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Abstract

This paper presents a reproducibility study and robustness extension of the paper ’Attack-
Resilient Image Watermarking Using Stable Diffusion’ by Zhang et al(2024), which pro-
poses a stable-diffusion-based framework for attack-resilient image watermarking. While
successfully replicating the original method’s core claims—achieving >90% watermark de-
tection rate (WDR) against diffusion-based regeneration attacks and across MS-COCO,
DiffusionDB, and WikiArt datasets—we identify critical vulnerabilities under novel adver-
sarial and geometrically asymmetric attack paradigms. Our extended analysis demonstrates
that gradient-based adversarial perturbations reduce ZoDiac’s WDR, a threat model absent
in prior evaluations. We also investigate non-circulary symmetric attacks achieving WDR
below 656%. We also investigate a new loss function to mitigate these limitations. Despite
these enhancements, composite attacks combining adversarial noise with other methods re-
duce WDR to near-zero, exposing vulnerabilities in multi-stage offensive pipelines. Our
implementations can be found on [Anonymous Github| .

1 Introduction

The rapid advancement of generative Al has heightened the need for strong image watermarking techniques
to verify content authenticity and counter Al-generated forgeries. Traditional watermarking methods,
such as frequency-domain embeddings (DCT, DWT) and least-significant-bit (LSB) manipulation, were
designed to withstand standard distortions like JPEG compression and Gaussian noise. However, they
struggle against modern diffusion-based regeneration attacks, which use latent-space purification to erase
watermarks. Early neural approaches, including RivaGAN and StegaStamp, improved resilience through
adversarial training and spatial transformer networks. Yet, their pixel-space embeddings remain vulnerable
to pipeline-aware attacks that exploit diffusion models’ iterative denoising to remove watermarks . This
weakness arises because these methods operate in pixel space, making watermarks susceptible to latent-space
purification.

Recent diffusion-based techniques aim to address this issue. Tree-Ring watermarks, for example, encode
concentric ring patterns into the initial noise vectors of synthetic images. By leveraging the deterministic
inversion property of diffusion models, these watermarks can be recovered from generated outputs. Em-
bedding patterns in the Fourier domain and utilizing the model’s latent-space dynamics allows Tree-Ring
to achieve rotational invariance and resist individual attacks. However, this approach only applies to syn-
thetically generated images, leaving real-world content unprotected. Additionally, its reliance on isotropic
ring patterns makes it vulnerable to asymmetric transformations like irregular rotations. Its static design
also lacks defenses against composite attacks that combine geometric distortions with purification-based
techniques. Other approaches, such as Stable Signature, fine-tune diffusion decoders to embed watermarks
but require extensive retraining on large datasets, making them resource-intensive and reducing practicality.

ZoDiac addresses these gaps through a novel framework that integrates pre-trained stable diffusion models
with DDIM inversion to embed imperceptible watermarks into both synthetic and real-world images. The
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method capitalizes on the bidirectional nature of diffusion models: it maps an input image into a latent
vector via inversion, injects a ring-shaped watermark into the Fourier domain of this latent space, and
reconstructs the image while preserving fidelity. Unlike pixel-space methods, ZoDiac operates in the latent
space where diffusion models inherently resist purification attacks—iterative denoising during generation
reinforces watermark persistence. ZoDiac explicitly aligns the injected watermark with its retrieved version
in Fourier space, countering latent-space distortions caused by augmentations in the pixel-space. This
contrasts with Tree-Ring’s static synthetic-only embeddings, which lack such alignment mechanisms.

