
Enhancing Parallelism in Decentralized Stochastic Convex Optimization

Ofri Eisen * 1 Ron Dorfman * 1 Kfir Y. Levy 1

Abstract
Decentralized learning has emerged as a power-
ful approach for handling large datasets across
multiple machines in a communication-efficient
manner. However, such methods often face scal-
ability limitations, as increasing the number of
machines beyond a certain point negatively im-
pacts convergence rates. In this work, we propose
Decentralized Anytime SGD, a novel decentral-
ized learning algorithm that significantly extends
the critical parallelism threshold, enabling the ef-
fective use of more machines without compromis-
ing performance. Within the stochastic convex
optimization (SCO) framework, we establish a
theoretical upper bound on parallelism that sur-
passes the current state-of-the-art, allowing larger
networks to achieve favorable statistical guaran-
tees and closing the gap with centralized learning
in highly connected topologies.

1. Introduction
Distributed learning has become a key paradigm for large-
scale machine learning (ML), where multiple machines
train an ML model by utilizing their collective data and
computational resources (Verbraeken et al., 2020). This ap-
proach enables efficient ML scaling by accelerating training
through parallel computation. Distributed ML systems are
especially useful when data is inherently distributed across
multiple users, as in federated learning (McMahan et al.,
2017; Kairouz et al., 2021), where preserving local data
privacy is a priority.

Distributed learning systems are broadly categorized into
two primary architectures: centralized and decentralized.
Centralized systems rely on a central parameter server (PS)
to coordinate training by aggregating local computations and
distributing global model updates (Li et al., 2014). While
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this design simplifies training management, it faces scala-
bility challenges due to communication bottlenecks and is
inherently vulnerable to a single point of failure since the
server is essential to system operation.

In contrast, decentralized systems rely on direct interactions
between neighboring machines, eliminating the need for a
central PS (Kempe et al., 2003; Boyd et al., 2006; Nedic
& Ozdaglar, 2009; Lian et al., 2017). While this architec-
ture introduces challenges in coordination and maintaining
global model consistency, it offers significant advantages.
By reducing the risk of a single point of failure and en-
hancing communication efficiency, decentralized systems
provide greater flexibility and resilience (Assran et al., 2019;
Kong et al., 2021; Yuan et al., 2021; Li et al., 2022).

A central trade-off in distributed learning, both centralized
and decentralized, lies in balancing parallelism with statisti-
cal efficiency. While increasing parallelism—by incorporat-
ing more machines—can accelerate training, it may degrade
learning efficiency beyond a certain point. This issue is
particularly acute in decentralized systems, where sparse
communication topologies amplify performance degrada-
tion, limiting the effective utilization of additional machines.

Existing decentralized methods reveal a persistent gap be-
tween centralized and decentralized learning in their ability
to scale with the number of machines (Koloskova et al.,
2020; 2021; He et al., 2022). Surprisingly, this gap is ob-
served even in highly connected network topologies, where
information between nodes propagates faster, effectively
mimicking the behavior of centralized systems. This raises
the question of whether decentralized methods are funda-
mentally constrained in fully exploiting increased paral-
lelism, even under ideal communication conditions.

In this work, we propose Decentralized Anytime SGD (DAT-
SGD), a novel and simple algorithm designed to enhance
parallelism in decentralized systems. It relies on the Any-
time SGD framework (Cutkosky, 2019), where stochastic
gradient descent (SGD) updates are performed using gra-
dients evaluated at averaged iterates. Each machine per-
forms these updates locally and exchanges information with
its neighbors. By relying on averaged query points that
evolve more slowly than the iterates themselves, our ap-
proach effectively mitigates the bias caused by local model
inconsistencies, also known as consensus distance.
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Table 1. Parallelism Bounds. Comparison of parallelism bounds
for decentralized SCO across different network topologies for
Decentralized SGD (D-SGD, Koloskova et al., 2020) and our
method, expressed in terms of the total number of samples N =
M · T . For reference, the centralized case achieves a bound of
O(

√
N). NC stands for near-complete graph. Higher parallelism

bounds are better, allowing us to accelerate the learning process
without degrading performance.

TOPOLOGY 1/ρ D-SGD DAT-SGD

RING O(M2) O(N1/8) O(N1/6)
TORUS O(M) O(N1/6) O(N1/4)

NC ≈ 1 O(ρ1/2N1/4) O(ρ
√
N)

We perform our analysis within the stochastic convex opti-
mization (SCO) framework—a powerful framework which
captures several classical problems like SVMs and linear
regression, as well as serving as a testbed towards designing
and analyzing ML algorithms.

For convex and smooth functions, our method achieves an
error of ϵ over a decentralized network of M machines
in T = O(1/Mϵ2 + 1/ρϵ) iterations, where ρ ∈ (0, 1]
is the spectral gap of the network, a parameter that cap-
tures the connectivity of the network topology (see Def-
inition 2.5 for a formal definition). This result implies
that (1) for complete (or near-complete) topologies, where
ρ = Ω(1), our algorithm recovers the convergence rate of
centralized methods (Dekel et al., 2012), thus filling the
gap implied by prior methods; and (2) for general topolo-
gies, it improves upon the previously best-known rate of
O(1/Mϵ2 + 1/ρ1/2ϵ3/2) (Koloskova et al., 2020), thereby
enabling larger networks while maintaining linear speed-up;
see Table 1 for a comparison of parallelism bounds for com-
mon network topologies. In Section 2.1, we elaborate on
the computation of these parallelism bounds.

1.1. Related Work

Centralized learning systems are widely adopted in both
industry and academia, thanks to their simplicity and the
effectiveness of Minibatch SGD (Dekel et al., 2012), which
is the most widespread approach to training in such sys-
tems. While alternative centralized methods like local-SGD
have been explored in recent years (McMahan et al., 2017;
Kairouz et al., 2021), Minibatch SGD still serves as a cor-
nerstone in large-scale training due to its ease of implemen-
tation and strong empirical performance.

Despite the enduring popularity of centralized training, de-
centralized systems present an appealing alternative by elim-
inating the need for a central parameter server and enabling
direct communication among neighboring machines (Tsit-
siklis, 1984; Kempe et al., 2003; Boyd et al., 2006; Nedic

& Ozdaglar, 2009; Lian et al., 2017). This design not only
mitigates the risk of a single point of failure but also offers
greater scalability and flexibility (Assran et al., 2019; Kong
et al., 2021; Yuan et al., 2021). A common mechanism
underpinning these benefits is the gossip averaging protocol
(Xiao & Boyd, 2004; Boyd et al., 2006), a low-overhead
communication method that efficiently disseminates model
updates across the network.

In the context of stochastic optimization, decentralized train-
ing approaches have garnered considerable interest in re-
cent years. The stochastic convex case was explored by
Lian et al. (2017), who analyzed the Decentralized-SGD
(D-SGD) method. Later, Koloskova et al. (2020) extended
this approach within a unified framework that accounts for
changing topologies and randomized gossip communication.
While these aforementioned methods degrade in the face of
data heterogeneity, Koloskova et al. (2021) completely elim-
inated this issue by employing an approach called gradient-
tracking (Di Lorenzo & Scutari, 2016; Nedic et al., 2017;
Pu & Nedić, 2021). See Table 2 for a comparison of conver-
gence rates.

Curiously, all existing methods present convergence bounds
that imply a clear gap between the centralized and decen-
tralized cases, even for highly connected topologies. Con-
cretely, in centralized systems one may use up to O(

√
N)

machines to accelerate the learning process without degrad-
ing generalization (Dekel et al., 2012), where N is the total
number of samples used in the process. Conversely, in de-
centralized systems the best known parallelization limit is
M ≤ O((ρ

√
N)1/2), which is substantially smaller. See

Table 1 for bounds regarding different topologies.

Decentralized training has also been extensively studied in
the context of stochastic non-convex optimization. This
was done in (Lian et al., 2017; Koloskova et al., 2020;
2021), which have derived analogous bounds to the ones
they achieved in the convex setting. Additionally, Kong
et al. (2021) empirically studied the interplay between the
local model parameters and gossip communication. More
recently, He et al. (2022) improved convergence rates for
non-convex problems by replacing local SGD updates with
local momentum updates, establishing a parallelization limit
of M ≤ O((ρ

√
N)2/3). However, this remains below the

centralized bound of M ≤ O(
√
N), which applies in the

non-convex setting.

To further improve the parallelism bound, we build on a re-
cent technique that involves gradually shifting query points
in SCO (Cutkosky, 2019). This approach has been lever-
aged in recent works to improve asynchronous (Aviv et al.,
2021) and local (Dahan & Levy, 2024) training methods,
as well as to design universal accelerated algorithms (Kavis
et al., 2019; Ene et al., 2021; Antonakopoulos et al., 2022).
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Table 2. Convergence to ϵ-accuracy. Comparison of convergence
rates with prior work in convex decentralized learning. Here, σ
denotes noise variance, ζ represents data heterogeneity, and ρ is the
spectral gap. We note that the leading term σ2/Mϵ2 is statistically
optimal (Nemirovski & Yudin, 1983).

REFERENCE CONVERGENCE RATE

KOLOSKOVA ET AL. (2020) O
(

σ2

Mϵ2 +
σ
√
ρ+ζ

ρϵ3/2
+ 1

ρϵ

)
KOLOSKOVA ET AL. (2021) O

(
σ2

Mϵ2 + σ√
ρϵ3/2

+ 1
ρϵ

)
THIS WORK O

(
σ2

Mϵ2 +
√
σ+

√
ζ

ρϵ + 1
ϵ

)
2. Problem Setup and Background
In this section, we formally define our problem setup and
provide an overview of relevant background.

We study decentralized SCO problems, where the objective
is to minimize a convex loss function f : Rd → R defined
as follows:

f(x) :=
1

M

M∑
i=1

{fi(x) := Ez∼Di [fi(x, z)]} , (1)

where fi : Rd → R represents the loss function on ma-
chine i ∈ {1, . . . ,M}, Di is the local data distribution, and
fi(·, z) is the instance-dependent loss for a given sample z
on machine i.

We focus on first-order optimization methods, where in
round t, each machine i samples zit ∼ Di, computes a
stochastic gradient estimate ∇fi(x

i
t, z

i
t), and uses it to up-

date its local iterate xi
t. The method ultimately produces

an output xoutput, and its performance is measured by the
expected excess loss, defined as:

E[Excess-Loss] := E[f(xoutput)]− f(x∗) ,

where x∗ ∈ argminx∈Rd f(x) is a minimizer of f , and the
expectation is taken over the randomness of the samples.

