proof.(of Theorem 2) According to Lemma 3
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min
Φ

max
Ga

K∑
k=1

∑
i=0,1

E←−
Ht∼Pak,t

[log (Gak,t=i
a (Φ(

←−
Ht; θr); θa))]

s.t. k ∈ 1, 2, ..,K,
∑
i=0,1

Gak,t=i
a (Φ(

←−
Ht)) = 1

= min
Φ

K∑
k=1

Ex′∼Pak,t
[log(

P
ak,t=1

Φ (x′)

P
ak,t=0

Φ (x′) + P
ak,t=1

Φ (x′)
)

+ log(
P

ak,t=0

Φ (x′)

P
ak,t=0

Φ (x′) + P
ak,t=1

Φ (x′)
)]

= min
Φ

K∑
k=1

Ex′∼Pak,t
[log(

P
ak,t=1

Φ (x′)
1
2
(P

ak,t=0

Φ (x′) + P
ak,t=1

Φ (x′))
)

+ log(
P

ak,t=0

Φ (x′)
1
2
(P

ak,t=0

Φ (x′) + P
ak,t=1

Φ (x′))
)]− 2Klog2

=

K∑
k=1

JSD(P
ak,t=0

Φ (x′)∥P ak,t=1

Φ (x′))− 2Klog2

(39)

Since JSD(·∥·) is Jensen-Shannon Divergence, JSD is non-negative and zero if and only if distri-
butions are equal. And we have that P ak,t=0

Φ = P
ak,t=1
Φ for each k ∈ 1, 2, ..,K

C.3 ESTIMATING THE MUTUAL INFORMATION WITH INFONCE

By minimizing InfoNCE loss, we can maximize the mutual information between Ok,t and
ŶF [ak,t+1].

Definition 5. (Mutual Information) the mutual information expression as follows:

f(Ok,t, Y [ak,t+1]) ∝
p(Ok,t, Y [ak,t+1])

p(Ok,t)p(Y [ak,t+1])
. (40)

Theorem 3. The CPC loss is the low bound of mutual Information.

L(i)
d,t = −

K∑
k=0

log
f(Ok,t, Ŷ

F [ak,t+1])

f(Ok,t, ŶCF [ak,t+1])

≥ −
K∑

k=0

I(Ok,t, Ŷ
F [ak,t+1]).

(41)

Proof.(of Theorem 3)

L(i)
d,t = −

K∑
k=0

log
f(Ok,t, Ŷ

F [ak,t+1])

f(Ok,t, ŶCF [ak,t+1])

= −
K∑

k=0

E
X
log[

p(Ok,t,Ŷ
F [ak,t+1])

p(Ok,t)p(Ŷ
F [ak,t+1])

p(Ok,t,Ŷ
CF [ak,t+1])

p(Ok,t)p(Ŷ
CF [ak,t+1])

]

= −
K∑

k=0

E
X
(log([

p(Ok,t, Ŷ
F [ak,t+1])

p(Ok,t)p(ŶF [ak,t+1])
]

− E
X
[
p(Ok,t, Ŷ

CF [ak,t+1])

p(Ok,t)p(ŶCF [ak,t+1])
]))

≈ −
K∑

k=0

E
X
(log[

p(Ok,t, Ŷ
F [ak,t+1])

p(Ok,t)p(ŶF [ak,t+1])
]− 1)

≥ −
K∑

k=0

I(Ok,t, Yk)

(42)
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D EXPERIMENTAL SETTINGS

Datasets: For the sake of fully verifying the above questions, we conduct experiments on real-world
datasets from two distinct fields.

Games: The dataset contains time-series gaming indicators in distinct game genres coming from
NetEase Games. For each game, there is a corresponding game update announcement data, which
can be considered as interventions. According to the type of events in the game update announce-
ment, we can get the intervention actions or event options, as summarized in Table 3. These two
datasets are all collected from Jan. 2019 to Nov. 2020.

Tumour: With the help of a state-of-the-art bio-mathematical model, this dataset simulates the com-
bined effects of chemotherapy and radiotherapy in lung cancer patients. And at each timestep, there
are four treatment options: no treatment, chemotherapy, radiotherapy, combined chemotherapy and
radiotherapy. To validate the effectiveness, we adopt the model was based on related wrok Lim et al.
(2018) Bica et al. (2020) to evaluate model6.

The volume of tumour t days after diagnosis is modeled as follows:

V (t+ 1) =

(
1 + ρ log(

K

V (t)
)︸ ︷︷ ︸

Tumor growth

− βcC(t)︸ ︷︷ ︸
Chemotherapy

− (αrd(t) + βrd(t)
2)︸ ︷︷ ︸

Radiotherapy

−βmC(t)d(t)︸ ︷︷ ︸
Interaction

+ et︸︷︷︸
Noise

)
V (t) .