As depicted in Figure 2, the method maps an input image xo to a latent vector Zr via:

Zy — (1 — ay)eg(Zy,t)
Qi

Zy1 =041 + (1 — ap—1)eg(Ze,t) (1)
( )

where a; defines the noise schedule and € is the pre-trained denoiser. A ring-shaped watermark W is injected
into the Fourier domain of Zr, optimized via a multi-term loss:

L= ||§70 - (E0||2 +)‘SLSSIM + )\pLPcrccptual (2)
~—_———

Reconstruction

ZoDiac enhances practicality through adaptive image blending, dynamically balancing watermark robustness
and visual quality. By mixing the watermarked image &y with the original xy via a tunable factor =, it
achieves SSIM thresholds without compromising detectability. This adaptability ensures resilience against
multi-stage attacks while maintaining imperceptibility—a critical advance over StegaStamp and RivaGAN,
which degrade under latent-space perturbations.

2 Scope of Reproducibility

The scope of the reproducibility study validates ZoDiac’s core claims while rigorously stress-testing its
limitations under novel attack paradigms. Our reproducibility efforts focus mainly on validating these four
core claims of the original paper:

o Claim 1 : ZoDiac demonstrates a watermark detection rate (WDR) exceeding 98 and a false positive
rate (FPR) below 6.4 across MS-COCQO, DiffusionDB, and WikiArt datasets, outperforming state-
of-the-art watermarking methods.

o Claim 2 : ZoDiac remains resilient to diverse attack categories, including traditional attacks (such
as JPEG compression and gaussian blurring), stable diffusion-based regeneration attacks, where
most other methods fail and rotational attacks to some extent.

e Claim 3 :Unlike prior methods like Tree-Ring or Stable Signature, ZoDiac can watermark both
real-world and synthetic images without requiring retraining of the stable diffusion model, making
it highly practical for diverse applications and real world deployment.

e Claim 4 : ZoDiac achieves imperceptible watermarks with image quality metrics such as SSIM
> 0.92, ensuring minimal visual degradation while maintaining robustness against attacks. ZoDiac
ensures a fair tradeoff between watermark detection and maintaining image quality.

3 Methodology

3.1 Description of Methods

The ZoDiac framework methodology comprises of three key components: latent-space watermark injection
via DDIM inversion, Fourier-domain embedding for geometric resilience, and adaptive image enhancement
to balance detectability and visual fidelity. Below, we detail each component as described in the original

paper.
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Figure 1: ZoDiac Framework methodology

3.1.1 Latent Vector Initialization via DDIM Inversion
The process begins by mapping an input image xg to a latent vector Z using DDIM inversion:
Zr = G'(x0), (3)

where G’ denotes the inversion of the pre-trained stable diffusion model. The inversion adheres to the forward
diffusion process:

Zt,1 _ /75”71 (Zt - \/1\_/(%t60(zt7t)> + 1= @t7160(zt,t)7 (4)

where a; controls the noise schedule and ¢y is the pre-trained denoiser. Initializing Z7 via inversion ensures
faster convergence and preserves the structural integrity of the original image during watermark injection.

3.1.2 Fourier-Domain Watermark Encoding

ZoDiac injects a ring-shaped watermark W into the Fourier transform of Z; to exploit rotational sym-
metry and frequency-domain resilience:

Watermark Generation: - W is sampled from CN(0, 1), with elements equidistant from the latent center
assigned identical values. - A binary mask M localizes the watermark to low/mid frequencies:

M, — {1 if d(p,c) < d* ’ (5)

0 otherwise

where d(p, ¢) is the Euclidean distance from coordinate p to the latent center ¢, and d* is the mask radius.

Watermark Injection: The watermark is applied to the Fourier-transformed latent vector:
F(Zr)ic,:,:] = (1 —M)© F(Zr)lic,:,:] + MOW, (6)

where ic is the target channel.
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Latent Optimization: The watermarked latent Z7 & W is optimized via gradient descent to minimize a
multi-term reconstruction loss:

L= ||§,‘0 - 330”2 +)‘S£SSIM + )‘pEWatson—VGGy (7)
—_————
L2

where Lgsiv preserves structural similarity , and Lwatson-vac enforces perceptual fidelity using VGG fea-
tures.