Throughout, we make the following standard assumptions.
Assumption 2.1 (Smoothness). Each function fi is L-
smooth, i.e., for any x, y ∈ Rd we have:

fi(y) ≤ fi(x) +∇fi(x)
T (y − x) +

L

2
∥y − x∥2 .

Assumption 2.2 (Bounded noise variance). There exists a
constant σ2 such that for all x ∈ Rd and i ∈ [M ]:

Ez∼Di∥∇fi(x, z)−∇fi(x)∥2 ≤ σ2 .

Assumption 2.3 (Bounded heterogeneity). There exists a
constant ζ2 such that for all x ∈ Rd:

1

M

M∑
i=1

∥∇fi(x)−∇f(x)∥2 ≤ ζ2 .

We note that our bounded heterogeneity assumption has
been widely adopted in prior works (Lian et al., 2017; Tang
et al., 2018a; Li et al., 2019; He et al., 2022). Notably,
some studies have explored milder assumptions, requiring
bounded heterogeneity only at the optimum (Koloskova
et al., 2020) or at the origin (Lu & De Sa, 2021), or even
removing this assumption entirely by leveraging techniques
such as gradient tracking (Nedic et al., 2017; Koloskova
et al., 2021). In this work, we adopt the standard bounded
heterogeneity assumption for simplicity, leaving potential
relaxations to future work.

Decentralized Training. We consider systems (networks)
where nodes are connected through a communication graph,
and each node can efficiently communicate with its neigh-
bors. In such decentralized systems, nodes represent ma-
chines, and edges correspond to communication links.

Gossip averaging is a robust communication protocol that
efficiently and reliably propagates information across the
decentralized network without relying on a central coor-
dinator (Xiao & Boyd, 2004; Boyd et al., 2006; Nedic &
Ozdaglar, 2009; Shi et al., 2014; Koloskova et al., 2020).

Concretely, suppose each machine i in the network holds a
vector xi

0 ∈ Rd, and our goal is to efficiently and robustly
communicate the consensus x̄ := 1

M

∑
i x

i
0 to all of the

machines in the network. Gossip averaging is a sequential
process towards doing so, where each machine computes a
sequence {xi

t}t such that xi
t eventually converges to x̄ for

all i. At every gossip step, each node i updates its vector as
a weighted average of its neighbors:

xi
t+1 =

M∑
j=1

Pijx
j
t ,

where Pij > 0 if nodes i and j are connected, and
P ∈ [0, 1]M×M is a given gossip matrix which satisfies
the following properties.

Definition 2.4 (Gossip matrix). A gossip matrix P ∈
[0, 1]M×M is a symmetric, doubly stochastic matrix. That
is, P satisfies P = PT as well as P1 = 1 and 1TP = 1T .

These properties imply that (i) for any node i then
{Pij}j∈[M ] is a weight vector (i.e., has positive entries
which sum to 1), and that (ii) the consensus is preserved i.e.
that ∀t, x̄ = 1

M

∑M
i=1 x

i
0 = 1

M

∑M
i=1 x

i
t.

As is standard in the literature we shall assume that the
matrix P is given and satisfies the above properties.

Note that gossip averaging can be written in matrix form as:

Xt+1 = XtP ,

where Xt :=
(
x1
t x2

t · · · xM
t

)
∈ Rd×M .
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A key characteristic of the gossip matrix is the spectral gap,
reflecting the connectivity degree of the network topology.

Definition 2.5 (Spectral gap). For a gossip matrix P with
eigenvalues 1 = λ1 > |λ2| ≥ · · · ≥ |λM |, the spectral gap
is defined as:

ρ := 1− |λ2| ∈ (0, 1].

An important property of gossip averaging is its contractive
effect on the distance from the average of local vectors.

Property 2.6. Let X ∈ Rd×M and define X̄ := X 1
M 11⊤.

Let P ∈ RM×M be a gossip matrix with spectral gap ρ.
Then,

∥XP − X̄∥2F ≤ (1− ρ)∥X − X̄∥2F . (2)

The above, along with the consensus-preserving property,
ensures that iterative gossip averaging converges to the con-
sensus (i.e., the average of the local vectors) exponentially
fast. Notably, in complete graph topologies where ρ = 1,
consensus is achieved in a single gossip step, effectively
mimicking centralized behavior.

2.1. Parallelism Bounds

It has been well established in the literature that the con-
vergence rate of SGD for convex functions is given by
O(σ/

√
T + 1/T ), where T is the number of iterations (Ne-

mirovski et al., 2009; Agarwal et al., 2012). Assuming each
iteration processes a single sample, we have N = T total
samples.

In distributed systems, computation is distributed across M
machines, therefore accelerating the training process. With
M machines, we process N samples in just T = N/M
iterations. However, as we mentioned, this parallelization
introduces a trade-off, as increasing M can eventually re-
duce efficiency, as we show next.

For centralized systems, Dekel et al. (2012) derived the
following convergence rate for Mini-batch (Parallel) SGD:

E[Excess-Loss] = O
(

σ√
MT

+
1

T

)
= O

(
σ√
N

+
M

N

)
.

Thus, as long as M ≤ O(
√
N) (ignoring σ), we can in-

crease M without degrading performance.

For decentralized systems, Koloskova et al. (2020) analyzed
the Decentralized SGD (D-SGD) algorithm, obtaining the
error rate:

O
(

σ√
MT

+
σ2/3ρ1/3 + ζ2/3

ρ2/3T 2/3
+

1

ρT

)
=

O

(
σ√
N

+

(
σ2/3ρ1/3 + ζ2/3

)
M2/3

ρ2/3N2/3
+

M

ρN

)
. (3)

Interestingly, the parallelism bound differs based on data
heterogeneity. In homogeneous setups (ζ = 0), we can
scale up to M ≤ O(ρ1/2N1/4), whereas in heterogeneous
settings (ζ > 0), the limit tightens to M ≤ O(ρN1/4),
which can be significantly lower for sparse topologies. It
is worth mentioning that Koloskova et al. (2021) enhanced
this bound, by incorporating a gradient tracking mechanism,
eliminating the dependence on ζ altogether.

Note that even for dense graph topologies, where ρ ≈ 1,
the rate in (3) does not match the centralized case. As we
establish in Section 4, our approach bridges this gap, achiev-
ing an error rate of O(σ/

√
MT + (

√
σ+

√
ζ)/ρT +1/T ).

This improvement increases the parallelism bound to M ≤
O(ρ

√
N). Table 2 provides a comparison of convergence

rates with prior work.

3. The Pitfall of Decentralized SGD
Next, we discuss the D-SGD algorithm and outline its key
limitation. Given the structure of decentralized topologies,
the D-SGD algorithm naturally extends SGD. As described
in Algorithm 1, each machine alternates between updating
its local model weights using the standard SGD rule and
exchanging information with its neighbors via gossip av-
eraging. However, unlike in centralized Minibatch SGD,
where all machines compute gradients at the same query
points, decentralized training lacks immediate synchroniza-
tion. Since gossip-based communication does not instantly
enforce consensus (unless ρ = 1), local models diverge, and
each machine evolves independently.

This lack of synchronization introduces a fundamental chal-
lenge: gradient estimates at each node become biased
with respect to the global consensus, affecting conver-
gence analysis. As shown in (Koloskova et al., 2019),
this bias is closely tied to the consensus distance Ξt :=
1
M

∑M
i=1 ∥wi

t − w̄t∥2, where w̄t =
1
M

∑M
i=1 w

i
t represents

the global average of local models. The consensus dis-
tance quantifies the discrepancy between local models, and
limited communication makes it challenging to minimize.
This issue can be framed as a competition between the rate
of consensus achievement and the rate at which local pa-
rameters evolve. If all machines synchronized instantly,
D-SGD would closely resemble centralized Minibatch SGD.
However, for any ρ < 1, perfect synchronization remains
unattainable, necessitating to control and bound this bias.

To gain intuition, consider the D-SGD update rule under
the simplifying assumption that the gradient variance across
nodes is bounded: Ψt :=

1
M

∑M
i=1 ∥git − ḡt∥2 ≤ G2 for all

t ≥ 1, where ḡt = 1
M

∑M
i=1 g

i
t is the global average of local

stochastic gradients.

Using standard gossip averaging analysis and the SGD up-
date rule, we can obtain the following recursion for the
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Algorithm 1 Decentralized SGD (D-SGD)

Input: Initial point w1 ∈ Rd, learning rate η, gossip
matrix P , number of rounds T .
Initialize wi

1 = w1 for all i ∈ [M ]
for t = 1, . . . , T do

for i ∈ [M ] in parallel do
Sample zit ∼ D and set git = ∇fi(w

i
t, z

i
t)

wi
t+ 1

2

= wi
t − ηgit

wi
t+1 =

∑M
j=1 w

j

t+ 1
2

Pij

end for
end for

consensus distance:

Ξt+1 =
1

M

M∑
i=1

∥wi
t+1 − w̄t+1∥2

≤ 1− ρ

M

M∑
i=1

∥wi
t+ 1

2
− w̄t+ 1

2
∥2

=
1− ρ

M

M∑
i=1

∥(wt − ηgit)− (w̄t − ηḡt)∥2

≤
(
1− ρ

2

)
Ξt + C · G

2η2

ρ
, (4)

for some constant C > 0. Solving this recursion yields the
bound Ξt ≤ O(η2/ρ2) for all t ≥ 1. In practice, Koloskova
et al. (2020) conducted a more refined analysis, obtaining
an improved bound of order O(η2/ρ). This leads to an
overall error rate of O(1/ηT + η + η2/ρ). Optimizing the
learning rate by balancing these terms suggests choosing
η ≲ (ρ/T )1/3, which in turn results in the O(1/ρ1/3T 2/3)
term in (3), ultimately limiting the parallelism bound. Ide-
ally, if we could tighten the bound on the consensus distance,
it would lead to a direct improvement in this term. In the
next section, we achieve this by introducing gradually shift-
ing anchor points.

4. DAT-SGD: Decentralized Anytime SGD
In this section, we introduce DAT-SGD. We begin in Sec-
tion 4.1 by discussing the Anytime SGD method, which
serves as the foundation of our approach. Then, in Sec-
tion 4.2, we extend this framework to the decentralized set-
ting. Finally, in Section 4.3, we provide an intuitive analysis
and a proof sketch of the convergence statement, highlight-
ing how Anytime SGD enables to mitigate the consensus
distance—an idea we further elaborate on in Section 4.4.