(43)

The causal interaction is added by βmC(t)d(t). And for brevity, the other variables in the formula
are not explained, the details are the same in the related work Lim et al. (2018) Bica et al. (2020).
Here we basically show that the changes in tumour volume are affected by two interventions (i.e.,
chemotherapy and radiotherapy).

Game ID #Events #Event Options Game Genres
Game1 695 3 action game
Game2 691 2 role-playing game

Table 3: The Statistics of Games Dataset

Baselines: For a fair comparison, we pick baseline methods from three categories. The first group in-
cludes classical and widely used time series prediction methods, i.e., ARMA, ARIMA, and Prophet.
The second one is the deep neural network related sequential forecasting methods, i.e., LSTM and
TCN. From the individual treatment effect estimation perspective, the last type of methods are the
latest research approach in this area, like TARNet, CFR, and CRN.

• ARMA McLeod et al. (1975) is the autoregressive moving average method.
• ARIMA Zhang (2003) is the autoregressive integrated moving average method.
• Prophet Taylor & Letham (2018) was proposed by Facebook, is based on decomposition

way.
• LSTM Hochreiter & Schmidhuber (1997) is a basic recurrent neural network method for

sequential prediction.
• TCN Bai et al. (2018) combines the convolutional and recurrent networks for sequential

modeling.
• TARNet7 Johansson et al. (2016) is the treatment-agnostic representation network, to learn

a representation that reduce the discrepancy between the treated and control populations.
• CFR8 Shalit et al. (2017) is the counterfactual regression network, which is similar to

TARNet but adding an integral probability metric for bounding the couterfactual loss.
• CRN9 Bica et al. (2020) is the latest counterfactual regression network.

6The details of Tumour model in the appendix
7https://github.com/clinicalml/cfrnet
8https://github.com/clinicalml/cfrnet
9https://github.com/ioanabica/Counterfactual-Recurrent-Network/
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Evaluation Metrics: For evaluating the forecasting performance in time series, we adopt the nor-
mally used RMSE and MAE metrics. As the counterfactual is not available in the games dataset, we
treat the testing set in the future time steps as counterfactual samples. Considering question Q2 and
Q3, the external accuracy of recommending specific treatment and treatment timing is adopted.

Parameter Settings: Our TCFimt model is implemented with Tensorflow and optimizes the final
objective function (in Eq. 17) via the Adam algorithm. The hyperparameters like batch size, learning
rate, hidden units in the RNN module, the dropout probability, etc. are searching from a range of
values. Details of our implementations can be found in the appendix.

E TREATMENT RECOMMENDING EXPERIMENTS

To validate how well the models help to select the correct treatment and its timing, we implement
the treatment recommending experiments on Tumour data with two accuracy metrics. The first one
is treatment accuracy, which measures the accuracy of taking the right treatments for patients. The
second one is treatment timing accuracy, which is to calculate the degree of time matching under the
premise of the correct choice of treatment.

According to Eq. 43, the test data is generated with 500 samples. Let τ denote the future time
horizon,

←−
H be the current history of patients. Similar to the construction in related work Bica et al.

(2020), we generate 3τ counterfactual data with treatment options: no treatment (A0), chemotherapy
(A1), radiotherapy (A2) and both chemotherapy and radiotherapy (A3).

chemotherapy application:

Yt+τ | at = A1, at+1 = A0, ..., at+τ−1 = A0,
←−
H

Yt+τ | at = A0, at+1 = A1, ..., at+τ−1 = A0,
←−
H

...

Yt+τ | at = A0, at+1 = A0, ..., at+τ−1 = A1,
←−
H

(44)

radiotherapy application:

Yt+τ | at = A2, at+1 = A0, ..., at+τ−1 = A0,
←−
H

Yt+τ | at = A0, at+1 = A2, ..., at+τ−1 = A0,
←−
H

...

Yt+τ | at = A0, at+1 = A0, ..., at+τ−1 = A2,
←−
H

(45)

chemotherapy and radiotherapy application:

Yt+τ | at = A3, at+1 = A0, ..., at+τ−1 = A0,
←−
H

Yt+τ | at = A0, at+1 = A3, ..., at+τ−1 = A0,
←−
H

...

Yt+τ | at = A0, at+1 = A0, ..., at+τ−1 = A3,
←−
H

(46)

For each patient, the number of counterfactuals is 3 · τ · time steps. Here the time steps are set as 60
days.