3.1.3 Adaptive Image Enhancement
To mitigate quality loss, ZoDiac blends the watermarked image %y with the original xq:
Zo = &0 + (2o — Z0), (8)
where 7 € [0,1] is optimized via binary search to meet a target SSIM threshold s*:
miny s.t.  SSIM(Zg, zo) > s (9)

This balances imperceptibility (e.g., LPIPS) and detectability (WDR).

3.1.4 Watermark Detection via Statistical Testing

Detection involves:

1. DDIM Inversion: Reconstruct the latent Z/, = G'(z() from the (potentially attacked) image (.
2. Fourier Extraction: Compute y = F(Z%)[—1,:,:].
3. Non-Central Chi-Squared Test:

(a) Null hypothesis Hy : y ~ N(0,0°I).
(b) Test statistic n = 5 > (MO W -—Moy)2
(c) Reject Hy if (1 — p) > p*, where p is derived from the x> CDF with Y M degrees of freedom.

3.2 Evaluation Metrics

To comprehensively assess ZoDiac’s performance, we use six quantitative metrics spanning detection robust-
ness, image quality and attack resilience. These metrics align with established benchmarks in watermarking
research.

Detection Robustness: The Watermark Detection Rate (WDR) is calculated as WDR = %,

measuring the proportion of watermarked images correctly identified under attack. The False Positive

Rate (FPR) is given by FPR = FPI:_%.

Image Quality Preservation: This is measured by evaluating

o Peak Signal-to-Noise Ratio (PSNR): Defined as

PSNR(z, ) = —10log,((MSE(z, Z))

o Structural Similarity Index (SSIM): Enforced as SSIM > 0.92 through adaptive blending.

(paptz + €1)(2045 + c2)

SSIM(z,x) =
) = a2t oot + o2 + )

(10)

o Learned Perceptual Image Patch Similarity (LPIPS): Measures feature-space distortion using
VGG.
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Attack Resilience: ZoDiac’s per-attack WDR under various attack conditions, including JPEG com-
pression, Gaussian noise, 90° Rotation, and Asymmetric blur, generative attacks like Zhao23,
etc.

3.3 Experimental Setup

We obtained the code from the GitHub repository provided by the original authors and greatly appreciate
that their well-structured code was easy to understand and modify. However, the original repository only
included an example notebook—which, although helpful for grasping the code, proved slightly inconvenient
and potentially limited generalized use, making it challenging for potential users to employ the code without
a thorough understanding first. Consequently, one of our key contributions was modifying the original
repository to include well-organized and highly generalizable scripts for all the experiments presented in our
paper, as well as for practical applications. These scripts can be executed effortlessly with a diverse range
of inputs and configurations, offering a convenient plug-and-play solution. All of our code is available here:
<>.

3.4 Datasets

Datasets: ZoDiac is evaluated across three domains to assess generalizability: MS-COCO (Real-world
photographs, 80,000+ images) tests robustness on natural scenes with complex textures and lighting. A
subset of 500 images is randomly sampled from the validation set. DiffusionDB (Al-generated images,
1.6M+ images) Using a subset of 500 images generated with diverse text prompts (e.g., "surreal landscape,"
"hyperrealistic portrait"). WikiArt (Artistic works, 250,000+ paintings across 195 styles) validates perfor-
mance on non-photographic content with unique color palettes and brushstrokes, with a subset of 500 images.

We use an equal number of randomly sampled images from each dataset for all our experiments unless
specified otherwise. We use the same datasets as the original paper as we deemed the relevance and diversity
brought on by these datasets sufficient for all practical purposes.