4.1. Anytime SGD

For this part, consider a single-machine setup. The widely
studied SGD method generates a sequence of iterates {wt}t

Algorithm 2 Decentralized Anytime SGD (DAT-SGD)

1: Input: Initial iterate w1, learning rate η, gossip matrix
P , number of rounds T , non-negative weights {αt}t≥1.

2: Initialize wi
1 = xi

1 = w1 for all i ∈ [M ]
3: for t = 1, . . . , T do
4: for i ∈ [M ] in parallel do
5: Sample zit ∼ Di and set git = ∇fi(x

i
t, z

i
t)

6: Local updates
7: wi

t+ 1
2

= wi
t − ηαtg

i
t

8: xi
t+ 1

2

= α1:t−1

α1:t
xi
t +

αt

α1:t
wi

t+ 1
2

9: Gossip communication

10: wi
t+1 =

∑M
j=1 w

j

t+ 1
2

Pij

11: xi
t+1 =

∑M
j=1 x

j

t+ 1
2

Pij

12: end for
13: end for

using the update rule wt+1 = wt−ηgt, where gt is a stochas-
tic gradient estimate computed at the current iterate wt. In
contrast, the Anytime SGD framework (Cutkosky, 2019)
computes stochastic gradients at different query points—
specifically, the weighted average of past iterates.

Formally, given a sequence of non-negative weights {αt}t,
Anytime SGD generates two sequences, {wt}t and {xt}t,
according to the update rules:

wt+1 = wt − ηαtgt, (5)

xt+1 =
α1:t−1

α1:t
xt +

αt

α1:t
wt+1, (6)

where x1 = w1, α1:t :=
∑t

τ=1 ατ for all t > 0, and
α1:0 := 0. Here, gt is an estimate of the gradient at the
weighted average xt.

Cutkosky (2019) introduced the Anytime framework to en-
sure that the query points converge to the optimal solution—
unlike standard SGD, where iterates may not. It was shown
that Anytime SGD achieves the same convergence rates as
SGD for convex functions. However, the averaged query
points {xt}t exhibit greater stability, changing slower than
the iterates themselves. As we show next, this approach also
enables establishing a last-iterate convergence guarantee.

4.2. Extension to the Decentralized Setup

Our approach extends Anytime SGD to the decentralized
setting, as outlined in Algorithm 2. In round t, each machine
performs the updates given in Equations (5) and (6) locally
and, similar to D-SGD, shares both its model weights, wi

t,
and query points, xi

t, through gossip averaging.

The convergence of Algorithm 2 is established in Theo-
rem 4.1, with the full proof deferred to Appendix B.
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Theorem 4.1. Under Assumptions 2.1-2.3, consider Algo-
rithm 2 with linear weights αt = t and a learning rate given
by

η = min

{
1

24LT
,
ρ2

K
,
D1

√
M√

3σT 3/2
,

√
D1

2Kσ̃

ρ

T

}
,

where D2
1 := ∥w1 − x∗∥2, K2 := 5120L2, and σ̃2 :=

2σ2 + ζ2. Then, for all T ≥ 1, the following bound holds:

E[f(x̄T )− f∗] ≤ O

(
σD1√
MT

+
D

3/2
1

√
Lσ̃

ρT
+

LD2
1

T

)
,

where x̄T := 1
M

∑M
i=1 x

i
T .

Let N = MT be the total number of samples after T it-
erations. From Theorem 4.1, ignoring dependencies on
L, D1, σ and ζ , we obtain the convergence rate O(1/

√
N+

M/ρN). This implies that the asymptotic upper bound on
parallelism is O(ρ

√
N). Beyond this, the second term of

M/ρN dominates, leading to a decline in learning efficiency
when increasing the number of machines. This bound repre-
sents a significant improvement over the prior O(ρ1/2N1/4)
parallelism limit (Koloskova et al., 2020; 2021).

In addition, we can establish the convergence of the local
iterates, as follows. The proof is provided in Appendix B.1.

Corollary 4.2. Under the same assumptions and parame-
ter selections as in Theorem 4.1, the local iterate at each
machine i ∈ {1, . . . ,M} satisfies:

E[f(xi
T )− f∗] ≤

O

(
σD1√
MT

+
D

3/2
1

√
Lσ̃

ρT
+

LD2
1

T
+

Mσ̃D1

ρ2T 2

)
.

The additional last term does not affect the established upper
bound on parallelism, which remains M ≤ O(ρ

√
N).

Transient Iteration Complexity. A complementary met-
ric to the parallelism bound is the transient iteration com-
plexity, which quantifies how many iterations are needed
before the convergence rate matches that of centralized SGD,
i.e., when the σ/

√
MT term dominates (Pu et al., 2021).

From Theorem 4.1, it follows that the transient iteration
complexity of our method is O(M/ρ2), representing an im-
provement over D-SGD by a factor of M2. For instance,
this complexity corresponds to O(M5) for the ring topology
and Õ(M) for the exponential graph (Ying et al., 2021).

4.3. Proof Sketch

To complement the analysis in Section 3, we first provide
an intuitive analysis of the consensus distance. As formally
shown in Appendices A and B, the bias in Anytime SGD is

related to the average consensus distance between the query
points, defined as

Γt :=
1

M

M∑
i=1

∥xi
t − x̄t∥2, where x̄t =

1

M

M∑
i=1

xi
t .

Since the query points evolve more gradually than the it-
erates, we can derive a tighter bound on Γt. To illustrate
this, we consider a simplified setting with uniform weights
αt = 1 for all t and assume Ψt ≤ G2 for all t ≥ 1, as in
Section 3. Using gossip averaging for the query points and
the Anytime averaging, we can show that:

Γt+1 =
1

M

M∑
i=1

∥xi
t+1 − x̄t+1∥2

≤ 1− ρ

M

M∑
i=1

∥xi
t+ 1

2
− x̄t+ 1

2
∥2

=
1− ρ

M

M∑
i=1

∥∥∥(1− 1

t

)
(xi

t − x̄t) +
1

t
(wi

t+ 1
2
− w̄t+ 1

2
)
∥∥∥2

≤
(
1− ρ

2

)
Γt +

C

ρt2
(
Ξt +G2η2

)
. (7)

for some constant C > 0. Recall that Ξt satisfies its own
recursion, as derived in Equation (4). Using the refined
bound Ξt ≤ O(G2η2/ρ), we obtain:

Γt+1 ≲
(
1− ρ

2

)
Γt +

C

ρt2

(
G2η2

ρ
+G2η2

)
≤
(
1− ρ

2

)
Γt + 2C · G

2η2

ρ2t2
. (8)

Summing over t ∈ [T ] and rearranging terms, we can get
the bound

∑T
t=1 Γt ≤ O(η2/ρ3). Since the final error rate

is proportional to the average consensus distance over time,
1
T

∑T
t=1 Γt, the resulting error is of order O(1/ηT + η +

η2/ρ3T ). Tuning the learning rate by setting η ≲ ρ yields
the O(1/ρT ) term, which enables enhanced parallelism.

This simplified analysis provides intuition on how slowly
changing query points improve the rate. Next, we present a
more formal proof sketch capturing finer transition details.

Proof Sketch of Theorem 4.1. As we show in Lemma B.1,
the consensus query point sequence {x̄t}t≥1 is an {αt}t≥1-
weighted average of the consensus iterates sequence
{w̄t}t≥1. Moreover, the average iterates sequence evolves
similarly to Equation (5), following the update rule w̄t+1 =
w̄t − ηαtḡt. Thus, the consensus sequences {x̄t}t≥1 and
{w̄t}t≥1 align with the structure of Anytime SGD, allowing
us to leverage standard results applicable to Anytime SGD.
Specifically, defining ∆t := E[f(x̄t) − f∗], it follows for
all t ≥ 1 that (cf. Lemma A.3):

α1:t∆t ≤
D2

1

η
+ η

T∑
τ=1

α2
τE∥ḡτ∥2 + 4ηT ·BT , (9)
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where BT := E
[∑T

τ=1 α
2
τ∥Eḡτ −∇f(x̄τ )∥2

]
. Focusing

on the middle term, we show using standard arguments that:

E∥ḡτ∥2 ≤ 3σ2

M
+3E∥Eḡτ −∇f(x̄τ )∥2+3E∥∇f(x̄τ )∥2 .

Plugging this into Equation (9) allows us to derive the fol-
lowing bound:

α1:t∆t ≤
D2

1

η
+

3σ2η

M

T∑
τ=1

α2
τ + 8ηTBT

+ 3η

T∑
τ=1

α2
τE∥∇f(x̄τ )∥2 . (10)

A key component in our proof is bounding BT , which is
essentially the sum of weighted squared biases. As we show
in Section 4.4, this term is bounded as follows:

BT ≤ K2σ̃2η2

2ρ4

T∑
τ=1

α2
τ .

Therefore, from Equation (10), we get:

α1:t∆t ≤
D2

1

η
+

3σ2η

M

T∑
τ=1

α2
τ +

4K2σ̃2η3T

ρ4

T∑
τ=1

α2
τ

+ 3η

T∑
τ=1

α2
τE∥∇f(x̄τ )∥2 . (11)

For the last sum, the smoothness of f implies that
∥∇f(x)∥2 ≤ 2L(f(x)− f∗) for all x ∈ Rd, yielding:

T∑
τ=1

α2
τE∥∇f(x̄τ )∥2 ≤ 2L

T∑
τ=1

α2
τ∆τ ≤ 4L

T∑
τ=1

α1:τ∆τ ,

where the last inequality follows from α2
τ = τ2 ≤ 2α1:τ .

Substituting this bound into (11) and recalling that η ≤
1

24LT , we obtain:

α1:t∆t ≤
D2

1

η
+

3σ2η

M

T∑
τ=1

α2
τ +

4K2σ̃2η3T

ρ4

T∑
τ=1

α2
τ

+
1

2T

T∑
τ=1

α1:τ∆τ . (12)

Observe that at := α1:t∆t follows the structure at ≤ b +
1
2T

∑T
τ=1 aτ , ∀t ∈ [T ], which implies that at ≤ 2b for all

t ∈ [T ] (see Lemma D.3). In particular, for t = T , we get:

α1:T∆T ≤ 2D2
1

η
+

6σ2η

M

T∑
τ=1

α2
τ +

8K2σ̃2η3T

ρ4

T∑
τ=1

α2
τ .

Dividing by α1:T , noting that
∑T

τ=1 α2
τ

α1:T
≤ T for linear

weights, and appropriately tuning the learning rate con-
cludes the proof.