Hyperparameter Search range for encoder
Iterations of Hyperparameter Search 200

Learning rate 0.1, 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256, 512

RNN hidden units 0.5C, 1C, 2C, 3C, 4C
Representation size 0.5C, 1C, 2C, 3C, 4C

FC hidden units 0.5R, 1R, 2R, 3R, 4R
RNN dropout probability 0.3, 0.4, 0.5, 0.6

Table 4: The Hyperparameter Search Range for TCFimt Encoder Model.
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Hyperparameter Search range for decoder
Iterations of Hyperparameter Search 200

Learning rate 0.1, 0.01, 0.001, 0.0001
Minibatch size 64, 128, 256, 512

RNN hidden units Representation size of encoder
Representation size 0.5C, 1C, 2C, 3C, 4C

FC hidden units 0.RC, 1R, 2R, 3R, 4R
RNN dropout probability 0.3, 0.4, 0.5, 0.6

Table 5: The Hyperparameter Search Range for TCFimt Decoder Model

The treatment choosing rule is as follows: since the smaller the tumour volume, the better the
treatment effect. According to the estimated outcomes of τ time steps, we select the lowest one
among them. Then the correct treatment can be compared, in the case of choosing the correct
treatment, we further verify the accuracy of the treatment timing.

Here we provide the hyperparameter search range for the hyperparameter search range for TCFimt in
Table 4 and Table 5. And C is the size of the input and R is the size of the balancing representation.

F CASE STUDY

For satisfying the aid of the results to the subsequent decisions, we analyze the individual effects
per treatment based on the factual and counterfactual individual estimation outcomes. Please see the
case study experiments for more details, here we show the individual effects under the two-game
datasets as shown in Figure 5. The left figures are the value of estimated ITE overtime on two games,
the right figures are the boxplots of the estimated ITE value under distinct treatments.

The positive values in the left figures indicate that the corresponding treatment option had a positive
effect, and vice versa. As for the Game1 dataset, there are three treatment options, i.e., campaign
update, server update, and gameplay update. From the results in Figure 5(a), the first and third treat-
ment options produced larger intervention responses at certain points, while the second treatment
option had little or no effects. In combination with Figure 5(b), there are many abnormal points in
the figure, which corresponds to the existence of some extreme treatment effect points in the left fig-
ure. Comparing the results of the three treatments, the campaign update basically produces positive
effects, but its effect fluctuates greatly. The gameplay update in most cases plays a relatively small
effect, but in some moments it can also produce positive effects.

(a) Estimated ITE over time on
Game1

(b) Boxplot of Estimated ITE
on Game1

(c) Estimated ITE over time on
Game2

(d) Boxplot of Estimated ITE
on Game2

Figure 5: The estimated ITE results of Game dataset
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For the Game2 dataset with two treatment options (i.e., campaign update and gameplay update),
the situation seems different. As can be seen from Figure 5(c), the effects of the two treatments
appear alternately. From Figure 5(d), the average effects of the campaign update are around zero,
but its positive fluctuation is larger than that of the gameplay update, indicating that the good game
campaign setting can play a greater role. Besides, the average effect of the second treatment is much
greater than that of the first, indicating the importance of the gameplay update in the game. At the
same time, the bottom half of the light blue boxplot shows that if the gameplay is poorly designed,
it will not have much of an effect.

G CASE STUDY EXPERIMENTS

Due to the unavailable of true treatment effects under each treatment. In the case study, we analyze
the ITE based on the estimated individual outcomes of factual and counterfactual data. In detail,
the estimated ITE value for each sample i of each treatment k at time t in Figure 5 is calculated as
follows:

ˆITE
(i)

k,t = Ŷ (i)[ak,t]− Ŷ (i)[a0,t] (47)

Here we put the factual samples and counterfactual samples together. Recall that in the corruption
function, each counterfactual sample at time step t is generated from the factual sample at the same
time. Therefore, we always can find the treated and controlled groups for Eq. 47. The left part of
Figure 5 can be obtained directly according to the estimated ITE, while we draw the right part by
removing the time dimension of the value and keeping the treatment dimension.

The Overview of Treatments in Game Dataset. In our Game dataset, there are three kinds of
in-game events, which are also called treatments:

• The campaign update is more like a marketing strategy, which provides special offers or
some package sales to promote the consumption or reception of some in-game items (like
weapons or skins).

• The server update is an important operation measure for game ecology, which adds new
servers for increasing newcomers or merges the declining servers for maintaining the ex-
periences of the active players.

• The gameplay update is a routine adjustment for online games, which calibrates some set-
tings of gameplays or rules for improving the game experience and repairing some found
defects.
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