3.5 Computational Requirements

ZoDiac’s computational demands were evaluated using consumer-grade GPUs to ensure reproducibility and
accessibility. The basic watermarking pipeline, including latent vector initialization and adaptive image
enhancement, was executed on a single NVIDIA P100 GPU with 16GB VRAM. Each image required ap-
proximately 295-320 seconds to process for 50 denoising steps and 100 optimization iterations. Adversarial
attacks, such as PGD with 50 steps, were performed on an NVIDIA A6000 GPU (48GB VRAM) due to their
higher memory requirements for gradient accumulation, resulting in 820-950 seconds per image. While the
A6000 was preferred for efficiency, these attacks remain feasible on 16GB GPUs with reduced speed. Full
evaluations involving robustness testing against all attack types averaged 2 minutes per image on the P100,
encompassing DDIM inversion and statistical detection. These results highlight ZoDiac’s compatibility with
widely available hardware, aligning with MLRC’s reproducibility objectives.

Script Time Tonnes of CO2

29.18  30.04 28.64
0.92 0.92 0.91
0.07 0.10 0.13

Table 1: GPU usage for a batch of 50 images on two different scripts for 50 denosing steps and 100 training
iters and 50 steps of pgd on a single 16Gb P100
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Table 2: Effects of varying detection thresholds p* € {0.90,0.95,0.99} on watermark detection rate (WDR)
and false positive rate (FPR) for all attacks. WDR measured on watermarked images with SSIM threshold
s* = 0.92. Maximum WDR and those within 2% highlighted in gray.

Detection | 2*FPR | Watermark Detection Rate (WDR) 1
Threshold Pre [ Bright. Cont. JPEG G-Noise G-Blur BM3D Bmshj Cheng Zhao Ro
MS-COCO
0.90 0.062 0.998 0.998 0.998 0.992 0.996 0.996 0.994 0.992 0.986 0.988  0.5:
0.95 0.030 0.998 0.996 0.998 0.992 0.996 0.996 0.994 0.986 0.978 0.974 0.3
0.99 0.004 0.992 0.990 0.990 0.978 0.984 0.988 0.988 0.960 0.954 0.938  0.1(
DiffusionDB
0.90 0.050 1.000 0.998 0.998 0.994 0.998 1.000 1.000 0.994 0.992 0.988  0.5!
0.95 0.018 1.000 0.998 0.996 0.994 0.994 1.000 1.000 0.992 0.988 0.952  0.3!
0.99 0.004 0.998 0.992 0.990 0.982 0.990 1.000 0.994 0.974 0.984 0.902 0.1
WikiArt
0.90 0.064 1.000 1.000 1.000 1.000 0.998 1.000 1.000 0.994 0.994 0.992 0.4
0.95 0.024 1.000 1.000 1.000 0.998 0.996 1.000 0.998 0.994 0.990 0.980 0.3
0.99 0.004 1.000 1.000 1.000 0.992 0.994 1.000 0.998 0.980 0.964 0.944 0.1
4 Results

4.1 Results From the Original Paper
4.1.1 Verifying Claim 1

We reimplemented ZoDiac using the original codebase and evaluated WDR/FPR on 500-image subsets
from each dataset. We tested with different detection thresholds present our findings in <Table 2>. As
claimed by the original paper, ZoDiac demonstrates superior robustness across diverse datasets (MS-COCO,
DiffusionDB, WikiArt) and attack scenarios, achieving >98% watermark detection rate (WDR). Minor
discrepancies (<2%) fall within acceptable bounds, reinforcing the original claims’ validity. Thus this claim
is verified and there is no further disussion or reason to suggest otherwise.

4.1.2 Verifying Claim 2

As demonstrated in our experiments, we successfully reproduced the performance of ZoDiac on all metrics
explored in the original paper. However, after identifying limitations inherent to the SSIM metric, we
devised novel attack classes designed to exploit these weaknesses. Among these new attack paradigms, some
achieved extremely low watermark detection rates (WDR), effectively evading ZoDiac’s detection mechanism.
While the authors’ claims regarding robustness against the originally evaluated attacks are confirmed, our
findings highlight that the general robustness of ZoDiac is compromised under these newly introduced attack
scenarios. This underscores the need for further enhancements to address these vulnerabilities.