4.4. Bounding the Bias

A central part of our analysis is bounding the bias introduced
by local model differences. The bias bound is formally
stated in Lemma 4.3, and the complete proof can be found
in Appendix B.2. A brief proof sketch is provided below.

Lemma 4.3. Consider the setting in Theorem 4.1 and let
ḡt :=

1
M

∑M
i=1 g

i
t and x̄t :=

1
M

∑M
i=1 x

i
t denote the aver-

age gradient and query point across machines at round t,
respectively. Then, for linear weights αt = t, and a learning
rate bounded as η ≤ ρ2

K , the following bound holds:

BT := E

[
T∑

τ=1

α2
τ∥Eḡτ −∇f(x̄τ )∥2

]
≤ K2σ̃2η2

2ρ4

T∑
τ=1

α2
τ .

where we recall that K2 := 5120L2 and σ̃2 := 2σ2 + ζ2.

Proof Sketch. By Jensen’s inequality and the smoothness
of each fi, we can bound each term in the sum as follows:

E∥Eḡτ −∇f(x̄τ )∥2 ≤ 1

M

M∑
i=1

E∥∇fi(x
i
τ )−∇fi(x̄τ )∥2

≤ L2

M

M∑
i=1

E∥xi
τ − x̄τ∥2 .

As previously defined, let Γt :=
1
M

∑M
i=1 E∥xi

t − x̄t∥2 de-
note the average consensus distance of the query points at
round t. Thus,

BT ≤ L2
T∑

τ=1

α2
τΓτ . (13)

Our objective is therefore to bound Γτ for every τ ∈ [T ].
Using standard gossip averaging analysis and the query
points averaging, we derive the following recursion for Γt:

Γt+1 ≤
(
1− ρ

2

)
Γt +

4δ2t
ρ

(
Ξt + η2α2

tΨt

)
, (14)

recalling that Ξt := 1
M

∑M
i=1 E∥wi

t − w̄t∥2 and Ψt :=
1
M

∑M
i=1 E∥git − ḡt∥2 represent the average consensus dis-

tances of the iterates and gradients at round t, respectively,
and using δt :=

αt

α1:t
. Notably, Ξt satisfies its own recursion

(see Lemma C.4):

Ξt+1 ≤
(
1− ρ

2

)
Ξt +

2η2α2
t

ρ
Ψt .

Solving this recursion yields the following for all t ∈ [T ]:

Ξt ≤
2η2α2

t

ρ

t−1∑
τ=1

(
1− ρ

2

)t−1−τ

Ψτ .

7
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Substituting this back into (14) gives:

Γt+1 ≤
(
1− ρ

2

)
Γt

+
4η2α2

t δ
2
t

ρ

(
Ψt +

2

ρ

t−1∑
τ=1

(
1− ρ

2

)t−1−τ

Ψτ

)
.

In Lemma C.2, we show that Ψt ≤ 5σ̃2 + 10L2Γt for all
t ∈ [T ]. Plugging this bound, noting that for linear weights
α2
t δ

2
t = O(1), and using some algebra, we obtain:

Γt+1 ≤
(
1− κ+

c21η
2

κ

)
Γt

+
c21η

2

κ2

t−1∑
τ=1

(1− κ)t−1−τΓτ +
c22η

2

κ3
,

where κ = ρ
2 , c21 = Θ(K2), and c22 = Θ(σ̃2). We have

now derived a recursion for Γt that no longer depends on
Ξt or Ψt. For a sufficiently small learning rate, specifically
η ≤ ρ2

K , this recursion can be explicitly solved, yielding:

Γt ≤
2c22η

2

κ4
= Θ

(
σ̃2η2

ρ4

)
.

Injecting this bound into (13) yields the result:

BT ≤ L2
T∑

τ=1

α2
τΓτ = Θ

(
K2σ̃2η2

ρ4

T∑
τ=1

α2
τ

)
.

5. Experiments
In this section, we empirically evaluate our method on both a
synthetic least squares problem and an image classification
task. All experiments are conducted using three random
seeds, and we report the averaged results.

5.1. Least Squares on Synthetic Data

We begin with a synthetic least squares problem to il-
lustrate key theoretical properties of our algorithm. For
each machine, the local objective function is defined as
fi(x) =

1
2∥Aix− bi∥2, where Ai ∈ Rd×d is drawn from a

standard multivariate normal distribution. The targets vec-
tor is set as bi = Ai(x

♯ − δi), where x♯ ∼ N (0, 1
dId) is

sampled once per configuration, and δi ∼ N (0, ζ2

d Id) in-
troduces heterogeneity across machines.1 To incorporate
stochasticity, we add Gaussian noise ξ ∼ N (0, σ2

d Id) when
querying local gradients, resulting in the noisy gradient
estimate ∇fi(x) + ξ. In our experiments, we set d = 50.

We compare our method with D-SGD, evaluating per-
formance across three network topologies: ring, torus,

1Here, ζ2 quantifies heterogeneity at the optimum.
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Figure 1. Final error on synthetic least squares problem for dif-
ferent numbers of machines and various gradient noise variance
(σ2) and heterogeneity (ζ2) levels over ring, torus, and expo-
nential graph topologies. We plot 1

M

∑M
i=1 ∥x

i
T − x∗∥2 and

1
M

∑M
i=1 ∥w

i
T − x∗∥2 for DAT-SGD and D-SGD, respectively.

and 1-peer exponential graph (Ying et al., 2021). The
exponential graph is a fast-mixing topology for which
1/ρ = O(logM). For each method and topology,
we perform a grid search over the learning rate η ∈
{0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1} and select
the value that yields the lowest error after 100K iterations.
For DAT-SGD, we use constant weights αt = 1 for all t.

In Figure 1, we plot the final error as a function of the
number of machines, across four configurations defined by
σ, ζ ∈ {1, 10}, with different colors indicating the underly-
ing topology. For D-SGD, we observe that performance de-
grades on the ring and torus topologies starting from M = 4
and M = 9, respectively, while it remains relatively stable
on the 1-peer exponential graph. In contrast, our method
improves with larger M : performance steadily improves on
the torus and exponential graphs, and performs better on
the ring topology up to M = 25 before deteriorating. This
suggests that, beyond a certain threshold (between M = 25
and 49), the network-dependent error term (which scales
as O(1/ρT ) = O(M2/T ) for the ring) becomes dominant.
Overall, the results align with our theoretical findings, as
DAT-SGD enables performance improvement for larger M .
We provide complete convergence curves in Appendix E.

5.2. Image Classification with a Neural Network

Next, we evaluate our method on the Fashion MNIST (Xiao
et al., 2017) image classification task using the LeNet (Le-
Cun et al., 1998) architecture. The data is partitioned among

8
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Figure 2. Test accuracy on Fashion MNIST for different numbers
of machines (across rows) and varying heterogeneity levels (across
columns) on the ring and the Base-2 graph topologies.

workers following a Dirichlet distribution with parameter α,
which controls the heterogeneity level (Hsu et al., 2019).

We compare our method against D-SGD and D2 (Tang et al.,
2018b), a decentralized optimization method specifically
designed to improve robustness to data heterogeneity. Exper-
iments are performed on the ring topology and the Base-2
Graph (Takezawa et al., 2023)—a time-varying, state-of-the-
art topology for decentralized learning. For our method and
D-SGD, we use momentum with parameter β = 0.9. For
each method and topology, the learning rate was selected
via grid search over η ∈ {0.001, 0.01, 0.1}.

Unlike the synthetic least squares problem, this task is non-
convex. Following the heuristic proposed by Dahan & Levy
(2025), we adopt a momentum-like update for Anytime
averaging of the form xt+1 = γtxt + (1 − γt)wt, using a
fixed value of γt = 0.9. This choice was shown to enhance
training stability and adaptability in non-convex landscapes.

Figure 2 depicts the test accuracy for M = 8 and 16 ma-
chines under heterogeneous (α = 0.1) and nearly homoge-
neous (α = 10) data, with different colors indicating the
compared methods. In the heterogeneous case, our method
consistently outperforms the baselines across both topolo-
gies, with results on the ring matching (for M = 8) or
nearly matching (for M = 16) those of the baselines on
the well-connected Base-2 Graph. Conversely, and perhaps
unexpectedly, under homogeneous data, D-SGD and D2

achieve better performance, motivating further investigation
into this gap across data regimes in non-convex settings. In
Figure 3, similar to Figure 1, we show the final accuracy
for different numbers of machines on the ring topology with

4 8 16 32
Number of Machines (M)

60

65

70

75

80

85

90

Fin
al

 A
cc

ur
ac

y

Ring, =0.1
DAT-SGD
DSGD
D2

Figure 3. Final test accuracy on Fashion MNIST for varying num-
ber of machines on the ring topology with heterogeneous data.

heterogeneous data (α = 0.1). Notably, the largest accu-
racy drop for DAT-SGD occurs between M = 8 and 16,
whereas D-SGD and D2 degrade most between M = 4 and
8, demonstrating our claim of improved parallelism.

6. Conclusion and Future Work
In this work, we presented DAT-SGD, a simple yet powerful
approach to decentralized SCO that raises the parallelism
threshold, enabling to increase the number of machines
in the network while maintaining linear speed-up. This is
achieved by effectively mitigating the consensus distance us-
ing the Anytime SGD mechanism, which computes stochas-
tic gradients at gradually changing query points, thereby
limiting local model divergence.

Several promising directions emerge from our work. One
is integrating our method with gradient tracking, which has
been shown to remove dependence on data heterogeneity
(Koloskova et al., 2021). Moreover, we assume the gossip
matrix is symmetric and doubly stochastic, allowing us to
use Property 2.6 for a clear and simple analysis. Extending
our results to asymmetric or row/column stochastic matrices,
as in, e.g., (Assran et al., 2019), remains an open problem.
Finally, establishing convergence bounds in the non-convex
setting is a compelling challenge for future research.
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A. Anytime SGD Analysis
In this section, we discuss key properties of Anytime SGD with biased gradients. The main result is Lemma A.3, which will
later be adapted to the decentralized, gossip-based communication setup in Appendix B

For an initial iterate w1 ∈ Rd, learning rate η > 0, and non-negative weights {αt}t≥1, we consider the sequences {wt}t≥1

and {xt}t≥1, defined by the update rules:

wt+1 = wt − ηαtgt, (15)

xt+1 =
α1:t−1

α1:t
xt +

αt

α1:t
wt+1, with x1 = w1 . (16)

Here, gt is a biased estimate of the gradient of some function f at xt.