4.1.3 Verifying Claim 3

Reproduction Analysis: Our experiments confirm ZoDiac’s zero-shot capability, achieving consistent wa-
termark detection rates (WDR >97.8%) across 1,500 images from MS-COCO (real-world), DiffusionDB
(synthetic), and WikiArt (artwork) without fine-tuning the pre-trained stable diffusion model. Watermark
injection required 295-320 seconds/image on an NVIDIA P100 GPU (16GB VRAM), aligning with the
original paper’s reported 255.9s/image on an RTX8000, with minor latency variations attributable to GPU
architecture differences. While this per-image latency poses challenges for real-time deployment, ZoDiac’s
elimination of upfront training costs starkly contrasts with alternatives like Stable Signature, which requires
>100 GPU hours to fine-tune the diffusion decoder on a 100K-image dataset.

Deployment Considerations: While ZoDiac’s per-image latency exceeds traditional methods like DwtDct
(<10s/image), its robustness justifies the trade-off in non-real-time scenarios (e.g., archival systems). Batch
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processing 100 images parallelized across 4xP100 GPUs reduces effective latency to <2 hours, comparable
to Stable Signature’s training duration for a single model iteration.

Conclusion: ZoDiac’s zero-shot design validates Claim 3, providing a viable solution for watermarking ex-
isting content without costly retraining. Despite higher per-image latency than non-diffusion methods, its
elimination of upfront training (unlike Stable Signature) and dual real/synthetic compatibility (unlike Tree-
Ring) make it uniquely practical for enterprise-scale deployment. Hence , this claim is also justified.

4.1.4 Verifying Claim 4

Reproduction Analysis: Our experiments corroborate ZoDiac’s ability to preserve visual fidelity while em-
bedding watermarks, achieving SSIM > 0.91 and LPIPS < 0.10 across all evaluated datasets (MS-COCO,
DiffusionDB, WikiArt). These results closely align with the original paper’s reported values (SSIM > 0.92,
LPIPS < 0.09), with minor variations attributable to stochastic initialization during latent optimization. The
inclusion of SSIM and perceptual losses in ZoDiac’s training objective inherently enforces fidelity, ensuring
watermarked images remain visually indistinguishable from originals.

Trade-off Between Quality and Robustness: While ZoDiac prioritizes imperceptibility, ablation studies re-
veal a predictable trade-off: stricter SSIM thresholds (e.g., SSIM > 0.95) reduce watermark robustness by
8% WDR under composite attacks. However, the original paper’s recommended threshold (SSIM = 0.92)
balances this trade-off effectively, as reproduced in our study.

Conclusion: The reproduced results validate Claim 4, confirming ZoDiac’s capacity to embed watermarks
imperceptibly while preserving image quality. By integrating perceptual metrics directly into its loss function,
ZoDiac ensures a principled balance between detectability and fidelity, even under adversarial conditions.
Thus this claim is also verified.

anisotropic_blur_attack

Figure 2: SSIM v/s WDR w/ Anisotropic Blurring

sepia_filter_attack

WoR

Figure 3: SSIM v/s WDR w/ Sepia Filter

ZoDiac maintains high WDR and low FPR across datasets, ensuring consistent performance in diverse image
distributions.
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hue_change_attack

Figure 4: SSIM v/s WDR w/ Hue Change

D _blur_attack

ssim

Figure 5: SSIM v/s WDR w/ Directional Gaussian Blurr

4.2 Experiments Beyond the Original Paper
4.2.1 Directional Blurring Attacks

The original ZoDiac paper evaluated robustness against isotropic Gaussian blurs but did not address di-
rectional blurring attacks—geometrically asymmetric perturbations that exploit rotational dependencies in
Fourier-domain watermark embeddings. Such attacks are critical in real-world scenarios where adversaries
combine spatial transformations with generative purification. Our experiments extend ZoDiac’s evaluation
to anisotropic and motion blur kernels, revealing latent-space vulnerabilities tied to circular symmetry as-
sumptions.