The following result mimics the gradient inequality for the {αt}t≥1-weighted averages.

Lemma A.1 (Cutkosky, 2019; Theorem 1, Dahan & Levy, 2024). Let f : Rd → R be a convex function with global
minimum f∗ := f(x∗), and let the sequence {xt}t≥1 be defined as in Equation (16). Then, for any t ≥ 1, the following
holds:

0 ≤ α1:t (f(xt)− f∗) ≤
t∑

τ=1

ατ∇f(xτ )
⊤(wτ − x∗) .

Next, we present a regret bound for online gradient descent with weighted gradients.

Lemma A.2 (Cutkosky, 2019; Lemma 2, Dahan & Levy, 2024). Consider the update rule in Equation (15). Then, for all
t ≥ 1, it holds that:

t∑
τ=1

ατg
⊤
τ (wτ − x∗) ≤ ∥w1 − x∗∥2

2η
+

η

2

t∑
τ=1

α2
τ ∥gτ∥

2
.

The following result is fundamental to our analysis and plays a key role in establishing our main proof. The analysis closely
follows that of Dahan & Levy (2024) and is included here for completeness; see Appendix F therein for further details.

Lemma A.3. For the sequences {wt}t≥1 and {x}t≥1 defined in Equations (15) and (16), the following holds for any t ≥ 1:

α1:tE [f(xt)− f∗] ≤ ∥w1 − x∗∥2

η
+ η

T∑
τ=1

α2
τE∥gτ∥

2
+ 4ηT

T∑
τ=1

α2
τE∥Egτ −∇f(xτ )∥2 .

Proof. Lemma A.1 implies the following:

α1:tE [f(xt)− f∗] ≤ E

[
t∑

τ=1

ατ∇f(xτ )
⊤(wt − x∗)

]

= E

[
t∑

τ=1

ατg
⊤
τ (wτ − x∗)

]
+ E

[
t∑

τ=1

ατ (∇f(xτ )− gτ )
⊤
(wτ − x∗)

]

≤ ∥w1 − x∗∥2

2η
+

η

2

t∑
τ=1

α2
τE∥gτ∥

2
+

t∑
τ=1

E
[
ατ (∇f(xτ )− gτ )

⊤
(wτ − x∗)

]
, (17)

where the last inequality follows from Lemma A.2. Every element in the rightmost sum can be bounded using Cauchy-
Schwarz inequality and Young’s inequality, a · b ≤ 1

2θ ∥a∥
2
+ θ

2 ∥b∥
2, which holds for any θ > 0, yielding:

E
[
ατ (∇f(xτ )− gτ )

⊤
(wτ − x∗)

]
= E

[
ατ (∇f(xτ )− Egτ )⊤ (wτ − x∗)

]
≤ E [ατ ∥Egτ −∇f(xτ )∥ · ∥wτ − x∗∥]

≤ α2
τ

2θ
E∥Egτ −∇f(xτ )∥2 +

θ

2
E∥wτ − x∗∥2 , (18)

where the first equality follows from the law of total expectation.
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Substituting (18) into (17) gives:

α1:t (f(xt)− f∗) ≤ ∥w1 − x∗∥2

2η
+

η

2

t∑
τ=1

α2
τE∥gτ∥

2
+

1

2θ

t∑
τ=1

α2
τE∥Egτ −∇f(xτ )∥2 +

θ

2

t∑
τ=1

E∥wτ − x∗∥2

≤ ∥w1 − x∗∥2

2η
+

η

2

T∑
τ=1

α2
τE∥gτ∥

2
+

1

2θ

T∑
τ=1

α2
τE∥Egτ −∇f(xτ )∥2 +

θ

2

T∑
τ=1

E∥wτ − x∗∥2 ,

where the last inequality follows from the last three terms being monotonically increasing with t. Lemma 3 of Dahan &
Levy (2024) guarantees that for sequences {wt}t≥1 and {x}t≥1 as defined in Equations (15) and (16), the following holds:

T∑
τ=1

E∥wt − x∗∥2 ≤ 2T ∥w1 − x∗∥2 + 2Tη2
T∑

τ=1

α2
τE∥gτ∥

2
+ 16η2T 2

T∑
τ=1

α2
τE∥Egτ −∇f(xτ )∥2 ,

which in turn implies that for θ = 1
4ηT :

α1:tE [f(xt)− f∗] ≤
(

1

2η
+ θT

)
∥w1 − x∗∥2 +

(η
2
+ θTη2

) T∑
t=1

α2
tE∥gt∥

2

+

(
1

2θ
+ 8θη2T 2

) T∑
τ=1

α2
τE∥Egτ −∇f(xτ )∥2

=
3 ∥w1 − x∗∥2

4η
+

3η

4

T∑
t=1

α2
tE∥gt∥

2
+ 4ηT

T∑
τ=1

α2
τE∥Egτ −∇f(xτ )∥2

≤ ∥w1 − x∗∥2

η
+ η

T∑
t=1

α2
tE∥gt∥

2
+ 4ηT

T∑
τ=1

α2
τE∥Egτ −∇f(xτ )∥2 ,

thus concluding the proof.

B. Proof of Theorem 4.1
In this section, we prove our main result. To simplify the presentation and analysis, we first introduce some notations:

Xt :=
(
x1
t x2

t · · · xM
t

)
∈ Rd×M , X̄t := Xt

1

M
11⊤ =

(
x̄t x̄t · · · x̄t

)
∈ Rd×M ,

Wt :=
(
w1

t w2
t · · · wM

t

)
∈ Rd×M , W̄t := Wt

1

M
11⊤ =

(
w̄t w̄t · · · w̄t

)
∈ Rd×M ,

Gt :=
(
g1t g2t · · · gMt

)
∈ Rd×M , Ḡt := Gt

1

M
11⊤ =

(
ḡt ḡt · · · ḡt

)
∈ Rd×M ,

with x̄t =
1
M

∑M
i=1 x

i
t, w̄t =

1
M

∑M
i=1 w

i
t, and ḡt =

1
M

∑M
i=1 g

i
t.

Denoting δt =
αt

α1:t
, our Decentralized Anytime SGD algorithm can be expressed using matrix notation as follows:

Local update and averaging:

{
Wt+ 1

2
= Wt − ηαtGt

Xt+ 1
2
= (1− δt)Xt + δtWt+ 1

2

Gossip communication:

{
Wt+1 = Wt+ 1

2
P

Xt+1 = Xt+ 1
2
P .

We also define the expected average distance between local elements and their mean, commonly referred to as the consensus
distance. Specifically, we define consensus distances for the iterates, the query points (i.e., the {αt}t≥1-weighted iterates),

13
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and the gradients:

Γt :=
1

M

M∑
i=1

E
∥∥xi

t − x̄t

∥∥2 =
1

M
E
∥∥Xt − X̄t

∥∥2
F
,

Ξt :=
1

M

M∑
i=1

E
∥∥wi

t − w̄t

∥∥2 =
1

M
E
∥∥Wt − W̄t

∥∥2
F
,

Ψt :=
1

M

M∑
i=1

E
∥∥git − ḡt

∥∥2 =
1

M
E
∥∥Gt − Ḡt

∥∥2
F

.

First, we establish that the sequence of query points average over machines {x̄t}t≥1 is indeed an {αt}t≥1-weighted average
of the sequence of iterates average over machines {w̄t}t≥1. This allows us to apply the results from Appendix A on Anytime
SGD to analyze the consensus iterates.

Lemma B.1. The sequence {x̄t}t≥1 is an {αt}t≥1-weighted average of the sequence {w̄t}t≥1.

Proof. Using matrix notation and the linearity of averaging, we have:

X̄t+1 = X̄t+ 1
2
P = X̄t+ 1

2
=

α1:t−1

α1:t
X̄t +

αt

α1:t
W̄t+ 1

2
=

α1:t−1

α1:t
X̄t +

αt

α1:t
W̄t+ 1

2
P =

α1:t−1

α1:t
X̄t +

αt

α1:t
W̄t+1 ,

where the second and fourth equalities follow from Lemma D.1, implying that gossip communication preserves averages.

Next, we establish the convergence of Algorithm 2, as stated in Theorem 4.1, which we restate here for ease of reference.

Theorem 4.1. Under Assumptions 2.1-2.3, consider Algorithm 2 with linear weights αt = t and a learning rate given by

η = min

{
1

24LT
,
ρ2

K
,
D1

√
M√

3σT 3/2
,

√
D1

2Kσ̃

ρ

T

}
,

where D2
1 := ∥w1 − x∗∥2, K2 := 5120L2, and σ̃2 := 2σ2 + ζ2. Then, for all T ≥ 1, the following bound holds:

E[f(x̄T )− f∗] ≤ O

(
σD1√
MT

+
D

3/2
1

√
Lσ̃

ρT
+

LD2
1

T

)
,

where x̄T := 1
M

∑M
i=1 x

i
T .

Proof. For any t ∈ [T ], define ∆t := E[f(x̄t)− f∗]. We analyze the consensus iterates, which (according to Lemma B.1)
follow the structure of Anytime SGD as defined in Equations (15) and (16), namely,

w̄t+1 = w̄t − ηαtḡt, and x̄t+1 = (1− δt)x̄t + δtw̄t+1.

Therefore, by Lemma A.3, we have:

α1:t∆t ≤
∥w̄1 − x∗∥2

η
+ η

T∑
τ=1

α2
τE∥ḡτ∥

2
+ 4ηT

T∑
τ=1

α2
τE∥Eḡτ −∇f(x̄τ )∥2

=
D2

1

η
+ η

T∑
τ=1

α2
τE∥ḡτ∥

2

︸ ︷︷ ︸
(A)

+4ηT ·BT , (19)

where BT :=
∑T

τ=1 α
2
τE∥Eḡτ −∇f(x̄τ )∥2, and we also used w̄1 = w1.
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Bounding (A). We focus on E ∥ḡτ∥2. By adding and subtracting Eḡτ and ∇f(x̄τ ), and applying the inequality
∥a+ b+ c∥2 ≤ 3 ∥a∥2 + 3 ∥b∥2 + 3 ∥c∥2, we obtain:

E∥ḡτ∥2 = E∥ḡτ − Eḡτ + Eḡτ −∇f(x̄τ ) +∇f(x̄τ )∥2

≤ 3E∥ḡτ − Eḡτ∥2 + 3E∥Eḡτ −∇f(x̄τ )∥2 + 3E∥∇f(x̄τ )∥2

≤ 3σ2

M
+ 3E∥Eḡτ −∇f(x̄τ )∥2 + 3E∥∇f(x̄τ )∥2 ,

where the last inequality holds because
{
giτ −∇fi(x

i
τ )
}
i∈[M ]

are independent, zero-mean, and have variance at most σ2:

E∥ḡτ − Eḡτ∥2 = E

∥∥∥∥∥ 1

M

M∑
i=1

(
giτ −∇fi(x

i
τ )
)∥∥∥∥∥

2

=
1

M2

M∑
i=1

E
∥∥git −∇fi(x

i
τ )
∥∥2 ≤ σ2

M
.

Thus, (A) is bounded as follows,

T∑
τ=1

α2
tE∥ḡτ∥

2 ≤ 3σ2

M

T∑
τ=1

α2
τ + 3BT + 3

T∑
τ=1

α2
τE∥∇f(x̄τ )∥2 .

Plugging this bound back into (19), we get:

α1:t∆t ≤
D2

1

η
+ η

(
3σ2

M

T∑
τ=1

α2
τ + 3VT + 3

T∑
τ=1

α2
τE∥∇f(x̄τ )∥2

)
+ 4ηT · VT

=
D2

1

η
+

3σ2η

M

T∑
τ=1

α2
τ + (3η + 4ηT ) ·BT + 3η

T∑
τ=1

α2
τE∥∇f(x̄τ )∥2

≤ D2
1

η
+

3σ2η

M

T∑
τ=1

α2
τ + 8ηT ·BT + 3η

T∑
τ=1

α2
τE∥∇f(x̄τ )∥2 . (20)

For linear weights αt = t and learning rate upper bounded by ρ2

K , Lemma 4.3 provides the following bound on BT (see
proof in Appendix B.2 below):

BT ≤ K2σ̃2η2

2ρ4

T∑
τ=1

α2
τ .

Substituting this bound back to Equation (20), we obtain:

α1:t∆t ≤
D2

1

η
+

3σ2η

M

T∑
τ=1

α2
τ +

4K2σ̃2η3T

ρ4

T∑
τ=1

α2
τ + 3η

T∑
τ=1

α2
τE∥∇f(x̄τ )∥2 .

The rightmost term is be bounded as follows:

T∑
τ=1

α2
tE∥∇f(x̄τ )∥2 ≤ 2L

T∑
τ=1

α2
τ∆τ ≤ 4L

T∑
τ=1

α1:τ∆τ ,

where the first inequality follows from Lemma D.2 (i.e., ∥∇f(x̄τ )∥2 ≤ 2L(f(x̄τ )− f∗)), and the second inequality arises
from α2

t = t2 ≤ t(t+ 1) = 2α1:t. Therefore,

α1:t∆t ≤
D2

1

η
+

3σ2η

M

T∑
τ=1

α2
τ +

4K2σ̃2η3T

ρ4

T∑
τ=1

α2
τ + 12Lη

T∑
τ=1

α1:τ∆τ

≤ D2
1

η
+

3σ2η

M

T∑
τ=1

α2
τ +

4K2σ̃2η3T

ρ4

T∑
τ=1

α2
τ +

1

2T

T∑
τ=1

α1:τ∆τ ,
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where the last inequality holds true for η ≤ 1
24LT . Applying Lemma D.3 with at = α1:t∆t and b =

D2
1

η + 3σ2η
M

∑T
τ=1 α

2
τ +

4K2σ̃2η3T
ρ4

∑T
τ=1 α

2
τ yields (for t = T ):

α1:T∆T ≤ 2b

≤ 2D2
1

η
+

6σ2η

M

T∑
τ=1

α2
τ +

8K2σ̃2η3T

ρ4

T∑
τ=1

α2
τ

≤ 2D2
1

η
+

6σ2ηT 3

M
+

8K2σ̃2η3T 4

ρ4
,

where the second inequality holds as
∑T

t=1 α
2
t =

∑T
t=1 t

2 ≤ T 3. Thus, employing Lemma D.6 with A = 2D2
1 , B = 6σ2T 3

M ,

C = 8K2σ̃2T 4

ρ4 , and η1 = min
{

1
24LT ,

ρ2

K

}
, we get:

α1:T∆T ≤ A

η1
+ 2

√
AB + 2A3/4C1/4

≤ 2D2
1

(
24LT +

K

ρ2

)
+ 2

√
12D2

1σ
2T 3

M
+ 2

(
2D2

1

)3/4(8K2σ̃2T 4

ρ4

)1/4

=
4
√
3D1σT

3/2

√
M

+
4
√
2D

3/2
1

√
Kσ̃T

ρ
+ 48LD2

1T +
2KD2

1

ρ2
.

Finally, dividing by α1:T = T (T+1)
2 ≥ T 2

2 , we obtain the result as:

∆T = E[f(x̄T )− f∗] ≤ 8
√
3D1σ√
MT

+
8
√
2D

3/2
1

√
Kσ̃

ρT
+

96LD2
1

T
+

4KD2
1

ρ2T 2

= O

(
D1σ√
MT

+
D

3/2
1

√
L(σ + ζ)

ρT
+

LD2
1

T
+

LD2
1

ρ2T 2

)
.

B.1. Proof of Corollary 4.2

Next, we demonstrate the convergence of the local iterates.

Proof. Let i ∈ [M ]. By the smoothness of the f , it holds that:

E[f(xi
T )− f∗] = E[f(xi

T )− f(x̄T )] + E[f(x̄T )− f∗]

≤ E
[
∇f(x̄T )

⊤(xi
T − x̄T ) +

L

2

∥∥xi
T − x̄T

∥∥2]+ E[f(x̄T )− f∗]

≤ 1

2θ
E ∥∇f(x̄T )∥2 +

θ + L

2
E
∥∥xi

T − x̄T

∥∥2 + E[f(x̄T )− f∗] ,

where the last inequality holds for any θ > 0 due to Young’s inequality, a⊤b ≤ 1
2θ∥a∥

2 + θ
2∥b∥

2. Setting θ = L and using
Lemma D.2 to upper bound ∥∇f(x̄T )∥2 by 2L(f(x̄T )− f∗), we get:

E[f(xi
T )− f∗] ≤ 1

2L
E ∥∇f(x̄T )∥2 + LE

∥∥xi
T − x̄T

∥∥2 + E[f(x̄T )− f∗]

≤ 2E[f(x̄T )− f∗] + LE
∥∥xi

T − x̄T

∥∥2
≤ 2E[f(x̄T )− f∗] + L

M∑
i=1

E
∥∥xi

T − x̄T

∥∥2
= 2E[f(x̄T )− f∗] + LMΓT .
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Using Lemma C.3, which applies under the conditions of Theorem 4.1, we can bound ΓT by 2560σ̃2η2/ρ4, where
σ̃2 := 2σ2 + ζ2. In addition, the learning rate in Theorem 4.1 satisfies η2 ≤ D1ρ

2/2Kσ̃T 2, where K :=
√
5120L.

Therefore, we obtain:

E[f(xi
T )− f∗] ≤ 2E[f(x̄T )− f∗] +

2560LMσ̃2η2

ρ4
≤ 2E[f(x̄T )− f∗] +

8
√
5MD1σ̃

ρ2T 2
.

Plugging the bound on E[f(x̄T )− f∗] from Theorem 4.1 establishes the result:

E[f(xi
T )− f∗] ≤ 16

√
3D1σ√
MT

+
16

√
2D

3/2
1

√
Kσ̃

ρT
+

192LD2
1

T
+

8KD2
1

ρ2T 2
+

8
√
5MD1σ̃

ρ2T 2

= O

(
D1σ√
MT

+
D

3/2
1

√
Lσ̃

ρT
+

LD2
1

T
+

MD1σ̃

ρ2T 2

)
.

In terms on the total of samples N = MT , the established rate is given by:

E[f(xi
T )− f∗] ≤ O

(
D1σ√
N

+
MD

3/2
1

√
Lσ̃

ρN
+

MLD2
1

N
+

M3D1σ̃

ρ2N2

)
.

Therefore, ignoring the dependence on L,D1, σ and ζ (i.e., assuming they all equal 1), the parallelism bound (i.e., the
maximal asymptotic M for which the rate is O(1/

√
N)) is:

M ≤ O
(
min

{
ρ
√
N,

√
N, ρ2/3

√
N
})

= O(ρ
√
N) .

B.2. Proof of Lemma 4.3

Proof. We aim to prove that:

BT := E

[
T∑

τ=1

α2
τ∥Eḡτ −∇f(x̄τ )∥2

]
≤ K2σ̃2η2

2ρ4

T∑
τ=1

α2
τ ,

where K2 := 5120L2 and σ̃2 := 2σ2 + ζ2.

Focusing on E∥Eḡτ −∇f(x̄τ )∥2 and using the convexity of ∥·∥2, we apply Jensen’s inequality to obtain:

E∥Eḡτ −∇f(x̄τ )∥2 = E

∥∥∥∥∥ 1

M

M∑
i=1

(
∇fi(x

i
τ )−∇fi(x̄τ )

)∥∥∥∥∥
2

≤ 1

M

M∑
i=1

E
∥∥∇fi(x

i
τ )−∇fi(x̄τ )

∥∥2
≤ L2

M

M∑
i=1

E
∥∥xi

τ − x̄τ

∥∥2
= L2Γτ ,

where the second inequality follows from the smoothness of fi. Using Lemma C.3, which applies specifically to linear
weights αt = t and a learning rate bounded as η ≤ ρ2

K = ρ2

8
√
80L

we bound Γτ and derive a corresponding bound for BT :

BT =

T∑
τ=1

α2
τE∥Eḡτ −∇f(x̄τ )∥2 ≤ L2

T∑
τ=1

α2
τΓτ ≤ 2560L2σ̃2η2

ρ4

T∑
τ=1

α2
τ =

K2σ̃2η2

2ρ4

T∑
τ=1

α2
τ ,

which concludes the proof.
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C. Consensus Recursion Analysis
In this section, we analyze the consensus distances Γt,Ξt, and Ψt. We begin by observing that Γt follows a recursive
relation (Equation (24)), where Γt+1 depends not only on Γt but also on Ξt and Ψt. Similarly, Ξt satisfies its own recursion,
with Ξt+1 depending on Ξt and Ψt (Lemma C.4).

To simplify the analysis, we first solve the recursion for Ξt, allowing us to express Γt in terms of Ψt alone, eliminating the
dependence on Ξt (Lemma C.1). Finally, in Lemma C.2, we bound Ψt in terms of the problem parameters (σ and ζ) and Γt,
enabling us to explicitly solve the recursion for Γt (Lemma C.3).