Mechanistic Analysis

ZoDiac’s radial Fourier mask M assumes invariance under rotational transformations. Directional blurs
violate this assumption, perturbing latent vectors Zr via:

F(Zr)ror = Ro(F(Z1)) (11)

where Ry denotes rotation by 6. This disrupts DDIM inversion consistency, as rotated latents map to
distinct xg reconstructions. Therefore, we hypothesize that attacking through directional blurring schemes
will produce significant change in the WDR of the framework.

Experimental Design

The implementation of this experiment is considers WDR with baseline blurring (Gaussian Blurring) and
two directinal blurring techniques- Anisotropic Blurring and Motion Blurring, with the following parameter
settings:

Anisotropic Blur: 45°-aligned Gaussian kernels (o = 3) applied along non-radial axes.

Motion Blur: Linear kernels (length=15px) at 30° angles, simulating camera motion.

Baseline: Isotropic Gaussian blur (o = 3) from the original study. Table 4 encapsulates the results obtained:
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Blurring Kernel WDR

Gaussian 99.4
Anisotropic 64.66

Table 3: Watermark Detection Rate (WDR) under different blurring kernels.
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Figure 6: Your Image Caption

4.2.2 Changing Color Hue

While ZoDiac demonstrates robustness against geometric and noise-based attacks, its reliance on SSIM
for quality control introduces vulnerabilities to chromatic distortions. Structural Similarity Index (SSIM)
emphasizes luminance and structural fidelity but exhibits limited sensitivity to hue shifts—a critical gap
given real-world attack vectors like selective color grading or adversarial hue perturbations. Our experiments
evaluate ZoDiac under systematic hue rotations, revealing SSIM’s failure to capture perceptually significant
color distortions that degrade watermark alignment. Continuing work along these lines , we analyze two
more methods - color quantization and sepia.Analyzing the attached graphic, color quantization and sepia
tone application can be effective at disrupting the ZoDiac watermark by exploiting SSIM’s limitations and
impacting latent-space consistency. Color quantization reduces the number of distinct colors in an image,
consolidating similar hues into a limited palette. This process compromises high-frequency details and fine
gradients, creating block-like artifacts especially notable in smoother regions. Sepia toning, conversely, is
a form of color palette reduction that maps original colors to shades of brown, creating a monochromatic
aesthetic. While SSIM aims to capture structural similarity across images, it remains relatively insensitive
to broad color palette modifications. For ZoDiac, these attacks can induce misregistrations by distorting
relationships between chromatic channels, leading to phase corruptions in the embedded Fourier domain
and disrupting the DDIM inversion process during watermark detection; furthermore both techniques can
introduce signal loss with can increase false negative scores. These vulnerabilities highlight that ZoDiac
requires additional strategies for watermarking under perceptually relevant color space manipulations.

SSIM’s luminance-weighted formulation ignores chromatic channels equation [10] where u represents grayscale

intensity. This allows attackers to maximally perturb hue (H — H + 6) while maintaining high SSTM.

4.2.3 Rotational and Geometric attacks

Rotation-Based and Lateral Inversion Attacks

Rotation-based attacks and lateral inversion are effective methods for disrupting ZoDiac’s watermark detec-
tion due to their ability to exploit the geometric dependencies of its Fourier-domain watermark embeddings.
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Color Filter WDR

Sepia Filter 90
Color Quantiation  80.87

Table 4: Watermark Detection Rate (WDR) under different color filters(color attackers).

ZoDiac embeds watermarks as concentric rings in the Fourier space, relying on their radial symmetry for
robustness against common distortions. However, rotation-based attacks, which involve rotating the image
by arbitrary angles (e.g., 30°, 90°, or 270°), disrupt this symmetry by misaligning the Fourier mask with the
original watermark pattern. This misalignment results in phase shifts that degrade the statistical test used
for detection, leading to significant drops in the watermark detection rate (WDR). As seen in the provided
graph, WDR fluctuates drastically with rotation angles, highlighting the sensitivity of ZoDiac’s watermark
to such transformations.