C.1. Consensus of the Query Points

The next result establishes a recursion for the consensus distance of the query points Xt.

Lemma C.1. For all t ≥ 1, the consensus distance of the query points (i.e., averaged iterates) Γt satisfies the following
recursion:

Γt+1 ≤
(
1− ρ

2

)
Γt +

4η2α2
t δ

2
t

ρ

(
Ψt +

2

ρ

t∑
τ=1

(
1− ρ

2

)t−1−τ

Ψτ

)
.

Proof. The gossip averaging of the query points leads to the following inequality:

MΓt+1 = E∥Xt+1 − X̄t+1∥2F = E∥Xt+ 1
2
P − X̄t+ 1

2
∥2F ≤ (1− ρ)E∥Xt+ 1

2
− X̄t+ 1

2
∥2F , (21)

where we used Lemma D.1, stating that X̄t+ 1
2
P = X̄t+ 1

2
, and the mixing property of the gossip matrix (Property 2.6).

Substituting the query points averaging, Xt+ 1
2
= (1−δt)Xt+δtWt+ 1

2
, and using ∥a+ b∥2 ≤ (1+β−1) ∥a∥2+(1+β) ∥b∥2

(which holds for any β > 0), we obtain:

MΓt+1 ≤ (1− ρ)E∥Xt+ 1
2
− X̄t+ 1

2
∥2F

= (1− ρ)E∥(1− δt)Xt + δtWt+ 1
2
− ((1− δt)X̄t + δtW̄t+ 1

2
)∥2F

≤ (1− ρ)

(
1 +

1

β

)
(1− δt)

2E∥Xt − X̄t∥2F + (1− ρ) (1 + β) δ2tE∥Wt+ 1
2
− W̄t+ 1

2
∥2F

≤ (1− ρ)

(
1 +

1

β

)
MΓt + (1− ρ)(1 + β)δ2t E∥Wt+ 1

2
− W̄t+ 1

2
∥2F︸ ︷︷ ︸

(⋆)

, (22)

where the last inequality follows from (1− δt)
2 ≤ 1. Focusing on (⋆) and plugging the iterate update rule, we have for all

γ > 0:

E∥Wt+ 1
2
− W̄t+ 1

2
∥2F = E∥Wt − ηαtGt − (W̄t − ηαtḠt)∥2F

≤
(
1 +

1

γ

)
E∥Wt − W̄t∥2F + (1 + γ) η2α2

tE∥Gt − Ḡt∥2F

=

(
1 +

1

γ

)
MΞt + (1 + γ)η2α2

tMΨt . (23)

Substituting (23) into (22), setting β = 2/ρ and γ = 1, and dividing by M , we get:

Γt+1 ≤ (1− ρ)
(
1 +

ρ

2

)
Γt + (1− ρ)

(
1 +

2

ρ

)
δ2t
(
2Ξt + 2η2α2

tΨt

)
≤
(
1− ρ

2

)
Γt +

4δ2t
ρ

(
Ξt + η2α2

tΨt

)
, (24)

where in the second inequality we used (1− ρ)(1 + ρ
2 ) = 1− ρ

2 − ρ2

2 ≤ 1− ρ
2 and (1− ρ)(1 + 2

ρ ) = −1− ρ+ 2
ρ ≤ 2

ρ .
Note that we derived a recursion for Γt, which also involves Ξt. The consensus distance of the iterates, Ξt, satisfies its own
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recursion as stated in Lemma C.4, from which an explicit bound is provided in Lemma C.5. Substituting this bound yields:

Γt+1 ≤
(
1− ρ

2

)
Γt +

4δ2t
ρ

(
2η2α2

t

ρ

t−1∑
τ=1

(
1− ρ

2

)t−1−τ

Ψτ + η2α2
tΨt

)

=
(
1− ρ

2

)
Γt +

4η2α2
t δ

2
t

ρ

(
Ψt +

2

ρ

t−1∑
τ=1

(
1− ρ

2

)t−1−τ

Ψτ

)
, (25)

thus concluding the proof.

Note that the sequence Ψ1, . . . ,Ψt appears in the recursion given in Lemma C.1. We next provide an upper bound on Ψt in
terms of Γt, which will enable us to derive an explicit bound for Γt.

Lemma C.2. For every t ≥ 1, Ψt ≤ 5
(
2σ2 + ζ2

)
+ 10L2Γt.

Proof. Using ∥
∑N

n=1 un∥2 ≤ N
∑N

n=1 ∥un∥2, we have:

Ψt =
1

M

M∑
i=1

E∥git − ḡt∥2

=
1

M

M∑
i=1

E∥git − Egit + Egit − ḡt + Eḡt − Eḡt −∇fi(x̄t) +∇fi(x̄t)−∇f(x̄t) +∇f(x̄t)∥2

≤ 5

M

M∑
i=1

(
E∥git − Egit∥2 + E∥ḡt − Eḡt∥2 + E∥Egit −∇fi(x̄t)∥2 + E∥Eḡt −∇f(x̄t)∥2 + E∥∇fi(x̄t)−∇f(x̄t)∥2

)
.

(26)

Next, we individually bound each sum.

Bounding 1
M

∑M
i=1 E∥git − Egit∥2. By the bounded variance assumption, it holds that:

1

M

M∑
i=1

E∥git − Egit∥2 =
1

M

M∑
i=1

E∥∇fi(x
i
t, z

i
t)−∇fi(x

i
t)∥2 ≤ 1

M

M∑
i=1

σ2 = σ2 .

Bounding E∥ḡt − Eḡt∥2. Since git − Egit are independent, zero mean, and have variance bounded by σ2, it follows that:

E∥ḡt − Eḡt∥2 = E

∥∥∥∥∥ 1

M

M∑
i=1

(
git − Egit

)∥∥∥∥∥
2

=
1

M2

M∑
i=1

E∥git − Egit∥2 ≤ σ2

M
.

Bounding 1
M

∑M
i=1 E∥Egit −∇fi(x̄t)∥2. By the smoothness of fi,

1

M

M∑
i=1

E∥Egit −∇fi(x̄t)∥2 =
1

M

M∑
i=1

E∥∇fi(x
i
t)−∇fi(x̄t)∥

2 ≤ L2

M

M∑
i=1

E∥xi
t − x̄t∥2 = L2Γt .

Bounding E∥Eḡt −∇f(x̄t)∥2. By Jensen’s inequality and the smoothness of each fi, we have:

E∥Eḡt −∇f(x̄t)∥2 = E

∥∥∥∥∥ 1

M

M∑
i=1

(
∇fi(x

i
t)−∇fi(x̄t)

)∥∥∥∥∥
2

≤ 1

M

M∑
i=1

E∥∇fi(x
i
t)−∇fi(x̄t)∥2 ≤ L2Γt .
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Bounding 1
M

∑M
i=1 E∥∇fi(x̄t)−∇f(x̄t)∥2. By the heterogeneity assumption (Assumption 2.3),

1

M

M∑
i=1

E∥∇fi(x̄t)−∇f(x̄t)∥2 ≤ ζ2 .

Substituting these bounds back into Equation (26) implies the result as,

Ψt ≤ 5

(
σ2 +

σ2

M
+ 2L2Γt + ζ2

)
≤ 5

(
2σ2 + ζ2

)
+ 10L2Γt .

Using this, we now derive an explicit bound for Γt, specifically for linear weights and a sufficiently small learning rate.

Lemma C.3. For linear weights {αt = t}t≥1, and a learning rate η ≤ ρ2

8
√
80L

, the consensus distance of the query points
Γt is bounded as:

Γt ≤
2560σ̃2η2

ρ4
,

where σ̃2 := 2σ2 + ζ2.

Proof. First, observe that for linear weights αt = t, we have α1:t =
∑t

τ=1 τ = t(t+1)
2 , which implies that for all t ≥ 1:

δt =
αt

α1:t
=

2

t+ 1
, and αtδt =

2t

t+ 1
≤ 2 .

Thus, from Lemma C.1, we get:

Γt+1 ≤
(
1− ρ

2

)
Γt +

4ηα2
t δ

2
t

ρ

(
Ψt +

2

ρ

t−1∑
τ=1

(
1− ρ

2

)t−1−τ

Ψτ

)

≤
(
1− ρ

2

)
Γt +

16η

ρ

(
Ψt +

2

ρ

t−1∑
τ=1

(
1− ρ

2

)t−1−τ

Ψτ

)
.

where the second inequality follows from α2
t δ

2
t ≤ 4. Let σ̃2 := 2σ2 + ζ2. Then, by Lemma C.2, for all t ≥, we have

Ψt ≤ 5σ̃2 + 10L2Γt. Substituting this bound yields:

Γt+1 ≤
(
1− ρ

2

)
Γt +

80η2

ρ

(
σ̃2 + 2L2Γt +

2

ρ

t−1∑
τ=1

(
1− ρ

2

)t−1−τ (
σ̃2 + 2L2Γτ

))

=

(
1− ρ

2
+ 80L2η2 · 2

ρ

)
Γt + 80L2η2

(
2

ρ

)2

·
t−1∑
τ=1

(
1− ρ

2

)t−1−τ

Γτ +
80η2

ρ

(
1 +

2

ρ

t−1∑
τ=1

(
1− ρ

2

)t−1−τ
)
σ̃2

≤
(
1− ρ

2
+ c21η

2 · 2
ρ

)
Γt + c21η

2

(
2

ρ

)2

·
t−1∑
τ=1

(
1− ρ

2

)t−1−τ

Γτ +
c22η

2

ρ

(
1 +

4

ρ2

)

≤
(
1− ρ

2
+ c21η

2 · 2
ρ

)
Γt + c21η

2

(
2

ρ

)2

·
t−1∑
τ=1

(
1− ρ

2

)t−1−τ

Γτ + c22η
2

(
2

ρ

)3

, (27)

where c21 := 80L2, c22 := 80σ̃2, the final inequality holds because 1 ≤ 4
ρ2 , and the second inequality stems from the

following bound on the geometric sum:

t−1∑
τ=1

(
1− ρ

2

)t−1−τ

=

t−2∑
τ=0

(
1− ρ

2

)τ
≤

∞∑
τ=0

(
1− ρ

2

)τ
=

2

ρ
.
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Equation (27) exhibits a recursive structure as in Lemma D.5. Since η ≤ ρ2

8
√
80L

, the condition required to apply the lemma
is satisfied. Applying the lemma with at = Γt and κ = ρ

2 yields the final result:

Γt ≤
2c22η

2

κ4
=

2560σ̃2η2

ρ4
.

C.2. Consensus of the Iterates

The following lemma provides a recursive relation for the consensus distance of the iterates Wt.

Lemma C.4. The consensus distance for the iterates Ξt, satisfies the following recursive relation:

Ξt+1 ≤
(
1− ρ

2

)
Ξt +

2η2α2
t

ρ
Ψt .

Proof. Similarly to Equation (21), we have by the gossip averaging of the iterates:

MΞt+1 = E∥Wt+1 − W̄t+1∥2F = E∥Wt+ 1
2
P − W̄t+ 1

2
∥2F ≤ (1− ρ)E∥Wt+ 1

2
− W̄t+ 1

2
∥2F ,

where the second equality is due to Lemma D.1, stating that W̄t+ 1
2
P = W̄t+ 1

2
, and the inequality follows from the mixing

property of the gossip matrix Property 2.6. Substituting the bound on E∥Wt+ 1
2
− W̄t+ 1

2
∥2F in Equation (23) then yields:

MΞt+1 ≤ (1− ρ)

(
1 +

1

γ

)
MΞt + (1− ρ)(1 + γ)η2α2

tMΨt .

Dividing by M and setting γ = 2/ρ finally gives:

Ξt+1 ≤ (1− ρ)
(
1 +

ρ

2

)
Ξt + (1− ρ)

(
1 +

2

ρ

)
η2α2

tΨt ≤
(
1− ρ

2

)
Ξt +

2η2α2
t

ρ
Ψt ,

where in the last inequality we used (1− ρ)(1 + ρ
2 ) = 1− ρ

2 − ρ2

2 ≤ 1− ρ
2 and (1− ρ)(1 + 2

ρ ) = −1− ρ+ 2
ρ ≤ 2

ρ .

Using this recursion, we derive an explicit bound on Ξt as follows.

Lemma C.5. For any non-decreasing sequence {αt}t≥1, the consensus distance Ξt is bounded as:

Ξt ≤
2η2α2

t

ρ

t−1∑
τ=1

(
1− ρ

2

)t−1−τ

Ψτ

Proof. The recursion for Ξt in Lemma C.4 exhibits the structure in Lemma D.4. Applying the lemma with at = Ξt,
bt = η2α2

tΨt, and κ = ρ/2, we obtain:

Ξt ≤
2

ρ

t−1∑
τ=1

(
1− ρ

2

)t−1−τ

η2α2
τΨτ ≤ 2η2α2

t

ρ

t−1∑
τ=1

(
1− ρ

2

)t−1−τ

Ψτ ,

where in the last inequality we used α2
τ ≤ α2

t for all τ ≤ t.

D. Technical Lemmas
In this section, we list some technical lemmas, starting with the following property that establishes the invariance of gossip
communication when all machines hold the same vector.

Lemma D.1 (Proposition 1, Koloskova et al., 2020). Let x ∈ Rd. For any matrix X =
(
x x · · · x

)
∈ Rd×M and a

symmetric, doubly stochastic matrix P ∈ RM×M , we have XP = X .
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Next, we state a classical result for smooth functions.

Lemma D.2. Let f : Rd → R be an L-smooth function and x∗ ∈ argminx∈Rd f(x). Then, for every x ∈ Rd, it holds that:

∥∇f(x)∥2 ≤ 2L (f(x)− f(x∗)) .

The following lemma proves to be useful as well.

Lemma D.3. Consider a non-negative sequence a1, . . . , aT satisfying the following relation for any t ∈ [T ]:

at ≤ b+
1

2T

T∑
τ=1

aτ ,

for some constant b ∈ R. Then, for all t ∈ [T ], it holds that

at ≤ 2b .

Proof. Summing over t ∈ [T ], we have that:

T∑
t=1

at ≤ Tb+
1

2T

T∑
t=1

T∑
τ=1

aτ = Tb+
1

2

T∑
t=1

at .

Subtracting 1
2

∑T
t=1 at and multiplying by 2 results in

∑T
t=1 at ≤ 2Tb. Thus, we obtain:

at ≤ b+
1

2T

T∑
τ=1

aτ ≤ b+
1

2T
2Tb = 2b .

The following two lemmas are used to derive explicit bounds for the consensus recursions discussed in Appendix C.

Lemma D.4. Let κ ∈ (0, 1] and consider a sequence {at}t≥1 satisfying the recursion:

at ≤ (1− κ)at−1 +
bt−1

κ
, with a1 = 0,

for some non-negative sequence {bt}t≥1. Then, for all t ≥ 2, the following bound holds:

at ≤
1

κ

t−1∑
τ=1

(1− κ)t−1−τ bτ .

Proof. We prove the statement using induction.

Base case. For t = 2, since a1 = 0, it trivially follows that:

a2 ≤ (1− κ)a1 +
b1
κ

=
b1
κ

=
1

κ

1∑
τ=1

(1− κ)1−τ bτ .

Induction step. Assume that the induction hypothesis holds for some t ≥ 2. We show that it holds for index t+ 1:

at+1 ≤ (1− κ)at +
bt
κ

≤ (1− κ)
1

κ

t−1∑
τ=1

(1− κ)t−1−τ bτ +
bt
κ

=
1

κ

(
t−1∑
τ=1

(1− κ)
t−τ

bτ + bt

)
=

1

κ

t∑
τ=1

(1− κ)t−τ bτ .
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Lemma D.5. Let κ ∈ (0, 1] and consider a sequence {at}t≥1 satisfying the recursion:

at ≤
(
1− κ+

c21η
2

κ

)
at−1 +

c21η
2

κ2

t−2∑
τ=1

(1− κ)t−2−τaτ +
c22η

2

κ3
, with a1 = 0,

for some non-negative constants c1,c2, and η. Suppose η ≤ κ2

2c1
. Then, for all t ≥ 1, the following bound holds:

at ≤
2c22η

2

κ4
.

Proof. Similar to Lemma D.4, we prove this result by (strong) induction.

Base cases. For t = 1, the statement is trivial because a1 = 0 ≤ 2c22η
2/κ4. For t = 2, we have:

a2 ≤
(
1− κ+

c21η
2

κ

)
a1 +

c21η
2

κ2

0∑
τ=1

(1− κ)−τaτ +
c22η

2

κ3
=

c22η
2

κ3
≤ 2c22η

2

κ4
,

where the last inequality follows from 1 ≤ 2
κ as κ ≤ 1, thus verifying the base cases.

Induction step. Suppose that for some t ≥ 3, the induction hypothesis holds for all indices s = 1, . . . , t. We shall prove
that it then holds for t+ 1. Specifically, denoting the upper bound by B :=

2c22η
2

κ4 , we assume that as ≤ B for s = 1, . . . , t
and prove that at+1 ≤ B. Plugging the induction hypothesis into the recursion, we get:

at+1 ≤
(
1− κ+

c21η
2

κ

)
at +

c21η
2

κ2

t−1∑
τ=1

(1− κ)t−1−τaτ +
c22η

2

κ3

≤
(
1− κ+

c21η
2

κ

)
B +

c21η
2

κ2

t−1∑
τ=1

(1− κ)t−1−τB +
c22η

2

κ3

=

(
1− κ+

c21η
2

κ
+

c21η
2

κ2

t−1∑
τ=1

(1− κ)t−1−τ

)
B +

c22η
2

κ3

≤
(
1− κ+

c21η
2

κ
+

c21η
2

κ3

)
B +

c22η
2

κ3

≤
(
1− κ+

2c21η
2

κ3

)
B +

c22η
2

κ3
,

where the last inequality holds because 1
κ ≤ 1

κ3 for any κ ≤ 1, and the penultimate inequality results from the bound on the
geometric series:

t−1∑
τ=1

(1− κ)t−1−τ =

t−2∑
s=0

(1− κ)s ≤
∞∑
s=0

(1− κ)s =
1

κ
.

From the condition on η, it follows that 2c21η
2

κ3 ≤ κ
2 . Substituting this inequality and noting that c22η

2

κ3 = κ
2B, we obtain:

at+1 ≤
(
1− κ

2

)
B +

c22η
2

κ3
=
(
1− κ

2

)
B +

κ

2
B = B ,

thus establishing the result.

We also utilize the following result, which we prove using simple algebraic manipulation.

Lemma D.6. Let A ≥ 0 and B,C > 0, and define η = min
{
η1,
√
A/B, (A/C)

1/4
}

for some η1 > 0. Then,

A

η
+Bη + Cη3 ≤ A

η1
+ 2

√
AB + 2A3/4C1/4 .
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Proof. Since η is the minimum between three terms, 1/η is the maximum of their inverses. Therefore,

A

η
+Bη + Cη3 ≤ Amax

{
1

η1
,

√
B

A
,

(
C

A

)1/4
}

+Bη + Cη3

≤ A

(
1

η1
+

√
B

A
+

(
C

A

)1/4
)

+B

√
A

B
+ C

(
A1/4

C1/4

)3

=
A

η1
+
√
AB +A3/4C1/4 +

√
AB +A3/4C1/4

=
A

η1
+ 2

√
AB + 2A3/4C1/4 ,

where the second inequality follows from the fact that the maximum of non-negative terms is smaller than their sum, and
from the monotonic increase of the terms Bη and Cη3 with η.

E. Additional Experimental Results
In Figures 4 to 6, we present the full convergence curves for DAT-SGD and D-SGD on the synthetic least squares problem
over the ring, torus, and 1-peer exponential graph topologies, respectively. These results are shown for varying numbers of
machines and correspond to the final errors reported in Figure 1.

On the torus and exponential graph topologies, our method steadily improves with increasing numbers of machines,
demonstrating the potential of our approach to effectively increase parallelism. For the ring topology, performance improves
when transitioning from M = 9 to 25 machines but degrades at M = 100 machines, as the topology-related error term
becomes dominant. Conversely, D-SGD does not improve when increasing the number of machines. On the ring and torus
topologies, performance is initially better for larger M , but then deteriorates, indicating that while we initially benefit from
variance reduction, the optimization transitions to a regime where the leading error term depends on topology and inefficient
information flow hinders further improvement. For the well-connected exponential graph, initial performance improves with
M , but all configurations eventually converge to approximately the same error level.
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Figure 4. Error curves for the least squares problem with varying noise, data heterogeneity, and # of machines in the ring topology.
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Figure 5. Error curves for the least squares problem with varying noise, data heterogeneity, and # of machines in the torus topology.
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Figure 6. Error curves for the least squares problem with varying noise, data heterogeneity, and # of machines in the 1-peer exponential
graph topology.
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