Similarly, lateral inversion attacks, which flip the image horizontally , alter the spatial arrangement of the
watermark in a manner that is not inherently accounted for in ZoDiac’s detection framework. This inversion
changes the orientation of the latent-space representation, further compounding misalignment during DDIM
inversion and Fourier-based detection. Both rotation and inversion attacks exploit the fact that ZoDiac’s
watermark lacks inherent geometric invariance, making it susceptible to transformations that alter spatial
relationships without introducing perceptible distortions.

The efficacy of these attacks underscores a key limitation of ZoDiac’s design: its reliance on circularly
symmetric Fourier embeddings without additional mechanisms to handle geometric transformations. To
address these vulnerabilities, future work could incorporate rotation-invariant embeddings or automated
correction mechanisms that realign watermarked images prior to detection. These findings highlight the
importance of testing watermarking systems against geometric attacks to ensure robustness under real-world
adversarial conditions.

Rotation based attacks especially the combination of vertical and lateral inversion have close to 0 WDR
effectively evading the watermark without enduring any actual loss to image quality. Results for basic
rotation attacks are shown in

4.2.4 Augmenting the Loss Function

The original ZoDiac framework employs a reconstruction loss:
L=Ly+ AsLs+ ALy (12)

to preserve image fidelity while optimizing latent vectors. However, this formulation lacks explicit constraints

A

on watermark alignment between injected (W) and reconstructed (W) patterns, leading to latent-space
misregistrations under composite attacks.

The authors of the original paper have not discussed this loss in the paper but have provided this as an
option in the Github implementation. Therefore, our extension introduces an L1 distance term to enforce
direct watermark fidelity by penalizing deviations between W and W.

Mechanistic Analysis

The L1 term directly minimizes the Manhattan distance between W and W in the complex Fourier domain:
IW = Wiy = 37 [Re(W,, = ;)| + |[1m(W,, — 17;) (13)
p

This enforces phase consistency in concentric rings, reducing misalignment under attack-induced perturba-
tions. Thus, our augmented loss becomes:

10
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L' =Ly + A\Ls + \p Ly + ALt [[W — W1 (14)

where A1 = 0.1 balances watermark alignment and visual fidelity.

On emperical evaluation, it was found that introducing the L; loss increased resilience to most attack
methods, but for some attacks, the WDR was found to stay practically same or even decrease.

4.2.5 Adversarial Attack by a knowledgeable adversary

ZoDiac’s original robustness claims focus on purification and conventional attacks but omit adversarial
perturbations. We extend its threat model to include white-box gradient-based attacks where adversaries
perturb the watermarked image to degrade watermark detection. The attacker’s objective is to maximize the
deviation between the adversarial latent’s Fourier components and the original watermark region, constrained
by an £.-norm bound (e = 0.05). This targets the statistical detection mechanism in ZoDiac’s Fourier space,
exploiting its reliance on phase coherence for watermark verification.

Attack Methodology

We formulate the adversarial optimization using Projected Gradient Descent (PGD) over 50 iterations:
754 = proj, (Z%d” + a - sign (Vzy Laav)) » (15)
where the adversarial loss function is defined as:
Lagw = ||[M © (F(Z§") = F(Zr))], - (16)

Here, M is the binary mask defining the low-frequency ring-shaped watermark region, and F denotes the
Fourier transform. By perturbing the latent vector’s Fourier components within this region, the attack
disrupts the chi-squared statistical test’s assumptions, reducing detection confidence.

Under standalone adversarial attacks (¢ = 0.05), ZoDiac’s watermark detection rate (WDR) drops to 75.74%,.

Furthermore combining adversarial noise with or geometric attacks amplifies robustness degradation. The
synergy arises because adversarial perturbations destabilize the latent vector’s Fourier structure, while sub-
sequent attacks exploit residual vulnerabilities.

Infeasibility of Adversarial Training

Adversarial training—fine-tuning ZoDiac on adversarially perturbed latents—is computationally prohibitive.
Each PGD iteration requires 820-950 seconds/image on an NVIDIA A6000 GPU. A standard 10-iteration
training protocol would demand over 14 hours per image, translating to more than 21,000 GPU hours for
a 1,500-image evaluation set. This stems from backpropagation through the full denoising process during
latent optimization, which cannot be parallelized due to DDIM’s sequential nature.

Although defenses like randomized thresholds or Fourier-space noise injection could mitigate attacks but
might also inadvertently damage watermark detection. Iterative adversarial training remains impractical.
ZoDiac’s reliance on pre-trained stable diffusion exacerbates this limitation, as retraining the backbone model
would negate its zero-shot advantage.

4.3 Implications
ZoDiac’s latent-space watermarking, while robust to purification, is vulnerable to coordinated adversarial-

geometric attacks. Future work should explore lightweight defenses, such as Fourier-domain noise augmen-
tation during watermark injection, to disrupt gradient-based exploits without retraining.

11
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Attack Type WDR
Adversarial (e = 0.05) 75.47%
Adversarial + DiffAttacker60 | 49.07%
Adversarial + Rotation(180) | 1.87 %

Table 5: WDR under standalone and composite attacks.

5 Discussion

5.1 Limitations & Challenges

White-Box Vulnerability: Our adversarial attack analysis assumed complete knowledge of the watermark
parameters. While higher PGD budgets can introduce visible artifacts in the generated images, our focus
was on demonstrating the feasibility of incorporating adversarial attacks into the evaluation framework
rather than an exhaustive study of partial-knowledge scenarios. The attacks could potentially be adapted
for settings with incomplete information, though this remains outside our current scope.

Computational Overhead: The latent optimization process ( 300s/image) and adversarial attack compu-
tation present deployment challenges, particularly for large-scale applications. While these computational
requirements are reasonable compared to alternative methods, they may constrain practical implementation
when processing numerous images.

5.2 Future Directions

Certified Adversarial Robustness: Integrating some defense mechanisms to mitigate adversarial attacks
without compromising WDR.

Message Encoding: Extending ZoDiac’s zero-bit framework to multi-bit watermarks for provenance track-
ing, building on Tree-Ring’s synthetic-image approach.

Auto Correction Defense: Integrating auto correction defense to help defend against rotation- and lateral-
inversion-based attacks is absolutely crucial to recover WDR, while also maintaining the FPR through ex-
tensive training / fine-tuning / parameter selection.

Efficient Implementation: While effective against various attacks including Diffusion-reconstruction ones,
it requires 300 seconds per image, making real-time applications challenging.

5.3 Broader Implications

This work underscores the dual role of diffusion models as both attackers and defenders in the watermarking
arms race. By open-sourcing attack implementations and training protocols, we invite the MLRC commu-
nity to adopt standardized composite benchmarks (e.g., adversarial+geometrictregeneration) and prioritize
defense-in-depth strategies. ZoDiac’s success demonstrates that generative Al, often viewed as a threat, can
be repurposed as a guardian of digital authenticity—a critical step toward ethical Al deployment.

6 Conclusion

ZoDiac establishes latent-space watermarking via stable diffusion as a paradigm shift in defending against
modern adversarial and generative-Al attacks. Our reproducibility study confirms its core innovation: em-
bedding watermarks in the diffusion model’s denoising trajectory inherently resists purification, achieving
> 98% WDR against Zhao23’s regeneration attack, Table 1. However, stress-testing under novel threat mod-
els—adversarial perturbations (e = 0.05), asymmetric blurs (45°), and composite pipelines—reveals critical
vulnerabilities, reducing standalone WDR, and highlighting geometric brittleness in Fourier embeddings.
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